JP2008168396A - 微細構造体及びその製造方法、ラマン分光用デバイス、ラマン分光装置 - Google Patents
微細構造体及びその製造方法、ラマン分光用デバイス、ラマン分光装置 Download PDFInfo
- Publication number
- JP2008168396A JP2008168396A JP2007004452A JP2007004452A JP2008168396A JP 2008168396 A JP2008168396 A JP 2008168396A JP 2007004452 A JP2007004452 A JP 2007004452A JP 2007004452 A JP2007004452 A JP 2007004452A JP 2008168396 A JP2008168396 A JP 2008168396A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- micropores
- light
- base material
- microstructure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N21/658—Raman scattering enhancement Raman, e.g. surface plasmons
Landscapes
- Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
【課題】より高い電場増強効果を有する微細構造体を提供する。
【解決手段】微細構造体1は、内部に複数の微細孔12を有し、且つ少なくとも基材表面11sにて複数の微細孔12が開口した誘電体基材11を備え、複数の微細孔12内の少なくとも一部に、光Lの照射により局在プラズモンを誘起しうる大きさの金属体21が充填されており、基材表面11sの複数の微細孔12の非開口部分に、光Lの照射により局在プラズモンを誘起しうる大きさの複数の金属粒子22が固着されているものである。
【選択図】図1
【解決手段】微細構造体1は、内部に複数の微細孔12を有し、且つ少なくとも基材表面11sにて複数の微細孔12が開口した誘電体基材11を備え、複数の微細孔12内の少なくとも一部に、光Lの照射により局在プラズモンを誘起しうる大きさの金属体21が充填されており、基材表面11sの複数の微細孔12の非開口部分に、光Lの照射により局在プラズモンを誘起しうる大きさの複数の金属粒子22が固着されているものである。
【選択図】図1
Description
本発明は、内部に複数の微細孔を有し、且つ少なくとも基材表面にて該複数の微細孔が開口した誘電体基材に、局在プラズモンを誘起しうる金属を形成した微細構造体及びその製造方法、そしてその微細構造体を用いたラマン分光用デバイス及びラマン分光装置に関するものである。
金属表面における局在プラズモン共鳴現象を利用したセンサデバイスやラマン分光用デバイスが知られている。ラマン分光法は、物質に単波長光を照射して生じる散乱光を分光して得られるラマン散乱光のスペクトル(ラマンスペクトル)を得る方法である。ラマン分光法には、微弱なラマン散乱光を増強するために、表面増強ラマン(SERS)と呼ばれる、局在プラズモン共鳴によって増強された電場を利用したラマン分光法がある。
局在プラズモン共鳴は、光がナノオーダの凹凸構造を有する光照射面に入射したときに、その凸部において自由電子が光の電場に共鳴して振動することにより凸部周辺に強い電場を生じる現象であり、金属の凸部同士が近接して存在する場合により高い電場増強効果を呈することが知られている。
高い電場増強効果が得られるラマン分光用デバイスとしては、光照射面上に局在プラズモンを誘起可能な金属粒子が高密度に近接して固定化されていることが好ましい。このようなラマン分光用デバイスとして利用される微細構造体として、被陽極酸化金属体(Al等)を陽極酸化して一部を金属酸化物層(Al2O3等)とし、陽極酸化の過程で金属酸化物層内部に自然形成され、金属酸化物層の表面において開口した複数の微細孔内に金属が充填されたものが提案されている。
陽極酸化によって形成される微細孔は、ナノメートルオーダで孔径が制御され、且つ、誘電体を介して略規則的に配列させることが可能であるため、各微細孔内に金属を充填することにより、光照射面において、ナノオーダの金属体を接触させずに略規則配列させて固定化することができる。
特許文献1には、微細孔内の充填金属の底部を露出させて、底部側の面を光散乱面として利用した構造体、特許文献2には、微細孔が閉口している側の面の誘電体部分の凹凸を利用し、凹部に金属を配置した構造体が開示されている。
特許文献3には、微細孔をポアワイド処理により広げて微細孔のピッチを狭くすることにより、微細孔内に金属粒子をより近接して配置した構造体が記載されている。
特許文献4〜7には、充填金属同士の離間距離を小さくして高い電場増強効果が得られる構造として、上記の充填金属を金属酸化物層の表面から突出した頭部を有するものとし(マッシュルーム構造)、互いに隣り合う頭部同士の離間距離を近づけて、効果的な局在プラズモンによる電場増強効果が得られるようにした微細構造体が開示されている。
特開2006−83450号公報
特開2006−83451号公報
特開2006−38506号公報
特開2005−172569号公報
特開2005−307341号公報
特開2005−336538号公報
特開2006−89788号公報
上記の通り、種々の微細構造体が提案されているが、本発明者はより高い電場増強効果が得られる微細構造体を発明した。
すなわち、本発明は複雑な製造工程を要することなく、より高い電場増強効果が得られる微細構造体及びその製造方法を提供することを目的とするものである。
本発明はまた上記微細構造体を用いたラマン分光用デバイス及びラマン分光装置を提供することを目的とするものである。
本発明はまた上記微細構造体を用いたラマン分光用デバイス及びラマン分光装置を提供することを目的とするものである。
本発明の微細構造体は、内部に複数の微細孔を有し、且つ少なくとも基材表面にて該複数の微細孔が開口した誘電体基材を備え、前記基材表面側に光が照射される微細構造体において、
前記複数の微細孔内の少なくとも一部に、前記光の照射により局在プラズモンを誘起しうる大きさの金属体が充填されており、且つ、前記基材表面の前記複数の微細孔の非開口部分に、前記光の照射により局在プラズモンを誘起しうる大きさの複数の金属粒子が固着されていることを特徴とするものである。
前記複数の微細孔内の少なくとも一部に、前記光の照射により局在プラズモンを誘起しうる大きさの金属体が充填されており、且つ、前記基材表面の前記複数の微細孔の非開口部分に、前記光の照射により局在プラズモンを誘起しうる大きさの複数の金属粒子が固着されていることを特徴とするものである。
基材表面の複数の微細孔の非開口部分に、金属をごく薄く成膜する場合には、膜状にならず、微小金属粒が点在した構造となることがある。本明細書では、このような微小金属粒は金属粒子とはみなさない。
本発明の微細構造体において、前記複数の金属粒子の平均的な粒子径は、前記光の波長未満であることが好ましい。また、前記複数の微細孔の平均的な径が、前記光の波長未満であることが好ましい。
本明細書において、「粒子径」とは粒子の最大径を意味し、「微細孔径」とは微細孔の最大径を意味する。
本明細書において、「粒子径」とは粒子の最大径を意味し、「微細孔径」とは微細孔の最大径を意味する。
本発明の微細構造体において、前記基材表面と前記複数の微細孔内に充填された前記金属体の表面との最小高低差が、前記複数の金属粒子の平均的な粒子径以下であることが好ましい。
本発明の微細構造体の好適な態様としては、前記誘電体基材が被陽極酸化金属体の少なくとも一部を陽極酸化して得られる金属酸化物体からなり、前記複数の微細孔は、前記陽極酸化の過程で該金属酸化物体内に形成されたものが挙げられる。
前記金属粒子は、前記基材表面に該金属粒子と同成分の金属膜を成膜した後、熱処理により、該金属膜の構成金属を凝集させて粒子化させることにより、形成されたものであることが好ましい。
前記熱処理の温度は、前記金属膜の融点以上かつ前記誘電体基材の融点未満であることが好ましい。
本明細書において、「金属膜の融点」は、金属膜を構成する金属のバルク体の融点ではなく、膜そのものの融点を意味する。詳細については後記するが、本発明では融点降下現象が起こるので、金属膜の融点は金属膜を構成する金属のバルク体の融点よりも低い温度となる。
本明細書において、「金属膜の融点」は、金属膜を構成する金属のバルク体の融点ではなく、膜そのものの融点を意味する。詳細については後記するが、本発明では融点降下現象が起こるので、金属膜の融点は金属膜を構成する金属のバルク体の融点よりも低い温度となる。
本発明のラマン分光用デバイスは、表面に試料が接触され、該試料に測定光が入射され、該測定光のラマン散乱光が検出されるラマン分光用デバイスにおいて、上記本発明の微細構造体からなることを特徴とするものである。
本発明のラマン分光用装置は、上記本発明のラマン分光用デバイスと、
該ラマン分光用デバイスの前記表面に前記測定光を照射する光照射手段と、
前記表面で生ずる散乱光を分光し、ラマン散乱光のスペクトルを得る分光手段とを備えたことを特徴とするものである。
該ラマン分光用デバイスの前記表面に前記測定光を照射する光照射手段と、
前記表面で生ずる散乱光を分光し、ラマン散乱光のスペクトルを得る分光手段とを備えたことを特徴とするものである。
本発明の微細構造体の製造方法は、内部に複数の微細孔を有し、且つ少なくとも基材表面にて該複数の微細孔が開口した誘電体基材を用意する工程(A)と、
前記基材表面の前記複数の微細孔の非開口部分に、金属膜を成膜する工程(B)と、
前記複数の微細孔内の少なくとも一部に、局在プラズモンを誘起しうる大きさの金属体を充填する工程(C)と、
熱処理により、前記金属膜の構成金属を凝集させて粒子化させることにより、前記基材表面の前記複数の微細孔の非開口部分に、局在プラズモンを誘起しうる大きさの複数の金属粒子を形成する工程(D)とを有することを特徴とするものである。
前記基材表面の前記複数の微細孔の非開口部分に、金属膜を成膜する工程(B)と、
前記複数の微細孔内の少なくとも一部に、局在プラズモンを誘起しうる大きさの金属体を充填する工程(C)と、
熱処理により、前記金属膜の構成金属を凝集させて粒子化させることにより、前記基材表面の前記複数の微細孔の非開口部分に、局在プラズモンを誘起しうる大きさの複数の金属粒子を形成する工程(D)とを有することを特徴とするものである。
上記製造方法において、工程(B)〜工程(D)は、工程(B)の後に工程(D)が実施されれば、実施する順序は制限されず、同時実施の工程があっても構わない。
例えば、工程(C)としては、工程(B)を実施する際に同時に、前記複数の微細孔内に前記金属膜と同成分の金属を部分的に充填する工程(C−1)と、
前記複数の微細孔内に、工程(C−1)で充填したのと同成分又は異成分の金属をさらに充填して、前記複数の微細孔内の充填金属量を増加させる工程(C−2)とを含むものが挙げられる。
前記複数の微細孔内に、工程(C−1)で充填したのと同成分又は異成分の金属をさらに充填して、前記複数の微細孔内の充填金属量を増加させる工程(C−2)とを含むものが挙げられる。
本発明の微細構造体は、内部に複数の微細孔を有し、且つ少なくとも基材表面にて複数の微細孔が開口した誘電体基材を備えたものであり、複数の微細孔内の少なくとも一部に局在プラズモンを誘起しうる大きさの金属体が充填され、基材表面の複数の微細孔の非開口部分に、局在プラズモンを誘起しうる大きさの複数の金属粒子が固着されていることを特徴としている。
かかる構成では、基材表面の複数の微細孔の非開口部分に金属粒子を固着しているため、局在プラズモンを誘起しうる金属粒子を高密度に近接して誘電体基材上に固定化させることができる。さらに、本発明の微細構造体では、微細孔内の充填金属体と基材表面に固着された金属粒子との双方の表面で局在プラズモンが効果的に起こり、これらの相互作用も期待できる。
したがって、本発明の微細構造体では、以上の効果が相俟って、従来の微細構造体よりもより高い電場増強効果が得られる。本発明の微細構造体は、局在プラズモンを利用するラマン分光用デバイス等として、好ましく利用することができる。本発明の微細構造体は、全て一括処理による簡易な製造工程により製造することができる。
「微細構造体、ラマン分光用デバイス」
図面を参照し、本発明に係る一実施形態の微細構造体の構造について説明する。図1は厚み方向断面図である。図2は本実施形態の微細構造体の製造工程を示す図である。図1(a)では金属粒子22の密度を実際のものより低密度に図示してある。実際には、図1(b)に示すように、金属粒子22を高密度に配列することができる。
図面を参照し、本発明に係る一実施形態の微細構造体の構造について説明する。図1は厚み方向断面図である。図2は本実施形態の微細構造体の製造工程を示す図である。図1(a)では金属粒子22の密度を実際のものより低密度に図示してある。実際には、図1(b)に示すように、金属粒子22を高密度に配列することができる。
本実施形態の微細構造体1は、導電体13上に形成され、複数の微細孔12が、基材表面11sにおいて開口した誘電体基材11を備え、この誘電体基材11に局在プラズモンを誘起しうる金属が形成されたものである。微細構造体1において、微細孔12は誘電体基材11の表面11sから厚み方向に略ストレートに開孔され、基材裏面11rに到達せずに閉口された非貫通孔である。
本実施形態では、局在プラズモンを誘起しうる金属として、誘電体基材11の複数の微細孔12の少なくとも一部に、局在プラズモンを誘起しうる大きさの金属体21が充填されており、基材表面11sの複数の微細孔12の非開口部分に、局在プラズモンを誘起しうる大きさの複数の金属粒子22が固着されている。
微細構造体1には、基材表面11sに対して、微細孔12に充填された金属体21及び基材表面11sに固着された金属粒子22において局在プラズモンを励起可能な波長の光を含む光Lが照射される。微細構造体1はラマン分光用デバイスとして用いることができ、この場合、照射される光Lはレーザ等の光源から出射される単波長光である。
微細構造体1は、光Lにより金属体21及び金属粒子22において局在プラズモンが誘起され、局在プラズモンによる電場増強効果が得られるものである。
局在プラズモン現象は、金属の凸部の自由電子が光の電場に共鳴して振動することで凸部周辺に強い電場を生じる現象であるので、金属体21及び金属粒子22の主成分としては、任意の金属であれば制限されず、局在プラズモンがより効果的に起こる金(Au)、銀(Ag)、銅(Cu)、白金(Pt)、ニッケル(Ni)、チタン(Ti)等が好ましく、金(Au)、銀(Ag)等が特に好ましい。金属体21と金属粒子22の金属は、同成分であっても異成分であってもよいが、局在プラズモンを生じる波長は金属の種類によって異なるので、同成分である方がより効果的な局在プラズモンを生じさせることができる。
金属粒子22の平均的な粒子径dは、局在プラズモンを誘起可能な大きさであればよいが、光Lの波長未満であることが好ましい。互いに隣接する金属粒子22同士は離間されていることが好ましく、その平均離間距離wは、数nm〜10nmの範囲であることがより好ましい。平均離間距離が上記範囲内である場合は、局在プラズモン効果による電場増強効果を効果的に得ることができる。
金属体21の充填形態及び大きさは、局在プラズモンを誘起可能であれば制限されず、微細孔12の底面から隙間なく充填されていても良いし、微細孔12の底面と金属体21とが離間されていてもよい。基材表面11sと、金属体21の表面との高低差は制限されないが、最小高低差rが金属粒子22の平均的な粒子径d以下であることが好ましい。局在プラズモン効果のしみ出し長は、金属粒子径程度であることが知られており、従って、最小高低差rを金属粒子22の平均的な粒子径d以下とすることにより、微細孔12内の金属体21と基材表面11s上の金属粒子22との間で局在プラズモンの相互作用を生じるため、効果的な電場増強効果を得ることができる。
以下に、図2を参照して、本実施形態の微細構造体1の製造方法について説明する。図2において、(a)、(b)は斜視図、(c)〜(e)は断面図である。
はじめに、導電体13と誘電体基材11との積層体を用意する(工程(A))。本実施形態において、誘電体基材11は、図2(a)、(b)に示されるように、アルミニウム(Al)を主成分とし、微少不純物を含んでいてもよい被陽極酸化金属体10の一部を陽極酸化して得られたアルミナ(Al2O3)層(金属酸化物層)である。導電体13は、陽極酸化されずに残った被陽極酸化金属体10の非陽極酸化部分により構成されている。
はじめに、導電体13と誘電体基材11との積層体を用意する(工程(A))。本実施形態において、誘電体基材11は、図2(a)、(b)に示されるように、アルミニウム(Al)を主成分とし、微少不純物を含んでいてもよい被陽極酸化金属体10の一部を陽極酸化して得られたアルミナ(Al2O3)層(金属酸化物層)である。導電体13は、陽極酸化されずに残った被陽極酸化金属体10の非陽極酸化部分により構成されている。
被陽極酸化金属体10の形状は制限されず、板状等が挙げられる。また、支持体の上に被陽極酸化金属体10が層状に成膜されたものなど、支持体付きの形態で用いることも差し支えない。
陽極酸化は、例えば、被陽極酸化金属体10を陽極とし、カーボンやアルミニウム等を陰極(対向電極)として、これらを陽極酸化用電解液に浸漬させ、陽極と陰極の間に電圧を印加することで実施できる。電解液としては制限されず、硫酸、リン酸、クロム酸、シュウ酸、スルファミン酸、ベンゼンスルホン酸、アミドスルホン酸等の酸を、1種又は2種以上含む酸性電解液が好ましく用いられる。
図2(a)に示す被陽極酸化金属体10を陽極酸化すると、図2(b)に示されるように、表面10s(図示上面)から該面に対して略垂直方向に酸化反応が進行し、アルミナ層11が生成される。
陽極酸化により生成されるアルミナ層11は、平面視略正六角形状の微細柱状体14が隣接して配列した構造を有するものとなる。各微細柱状体14の略中心部には、表面10sから深さ方向に微細孔12が開孔される。また、各微細孔12及び微細柱状体14の底面は、図示する如く、丸みを帯びた形状を有している。陽極酸化により生成されるアルミナ層の構造は、益田秀樹、「陽極酸化法によるメソポーラスアルミナの調製と機能材料としての応用」、材料技術Vol.15,No.10、1997年、p.34等に記載されている。
陽極酸化条件は、非陽極酸化部分が残り、且つ、微細孔12のサイズが、充填される金属体21において局在プラズモンが誘起される範囲内で、適宜設計すればよい。電解液としてシュウ酸を用いる場合、好適な条件例としては、電解液濃度0.5M、液温15℃、印加電圧40Vが挙げられる。電解時間を変えることで、任意の層厚のアルミナ層11を生成できる。陽極酸化前の被陽極酸化金属体10の厚みを、生成されるアルミナ層11よりも厚く設定しておけば、非陽極酸化部分が残り、非陽極酸化部分からなる導電体13上に設けられ、平面視略同一形状の多数の微細孔12が、基材表面11sにおいて開口して略規則配列したアルミナ層11(誘電体基材11)を得ることができる。
通常、互いに隣接する微細孔12同士のピッチは10〜500nmの範囲で、また微細孔の孔径は、5〜400nmの範囲でそれぞれ制御可能である。特開2001−9800号公報や特開2001−138300号公報には、微細孔の形成位置や孔径をより細かく制御する方法が開示されている。これらの方法を用いることにより、上記範囲内において任意の孔径及び深さを有する微細孔を略規則的に配列形成することができる。
本実施形態において、微細孔12の平均的なピッチPは制限されないが、誘電体基材11に照射される光Lの波長未満であることが好ましい。微細構造体1は、微細孔12内に充填された金属体21と、基材表面11s上の金属粒子22との相互作用による電場増強効果が得られるものである。従って、微細孔12が略規則的に配列されている方が、面内均一性の高い電場増強効果を得ることができ、好ましい。かかる構成では、微細構造体1の面積が大きくなっても略均一な電場増強効果を得ることができるため、大面積化も可能となる。
次に、図2(c)に示すように、基材表面11sの複数の微細孔12の非開口部分に、金属粒子22と同成分の金属膜20を成膜する(工程(B))。金属膜20の成膜方法としては制限されず、例えば、真空蒸着法、スパッタ法、CVD法、レーザ蒸着法、及びクラスタイオンビーム法等の気相成長法が好ましい。金属膜20は常温下で成膜しても加熱下で成膜してもよく、成膜温度は制限されない。
金属膜20の膜厚dmは特に制限されない。金属膜20の膜厚dmが過小では安定的に粒子化させることが難しくなる。
図2(c)に示すように、工程(B)を実施する際に、金属膜20の成膜材料を同時に誘電体基材11の複数の微細孔12の底部にも充填することができる(工程(C−1))。この充填金属は金属体21の一部となる。
次に、図2(d)に示すように、複数の微細孔12内に、工程(C−1)で充填したのと同成分又は異成分の金属をさらに充填して、複数の微細孔12内の充填金属量を増加させる(工程(C−2))。工程(C−1)及び(C−2)を実施することにより、複数の微細孔12内に、金属体21を充分な高さで充填することができ、基材表面11sと、金属体21の表面との最小高低差rを小さく、好ましくは最小高低差rを金属粒子22の平均的な粒子径d以下とすることができる。
工程(C−2)において、複数の微細孔12内の充填金属量を増加させる方法は特に制限なく、電気メッキ法、無電解メッキ法、充填させたい金属を含有した溶液を微細孔12内に流しこんだ後溶媒を乾燥させる方法、及び還元剤を用いて金属を析出させる方法等が挙げられる。
電気メッキ法により金属充填を実施する場合は、金属は電気の流れやすいところから析出が開始される。本実施形態のように、誘電体基材11の内部の微細孔12内に金属を充填する場合は、導電体13が電極として機能するため、電極の近傍である微細孔12の底部より金属が析出されるが、誘電体であるために電気が流れにくく充填むらを生じる可能性がある。本実施形態において、工程(B)及び工程(C−1)を工程(C−2)の前に行う製造工程とすることにより、電気メッキ処理の前に、工程(C−1)により微細孔12の底部に金属が充填されてメッキの開始点を各微細孔12内に略均一に形成することができる。従って、充填むらを解消し複数の微細孔12内部の充填金属体21を略均一に形成することが可能となり、金属体21による局在プラズモン効果の面内均一性を向上させることができる。
ここでは、工程(C−1)及び工程(C−2)の2段階で、複数の微細孔12内の少なくとも一部に金属体21を充填する工程(C)を実施する場合について説明した。微細孔12の深さによっては、工程(C−2)を実施しなくてもよい。また、条件によっては、工程(B)を実施する際に、同時に微細孔12の底部に金属を充填させないこともできるので、この場合は、逆に工程(C−2)のみを実施することとなる。
次に、図2(e)に示すように、熱処理により、金属膜20の構成金属を凝集させて粒子化させて基材表面11sの複数の微細孔12の非開口部分に、局在プラズモンを誘起しうる大きさの複数の金属粒子22を形成する(工程(D))。
金属膜20の熱処理方法は制限なく、例えば、レーザアニール、電子ビームアニール、フラッシュランプアニール、ヒータを用いた熱放射アニール、及び電気炉アニール等のアニール処理が挙げられる。
本実施形態では、熱処理によって金属膜20の構成金属がいったん溶融し、降温過程において、溶融した金属が誘電体基材11の表面11sに自然に凝集して粒子化すると考えられる。
本実施形態では、熱処理によって金属膜20の構成金属がいったん溶融し、降温過程において、溶融した金属が誘電体基材11の表面11sに自然に凝集して粒子化すると考えられる。
熱処理温度は、金属膜20の構成金属が凝集することができれば制限されず、金属膜20の融点以上かつ誘電体基材11の融点未満の温度であることが好ましい。熱処理工程では、誘電体基材11を溶融させずに、金属膜20の構成金属を凝集させて粒子化させる必要があるので、誘電体基材11及び金属膜20の融点を考慮して、熱処理温度を設定する必要がある。
一般にバルク金属の融点は非常に高く、例えば金属膜20の好ましい材質であるAuのバルク体の融点は1064℃程度である。本実施形態の誘電体基材11はアルミナからなり、その融点は2050℃と高いが、誘電体基材の融点は必ずしも1064℃よりも高いわけではない。
しかしながら、誘電体基材11上に成膜された金属膜20では、バルク金属の融点よりもはるかに低い温度において溶融する融点降下現象が起こる。金属膜20の融点降下現象は、金属膜20の膜厚dmがナノオーダである場合に、顕著に起こる。例えば、Auの融点は、2nmまでナノサイズ化された場合、300℃付近まで融点が降下して、物性が大きく変化するという報告がある(ナノ粒子・超微粒子の新展開−東レリサーチセンタ発行)。
融点降下のレベルは、金属膜20の主成分と膜厚dmによって変わる。金属膜20の主成分と膜厚dmとによって決まる金属膜20の実際の融点と、誘電体基材11の融点とを考慮することで、より適した熱処理温度の設定が可能となる。すなわち、熱処理温度は、金属膜20の融点以上の温度であり、かつ誘電体基材11の融点未満の温度であることが好ましい。
上記のように、金属膜20を熱処理して金属粒子22を形成する方法を用いる場合は、誘電体基材11は、金属膜20の融点以上の融点を有するものであることが好ましい。
以上のようにして、本実施形態の微細構造体1は製造される。上記の製造方法は、誘電体基材11の製造から基材表面11s上の微細孔12の非開口部分に金属粒子22が固着された微細構造体1を得る最終工程に至るまで、すべての製造工程が、基板全体を一括処理する工程である。そのため誘電体基材11が大面積化した場合においてもその工程数に変化はなく、非常に簡易な方法により微細構造体1を得ることができる。すなわち、本実施形態の微細構造体1では、大面積化も容易である。
工程(B)〜工程(D)の順序は、工程(B)の後に工程(D)が実施されれば、実施する順序は上記順序に制限されない。例えば、工程(C−2)、工程(B)、工程(D)を順次実施しても、微細構造体1を製造できる。
微細構造体1は、上記したように、照射された光Lにより金属体21及び金属粒子22において局在プラズモンが誘起され、局在プラズモンによる電場増強効果が得られるものである。局在プラズモンによる電場増強効果は、局在プラズモン共鳴波長においては、100倍以上といわれている。従って、光Lとして、金属体21及び/又は金属部22において局在プラズモン共鳴を生じる波長の光を用いることが好ましい。
また、微細構造体1において、誘電体基材11が陽極酸化アルミナ等の透光体である場合は、透光体内に光Lが入射され、導電体13と基材表面11s上の金属粒子22との間で反射されて、透光体内で干渉現象が起こり、ある波長の光が吸収される光干渉効果を生じて基材表面11sにおいて電場が増強される。更に、導電体13と透光体部分と基材表面11s上の金属粒子22とが共振構造を形成する場合は、多重反射によりある特定波長において共振を生じて(多重干渉のピーク波長)大きな吸収を生じることになる。本発明者らは、多重干渉のピーク波長は、透光体部分の厚みによって調整可能であることを見いだしており(特願2006−149713号、本件特許出願時において未公開)、従って、透光体部分の厚み、つまり誘電体基材11の厚みを制御して、金属体21及び/又は金属粒子22の局在プラズモンを生じる波長と、多重干渉のピーク波長とを略一致させることにより、より大きな電場増強効果を得ることが可能となる。
本実施形態の微細構造体1は、内部に複数の微細孔12を有し、且つ少なくとも基材表面11sにて複数の微細孔12が開口した誘電体基材11を備えたものであり、複数の微細孔12内の少なくとも一部に局在プラズモンを誘起しうる大きさの金属体21が充填され、基材表面11sの複数の微細孔12の非開口部分に、局在プラズモンを誘起しうる大きさの複数の金属粒子22が固着されていることを特徴としている。
かかる構成では、基材表面11sの複数の微細孔12の非開口部分に金属粒子22を固着しているため、局在プラズモンを誘起しうる金属粒子22を高密度に近接して誘電体基材11上に固定化させることができる。さらに、本実施形態の微細構造体1では、微細孔12内の充填金属体21と基材表面11sに固着された金属粒子22との双方の表面で局在プラズモンが効果的に起こり、これらの相互作用も期待できる。
したがって、本実施形態の微細構造体1では、以上の効果が相俟って、従来の微細構造体よりもより高い電場増強効果が得られる。本実施形態の微細構造体1は、局在プラズモンによる電場増強効果を利用するラマン分光用デバイス等として、好ましく利用することができる。本実施形態の微細構造体1は、全て一括処理による簡易な製造工程により製造することができる。
(設計変更例)
上記実施形態では、被陽極酸化金属体10の一部を陽極酸化して得られたアルミナ層を誘電体基材11、非陽極酸化部分を導電体13とし、誘電体基材11の内部の微細孔12に、電気メッキ法により金属を析出させて金属体21を形成する方法について説明したが、被陽極酸化金属体10をすべて陽極酸化した後に、別途蒸着等により導電体13を成膜してもよい。この場合、導電体13の材料は制限なく、任意の金属やITO(インジウム錫酸化物)等の導電性の材料が挙げられる。
上記実施形態では、被陽極酸化金属体10の一部を陽極酸化して得られたアルミナ層を誘電体基材11、非陽極酸化部分を導電体13とし、誘電体基材11の内部の微細孔12に、電気メッキ法により金属を析出させて金属体21を形成する方法について説明したが、被陽極酸化金属体10をすべて陽極酸化した後に、別途蒸着等により導電体13を成膜してもよい。この場合、導電体13の材料は制限なく、任意の金属やITO(インジウム錫酸化物)等の導電性の材料が挙げられる。
また、基材裏面11rに導電体13を備えた場合について説明したが、金属体21を微細孔12に充填する方法として、電気メッキ等の電極を必要とする方法を用いない場合は、導電体13は備えてなくてよい。また、金属体21の形成後に導電体13を除去した構成としてもよい。
上記実施形態では、微細孔12が非貫通孔である場合について説明したが、微細孔12は貫通孔であってもよい。この場合、基材裏面11rに導電体13が備えられている場合は、導電体13と金属体21とが空気或いは誘電体により離間されていることが好ましい。
上記実施形態において、誘電体基材11の製造に用いる被陽極酸化金属体10の主成分としてAlのみを挙げたが、陽極酸化可能であれば、任意の金属が使用できる。Al以外では、Ti、Ta、Hf、Zr、Si、In、Zn等が使用できる。被陽極酸化金属体10は、陽極酸化可能な金属を2種以上含むものであってもよい。
用いる被陽極酸化金属の種類によって、形成される微細孔12の平面パターンは変わるが、平面視略同一形状の微細孔12が隣接して配列した構造を有する誘電体基材11が形成されることには変わりない。
また、陽極酸化を利用して微細孔12を規則配列させる場合について説明したが、微細孔12の形成方法は、陽極酸化に制限されない。表面全面を一括処理でき、大面積化に対応でき、高価な装置を必要としないことから、陽極酸化を利用した上記実施形態は好ましいが、陽極酸化を利用する以外に、樹脂等の基板の表面にナノインプリント技術により規則配列した複数の凹部を形成する、金属等の基板の表面に、集束イオンビーム(FIB)、電子ビーム(EB)等の電子描画技術により規則配列した複数の凹部を描画する等の微細加工技術が挙げられる。微細孔12は規則配列させてもよいし、させなくてもよい。
上記実施形態では、金属粒子22は、基材表面11s上に金属膜20を成膜した後に熱処理により形成したが、金属粒子22の形成方法は制限されない。上記実施形態以外の形成方法としては、金属コロイドを利用する方法,LB法,シランカップリング法,斜め蒸着法,マスクを用いた蒸着,クエン酸をCTABに置換後自然蒸発(J. Am. Chem. Soc., Vol. 127, 14992-14993, 2005.)等が挙げられる。
「ラマン分光用装置」
次に、図3に基づいて、上記実施形態の微細構造体1をラマン分光用デバイスとして用いる場合を例として、本発明に係る実施形態のラマン分光装置について説明する。図3は、本実施形態のラマン分光装置2の概略構成図である。
次に、図3に基づいて、上記実施形態の微細構造体1をラマン分光用デバイスとして用いる場合を例として、本発明に係る実施形態のラマン分光装置について説明する。図3は、本実施形態のラマン分光装置2の概略構成図である。
本実施形態のラマン分光装置2は、上記実施形態の微細構造体からなるラマン分光用デバイス1と、ラマン分光用デバイス1に特定波長の測定光Lを照射する光照射手段30と、散乱光を分光する分光手段40とから概略構成されている。光照射手段30は、レーザ等の単波長光源31と光源から出射される光を導光するミラー32などの導光系とからなる。光照射手段30は、試料Xを接触させるラマン分光用デバイス1の金属粒子22側の表面1sに特定波長の光Lを照射するよう、構成されている。
分光手段40は分光検出器41と試料からの散乱光Lsを集光する集光レンズ43と、集光レンズ43によって集光された散乱光を分光検出器41へ導光するミラー42などの導光系とからなり、ラマン分光用デバイス1の表面1sで発生する散乱光(ラマン散乱光)Lsを分光し、ラマン散乱光のスペクトル(ラマンスペクトル)を得るものである。分光手段40は、ラマン分光用デバイス1の表面1sで発生する散乱光Lsが入射するよう、配置されている。
かかる構成においては、光照射手段30から照射された特定波長の光Lが、試料Xを接触させたラマン分光用デバイス1の表面1sで散乱され、発生する散乱光Lsが分光手段40に入射し、分光手段40により散乱光Lsが分光されて、ラマンスペクトルが生成される。測定する試料Xの種類によってラマンスペクトルが変わるので、物質の同定等が実施できる。
例えば、ラマン分光用デバイス1の表面1sに既知の抗体を固定して測定を行えば、試料Xに抗原が含まれると、両者の結合が生じて、得られるラマンスペクトルが変化するので、抗原の同定が実施できる。ラマン分光用デバイス1の表面1sに既知の抗原を固定すれば、抗体の同定も同様に実施できる。
本実施形態のラマン分光装置2において、ラマン分光用デバイス1を、試料Xを充填可能な試料セルに取り付けて、測定を行うこともできる。
本実施形態のラマン分光装置2は、上記実施形態のラマン分光用デバイス1(微細構造体1)を用いて構成されたものであるので、効果的にラマン散乱が増強され、データ信頼性が高く、高感度のラマン分光測定を実施できる。特に、ラマン分光用デバイス1において、微細孔12が略規則的に配列している場合は、面内均一性の高い電場増強効果を得ることができるので、データ信頼性のより高いラマン分光測定を実施することが可能である。
また、本実施形態のラマン分光装置2では、分光手段40は、ラマン分光用デバイス1の表面1sにおける測定光Lの非正反射成分の散乱光のみを受光し、分光する構成とすることが好ましい。正反射成分は光強度が強すぎて本来検出したい微弱なラマン散乱光を良好に検出されない恐れがあるため、かかる構成とすることにより高精度な分析を実施することができる。
本発明の微細構造体は、バイオセンサ等に用いられるセンサデバイスやラマン分光用デバイスとして好ましく利用できる。
1 微細構造体(ラマン分光用デバイス)
1s 表面
10 被陽極酸化金属体
11 誘電体基材(金属酸化物層)
11s 基材表面
12 微細孔
13 導電体(非陽極酸化部分)
20 金属膜
21 金属体
22 金属粒子
2 ラマン分光装置
30 光照射手段
40 分光手段
r 最小高低差
d 粒子径
L 光(測定光)
Ls 散乱光(ラマン散乱光)
X 試料
1s 表面
10 被陽極酸化金属体
11 誘電体基材(金属酸化物層)
11s 基材表面
12 微細孔
13 導電体(非陽極酸化部分)
20 金属膜
21 金属体
22 金属粒子
2 ラマン分光装置
30 光照射手段
40 分光手段
r 最小高低差
d 粒子径
L 光(測定光)
Ls 散乱光(ラマン散乱光)
X 試料
Claims (12)
- 内部に複数の微細孔を有し、且つ少なくとも基材表面にて該複数の微細孔が開口した誘電体基材を備え、前記基材表面側に光が照射される微細構造体において、
前記複数の微細孔内の少なくとも一部に、前記光の照射により局在プラズモンを誘起しうる大きさの金属体が充填されており、且つ、前記基材表面の前記複数の微細孔の非開口部分に、前記光の照射により局在プラズモンを誘起しうる大きさの複数の金属粒子が固着されていることを特徴とする微細構造体。 - 前記複数の金属粒子の平均的な粒子径が、前記光の波長未満であることを特徴とする請求項1に記載の微細構造体。
- 前記複数の微細孔の平均的な径が、前記光の波長未満であることを特徴とする請求項1又は2に記載の微細構造体。
- 前記基材表面と前記複数の微細孔内に充填された前記金属体の表面との最小高低差が、前記複数の金属粒子の平均的な粒子径以下であることを特徴とする請求項1〜3のいずれかに記載の微細構造体。
- 前記誘電体基材は、被陽極酸化金属体の少なくとも一部を陽極酸化して得られる金属酸化物体からなり、前記複数の微細孔は、前記陽極酸化の過程で該金属酸化物体内に形成されたものであることを特徴とする請求項1〜4のいずれかに記載の微細構造体。
- 前記金属粒子は、前記基材表面に該金属粒子と同成分の金属膜を成膜した後、熱処理により、該金属膜の構成金属を凝集させて粒子化させることにより、形成されたものであることを特徴とする請求項1〜5のいずれかに記載の微細構造体。
- 前記熱処理の温度が、前記金属膜の融点以上かつ前記誘電体基材の融点未満であることを特徴とする請求項6に記載の微細構造体
- 表面に試料が接触され、該試料に測定光が入射され、該測定光のラマン散乱光が検出されるラマン分光用デバイスにおいて、
請求項1〜7のいずれかに記載の微細構造体からなることを特徴とするラマン分光用デバイス。 - 請求項8に記載のラマン分光用デバイスと、
該ラマン分光用デバイスの前記表面に前記測定光を照射する光照射手段と、
前記表面で生ずる散乱光を分光し、ラマン散乱光のスペクトルを得る分光手段とを備えたことを特徴とするラマン分光装置。 - 内部に複数の微細孔を有し、且つ少なくとも基材表面にて該複数の微細孔が開口した誘電体基材を用意する工程(A)と、
前記基材表面の前記複数の微細孔の非開口部分に、金属膜を成膜する工程(B)と、
前記複数の微細孔内の少なくとも一部に、局在プラズモンを誘起しうる大きさの金属体を充填する工程(C)と、
熱処理により、前記金属膜の構成金属を凝集させて粒子化させることにより、前記基材表面の前記複数の微細孔の非開口部分に、局在プラズモンを誘起しうる大きさの複数の金属粒子を形成する工程(D)とを有することを特徴とする微細構造体の製造方法。 - 工程(D)において、前記熱処理の温度を、前記金属膜の融点以上かつ前記誘電体基材の融点未満とすることを特徴とする請求項10に記載の微細構造体の製造方法。
- 工程(C)は、工程(B)を実施する際に同時に、前記複数の微細孔内に前記金属膜と同成分の金属を部分的に充填する工程(C−1)と、
前記複数の微細孔内に、工程(C−1)で充填したのと同成分又は異成分の金属をさらに充填して、前記複数の微細孔内の充填金属量を増加させる工程(C−2)とを含むことを特徴とする請求項10又は11に記載の微細構造体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007004452A JP2008168396A (ja) | 2007-01-12 | 2007-01-12 | 微細構造体及びその製造方法、ラマン分光用デバイス、ラマン分光装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007004452A JP2008168396A (ja) | 2007-01-12 | 2007-01-12 | 微細構造体及びその製造方法、ラマン分光用デバイス、ラマン分光装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008168396A true JP2008168396A (ja) | 2008-07-24 |
Family
ID=39696966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007004452A Withdrawn JP2008168396A (ja) | 2007-01-12 | 2007-01-12 | 微細構造体及びその製造方法、ラマン分光用デバイス、ラマン分光装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008168396A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015025756A1 (ja) * | 2013-08-23 | 2015-02-26 | 株式会社右近工舎 | 表面増強ラマン散乱分光測定用基板及びそれを用いた装置 |
KR101789586B1 (ko) * | 2010-12-06 | 2017-10-26 | 삼성디스플레이 주식회사 | 광 산란 기판, 이의 제조 방법, 이를 포함하는 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법 |
JP2019211738A (ja) * | 2018-06-08 | 2019-12-12 | 株式会社オプトニクス精密 | X線マスク及びx線マスクの製造方法 |
CN111650177A (zh) * | 2020-05-09 | 2020-09-11 | 浙江大学 | 一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法 |
WO2023008278A1 (ja) * | 2021-07-28 | 2023-02-02 | 住友化学株式会社 | 複合粒子及びその製造方法、並びにセンサ素子 |
-
2007
- 2007-01-12 JP JP2007004452A patent/JP2008168396A/ja not_active Withdrawn
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101789586B1 (ko) * | 2010-12-06 | 2017-10-26 | 삼성디스플레이 주식회사 | 광 산란 기판, 이의 제조 방법, 이를 포함하는 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법 |
WO2015025756A1 (ja) * | 2013-08-23 | 2015-02-26 | 株式会社右近工舎 | 表面増強ラマン散乱分光測定用基板及びそれを用いた装置 |
GB2532356A (en) * | 2013-08-23 | 2016-05-18 | Ukon Craft Science | Substrate for surface-enhanced raman scattering spectroscopy, and device using same |
JPWO2015025756A1 (ja) * | 2013-08-23 | 2017-03-02 | 株式会社右近工舎 | 表面増強ラマン散乱分光測定用基板及びそれを用いた装置 |
US10359366B2 (en) | 2013-08-23 | 2019-07-23 | Ukon Craft Science Ltd. | Substrate for surface enhanced Raman scattering spectroscopy and devices using same |
GB2532356B (en) * | 2013-08-23 | 2020-04-15 | Ukon Craft Science Ltd | Substrate for surface-enhanced raman scattering spectroscopy, and device using same |
JP2019211738A (ja) * | 2018-06-08 | 2019-12-12 | 株式会社オプトニクス精密 | X線マスク及びx線マスクの製造方法 |
CN111650177A (zh) * | 2020-05-09 | 2020-09-11 | 浙江大学 | 一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法 |
CN111650177B (zh) * | 2020-05-09 | 2024-01-09 | 浙江大学 | 一种实现单分子探测的碲化镓基表面增强拉曼基底及其制备方法 |
WO2023008278A1 (ja) * | 2021-07-28 | 2023-02-02 | 住友化学株式会社 | 複合粒子及びその製造方法、並びにセンサ素子 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4163606B2 (ja) | 微細構造体、微細構造体の作製方法、ラマン分光方法および装置 | |
KR101371008B1 (ko) | 미세 구조체와 그 제조 방법, 센서 디바이스, 및 라만 분광용 디바이스 | |
JP4993360B2 (ja) | 微細構造体及びその製造方法、光電場増強デバイス | |
JP4685650B2 (ja) | ラマン分光用デバイス、及びラマン分光装置 | |
JP5394627B2 (ja) | 微細構造体の作製方法および微細構造体 | |
US7319069B2 (en) | Structure having pores, device using the same, and manufacturing methods therefor | |
US20100129623A1 (en) | Active Sensor Surface and a Method for Manufacture Thereof | |
CN108872192B (zh) | Sers单元及sers系统 | |
JP4395038B2 (ja) | 微細構造体およびその製造方法 | |
Kaniukov et al. | Growth mechanisms of spatially separated copper dendrites in pores of a SiO2 template | |
JP2008281530A (ja) | 表面増強振動分光分析用プローブおよびその製造方法 | |
JP2008168396A (ja) | 微細構造体及びその製造方法、ラマン分光用デバイス、ラマン分光装置 | |
US8045171B2 (en) | Inspection chip producing method and specimen detecting method | |
JP2004232027A (ja) | 微細構造体およびその作製方法並びにセンサ | |
JP2006145230A (ja) | 被分析物担体およびその製造方法 | |
Bechelany et al. | Extended domains of organized nanorings of silver grains as surface-enhanced Raman scattering sensors for molecular detection | |
Lu et al. | Effect of nanostructured silicon on surface enhanced Raman scattering | |
JP4384956B2 (ja) | 微細構造体およびその製造方法 | |
JP2006083451A (ja) | 微細構造体およびその製造方法 | |
JP2008261752A (ja) | 微細構造体及びその製造方法、電場増強デバイス | |
JP2009127080A (ja) | 微細構造体の製造方法 | |
CN111850500B (zh) | 一种离子注入制作sers基底的方法 | |
JP2008275972A (ja) | プラズモン導波路とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100406 |