JP2008024737A - Glass fiber-reinforced resin molded item and its manufacturing method - Google Patents
Glass fiber-reinforced resin molded item and its manufacturing method Download PDFInfo
- Publication number
- JP2008024737A JP2008024737A JP2006195291A JP2006195291A JP2008024737A JP 2008024737 A JP2008024737 A JP 2008024737A JP 2006195291 A JP2006195291 A JP 2006195291A JP 2006195291 A JP2006195291 A JP 2006195291A JP 2008024737 A JP2008024737 A JP 2008024737A
- Authority
- JP
- Japan
- Prior art keywords
- glass fiber
- reinforced resin
- resin molded
- molded body
- fiber reinforced
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Reinforced Plastic Materials (AREA)
Abstract
Description
本発明は、ガラス繊維強化樹脂成形体、及びその製造方法に関するものである。 The present invention relates to a glass fiber reinforced resin molded article and a method for producing the same.
機械的性質に優れた合成樹脂として、ガラス繊維を含むガラス繊維強化樹脂が知られている(例えば特許文献1)。 As a synthetic resin excellent in mechanical properties, a glass fiber reinforced resin containing glass fibers is known (for example, Patent Document 1).
ガラス繊維強化樹脂は、熱伝導率が小さいため、ショックアブソーバ用リザーバタンクや電気部品用封止材等として使用する場合には、内部の発熱によって生じた熱を外部に放出することができず蓄熱されてしまうという問題がある。 Glass fiber reinforced resin has low thermal conductivity, so when it is used as a reservoir tank for shock absorbers or a sealing material for electrical parts, heat generated by internal heat generation cannot be released to the outside. There is a problem of being done.
そこで、熱伝導率を向上させるためにガラス繊維強化樹脂にカーボン繊維、ステンレス繊維、窒化ホウ素、アルミナ等の熱伝導率の優れる材料を添加する方法がある。
しかし、上記のような添加物をガラス繊維強化樹脂に添加した成形材料を用いて射出成形を行う場合、添加物と合成樹脂の比重の違い等によって、添加物は射出成形時の成形材料の流動特性に悪影響を及ぼす。これにより、成形材料の成形型への充填率の低下や成形品における添加物の片寄り等を招来することになり、成形品の機械的性質が低下する。 However, when injection molding is performed using a molding material in which the above additives are added to glass fiber reinforced resin, the additive may flow due to the difference in specific gravity between the additive and the synthetic resin. Adversely affects properties. This leads to a decrease in the filling rate of the molding material into the mold and a shift of the additive in the molded product, and the mechanical properties of the molded product are degraded.
本発明は、上記の問題点に鑑みてなされたものであり、機械的性質を維持しつつ熱伝導率が優れるガラス繊維強化樹脂成形体、及びその製造方法を提供することを目的とする。 This invention is made | formed in view of said problem, and it aims at providing the glass fiber reinforced resin molded object which is excellent in thermal conductivity, maintaining its mechanical property, and its manufacturing method.
本発明に係るガラス繊維強化樹脂成形体の製造方法は、ガラス繊維の表面に金属被膜を施し、前記ガラス繊維を合成樹脂に配合してなる成形材料を用いて成形を行うことを特徴とする。 The method for producing a glass fiber reinforced resin molded article according to the present invention is characterized in that a metal coating is applied to the surface of the glass fiber and molding is performed using a molding material obtained by blending the glass fiber with a synthetic resin.
本発明によれば、ガラス繊維の表面に金属被膜を施したものを合成樹脂に配合した成形材料を用い、成形材料には添加物が添加されていないため、成形材料の流動特性は悪化することがない。したがって、得られるガラス繊維強化樹脂成形体は、機械的性質が損なわれることなく、かつガラス繊維の表面には金属被膜が施されているため熱伝導率が優れたものとなる。 According to the present invention, since a molding material obtained by blending a glass fiber surface with a metal coating into a synthetic resin is used and no additive is added to the molding material, the flow characteristics of the molding material deteriorate. There is no. Therefore, the obtained glass fiber reinforced resin molded article has excellent thermal conductivity because the mechanical properties are not impaired and the surface of the glass fiber is coated with a metal film.
以下に、本発明の実施の形態について説明する。 Embodiments of the present invention will be described below.
本実施の形態に係るガラス繊維強化樹脂成形体(以下、「成形体」と称する。)は、合成樹脂中にガラス繊維が分散されたものであり、射出成形や押出成形等の成形方法によって製造されるものである。 The glass fiber reinforced resin molded body (hereinafter referred to as “molded body”) according to the present embodiment is obtained by dispersing glass fibers in a synthetic resin and manufactured by a molding method such as injection molding or extrusion molding. It is what is done.
合成樹脂は、ポリアミド、ポリブチレンテレフタレート、ポリフェニレンサルファイド等であり、射出成形又は押出成形に適した合成樹脂である。合成樹脂は、1種からなるものであっても良いし、また、数種類の合成樹脂を混合したものでも良い。 The synthetic resin is polyamide, polybutylene terephthalate, polyphenylene sulfide or the like, and is a synthetic resin suitable for injection molding or extrusion molding. The synthetic resin may be composed of one kind or may be a mixture of several kinds of synthetic resins.
ガラス繊維は、成形体の強度を向上させるために合成樹脂に配合される。本発明において用いられるガラス繊維は、一般的なガラス繊維強化樹脂成形体に用いられるガラス繊維と同様のものである。 Glass fiber is blended in a synthetic resin in order to improve the strength of the molded body. The glass fiber used in the present invention is the same as the glass fiber used for a general glass fiber reinforced resin molded article.
ガラス繊維の表面には、金属被膜が施されている。金属被膜の材料としては、熱伝導率の良いNi、Al、Cu、Ag、Au等が好ましい。成形体における金属被膜が施されているガラス繊維の含有率は、10重量%未満が望ましい。10%重量%を超えると、成形体の強度が低下し、また成形体のコスト増にもつながる。成形体中に分布する多数のガラス繊維は、それぞれの金属被膜同士が接触することによってネットワークを組む。このネットワークを通じて熱が伝わり易くなり、成形体の熱伝導率が向上する。 A metal coating is applied to the surface of the glass fiber. As a material for the metal coating, Ni, Al, Cu, Ag, Au, etc. having good thermal conductivity are preferable. As for the content rate of the glass fiber in which the metal film in the molded object is given, less than 10 weight% is desirable. If it exceeds 10% by weight, the strength of the molded product is lowered, and the cost of the molded product is increased. A large number of glass fibers distributed in the molded body form a network by contacting each metal coating. Heat is easily transmitted through this network, and the thermal conductivity of the molded body is improved.
金属被膜はガラス繊維の表面全体を被覆しているのが好ましい。しかし、金属被膜は、ガラス繊維同士がネットワークを組むことができる程度であれば、ガラス繊維の表面の一部を被覆している状態でも良い。 The metal coating preferably covers the entire surface of the glass fiber. However, the metal coating may be in a state in which a part of the surface of the glass fiber is coated as long as the glass fibers can form a network.
ガラス繊維強化樹脂成形体の製造方法について説明する。 The manufacturing method of a glass fiber reinforced resin molding is demonstrated.
まず、ガラス繊維の表面に金属被膜を施す。金属被膜の成形は、めっき処理によって行われる。めっき処理は、電解めっき、無電解めっき、蒸着、浸漬等どのような方法でもよい。 First, a metal film is applied to the surface of the glass fiber. The metal film is formed by a plating process. The plating treatment may be any method such as electrolytic plating, electroless plating, vapor deposition, or immersion.
次に、合成樹脂を加熱し溶融状態にする。加熱温度は、合成樹脂が溶融し、かつ熱分解しない温度に設定する。そして、溶融状態の原料樹脂に、金属めっき処理を施したガラス繊維を配合し、成形材料とする。このとき、原料樹脂中にてガラス繊維が均一となるように充分に攪拌する。 Next, the synthetic resin is heated to a molten state. The heating temperature is set to a temperature at which the synthetic resin melts and does not thermally decompose. And the glass fiber which gave the metal plating process to the raw material resin of a molten state is mix | blended, and it is set as a molding material. At this time, it stirs enough so that glass fiber may become uniform in raw material resin.
そして、原料樹脂とガラス繊維とが混合した成形材料を、所定の射出圧力にて成形型に押し込み充填する。射出圧力は、材料、成形型構造、成形品形状等によって適切に設定される。 Then, the molding material in which the raw resin and the glass fiber are mixed is pressed and filled into the molding die at a predetermined injection pressure. The injection pressure is appropriately set depending on the material, the mold structure, the shape of the molded product, and the like.
ガラス繊維の比重は樹脂の比重に近いため、ガラス繊維は原料樹脂と共に流動する。また、樹脂とガラス繊維とは界面接着が良好で分離し難い。したがって、成形材料を成形型に充填する際の成形材料の流動特性は良好である。 Since the specific gravity of the glass fiber is close to the specific gravity of the resin, the glass fiber flows together with the raw material resin. Also, the resin and glass fiber have good interfacial adhesion and are difficult to separate. Therefore, the flow characteristics of the molding material when the molding material is filled in the mold are good.
次に、成形型に充填した成形材料を冷却することによって固化させる。成形材料の冷却は、成形型の温度を所定の温度に設定し、成形材料の熱を成形型に放熱することによって行われる。 Next, the molding material filled in the mold is solidified by cooling. The molding material is cooled by setting the temperature of the molding die to a predetermined temperature and dissipating the heat of the molding material to the molding die.
以上のようにして、ガラス繊維強化樹脂成形体が得られる。 As described above, a glass fiber reinforced resin molded product is obtained.
以上の実施の形態によれば、成形材料を成形型に充填する際の成形材料の流動特性は良好であるため、固化した成形体におけるガラス繊維の分布は均一なものとなる。したがって、成形体の機械的性質は、従来のガラス繊維に金属めっきを施さない成形体と比較して低下することはなく維持される。さらに、ガラス繊維の表面には金属めっきが施されているため、熱伝導率が優れた成形体を得ることができる。 According to the above embodiment, since the flow characteristics of the molding material when the molding material is filled in the mold are good, the distribution of the glass fibers in the solidified molded body is uniform. Accordingly, the mechanical properties of the molded body are maintained without being deteriorated as compared with the molded body in which the conventional glass fiber is not subjected to metal plating. Furthermore, since the metal fiber is plated on the surface of the glass fiber, a molded body having excellent thermal conductivity can be obtained.
上記においては、成形材料を射出成形する場合について示したが、押出成形する場合には、所定の押出圧力にて成形材料を押し込み、成形材料の通過孔を有する成形型を通過させることによって成形体を製造する。この押出成形についても、射出成形の場合と同様に機械的性質を維持しつつ熱伝導率が優れる成形体を得ることができる。 In the above, the case where the molding material is injection-molded is shown. However, in the case of extrusion molding, the molding material is pushed in by a predetermined extrusion pressure and passed through a molding die having a molding material passage hole. Manufacturing. Also in this extrusion molding, a molded body having excellent thermal conductivity can be obtained while maintaining mechanical properties as in the case of injection molding.
以下に、本発明に係るガラス繊維強化樹脂成形体(以下、「本成形体」と称する。)と、比較成形体との熱伝導率の比較実験について示す。 Below, the comparative experiment of the thermal conductivity of the glass fiber reinforced resin molded body (hereinafter referred to as “the present molded body”) according to the present invention and the comparative molded body is shown.
本成形体は、ポリブチレンテレフタレートの原料樹脂に、無電解Niめっきを施したガラス繊維を配合したものを成形材料とし、その成形材料を射出成形することによって得られたものである。 The molded body is obtained by injection molding of a molding material obtained by blending a raw material resin of polybutylene terephthalate with glass fibers subjected to electroless Ni plating.
また、比較成形体は、ガラス繊維に無電解Niめっきが施されていない点のみが本成形体との相違点であり、材料、製造方法は本成形体と同一である。 The comparative molded body is different from the molded body only in that the electroless Ni plating is not applied to the glass fiber, and the material and the manufacturing method are the same as those of the molded body.
図1は、本成形体と比較成形体の熱伝達を示すグラフである。 FIG. 1 is a graph showing heat transfer between the molded body and the comparative molded body.
本成形体と比較成形体との熱伝達の比較実験は、双方の成形体を100℃に設定されたホットプレート上に載置し、成形体の表面温度を1分毎に測定することによって行った。そして、10分経過後に、双方の成形体をホットプレート上から取り外し、常温において自然冷却させた。したがって、図1において、経過時間0〜10分の間は成形体が吸熱状態のデータであり、10分以降は成形体が放熱状態のデータである。 A comparative experiment of heat transfer between the molded body and the comparative molded body was performed by placing both molded bodies on a hot plate set at 100 ° C. and measuring the surface temperature of the molded body every minute. It was. After 10 minutes, both molded bodies were removed from the hot plate and allowed to cool naturally at room temperature. Accordingly, in FIG. 1, the molded body is data in an endothermic state during an elapsed time of 0 to 10 minutes, and the molded body is data in a heat dissipation state after 10 minutes.
図1からわかるように、経過時間が0〜10分の間では、本成形体の温度上昇率は、比較成形体の温度上昇率と比較して大きい。また、10分以降では、本成形体の温度降下率は、比較成形体の温度降下率と比較して大きい。このことから明らかなように、本成形体の熱伝導率は、比較成形体の熱伝導率と比較して大きいことがわかる。 As can be seen from FIG. 1, when the elapsed time is between 0 and 10 minutes, the temperature increase rate of the molded body is larger than the temperature increase rate of the comparative molded body. Further, after 10 minutes, the temperature drop rate of the molded body is larger than that of the comparative molded body. As is clear from this, it can be seen that the thermal conductivity of the molded body is larger than that of the comparative molded body.
以上のように、本発明に係るガラス繊維強化樹脂成形体の製造方法によれば、機械的性質を維持しつつ熱伝導率を向上させることができ、優れた特性を有するガラス繊維強化樹脂成形体を得ることができる。 As described above, according to the method for producing a glass fiber reinforced resin molded body according to the present invention, the thermal conductivity can be improved while maintaining the mechanical properties, and the glass fiber reinforced resin molded body having excellent characteristics. Can be obtained.
本発明は上記の実施の形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。 The present invention is not limited to the above-described embodiment, and it is obvious that various modifications can be made within the scope of the technical idea.
本発明に係るガラス繊維強化樹脂成形体は、ショックアブソーバ用リザーバタンクや電気部品用封止材等に適用することができる。 The glass fiber reinforced resin molded product according to the present invention can be applied to a shock absorber reservoir tank, an electrical component sealing material, and the like.
Claims (5)
前記ガラス繊維を合成樹脂に配合してなる成形材料を用いて成形を行う
ことを特徴とするガラス繊維強化樹脂成形体の製造方法。 A metal coating is applied to the surface of the glass fiber,
The manufacturing method of the glass fiber reinforced resin molded object characterized by performing shaping | molding using the molding material formed by mix | blending the said glass fiber with a synthetic resin.
ガラス繊維の表面に金属被膜が施されてなることを特徴とするガラス繊維強化樹脂成形体。 A glass fiber reinforced resin molded body molded using a molding material formed by blending glass fiber with synthetic resin,
A glass fiber reinforced resin molded article, wherein a metal coating is applied to the surface of glass fiber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006195291A JP2008024737A (en) | 2006-07-18 | 2006-07-18 | Glass fiber-reinforced resin molded item and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006195291A JP2008024737A (en) | 2006-07-18 | 2006-07-18 | Glass fiber-reinforced resin molded item and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008024737A true JP2008024737A (en) | 2008-02-07 |
Family
ID=39115722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006195291A Pending JP2008024737A (en) | 2006-07-18 | 2006-07-18 | Glass fiber-reinforced resin molded item and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008024737A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017216740A1 (en) | 2016-09-23 | 2018-03-29 | Yazaki Corporation | Conductive plastic body, vehicle grounding structure and method of making the conductive plastic body |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5490596A (en) * | 1977-12-07 | 1979-07-18 | Mb Assoc | Conductive plastic composite material |
JPS58167455A (en) * | 1982-03-25 | 1983-10-03 | Mitsubishi Electric Corp | Metallized glass fiber |
JPS60113996A (en) * | 1983-11-26 | 1985-06-20 | 日本板硝子株式会社 | Electromagnetic shielding reinforced plastic material |
JPS62212450A (en) * | 1986-03-12 | 1987-09-18 | Denki Kagaku Kogyo Kk | Antistatic and electromagnetic wave shielding resin composition |
JPH01252555A (en) * | 1988-03-31 | 1989-10-09 | Mitsubishi Electric Corp | Production unit for metal-coated glass fiber |
JPH1143548A (en) * | 1997-07-30 | 1999-02-16 | Asahi Chem Ind Co Ltd | Production of conductive molded product |
JP2000336266A (en) * | 1999-06-01 | 2000-12-05 | Tosoh Corp | Conductive polyphenylene sulfide resin composition |
JP2002075011A (en) * | 2000-08-30 | 2002-03-15 | Matsushita Electric Ind Co Ltd | Tube lamp |
-
2006
- 2006-07-18 JP JP2006195291A patent/JP2008024737A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5490596A (en) * | 1977-12-07 | 1979-07-18 | Mb Assoc | Conductive plastic composite material |
JPS58167455A (en) * | 1982-03-25 | 1983-10-03 | Mitsubishi Electric Corp | Metallized glass fiber |
JPS60113996A (en) * | 1983-11-26 | 1985-06-20 | 日本板硝子株式会社 | Electromagnetic shielding reinforced plastic material |
JPS62212450A (en) * | 1986-03-12 | 1987-09-18 | Denki Kagaku Kogyo Kk | Antistatic and electromagnetic wave shielding resin composition |
JPH01252555A (en) * | 1988-03-31 | 1989-10-09 | Mitsubishi Electric Corp | Production unit for metal-coated glass fiber |
JPH1143548A (en) * | 1997-07-30 | 1999-02-16 | Asahi Chem Ind Co Ltd | Production of conductive molded product |
JP2000336266A (en) * | 1999-06-01 | 2000-12-05 | Tosoh Corp | Conductive polyphenylene sulfide resin composition |
JP2002075011A (en) * | 2000-08-30 | 2002-03-15 | Matsushita Electric Ind Co Ltd | Tube lamp |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102017216740A1 (en) | 2016-09-23 | 2018-03-29 | Yazaki Corporation | Conductive plastic body, vehicle grounding structure and method of making the conductive plastic body |
US10074459B2 (en) | 2016-09-23 | 2018-09-11 | Yazaki Corporation | Conductive resin body, vehicle earth structure, and method of manufacturing conductive resin body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102719099B (en) | Thermal conductive molding compound and preparation method thereof | |
CN105733191A (en) | Different-dimensionality high-heat-conductivity material enhanced and polymer based composite and preparation method thereof | |
US10148006B2 (en) | Thermoplastic resin composition, resin molded article, and method for manufacturing resin molded article having a plated layer | |
CN101827894A (en) | Thermal conductive polymer composite and article using the same | |
CN105818476A (en) | Surface-modification three-dimensional-network-carbon-fiber-reinforced composite material and preparing method | |
CN101899209A (en) | Heat conductive insulation material and preparation method thereof | |
CN101074318B (en) | Thermoplastic polyimide composite material and preparation method thereof | |
JP6588296B2 (en) | Metal part-resin bonding method and metal part-resin integrated molding | |
CN1556837A (en) | Resin composition with high thermal conductivity and method of producing the same | |
JP7196102B2 (en) | Articles containing polymer bodies and metal plating | |
JP2006328352A (en) | Insulating thermally-conductive resin composition, molded product, and method for producing the same | |
US20060231231A1 (en) | Method of two shot mold metallizing of polymer components | |
CN103756252A (en) | Thermosetting-resin-based heat-conductive composite material, and preparation method and application thereof | |
US8715534B2 (en) | Method for producing composite member of metal member and resin member | |
CN103980484B (en) | A kind of heat-conducting polymer amount nylon powder body that can be applicable to 3D printing and preparation method thereof | |
CN103435847A (en) | High-heat conductivity composite material for LED (light-emitting diode) lamp, heat-conducting filler and production equipment | |
JP2019177704A (en) | Method for joining metal component and resin, and integral molding of metal component and resin | |
CN103373850A (en) | Method for manufacturing carbonaceous heat sink and carbonaceous heat sink | |
KR20100050249A (en) | Electrically insulated thermal conductive polymer composition | |
JP2008024737A (en) | Glass fiber-reinforced resin molded item and its manufacturing method | |
CN101490472B (en) | Lamp socket | |
TW201116399A (en) | Process for producing injection-molded article | |
JP2018119043A (en) | Polyamide resin composition for laser direct structuring, resin molded article, method for producing resin molded article with plating and method for manufacturing portable electric equipment component | |
KR101891560B1 (en) | 3D Printing filament with electromagnetic absorbing and shielding ability and high thermal conductivity and manufacturing method of the same | |
US8197730B2 (en) | Molding method for forming in-mold metallized polymer components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100222 |
|
A977 | Report on retrieval |
Effective date: 20101116 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110621 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110811 |
|
A131 | Notification of reasons for refusal |
Effective date: 20110906 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20111104 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20120104 Free format text: JAPANESE INTERMEDIATE CODE: A02 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120229 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120315 |
|
A912 | Removal of reconsideration by examiner before appeal (zenchi) |
Effective date: 20120413 Free format text: JAPANESE INTERMEDIATE CODE: A912 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130531 |