JP2008022062A - Image reading apparatus - Google Patents
Image reading apparatus Download PDFInfo
- Publication number
- JP2008022062A JP2008022062A JP2006189575A JP2006189575A JP2008022062A JP 2008022062 A JP2008022062 A JP 2008022062A JP 2006189575 A JP2006189575 A JP 2006189575A JP 2006189575 A JP2006189575 A JP 2006189575A JP 2008022062 A JP2008022062 A JP 2008022062A
- Authority
- JP
- Japan
- Prior art keywords
- image
- reading apparatus
- image reading
- read
- mark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Facsimile Scanning Arrangements (AREA)
- Facsimile Image Signal Circuits (AREA)
Abstract
Description
本発明は、画像読取装置の千鳥状に配置されたイメージセンサの主走査、副走査の位置ズレを検知し、補正する技術に関する。 The present invention relates to a technique for detecting and correcting a misalignment between main scanning and sub scanning of an image sensor arranged in a staggered pattern in an image reading apparatus.
従来、原稿画像を読み取る画像読取装置においては、読取特性を保証するために、一般的に公知技術であるシェーディング補正を行って、主走査方向データのばらつきを補正している。 2. Description of the Related Art Conventionally, in an image reading apparatus that reads a document image, in order to guarantee reading characteristics, shading correction, which is a generally known technique, is performed to correct variations in main scanning direction data.
複数のイメージセンサを千鳥状に配置した画像読取装置では、それぞれのイメージセンサが持つ出力特性にばらつきがあり、全面で均一な濃度出力を得る事が困難である。 In an image reading apparatus in which a plurality of image sensors are arranged in a staggered manner, output characteristics of each image sensor vary, and it is difficult to obtain a uniform density output over the entire surface.
また、千鳥状に配置したイメージセンサの先に原稿を読み取る側は画像データを一時的にメモリに蓄積し、後で原稿を読み取る側のイメージセンサのデータに合わせ込むように調整している。 In addition, the side of the document reading ahead of the image sensors arranged in a staggered pattern temporarily adjusts the image data to be stored in the memory and later adjusted to the data of the image sensor on the side of reading the document.
しかし、原稿搬送時の送りムラやイメージセンサの配置のズレ等によりデータに主,副走査方向にズレが生じてしまう場合がある。 However, there is a case where the data is displaced in the main and sub-scanning directions due to uneven feeding during document conveyance and displacement of the image sensor.
ここで、千鳥状に配置された複数のイメージセンサの繋ぎ目部分に現れる濃淡の境界、あるいは画像ズレが発生する事を防止する事ができる技術が開示されている(例えば、特許文献1参照)。
しかしながら、上述した従来例では、文字や線などの画像や均一なハーフトーン濃度の画像においては良好であるが、千鳥状に配置されたイメージセンサに位置ズレがあった場合や、原稿読み取り時の紙の搬送ムラなどによってズレが生じてしまった場合に、従来の繋ぎ目補正処理ではズレで生じた読み取り値の違いがあってもそのまま重み付け加算処理がされてしまうため、特に網点で構成された画像では繋ぎ目部分の濃度が低下したり、かすれが生じたりしてしまう場合がある。 However, the above-described conventional example is good for images such as characters and lines and images having a uniform halftone density. However, when the image sensors arranged in a staggered pattern are misaligned or when reading a document. When misalignment occurs due to paper conveyance unevenness, etc., the conventional seam correction processing will be weighted and added as it is even if there is a difference in the reading value caused by misalignment. In such a case, the density of the joint portion may decrease or the image may be blurred.
また、カラー画像ではズレた状態で加算処理を行う事で、色味が変わってしまう事も考えられ、適切な処理とはいえない。 In addition, the color image may be changed by performing the addition process in a state of being shifted, which is not an appropriate process.
そこで、本発明では千鳥状に配置したイメージセンサの重なり部分の紙を抑える圧板部分に印をつけ、その印を読み取る事で、千鳥配置の位置のズレを検出し、イメージセンサの配置のズレを補正する。また、画像評価装置が備える記憶装置に所定のライン数読み取った画像を一時的に保存し、重なり部分のデータを比較、主走査ズレと副走査ズレを検出して、読み取った画像のズレ量に応じて補正を行う事で、主,副走査方向のイメージセンサのズレの緩和を行う事を目的とする。 Therefore, in the present invention, the pressure plate portion that suppresses the overlapping paper of the image sensors arranged in a staggered manner is marked, and by reading the mark, the displacement of the staggered placement position is detected, and the displacement of the image sensor placement is detected. to correct. In addition, an image obtained by scanning a predetermined number of lines is temporarily stored in a storage device included in the image evaluation apparatus, the overlapping data is compared, the main scanning deviation and the sub-scanning deviation are detected, and the deviation amount of the read image is obtained. The purpose is to reduce the displacement of the image sensor in the main and sub-scanning directions by performing correction accordingly.
請求項1記載の画像読取装置は、複数個のイメージセンサを千鳥状に配置し、隣接するイメージセンサの読み取り部分を所定の画素数だけ主走査方向に重ねて配置した画像読取装置において、画像読取装置のセンサと反対側に配置される圧板の各イメージセンサの重なり部分の位置の一部に所定の印をつけ、その印を読み取り、各イメージセンサで読み取った印の位置または読み取るタイミングを比較する事で千鳥状に配置されたイメージセンサの主走査、副走査の位置ズレを検知し、補正する事を特徴とする画像読取装置である。
The image reading apparatus according to
請求項2記載の画像読取装置は、請求項1に記載の画像読取装置であって、記憶装置を備え、所定のライン数読み取った画像を記憶装置に一時的に保存し、重なり部分のデータを比較し、主走査ズレと副走査ズレを検出する手段を備え、読み取った画像のズレ量に応じて補正を行う事を特徴とする。 An image reading apparatus according to a second aspect is the image reading apparatus according to the first aspect, comprising a storage device, temporarily storing an image read by a predetermined number of lines in the storage device, and storing the data of the overlapping portion. In comparison, a means for detecting a main scanning deviation and a sub-scanning deviation is provided, and correction is performed according to the deviation amount of the read image.
請求項3記載の画像読取装置は、請求項1に記載の画像読取装置であって、前記圧板につけた印を読み取り、印の位置を比較し補正を行う動作は原稿を読み取る前の白シェーディング補正前に行う事を特徴とする。
The image reading apparatus according to
請求項4記載の画像読取装置は、請求項1に記載の画像読取装置であって、前記位置ズレ検出は千鳥状に配置されたCISで読み取る印のラインが1ライン分で可能であり、主走査と副走査のズレを同時に検出する事を特徴とする。 An image reading apparatus according to a fourth aspect is the image reading apparatus according to the first aspect, wherein the misregistration detection can be performed for one line of marks to be read by a CIS arranged in a staggered pattern. It is characterized in that a shift between scanning and sub-scanning is detected at the same time.
請求項5記載の画像読取装置は、請求項2に記載の画像読取装置であって、補正手段はズレが1画素単位以下であってもそのズレの大きさに応じた補正係数演算を行う事で高精度に補正が可能であることを特徴とする。 An image reading apparatus according to a fifth aspect is the image reading apparatus according to the second aspect, wherein the correction means performs a correction coefficient calculation according to the magnitude of the deviation even if the deviation is one pixel unit or less. It is characterized in that correction can be performed with high accuracy.
請求項6記載の画像読取装置は、請求項2に記載の画像読取装置であって、一時的に保存するライン数は任意に変える事が可能であることを特徴とする。 An image reading apparatus according to a sixth aspect is the image reading apparatus according to the second aspect, wherein the number of temporarily stored lines can be arbitrarily changed.
請求項7記載の画像読取装置は、請求項2に記載の画像読取装置であって、複数個の記憶装置を備える事で、先に読み取ったラインの処理が終わったあとすぐに次のラインの処理が行うことで処理を高速化できることを特徴とする。 An image reading apparatus according to a seventh aspect is the image reading apparatus according to the second aspect, comprising a plurality of storage devices, so that the processing of the next line is completed immediately after the processing of the previously read line is completed. The processing can be speeded up by performing the processing.
本発明によれば、千鳥状に配置したイメージセンサの重なり部分の紙を抑える圧板部分に印をつけ、その印を読み取る事で、千鳥配置の位置のズレを検出し、イメージセンサの配置のズレを補正する。また、画像評価装置が備える記憶装置に所定のライン数読み取った画像を一時的に保存し、重なり部分のデータを比較、主走査ズレと副走査ズレを検出して、読み取った画像のズレ量に応じて補正を行う事で、主,副走査方向のイメージセンサのズレの緩和を行う事ができる。 According to the present invention, the pressure plate portion that suppresses the overlapping paper of the image sensors arranged in a staggered manner is marked, and by reading the mark, the staggered position displacement is detected, and the image sensor placement displacement is detected. Correct. In addition, an image obtained by scanning a predetermined number of lines is temporarily stored in a storage device included in the image evaluation apparatus, the overlapping data is compared, the main scanning deviation and the sub-scanning deviation are detected, and the deviation amount of the read image is obtained. By performing correction accordingly, it is possible to reduce the deviation of the image sensor in the main and sub-scanning directions.
図1は本発明の実施の形態に関わる画像読取装置の概略を示したブロック図である。この画像読取装置100は、CIS1〜3(イメージセンサ)101〜103、A/D(アナログ/デジタル)変換器111〜113、繋ぎ処理ブロック120、記憶装置(ハードディスクまたはメモリ)131〜133、副走査遅延メモリ141,142より構成されている。
FIG. 1 is a block diagram showing an outline of an image reading apparatus according to an embodiment of the present invention. The
この画像読取装置100では、3つのイメージセンサCIS1〜CIS3を、それぞれ隣り合うセンサと主走査方向に重なって読み取るように配置してある。また、センサCIS2が副走査方向について上流側に、センサCIS1、CIS3が下流側にある間隔をもって千鳥状に配置されている。
In this
各イメージセンサCIS1〜3から出力される画像データは、A/D変換器101〜103によりデジタル信号に変換され、CIS1,CIS2のデータは副走査方向遅延あわせのため一時メモリ141〜142に蓄積される。なお、CIS3は最下流側のためメモリには蓄積せずにデータ転送される。
Image data output from each of the image sensors CIS1 to CIS3 is converted into digital signals by A /
一方、CIS1はCIS3と同一線上にあるが、調整容易化のため数ライン上流側に配置されているため、メモリ141にデータを蓄積している。各CIS1〜3で所望のライン遅延されたデータは、繋ぎ目処理ブロック120に送られる。ここで、繋ぎ目部分の補正処理、並びに並列に流れてきた各CIS1〜3のデータに対して1ライン化処理を行い後段の処理に渡している。
On the other hand, although CIS1 is on the same line as CIS3, data is stored in the
CISの千鳥配置でのズレの検出について説明する。画像読取装置は、読取特性を保証するために、一般的に公知技術であるシェーディング補正を行って、主走査方向データのばらつきを補正している。そのために図2に示すようにCISの原稿を挟む反対側に基準の白色となる圧板を設置する。 The detection of deviation in the CIS staggered arrangement will be described. In order to guarantee the reading characteristics, the image reading apparatus performs shading correction, which is a generally known technique, to correct variations in data in the main scanning direction. For this purpose, as shown in FIG. 2, a pressure plate that becomes a reference white color is installed on the opposite side of the CIS document.
現在の繋ぎ目補正ではCISを正確に千鳥状に配置する事が前提で繋ぎ目補正を行っている。よって、読み取りユニット組み付け時にCISの千鳥配置にズレが生じていた場合には、読み取り画像にもズレが生じてしまう。そこで、図2のように圧板に斜め線と縦線の組み合せの印を付けておく。 In the current seam correction, the seam correction is performed on the assumption that the CIS is accurately arranged in a staggered pattern. Therefore, if the CIS staggered layout is misaligned when the reading unit is assembled, the scanned image will also be misaligned. Therefore, a combination of diagonal lines and vertical lines is marked on the pressure plate as shown in FIG.
今回は図2のような印としたが、斜め線と縦線の組み合せであれば良い。 This time, the mark is as shown in FIG. 2, but any combination of diagonal lines and vertical lines may be used.
印の位置はCISの重なり部分の端部とし、この部分は読み取り画像としては使わず、CISの配置のズレの補正のためにだけ使用する。この印を読み取ると、図2のようにCIS1,2のそれぞれの重なり部分の読取画像には2本の直線が入る。この縦線を読み取る画素位置を見ることで、それぞれの主走査の位置がわかり、また、直線の間の長さを見ることで副走査方向の位置がわかる。これからCISを配置する際のズレ量を算出する事が可能である。
The position of the mark is the end of the overlapping portion of the CIS, and this portion is not used as a read image, but is used only for correcting the displacement of the CIS arrangement. When this mark is read, two straight lines appear in the read images of the overlapping portions of
このズレ量の算出はシェーディング補正を行った後だと印が読み取れなくなってしまうのでシェーディング補正前に行う。読み取った画像のズレ量の検出方法は後述する。 The amount of deviation is calculated before the shading correction because the mark cannot be read after the shading correction. A method of detecting the deviation amount of the read image will be described later.
ズレ量は繋ぎ目補正ブロックのコントローラにフィードバックし、ズレ量に応じて主走査のズレであれば、CIS1,2,3の繋ぎ位置の画素を変えて読み出し、副走査のズレであれば、そのライン数分読み出すタイミングをずらして読み出す。 The amount of misalignment is fed back to the controller of the joint correction block. If the main scanning is misaligned according to the amount of misalignment, the pixel at the joint position of CIS1, 2 and 3 is changed and read. Read the data by shifting the read timing for the number of lines.
次に、原稿読取時のズレの検出について説明する。CISで読み取った画像データはA/D変換機でデジタルデータに変換された後、CIS1,2のデータに関しては遅延メモリを経由してCIS1〜3の各I/F(121〜123)から繋ぎ目補正ブロックに入力される。 Next, detection of misalignment during document reading will be described. The image data read by the CIS is converted into digital data by an A / D converter, and the CIS1 and 2 data are connected to the I / Fs (121 to 123) of the CIS1 to 3 via a delay memory. Input to the correction block.
上記の方法によりCISの配置によるズレは軽減されている。しかし、紙搬送では紙の先端から後端の間で搬送速度にムラが生じてしまう事がある。 The deviation due to the CIS arrangement is reduced by the above method. However, in the paper conveyance, the conveyance speed may be uneven between the leading edge and the trailing edge of the paper.
その搬送ムラによるズレを軽減させるために、まず読み取ったデータを複数ラインもしくは全てを記憶装置131〜133に蓄積する。この記憶させるライン数は任意に設定できるものとする。記憶装置に保存されているデータの重なり部分のデータはズレ量検出125に送られズレ量を検出する。ズレ量の検出については後述する。
In order to reduce the deviation due to the conveyance unevenness, first, the read data is accumulated in a plurality of lines or all in the
ズレ量検出で検出したズレ量はコントローラ126に送られ、そのズレ量に応じて主走査のズレであれば、CIS1,2,3の繋ぎ位置の画素を変えて読み出し、副走査のズレであれば、そのライン分読み出すタイミングをずらして読み出すことでズレを軽減させる。ズレ量の検出及び1画素以下の補正に関しては後述する。
The shift amount detected by the shift amount detection is sent to the
また、記憶装置からデータの読み出し、ズレ量の検出を行う際は、記憶装置がビジー状態となるので、処理速度が低下する。これに関しては、記憶装置を別(または内部で別のブロックで)に用意し、そちらの記憶装置にCISからのデータを保持する事でデータ処理効率を上げるようにする。 Further, when data is read from the storage device and the amount of deviation is detected, the storage device is in a busy state, so the processing speed decreases. In this regard, a storage device is prepared separately (or in a separate block inside), and data processing efficiency is improved by holding data from the CIS in that storage device.
以下、原稿読取時のズレ検出方法について説明する。検出方法としては特徴点を探しその位置を比較する事でズレ量を算出する方法をとる。 Hereinafter, a method for detecting a deviation at the time of document reading will be described. As a detection method, a method of calculating a deviation amount by searching for a feature point and comparing its position is adopted.
特徴点を検出するため、はじめに画像データのライン毎に移動平均をとり高周波成分をカットする。この移動平均の点数は任意に変える事ができるものとする。主走査の重なり部分の区間で画像データの山谷のピークがあるかを検出する。図3に示すように注目点を定め、その値と隣り合う画素データの比較を行っていく。 In order to detect feature points, a moving average is first taken for each line of image data to cut high frequency components. The moving average score can be changed arbitrarily. It is detected whether or not there is a peak in the image data in the overlapping section of the main scan. As shown in FIG. 3, a point of interest is determined, and that value is compared with adjacent pixel data.
図3においてのピークを検出する。“data[pos+1]≧data[pos]”かつ“data[pos+1]≧data[pos+2]”ならばdata[pos+1]を山のピークpku_dataとしデータと位置pku_posを保存する。 The peak in FIG. 3 is detected. If “data [pos + 1] ≧ data [pos]” and “data [pos + 1] ≧ data [pos + 2]”, data [pos + 1] is the peak pku_data of the mountain and the data and the position pku_pos are stored.
また、“data[pos+1]≦data[pos]”かつ“data[pos+1]≦data[pos+2]”でならばdata[pos+1]を谷のピークpkd_dataとしてデータと位置pkd_posを保存する。 If “data [pos + 1] ≦ data [pos]” and “data [pos + 1] ≦ data [pos + 2]”, the data and the position pkd_pos are stored with data [pos + 1] as the valley peak pkd_data.
最初のピークが見つかったらdata[pos]との差を求め、その値を正ならpku_sub、負ならpkd_subとして保存する。その次以降にピークが見つかったら山のピーク、谷のピークをそれぞれpk_tmpとし、pk_tmpとその直前のピーク(pku_dataもしくはpkd_data)の差を求める。 When the first peak is found, a difference from data [pos] is obtained, and the value is stored as pku_sub if it is positive, and saved as pkd_sub if it is negative. If a peak is found after that, the peak of the mountain and the peak of the valley are set to pk_tmp, and the difference between pk_tmp and the immediately preceding peak (pku_data or pkd_data) is obtained.
その値が正であればpku_subと比較し、その値が負であればpkd_subと比較する。 If the value is positive, it is compared with pku_sub. If the value is negative, it is compared with pkd_sub.
比較は絶対値で行い、pk_tempの値が大きければ、pku_data、pku_pos、pkd_data、pkd_posの値を更新する。 The comparison is performed using absolute values. If the value of pk_temp is large, the values of pku_data, pku_pos, pkd_data, and pkd_pos are updated.
pk_tempの値が小さければそのままの値を保持するものとする。こうすることによって、その範囲での最大の変化量がある画素の位置と値が検出する事ができる(図4参照)。 If the value of pk_temp is small, the value is held as it is. By doing so, it is possible to detect the position and value of the pixel having the maximum amount of change within the range (see FIG. 4).
今回は例として8画素でのものを挙げたが、この検出を行う画素数は任意に変える事ができるものとする。 This time, an example with 8 pixels is given as an example, but the number of pixels to be detected can be arbitrarily changed.
ピークとするのは|pku_sub(or pkd_sub)|≧2[digit](8bit換算)とする。|pku_sub(or pkd_sub)|<2[digit](8bit換算)であればピークなしと判定する。 The peak is set to | pku_sub (or pkd_sub) | ≧ 2 [digit] (8-bit conversion). If | pku_sub (or pkd_sub) | <2 [digit] (8-bit conversion), it is determined that there is no peak.
今回は山側のピークと谷側のピークの2つがあるが、最終的にはpku_subとpkd_subの絶対値を比較し値が大きい方をそのラインのピーク値とする。 This time, there are two peaks, a peak on the mountain side and a peak on the valley side. Ultimately, the absolute values of pku_sub and pkd_sub are compared, and the larger value is taken as the peak value of the line.
次に、CIS1で読み取った画像のピーク値とCIS2で読み取った画像のピーク値を比較する。CIS1側のピーク値の位置とCIS2側のピーク値の位置の差を求め、その値がそのラインの主走査ズレとする。その時同時にCIS1とCIS2のピーク値の差を求める。 Next, the peak value of the image read by CIS1 is compared with the peak value of the image read by CIS2. The difference between the position of the peak value on the CIS1 side and the position of the peak value on the CIS2 side is obtained, and that value is used as the main scanning deviation of the line. At the same time, the difference between the peak values of CIS1 and CIS2 is obtained.
ここで、ラインのピーク値の比較において比較の対象がCIS1のpku_subとCIS2のpkd_sub(または逆にCIS1のpkd_subとCIS2のpkd_sub)である場合と、その差が10digit以上であった場合は、そのラインのズレ量は無視する。 Here, in the comparison of the peak value of the line, when the comparison target is pis_sub of CIS1 and pkd_sub of CIS2 (or conversely, pkd_sub of CIS1 and pkd_sub of CIS2), and when the difference is 10 digits or more, Ignore the amount of line misalignment.
その後、読み込んだ画像の全てのラインまたは任意のラインのズレ量の平均値を求め、画像全体の主走査ズレ量とする。今回は無視する差を10digit以上としたがこの値は任意に変えられるものとする。 Thereafter, an average value of the shift amounts of all the lines of the read image or arbitrary lines is obtained and set as the main scanning shift amount of the entire image. In this case, the difference to be ignored is set to 10 digits or more, but this value can be arbitrarily changed.
同様のピーク値の検出及びズレ量の副走査方向も主走査のズレ量検出と同様の方法で行う。計算上ズレ量が小数値が含まれる場合もあるが、この後に説明する方法でズレ量を補正する。 The detection of the same peak value and the sub-scanning direction of the shift amount are performed in the same manner as the shift amount detection of the main scan. Although the amount of deviation may include a decimal value in calculation, the amount of deviation is corrected by a method described later.
以下ではズレの補正について説明する。上記のようにズレ量を求め、そのズレ量が整数値であれば、主走査方向に関しては、図5に示すようにCIS2のデータの繋ぎ目の部分の位置を変えることで補正を行う。副走査に関しては、ズレ量分だけ副走査方向のライン遅延時間を変える事で補正を行う。 Hereinafter, the correction of displacement will be described. When the amount of deviation is obtained as described above and the amount of deviation is an integer value, correction is performed in the main scanning direction by changing the position of the joint portion of the CIS2 data as shown in FIG. For sub-scanning, correction is performed by changing the line delay time in the sub-scanning direction by the amount of deviation.
ズレ量に少数値が含まれる場合は整数分のズレは上記と同様に補正を行い、その後3次関数コンボリューション法を用いて少数分の補正を行う。また、この少数分の補正はスルーする事も可能とする。3次関数コンボリューション法を用いた予想画素の値を算出については後述する。 When the amount of deviation includes a minority value, the deviation for an integer is corrected in the same manner as described above, and then the minority is corrected using a cubic function convolution method. In addition, this minority correction can be made through. The calculation of the predicted pixel value using the cubic function convolution method will be described later.
今回はズレ量が1/8画素単位のズレ量までの補正係数を示すが、後述の式2より他の単位の補正係数も算出可能である。この補正演算はCIS2を基準とし、CIS1、とCIS3の画素に対して行う事とする。
This time, the correction coefficient is shown up to a shift amount of 1/8 pixel unit, but correction coefficients in other units can also be calculated from
次に、図6〜8を用いて3次関数コンボリューションによる予想画素の算出の仕方を説明する。図6の注目点(Si)とその1ライン後の点(Si+1)、2ライン後の点(Si+2)、及び1ライン前の点(Si−1)の4点のデータを用いて点Siと点Si+1の間にある予想点(σ)を求め、それを注目点(Si)の値とする。予想点(σ)を算出する演算式は図4に示す式1を用いている。
Next, how to calculate the predicted pixel by cubic function convolution will be described with reference to FIGS. Using the four points of data of the point of interest (Si) in FIG. 6, the point after one line (Si + 1), the point after two lines (Si + 2), and the point before one line (Si-1), An expected point (σ) between the points Si + 1 is obtained and set as the value of the target point (Si).
図6の式1のh(r)は画素間距離と補正係数の関係を表す式であり、図7に示す関数で表される。
In FIG. 6, h (r) in
図7に示す式2より、一例として図8に精度1/8画素の補正係数テーブルを示す。このテーブルの係数が式1に代入されて予想点の値となる。
From the
以下に、各請求項の目的、効果を記載する。
請求項2に関して、記憶装置を備え、所定のライン数読み取った画像を記憶装置に一時的に保存し、重なり部分のデータを比較し、主走査ズレと副走査ズレを検出する手段を備え、読み取った画像のズレ量に応じて補正を行う事で原稿搬送時の搬送ムラによる位置ズレを補正できるようにする事を目的とする。記憶装置を備え、所定のライン数読み取った画像を記憶装置に一時的に保存し、重なり部分のデータを比較し、主走査ズレと副走査ズレを検出する手段を備え、読み取った画像のズレ量に応じて補正を行う事で繋ぎ目部分のズレを目立たなくする事ができる。
The purpose and effect of each claim are described below.
According to a second aspect of the present invention, the image processing apparatus includes a storage device, temporarily stores an image read by a predetermined number of lines in the storage device, compares the data of the overlapping portion, and detects a main scanning shift and a sub-scanning shift. An object of the present invention is to make it possible to correct a positional shift caused by uneven conveyance during document conveyance by performing correction according to the amount of image deviation. A storage device is provided for temporarily storing an image read for a predetermined number of lines in the storage device, comparing data of overlapping portions, and detecting a main scanning shift and a sub-scanning shift. By performing correction according to the above, the shift of the joint portion can be made inconspicuous.
請求項3に関して、圧板につけた印を読み取り、印の位置を比較し補正を行う動作は原稿を読み取る前の白シェーディング補正前に行う事で印の濃度によるシェーディング補正がかかってしまい、印による補正が出来なくなる事を防止する。 According to the third aspect of the present invention, the operation of reading the mark on the pressure plate, comparing the position of the mark, and performing the correction is performed before the white shading correction before reading the document, so that shading correction due to the density of the mark is applied, and correction by the mark is performed. To prevent it from being impossible.
請求項4に関して、位置ズレ検出は千鳥状に配置されたCISで読み取る印のラインが1ライン分で可能であり、主走査と副走査のズレを同時に検出する。 According to the fourth aspect of the present invention, the position deviation can be detected by one line of the mark read by the CIS arranged in a staggered manner, and the deviation between the main scanning and the sub scanning is detected at the same time.
請求項5に関して、補正手段はズレが1画素単位以下であってもそのズレの大きさに応じた補正係数演算を行う事で高精度にズレを補正できる。 According to the fifth aspect, the correcting means can correct the deviation with high accuracy by performing a correction coefficient calculation corresponding to the magnitude of the deviation even if the deviation is equal to or less than one pixel unit.
請求項6に関して、画像読取装置において一時的に保存するライン数は任意に変える事が可能にする事で後段の処理に早くデータを渡す事ができる。 According to the sixth aspect of the present invention, the number of lines temporarily stored in the image reading apparatus can be arbitrarily changed, so that the data can be passed to the subsequent processing quickly.
請求項6に関して、画像読取装置において複数個の記憶装置を備える事で、先に読み取ったラインの処理が終わったあとすぐに次のラインの処理が行うことで処理を高速化する。 With respect to claim 6, by providing a plurality of storage devices in the image reading apparatus, the processing of the next line is performed immediately after the processing of the previously read line is completed, thereby speeding up the processing.
なお、上述する各実施の形態は、本発明の好適な実施の形態であり、本発明の要旨を逸脱しない範囲内において種々変更実施が可能である。 Each of the above-described embodiments is a preferred embodiment of the present invention, and various modifications can be made without departing from the scope of the present invention.
100 画像読取装置
101〜103 CIS1〜3(イメージセンサ)
111〜113 A/D(アナログ/デジタル)変換器
120 繋ぎ処理ブロック
131〜133 記憶装置
141、142 副走査遅延メモリ
100 image reading apparatus 101-103 CIS 1-3 (image sensor)
111 to 113 A / D (analog / digital)
Claims (7)
画像読取装置のセンサと反対側に配置される圧板の各イメージセンサの重なり部分の位置の一部に所定の印をつけ、その印を読み取り、各イメージセンサで読み取った印の位置または読み取るタイミングを比較する事で千鳥状に配置されたイメージセンサの主走査、副走査の位置ズレを検知し、補正する事を特徴とする画像読取装置。 In an image reading apparatus in which a plurality of image sensors are arranged in a staggered manner, and a reading portion of adjacent image sensors is arranged by overlapping a predetermined number of pixels in the main scanning direction,
A predetermined mark is put on a part of the position of the overlapping portion of each image sensor of the pressure plate arranged on the side opposite to the sensor of the image reading device, the mark is read, and the position of the mark read by each image sensor or the timing of reading is determined. An image reading apparatus characterized by detecting and correcting a positional deviation between main scanning and sub-scanning of image sensors arranged in a staggered manner by comparison.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006189575A JP2008022062A (en) | 2006-07-10 | 2006-07-10 | Image reading apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006189575A JP2008022062A (en) | 2006-07-10 | 2006-07-10 | Image reading apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008022062A true JP2008022062A (en) | 2008-01-31 |
Family
ID=39077732
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006189575A Withdrawn JP2008022062A (en) | 2006-07-10 | 2006-07-10 | Image reading apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008022062A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8264705B2 (en) | 2007-11-07 | 2012-09-11 | Ricoh Company, Ltd. | Image reading apparatus, image forming apparatus and computer readable information recording medium |
JP2013042345A (en) * | 2011-08-15 | 2013-02-28 | Ricoh Co Ltd | Image correction system, image correction method and program |
CN108632534A (en) * | 2018-07-19 | 2018-10-09 | 江苏阿瑞斯智能设备有限公司 | A kind of CIS cameras and the image processing method based on CIS cameras |
US11647141B2 (en) | 2020-01-31 | 2023-05-09 | Mitsubishi Electric Corporation | Image reading device and image reading method |
US11843749B2 (en) | 2022-01-12 | 2023-12-12 | Canon Kabushiki Kaisha | Image processing apparatus and control method thereof, image reading apparatus, and a non-transitory computer-readable storage medium comprising a sub-scanning direction processing unit configured to perform reduction processing, and a main-scanning direction processing unit to connect data after reduction processing and reduces the connected data |
US11949834B2 (en) | 2021-12-28 | 2024-04-02 | Canon Kabushiki Kaisha | Image reading device, and method of controlling the same |
-
2006
- 2006-07-10 JP JP2006189575A patent/JP2008022062A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8264705B2 (en) | 2007-11-07 | 2012-09-11 | Ricoh Company, Ltd. | Image reading apparatus, image forming apparatus and computer readable information recording medium |
JP2013042345A (en) * | 2011-08-15 | 2013-02-28 | Ricoh Co Ltd | Image correction system, image correction method and program |
CN108632534A (en) * | 2018-07-19 | 2018-10-09 | 江苏阿瑞斯智能设备有限公司 | A kind of CIS cameras and the image processing method based on CIS cameras |
US11647141B2 (en) | 2020-01-31 | 2023-05-09 | Mitsubishi Electric Corporation | Image reading device and image reading method |
US11949834B2 (en) | 2021-12-28 | 2024-04-02 | Canon Kabushiki Kaisha | Image reading device, and method of controlling the same |
US11843749B2 (en) | 2022-01-12 | 2023-12-12 | Canon Kabushiki Kaisha | Image processing apparatus and control method thereof, image reading apparatus, and a non-transitory computer-readable storage medium comprising a sub-scanning direction processing unit configured to perform reduction processing, and a main-scanning direction processing unit to connect data after reduction processing and reduces the connected data |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008022062A (en) | Image reading apparatus | |
JP2010288254A (en) | Apparatus and program for image interpolation | |
JP2009135919A (en) | Image reading apparatus, image forming apparatus, and image data processing program | |
JP3611742B2 (en) | Image processing device | |
JP4787685B2 (en) | Seam image data correction method, image reading apparatus, and image forming apparatus | |
JP4408771B2 (en) | Image reading device | |
US9036219B2 (en) | Image processing device and image processing method for preventing image quality deterioration | |
KR20060049187A (en) | Methods and systems for correcting color distortions | |
US20110075233A1 (en) | Image reading device, method, and computer readable medium for the same | |
JP5884362B2 (en) | Image processing method, image reading apparatus, and image processing program | |
JP5533481B2 (en) | Image processing apparatus and image processing method | |
JP5393445B2 (en) | Image processing apparatus, image processing method, and computer program | |
JP3350422B2 (en) | Halftone area determination device | |
JP4052134B2 (en) | Image reading apparatus, image forming apparatus, and image processing method | |
US7847987B2 (en) | Method of compensating a zipper image by a K-value and a method of calculating a K-value | |
JP2014176022A (en) | Image reader, image formation device, and image reading method | |
JP2585871B2 (en) | White level correction method for image reading device | |
JP5034131B2 (en) | Image processing controller, image processing method, and image processing program | |
JP4941390B2 (en) | Image processing apparatus and image processing method | |
JP2009290771A (en) | Image reading apparatus, image processing apparatus, image processing method, program, and recording medium | |
JP6489911B2 (en) | Image processing apparatus and control method thereof | |
JP2011049893A (en) | Image processor and image forming apparatus | |
JP2004343190A (en) | Image reading apparatus | |
JP6160264B2 (en) | Image processing apparatus and image processing method | |
JP5656790B2 (en) | Image processing apparatus and image forming apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20091006 |