JP2008020299A - Angle detection device - Google Patents
Angle detection device Download PDFInfo
- Publication number
- JP2008020299A JP2008020299A JP2006191875A JP2006191875A JP2008020299A JP 2008020299 A JP2008020299 A JP 2008020299A JP 2006191875 A JP2006191875 A JP 2006191875A JP 2006191875 A JP2006191875 A JP 2006191875A JP 2008020299 A JP2008020299 A JP 2008020299A
- Authority
- JP
- Japan
- Prior art keywords
- rotating member
- magnet
- magnetic field
- pole region
- sensor element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
Description
本発明は、N極領域及びS極領域を回転中心の周りに交互に配置した回転部材と、前記回転部材の周囲に形成される磁場を検出するセンサ素子と、前記センサ素子が検出した磁場に基づいて前記回転部材の回転角度を算出する演算手段とを備えた角度検出装置に関する。 The present invention relates to a rotating member in which N-pole regions and S-pole regions are alternately arranged around the rotation center, a sensor element that detects a magnetic field formed around the rotating member, and a magnetic field detected by the sensor element. The present invention relates to an angle detection device including a calculation unit that calculates a rotation angle of the rotation member based on the calculation unit.
この種の角度検出装置は、回転部材に対して回転軸部材が貫通可能なことが構造の特徴であり、例えば自動車の操舵角センサや変速機のシフト位置センサなど様々な用途に用いられている。
従来、この種の角度検出装置として種々のものが提案されている。例えば、特許文献1には、ホール素子などの磁場の一方向成分の強度を検出可能なセンサ素子と、N極領域及びS極領域を設けた回転部材とを備えた角度検出装置が開示されている。
この角度検出装置において、回転部材の外周の一部に、一組のN極領域とS極領域とが略全周にわたって設けてある。初期位置において、センサ素子が、N極領域、あるいはS極領域の中央部に位置するように設定してある。そして、回転部材がセンサ素子に対して回転した際の、初期位置からの位置ずれに伴う一方向の磁場成分の強度変化に基づいて回転角度を検出している。
This type of angle detection device is characterized in that the rotation shaft member can pass through the rotation member, and is used for various applications such as a steering angle sensor of an automobile and a shift position sensor of a transmission. .
Conventionally, various devices of this type have been proposed. For example, Patent Document 1 discloses an angle detection device including a sensor element capable of detecting the intensity of a unidirectional component of a magnetic field such as a Hall element, and a rotating member provided with an N-pole region and an S-pole region. Yes.
In this angle detection device, a set of N-pole region and S-pole region is provided over a substantially entire circumference on a part of the outer periphery of the rotating member. In the initial position, the sensor element is set to be located at the center of the N-pole region or the S-pole region. Then, the rotation angle is detected based on a change in the intensity of the magnetic field component in one direction accompanying the displacement from the initial position when the rotating member rotates with respect to the sensor element.
特許文献1に記載の角度検出装置では、一方向の磁場成分の強度に基づいて回転角度を検出している。このため、例えば、磁性体の温度変化や経時劣化により磁場強度が変化したときに、磁場強度の変化を補正することができないか、あるいは精度のよい補正が困難であるなどの理由により、正確な角度の検出が困難になる場合があった。 In the angle detection device described in Patent Document 1, the rotation angle is detected based on the intensity of the magnetic field component in one direction. For this reason, for example, when the magnetic field strength changes due to temperature change or deterioration with time of the magnetic material, the change in the magnetic field strength cannot be corrected, or accurate correction is difficult. It may be difficult to detect the angle.
本発明は、上述の問題に鑑みてなされたものであり、その目的は、磁場の変動の影響を受けにくく、正確な角度を検出することができる角度検出装置を低コストで提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an angle detection device that is not easily affected by fluctuations in a magnetic field and can detect an accurate angle at a low cost. .
本発明の第1特徴構成は、N極領域を形成する磁石及びS極領域を形成する磁石を、回転中心の周りに交互に配置した回転部材と、前記回転部材の径方向における外方に配置され、回転部材の周囲に形成される磁場について少なくとも2方向の磁場成分の大きさを検出するセンサ素子と、前記センサ素子の検出結果に基づいて前記センサ素子に対する前記回転部材の回転角度を算出する演算手段とを備えた点にある。 A first characteristic configuration of the present invention is a rotating member in which a magnet that forms an N-pole region and a magnet that forms an S-pole region are alternately arranged around a rotation center, and are arranged outward in the radial direction of the rotating member. A sensor element that detects the magnitude of a magnetic field component in at least two directions with respect to a magnetic field formed around the rotating member, and calculates a rotation angle of the rotating member relative to the sensor element based on a detection result of the sensor element. It is in the point provided with the calculation means.
本構成により、センサ素子が少なくとも2方向の磁場成分の大きさを検出し、演算手段が例えば各方向成分の検出結果の比に基づいて、回転部材の回転角度を算出する。このため、例えば回転部材の温度変化や経時劣化により、磁場の強度が変化した場合でも、各方向成分の磁場強度が略同じ割合で変化することなり、検出結果の比はほとんど変化しないので、検出される回転角度が変動することを防止することができて、正確な角度を検出することができる。
また、回転部材の回転中心の周りに磁石を配置するだけの簡単な構成でN極領域及びS極領域が形成してあるので、製造コストを低減することができる。
With this configuration, the sensor element detects the magnitude of the magnetic field component in at least two directions, and the calculation means calculates the rotation angle of the rotating member based on, for example, the ratio of the detection results of each direction component. For this reason, for example, even when the strength of the magnetic field changes due to temperature change or deterioration over time of the rotating member, the magnetic field strength of each direction component changes at substantially the same rate, and the detection result ratio hardly changes. The rotation angle can be prevented from fluctuating and an accurate angle can be detected.
Further, since the N-pole region and the S-pole region are formed with a simple configuration in which a magnet is disposed around the rotation center of the rotating member, the manufacturing cost can be reduced.
本発明の第2特徴構成は、前記N極領域を形成する磁石及び前記S極領域を形成する磁石が、直方体形状を有する点にある。 The second characteristic configuration of the present invention is that the magnet forming the N-pole region and the magnet forming the S-pole region have a rectangular parallelepiped shape.
本構成により、例えばブロック状の磁石の母材を直方体形状に切断するだけで、N極領域を形成する磁石及びS極領域を形成する磁石を得ることができる。これらの磁石を得る際に複雑な製造工程が必要ないので、安価でかつ寸法精度の良い磁石を得ることができる。この結果、安価で高精度な角度検出装置を実現することができる。 With this configuration, for example, a magnet that forms the N-pole region and a magnet that forms the S-pole region can be obtained simply by cutting the base material of the block-shaped magnet into a rectangular parallelepiped shape. Since a complicated manufacturing process is not required when obtaining these magnets, it is possible to obtain magnets that are inexpensive and have good dimensional accuracy. As a result, an inexpensive and highly accurate angle detection device can be realized.
本発明の第3特徴構成は、前記N極領域及び前記S極領域が、前記回転中心を中心とする扇形の範囲に設けてあり、当該扇形の中心角の二等分線に対して、前記N極領域及び前記S極領域の各々が対称となるように前記磁石を配置した点にある。 According to a third characteristic configuration of the present invention, the N-pole region and the S-pole region are provided in a fan-shaped range centered on the rotation center, and the bisector of the central angle of the fan-shaped The magnet is arranged so that each of the N-pole region and the S-pole region is symmetrical.
N極領域及びS極領域を、回転中心を中心とする扇形の範囲に設け、当該扇形の中心角に対して、N極領域及びS極領域が対称となるように配置した場合、前記二等分線に対してN極領域及びS極領域を非対称に配置した場合と比較して、回転部材からの距離が変動した場合の磁場の向きの変動が小さいことを見出した。
このため、本構成により、回転部材とセンサ素子との間の径方向の距離が変動した場合に生じる磁場の向きの変動を低減することができるので、角度検出装置の組付け誤差の影響による検出結果の変動を低減することができる。
また、角度検出装置の使用時に回転軸のふれにより回転部材とセンサ素子とが近接・離間した場合であっても、検出結果の変動を低減することができる。
When the N-pole region and the S-pole region are provided in a fan-shaped range centered on the rotation center and arranged so that the N-pole region and the S-pole region are symmetric with respect to the central angle of the fan-shaped, It has been found that the variation in the direction of the magnetic field when the distance from the rotating member varies is smaller than when the N pole region and the S pole region are arranged asymmetrically with respect to the segment.
For this reason, this configuration can reduce fluctuations in the direction of the magnetic field that occur when the radial distance between the rotating member and the sensor element fluctuates. Variations in results can be reduced.
Further, even when the rotation member and the sensor element are close to or separated from each other due to the shake of the rotation shaft when the angle detection device is used, fluctuations in the detection result can be reduced.
本願の第4特徴構成は、前記回転部材の軸部に円筒形のヨークを外挿するとともに、前記ヨークの外周に沿って前記磁石を配置し、前記軸部と一体成形した樹脂部により前記ヨーク及び前記磁石を覆った点にある。 According to a fourth characteristic configuration of the present application, a cylindrical yoke is extrapolated to the shaft portion of the rotating member, the magnet is disposed along an outer periphery of the yoke, and the yoke is formed by a resin portion integrally formed with the shaft portion. And the magnet is covered.
本構成により、ヨーク及び磁石を、回転部材の軸部と一体成形した樹脂部により覆ってあるので、磁石を確実に所期の位置に固定することができる。また、回転部材の軸部と樹脂部とが一体成形してあるので、軸部と樹脂部とを別体で設けた場合と比較して強度を高めることができる。
また、ヨークの外周に沿って磁石が配置されているので、遮蔽効果により回転部材の径方向における外側向きの磁場を強めることができる。このため、磁石が樹脂部で覆われている場合であっても、回転部材の周囲に所期の磁場を形成することができる。
With this configuration, since the yoke and the magnet are covered with the resin portion integrally formed with the shaft portion of the rotating member, the magnet can be reliably fixed at an intended position. Further, since the shaft portion and the resin portion of the rotating member are integrally formed, the strength can be increased as compared with the case where the shaft portion and the resin portion are provided separately.
Further, since the magnets are arranged along the outer periphery of the yoke, the outward magnetic field in the radial direction of the rotating member can be strengthened by the shielding effect. For this reason, even when the magnet is covered with the resin portion, an intended magnetic field can be formed around the rotating member.
本発明の第5特徴構成は、前記磁石が直方体形状であり、前記ヨークの外周のうち前記磁石に対応する位置に、前記磁石の一辺が当接する当接面を設けた点にある。 A fifth characteristic configuration of the present invention is that the magnet has a rectangular parallelepiped shape, and a contact surface with which one side of the magnet contacts is provided at a position corresponding to the magnet on the outer periphery of the yoke.
本構成により、ヨークの外周面に設けた当接面と直方体形状の磁石の一面とが当接することとなる。このため、ヨークによる遮蔽効果を高めることとなり、回転部材の径方向における外側向きの磁場を強めることができる。
また、ヨークの外周に磁石を配置する際の位置決めが容易になり、N極領域とS極領域とを正確に配置することができる。
With this configuration, the contact surface provided on the outer peripheral surface of the yoke comes into contact with one surface of the rectangular parallelepiped magnet. For this reason, the shielding effect by the yoke is enhanced, and the outward magnetic field in the radial direction of the rotating member can be strengthened.
In addition, positioning when placing the magnet on the outer periphery of the yoke is facilitated, and the N-pole region and the S-pole region can be placed accurately.
本発明の第6特徴構成は、センサ素子が検知した前記磁場成分のうちの少なくとも何れかの磁場成分の大きさを補正可能な補正手段を有する点にある。 A sixth characteristic configuration of the present invention is that a correction unit capable of correcting the magnitude of at least one of the magnetic field components detected by the sensor element is provided.
本発明に係る角度検出装置は、回転部材の周囲に形成される磁場の形状が所期の形状であることを前提として、2方向の磁場成分の大きさに基づいて回転角度を検出する。よって、磁場の形状が何らかの原因で乱れている場合には、正確な回転角度の検出が困難となる。
そこで、本構成の如く、磁場成分のうちの少なくとも何れかの磁場成分の大きさを補正可能な補正手段を設けることができる。この結果、磁場の形状が乱れている場合であっても、補正手段が磁場成分の大きさを補正することにより、正確な回転角度を検出することができる。
The angle detection apparatus according to the present invention detects the rotation angle based on the magnitude of the magnetic field component in two directions on the assumption that the shape of the magnetic field formed around the rotating member is an intended shape. Therefore, when the shape of the magnetic field is disturbed for some reason, it is difficult to accurately detect the rotation angle.
Therefore, as in the present configuration, a correction unit that can correct the magnitude of at least one of the magnetic field components can be provided. As a result, even when the shape of the magnetic field is disturbed, the corrector can detect the accurate rotation angle by correcting the magnitude of the magnetic field component.
以下、本発明の実施例を図面に基づいて説明する。
図1に示すように、本発明に係る角度検出装置は、被検出物3である回転軸31に一体回転可能に設けられた回転部材1と、回転部材1の径方向における外方の固定側の部材5に固定されたセンサ素子2とを備える。
Embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, an angle detection device according to the present invention includes a rotating member 1 provided on a rotating shaft 31 that is a detection object 3 so as to be integrally rotatable, and an outer fixed side in the radial direction of the rotating member 1. The sensor element 2 fixed to the member 5 is provided.
回転部材1は、円筒形のヨーク12と、N極領域Nを形成する磁石14と、S極領域Sを形成する磁石15とを有する。磁石14と磁石15とがヨークの外周面に沿って交互に配置してある。これにより、回転部材1には、N極領域NとS極領域Sとが回転中心Cの周りに交互に形成されている。磁石14,15の形状は特に限定はされないが、例えば直方体形状の磁石14,15を用いることができる。
また、回転部材1は、ヨーク12を外挿する軸部16と、ヨーク12及び磁石14,15を覆う樹脂部13とを有する。軸部16には回転軸31が挿入される穴部16aが設けてある。軸部16及び樹脂部13は、例えばヨーク12と磁石14,15とを金型内の所定箇所に配置した後に、樹脂を射出成形することにより一体的に設けてある。
The rotating member 1 includes a cylindrical yoke 12, a magnet 14 that forms an N-pole region N, and a magnet 15 that forms an S-pole region S. Magnets 14 and magnets 15 are alternately arranged along the outer peripheral surface of the yoke. Thereby, the N pole region N and the S pole region S are alternately formed around the rotation center C in the rotating member 1. Although the shape of the magnets 14 and 15 is not specifically limited, For example, the rectangular magnets 14 and 15 can be used.
The rotating member 1 also includes a shaft portion 16 for extrapolating the yoke 12 and a resin portion 13 that covers the yoke 12 and the magnets 14 and 15. The shaft portion 16 is provided with a hole portion 16a into which the rotating shaft 31 is inserted. The shaft portion 16 and the resin portion 13 are integrally provided by, for example, resin injection molding after the yoke 12 and the magnets 14 and 15 are arranged at predetermined positions in the mold.
センサ素子2は、例えばホールICなどの回転部材1からの磁場の向き及び強さを検出可能な素子で構成されている。具体的には、例えばMelexis社のMLX90316などの磁場検出素子が挙げられる。この磁場検出素子は直交する2方向の磁場強度を検出し、この2方向の磁場強度の比に基づいて磁場の向きを検出する。2方向の磁場強度の比に基づいて磁場の向きを検出するので、磁場強度の変動による影響をキャンセルすることができる。 The sensor element 2 is composed of an element capable of detecting the direction and strength of the magnetic field from the rotating member 1 such as a Hall IC. Specifically, for example, a magnetic field detection element such as MLX90316 manufactured by Melexis is used. The magnetic field detection element detects magnetic field strengths in two orthogonal directions, and detects the direction of the magnetic field based on the ratio of the magnetic field strengths in the two directions. Since the direction of the magnetic field is detected based on the ratio of the magnetic field strengths in the two directions, the influence due to fluctuations in the magnetic field strength can be canceled.
回転軸31が回転すると回転軸31に一体的に固定された回転部材1も連動して回転する。回転部材1が回転すると、周方向におけるN極領域N及びS極領域Sとセンサ素子2との周方向における相対位置が変化する。このため、センサ素子2を通過する磁場の向きが周期的に変化する。演算手段4が、このセンサ素子2の検出結果に基づいて被検出物3である回転軸31の固定側の部材5に対する回転角度を算出する。
なお、必須の構成要素ではないが、補正手段7を備え、センサ素子2が検知した前記磁場成分のうちの少なくとも何れかの磁場成分の大きさを補正可能に構成しても良い。この場合、補正手段7は、演算手段4に補正機能を持たせるものであってもよい。
When the rotating shaft 31 rotates, the rotating member 1 integrally fixed to the rotating shaft 31 also rotates in conjunction with it. When the rotating member 1 rotates, the relative positions in the circumferential direction of the N pole region N and S pole region S in the circumferential direction and the sensor element 2 change. For this reason, the direction of the magnetic field passing through the sensor element 2 changes periodically. Based on the detection result of the sensor element 2, the calculation means 4 calculates the rotation angle of the rotation shaft 31 that is the detected object 3 with respect to the fixed member 5.
Although not an essential component, the correction unit 7 may be provided so that the magnitude of at least one of the magnetic field components detected by the sensor element 2 can be corrected. In this case, the correction unit 7 may be one that gives the calculation unit 4 a correction function.
[実施例1]
図2は、本発明に係る回転部材1の一例を示す図である。
回転部材1には、N極領域Nを形成する直方体形状の磁石14及びS極領域Sを形成する直方体形状の磁石15が、回転中心Cの周りに所定の配置ピッチαで交互に配置してある。図2においてはα=45°であり、磁石14が1つ、磁石15が2つの合計3つの磁石が配置してある。
また、N極領域N及びS極領域Sが設けてある範囲の周方向の両端と回転中心Cとを結んだ扇形の中心角の二等分線CMに対して、N極領域N及びS極領域Sが対称となるように、磁石14,15が配置してある。つまり、一方の磁石(本実施形態では磁石14)が前記二等分線CMによって二等分される位置に配置してあり、他方の磁石(本実施形態では磁石15)が前記二等分線CMに対して対称となる位置に配置してある。また、磁石14及び磁石15の内周には、軟磁性体で形成された円筒形のヨーク12が配置してある
回転部材1の外周側には、センサ素子2が配置してある。センサ素子2と回転中心Cとを結んだ線分と、前記二等分線CMとが一致する位置を、回転部材1の初期位置として、初期位置からの回転部材1の回転角度を検出する。
[Example 1]
FIG. 2 is a view showing an example of the rotating member 1 according to the present invention.
In the rotating member 1, a rectangular parallelepiped magnet 14 forming the N pole region N and a rectangular parallelepiped magnet 15 forming the S pole region S are alternately arranged around the rotation center C at a predetermined arrangement pitch α. is there. In FIG. 2, α = 45 °, and a total of three magnets, one magnet 14 and two magnets 15, are arranged.
Further, the N-pole region N and the S-pole with respect to the bisector CM having a fan-shaped central angle connecting the rotation center C and both ends in the circumferential direction where the N-pole region N and the S-pole region S are provided. Magnets 14 and 15 are arranged so that region S is symmetric. That is, one magnet (magnet 14 in this embodiment) is arranged at a position that is bisected by the bisector CM, and the other magnet (magnet 15 in this embodiment) is the bisector. They are arranged at positions that are symmetrical with respect to the CM. A cylindrical yoke 12 formed of a soft magnetic material is disposed on the inner circumference of the magnets 14 and 15. A sensor element 2 is disposed on the outer circumference side of the rotating member 1. The rotation angle of the rotating member 1 from the initial position is detected with the position where the line segment connecting the sensor element 2 and the rotation center C coincides with the bisector CM as the initial position of the rotating member 1.
図3は、図2に示す回転部材1を回転変位させた場合の回転角度と、センサ素子2の出力(つまり、センサ素子2に印加される磁場の方向)との関係を示すグラフである。
また、図4に、比較例として使用した回転部材100を示す。この回転部材100は、リング状の磁性体を着磁することによりN極領域N及びS極領域Sが設けてある。N極領域N及びS極領域Sが回転中心Cの周りにピッチα=45°で交互に配置してあり、N極領域NとS極領域Sとが夫々4つずつ設けてある。
図5は、図4に示す回転部材を回転変位させた場合の回転角度と、センサ素子2の出力(つまり、センサ素子2に印加される磁場の方向)との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the rotation angle when the rotary member 1 shown in FIG. 2 is rotationally displaced and the output of the sensor element 2 (that is, the direction of the magnetic field applied to the sensor element 2).
FIG. 4 shows a rotating member 100 used as a comparative example. The rotating member 100 is provided with an N-pole region N and an S-pole region S by magnetizing a ring-shaped magnetic body. N-pole regions N and S-pole regions S are alternately arranged around the rotation center C at a pitch α = 45 °, and four N-pole regions N and four S-pole regions S are provided.
FIG. 5 is a graph showing the relationship between the rotation angle when the rotary member shown in FIG. 4 is rotationally displaced and the output of the sensor element 2 (that is, the direction of the magnetic field applied to the sensor element 2).
回転部材1を用いた場合の結果(図3)を、回転部材100を用いた場合の結果(図5)と比較したところ、回転部材1を用いた場合でも、回転部材100を用いた場合と同等の直線性が得られた。
また、回転部材1の外周面からセンサ素子2までの距離を変化させた場合であっても、回転部材100を用いた場合と同様、回転部材1の回転角度とセンサ素子2の出力との関係は、ほとんど変化しなかった。
上述のとおり、直方体形状の磁石を3つ配置してN極領域N及びS極領域Sを形成した回転部材1であっても、リング状の磁性体を全周に渡って着磁してN極領域N及びS極領域Sを形成した回転部材100と同等の特性が得られた。
When the result when the rotating member 1 is used (FIG. 3) is compared with the result when the rotating member 100 is used (FIG. 5), the case where the rotating member 100 is used even when the rotating member 1 is used. Equivalent linearity was obtained.
Further, even when the distance from the outer peripheral surface of the rotating member 1 to the sensor element 2 is changed, the relationship between the rotation angle of the rotating member 1 and the output of the sensor element 2 is the same as when the rotating member 100 is used. Changed little.
As described above, even in the rotating member 1 in which the three pole-shaped magnets are arranged to form the N-pole region N and the S-pole region S, the ring-shaped magnetic body is magnetized over the entire circumference, and N A characteristic equivalent to that of the rotating member 100 in which the polar region N and the S polar region S were formed was obtained.
リング状磁石を有する回転部材100を製造する場合、必要な磁性体の体積が大きくなること及び、磁性体をリング状に加工する必要があることから、製造コストが増大する。
しかし、上述のとおり、本発明の回転部材1であっても、回転部材100と同等の特性が得られることから、直方体形状の磁石を3つ配置してN極領域N及びS極領域Sを形成しただけの簡単な構成で回転部材1を得ることができる。このため、低コストで正確に回転角度を検出することができる角度検出装置を得ることができる。
When manufacturing the rotary member 100 having a ring-shaped magnet, the manufacturing cost increases because the volume of the necessary magnetic material increases and the magnetic material needs to be processed into a ring shape.
However, as described above, even with the rotating member 1 of the present invention, since the same characteristics as the rotating member 100 can be obtained, three rectangular magnets are arranged so that the N-pole region N and the S-pole region S are arranged. The rotary member 1 can be obtained with a simple configuration that is simply formed. For this reason, the angle detection apparatus which can detect a rotation angle correctly at low cost can be obtained.
[実施例2]
図6及び図7は、N極領域N及びS極領域Sの別の配置例を示す図である。
図6に示す回転部材1では、N極領域Nを形成する直方体形状の磁石14及びS極領域Sを形成する直方体形状の磁石15が、回転中心Cの周りに配置ピッチα=45°で交互に配置してある。ここでは、磁石14が1つ、磁石15が2つ配置してある。さらに、夫々の磁石15に隣接して、周方向に沿ったサイズが半分の磁石14が配置してある。このように、回転部材の180°の範囲に亘ってN極領域NとS極領域Sとが、二等分線CMに対して対称となるように配置してある。
[Example 2]
6 and 7 are diagrams illustrating another arrangement example of the N-pole region N and the S-pole region S. FIG.
In the rotating member 1 shown in FIG. 6, a rectangular parallelepiped magnet 14 forming the N pole region N and a rectangular parallelepiped magnet 15 forming the S pole region S are alternately arranged around the rotation center C at a pitch α = 45 °. It is arranged in. Here, one magnet 14 and two magnets 15 are arranged. Further, a magnet 14 having a half size in the circumferential direction is arranged adjacent to each magnet 15. Thus, the N pole region N and the S pole region S are arranged so as to be symmetric with respect to the bisector CM over the 180 ° range of the rotating member.
また、図7に示す回転部材1において、磁石14及び磁石15が、回転中心Cの周りに配置ピッチα=45°で交互に配置してある。磁石14が2つ、磁石15が2つの合計4つの磁石が配置してある。このように、回転部材1の180°の範囲に亘ってN極領域NとS極領域Sとが、二等分線CMに対して非対称となるように配置してある。 In the rotating member 1 shown in FIG. 7, the magnets 14 and the magnets 15 are alternately arranged around the rotation center C at an arrangement pitch α = 45 °. A total of four magnets with two magnets 14 and two magnets 15 are arranged. As described above, the N-pole region N and the S-pole region S are arranged so as to be asymmetric with respect to the bisector CM over the 180 ° range of the rotating member 1.
図8は、図6に示す回転部材1からの径方向における距離Gが変化した場合の回転部材1の周方向の各位置における磁場の向きの変動量を示すグラフである。図9は、図7に示す回転部材1からの径方向における距離Gが変化した場合の回転部材1の周方向の各位置における磁場の向きの変動量を示すグラフである。
回転部材1の外周面からの距離が5mmである位置(以下、「基準位置」と称する)から径方向に移動(近接、或いは離間)したときの、基準位置における磁場の向きに対する移動後の位置における磁場の向きの変動量を、有限要素法によるシミュレーションにより算出した。
FIG. 8 is a graph showing the amount of change in the direction of the magnetic field at each position in the circumferential direction of the rotating member 1 when the radial distance G from the rotating member 1 shown in FIG. 6 changes. FIG. 9 is a graph showing the amount of change in the direction of the magnetic field at each position in the circumferential direction of the rotating member 1 when the radial distance G from the rotating member 1 shown in FIG. 7 changes.
Position after movement with respect to the direction of the magnetic field at the reference position when moving (adjacent or separated) in the radial direction from a position where the distance from the outer peripheral surface of the rotating member 1 is 5 mm (hereinafter referred to as “reference position”) Fluctuations in the direction of the magnetic field in the were calculated by simulation using the finite element method.
両方のシミュレーション結果を比較すると、N極領域NとS極領域Sとが、二等分線CMに対して対称となるように配置してある場合の方が、基準位置から径方向に移動した場合の磁場の向きの変動量が小さくなることが分かった。 Comparing both simulation results, the N pole region N and the S pole region S moved in the radial direction from the reference position when arranged so as to be symmetric with respect to the bisector CM. It was found that the amount of fluctuation in the direction of the magnetic field was small.
したがって、特に限定はされないが、回転部材1において、N極領域N及びS極領域Sの各々が、二等分線CMに対して対称となるように配置することが好ましい。
このようにすれば、回転部材1とセンサ素子2との間の径方向の距離Gが変動した場合に生じる磁場の向きの変動を低減することができる。このため、角度検出装置の組付け誤差の影響による検出結果の変動を低減することができる。
また、角度検出装置の使用時に回転軸のふれにより回転部材1とセンサ素子2との径方向における距離Gが変動した場合であっても、検出結果の変動を低減することができる。
Therefore, although not particularly limited, it is preferable that the rotating member 1 is arranged so that each of the N-pole region N and the S-pole region S is symmetric with respect to the bisector CM.
In this way, it is possible to reduce the variation in the direction of the magnetic field that occurs when the radial distance G between the rotating member 1 and the sensor element 2 varies. For this reason, the fluctuation | variation of the detection result by the influence of the assembly | attachment error of an angle detection apparatus can be reduced.
Further, even when the distance G in the radial direction between the rotating member 1 and the sensor element 2 varies due to the shake of the rotating shaft when the angle detection device is used, fluctuations in the detection result can be reduced.
[実施例3]
図10は、回転部材1の回転角度と各回転角度における磁場の向きとの関係を示したグラフ(図2)の、各回転角度における直線性を示すグラフである。
直線性の基準として、回転部材1の回転角度と各回転角度における磁場の向きとの関係を直線近似した場合の理想直線と、実際の関係との差を示す%FS値を用いた。図10に示すとおり、%FS値は、−45°から45°の範囲で、2周期分の波形となり、振幅は約2.0%FSであった。
[Example 3]
FIG. 10 is a graph showing the linearity at each rotation angle of the graph (FIG. 2) showing the relationship between the rotation angle of the rotating member 1 and the direction of the magnetic field at each rotation angle.
As a reference for linearity, a% FS value indicating a difference between an ideal straight line when a relation between a rotation angle of the rotating member 1 and a magnetic field direction at each rotation angle is linearly approximated and an actual relation is used. As shown in FIG. 10, the% FS value was a waveform for two periods in the range of −45 ° to 45 °, and the amplitude was about 2.0% FS.
ところで、センサ素子2は、例えば直交する2方向の磁場の強度(つまり、r方向の磁場強度Br及びθ方向の磁場強度Bθ)を検出し、例えば磁場強度Brと磁場強度Bθとの比に基づいて(例えばtan-1(Bθ/Br)を算出して)回転角度を算出する。
このため、回転部材1の回転角度と各回転角度における磁場の向きとの関係が、完全に直線関係にならない原因の一つは、磁場強度Brの振幅と磁場強度Bθの振幅とが異なることであると考えられる。
By the way, the sensor element 2 detects, for example, the strength of magnetic fields in two orthogonal directions (that is, the magnetic field strength Br in the r direction and the magnetic field strength Bθ in the θ direction), and is based on, for example, the ratio of the magnetic field strength Br and the magnetic field strength Bθ. (For example, by calculating tan −1 (Bθ / Br)), the rotation angle is calculated.
For this reason, one of the causes that the relationship between the rotation angle of the rotating member 1 and the direction of the magnetic field at each rotation angle is not completely linear is that the amplitude of the magnetic field strength Br and the amplitude of the magnetic field strength Bθ are different. It is believed that there is.
図11は、図2に示す回転部材1の周方向の各位置におけるr方向の磁場強度Br及びθ方向の磁場強度Bθを、センサ素子2の位置における角度を0°として示すグラフである。このグラフから明らかなように、磁場強度Brの振幅の方が磁場強度Bθの振幅よりも大きく、磁場強度Brの振幅は磁場強度Bθの振幅の約1.3倍であった。
そこで、磁場強度Brの振幅と磁場強度Bθの振幅とが略同一となるように、磁場強度Bθに1.3を乗じる補正を行った後に回転角度を算出した。図12は、補正後の回転部材1の回転角度と各回転角度における磁場の向きとの関係の直線性を示すグラフである。図12に示すとおり、%FS値は、−45°から45°の範囲で、1周期分の波形となり、振幅は約1.0%FSであった。このように、磁場強度を補正して2方向の磁場強度の振幅の大きさを等しくすることにより、直線性が改善された。
従って、角度検出装置が補正手段7を備え、この補正手段が、磁場強度Brの振幅と磁場強度Bθの振幅とが略同一となるように、磁場強度を補正することにより、より正確に回転角度を検出することができる。
なお、さらに正確に回転角度を検出するためには、補正後の回転角度と各回転角度における磁場の向きとの関係において、検出角度範囲を所定の区間に分割して、夫々の区間ごとに傾きとオフセット値を決定して夫々の区間を直線とみなしたものを検量線とするとよい。
補正後の回転角度と各回転角度における磁場の向きとの関係を用いることにより、補正前と比較して直線性が向上していることから、分割する区分の数を減少させることができる。
FIG. 11 is a graph showing the r-direction magnetic field strength Br and the θ-direction magnetic field strength Bθ at each circumferential position of the rotating member 1 shown in FIG. 2 with the angle at the position of the sensor element 2 being 0 °. As is apparent from this graph, the amplitude of the magnetic field strength Br is larger than the amplitude of the magnetic field strength Bθ, and the amplitude of the magnetic field strength Br is about 1.3 times the amplitude of the magnetic field strength Bθ.
Therefore, the rotation angle was calculated after correcting the magnetic field intensity Bθ by 1.3 so that the amplitude of the magnetic field intensity Br and the amplitude of the magnetic field intensity Bθ were substantially the same. FIG. 12 is a graph showing the linearity of the relationship between the corrected rotation angle of the rotating member 1 and the direction of the magnetic field at each rotation angle. As shown in FIG. 12, the% FS value was a waveform for one cycle in the range of −45 ° to 45 °, and the amplitude was about 1.0% FS. Thus, the linearity was improved by correcting the magnetic field strength and making the amplitude magnitude of the magnetic field strength in two directions equal.
Therefore, the angle detection apparatus includes the correction unit 7, and the correction unit corrects the magnetic field strength so that the amplitude of the magnetic field strength Br and the amplitude of the magnetic field strength Bθ are substantially the same, thereby more accurately rotating the rotation angle. Can be detected.
In order to detect the rotation angle more accurately, the detection angle range is divided into predetermined intervals in the relationship between the corrected rotation angle and the direction of the magnetic field at each rotation angle, and the inclination is determined for each interval. A calibration curve may be obtained by determining offset values and regarding each section as a straight line.
By using the relationship between the rotation angle after correction and the direction of the magnetic field at each rotation angle, the linearity is improved as compared with that before correction, and therefore the number of divisions can be reduced.
[別実施形態]
図13に別実施形態に係る回転部材1を示す。この回転部材1において、ヨーク12の外周のうち磁石14,15に対応する位置に、直方体形状の磁石14,15の1面が当接する当接面12aが設けてある。
このように当接面12aを設けることにより、ヨーク12の外周面に設けた当接面12aと直方体形状の磁石14,15との密着性が向上する。このため、ヨーク12による遮蔽効果が高まり、回転部材1の径方向における外側向きの磁場強度が上昇する。また、ヨーク12の外周に磁石14,15を配置する際の位置決めが容易になり、N極領域とS極領域とを適切な位置に配置することができる。
[Another embodiment]
FIG. 13 shows a rotating member 1 according to another embodiment. In the rotating member 1, a contact surface 12 a with which one surface of the rectangular parallelepiped magnets 14 and 15 contacts is provided at a position corresponding to the magnets 14 and 15 on the outer periphery of the yoke 12.
By providing the contact surface 12a in this manner, the adhesion between the contact surface 12a provided on the outer peripheral surface of the yoke 12 and the rectangular parallelepiped magnets 14 and 15 is improved. For this reason, the shielding effect by the yoke 12 is enhanced, and the magnetic field strength in the radial direction of the rotating member 1 is increased. Further, positioning when arranging the magnets 14 and 15 on the outer periphery of the yoke 12 becomes easy, and the N-pole region and the S-pole region can be arranged at appropriate positions.
1 回転部材
2 センサ素子
4 演算手段
7 補正手段
12 ヨーク
12a 当接面
13 樹脂部
14 磁石
15 磁石
16 軸部
C 回転中心
N N極領域
S S極領域
CM 二等分線
DESCRIPTION OF SYMBOLS 1 Rotating member 2 Sensor element 4 Calculation means 7 Correction means 12 Yoke 12a Contact surface 13 Resin part 14 Magnet 15 Magnet 16 Shaft part C Rotation center N N pole area S S pole area CM Bisecting line
Claims (6)
前記回転部材の径方向における外方に配置され、回転部材の周囲に形成される磁場について少なくとも2方向の磁場成分の大きさを検出するセンサ素子と、
前記センサ素子の検出結果に基づいて前記センサ素子に対する前記回転部材の回転角度を算出する演算手段とを備えた角度検出装置。 A rotating member in which a magnet that forms an N-pole region and a magnet that forms an S-pole region are alternately arranged around a rotation center;
A sensor element that is disposed outward in the radial direction of the rotating member and detects the magnitude of a magnetic field component in at least two directions with respect to a magnetic field formed around the rotating member;
An angle detection apparatus comprising: a calculation unit that calculates a rotation angle of the rotation member with respect to the sensor element based on a detection result of the sensor element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006191875A JP2008020299A (en) | 2006-07-12 | 2006-07-12 | Angle detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006191875A JP2008020299A (en) | 2006-07-12 | 2006-07-12 | Angle detection device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008020299A true JP2008020299A (en) | 2008-01-31 |
Family
ID=39076350
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006191875A Pending JP2008020299A (en) | 2006-07-12 | 2006-07-12 | Angle detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008020299A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012058249A (en) * | 2010-09-13 | 2012-03-22 | Lg Innotek Co Ltd | Torque index sensor |
JP2012112897A (en) * | 2010-11-26 | 2012-06-14 | Nsk Ltd | Rotation angle position detector and sensor-equipped ball bearing using the same |
CN102959362A (en) * | 2010-07-02 | 2013-03-06 | 国立大学法人九州大学 | Angle detection device |
JP2017090105A (en) * | 2015-11-05 | 2017-05-25 | アルプス電気株式会社 | Rotation angle detection device |
JP2017121180A (en) * | 2012-04-26 | 2017-07-06 | アスモ株式会社 | motor |
EP2507592B1 (en) * | 2009-12-04 | 2019-01-30 | Hirschmann Automotive GmbH | Hand-operated throttle with rotational angle measuring system |
USRE47564E1 (en) | 2012-04-26 | 2019-08-06 | Denso Corporation | Motor |
CN114542879A (en) * | 2022-02-28 | 2022-05-27 | 泉州昆泰芯微电子科技有限公司 | Rotation angle recognition device, knob, learning tool, and entertainment tool |
CN114577109A (en) * | 2022-01-27 | 2022-06-03 | 杭州电子科技大学 | Magnetic measuring device and method for rotating shaft angle of shaft side detection |
-
2006
- 2006-07-12 JP JP2006191875A patent/JP2008020299A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2507592B1 (en) * | 2009-12-04 | 2019-01-30 | Hirschmann Automotive GmbH | Hand-operated throttle with rotational angle measuring system |
CN102959362A (en) * | 2010-07-02 | 2013-03-06 | 国立大学法人九州大学 | Angle detection device |
JP2012058249A (en) * | 2010-09-13 | 2012-03-22 | Lg Innotek Co Ltd | Torque index sensor |
JP2012112897A (en) * | 2010-11-26 | 2012-06-14 | Nsk Ltd | Rotation angle position detector and sensor-equipped ball bearing using the same |
JP2017121180A (en) * | 2012-04-26 | 2017-07-06 | アスモ株式会社 | motor |
USRE47564E1 (en) | 2012-04-26 | 2019-08-06 | Denso Corporation | Motor |
JP2017090105A (en) * | 2015-11-05 | 2017-05-25 | アルプス電気株式会社 | Rotation angle detection device |
CN114577109A (en) * | 2022-01-27 | 2022-06-03 | 杭州电子科技大学 | Magnetic measuring device and method for rotating shaft angle of shaft side detection |
CN114542879A (en) * | 2022-02-28 | 2022-05-27 | 泉州昆泰芯微电子科技有限公司 | Rotation angle recognition device, knob, learning tool, and entertainment tool |
CN114542879B (en) * | 2022-02-28 | 2024-05-14 | 泉州昆泰芯微电子科技有限公司 | Rotation angle recognition device, knob, learning tool, and entertainment tool |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008020299A (en) | Angle detection device | |
KR101331182B1 (en) | Magnetic Angular Position Sensor for a Course up to 360° | |
JP6649018B2 (en) | Rotary encoder and method for detecting absolute angular position of rotary encoder | |
JP2010078366A (en) | Angle detecting apparatus | |
JP4960209B2 (en) | Non-contact rotation angle detection sensor | |
US20100045275A1 (en) | Rotary or linear position sensor having avariable magnet profile | |
JP2009229437A (en) | Position detection sensor | |
JP4941707B2 (en) | Angle detector | |
JP5128120B2 (en) | Rotation sensor | |
US8823366B2 (en) | Non-contacting sensor assembly | |
CN110595349B (en) | Multipole magnet, method of manufacturing a multipole magnet and sensor system comprising the same | |
JP2014077758A (en) | Rotation angle detection device | |
JP2008128740A (en) | Rotation sensor | |
JP2004251831A (en) | Rotary angle detector | |
JPWO2008050581A1 (en) | Rotation angle detector | |
JP7122182B2 (en) | MAGNETIC POSITION DETECTION SYSTEM, MANUFACTURING METHOD OF MAGNETIC POSITION DETECTION SYSTEM, AND METHOD OF ESTIMATING POSITION OF ROTATING BODY | |
US10078094B2 (en) | Sensor system for rotational speed measurement having a pole wheel with a linearized magnetic field | |
EP3321639B1 (en) | Rotation detection device | |
JP2000321014A (en) | Revolution detecting sensor | |
JP3605526B2 (en) | Detection circuit of rotation detection sensor | |
US9488461B2 (en) | Rotation angle detection device | |
JP2005062189A (en) | Magnetic multipole encoder | |
JP6201910B2 (en) | Rotation detection sensor and manufacturing method thereof | |
US20220412774A1 (en) | Position sensor system using equidistantly spaced magnetic sensor arrays | |
JP2006047228A (en) | Rotation angle detecting device |