[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008005603A - Synchronous machine and power generating system using it as generator - Google Patents

Synchronous machine and power generating system using it as generator Download PDF

Info

Publication number
JP2008005603A
JP2008005603A JP2006171416A JP2006171416A JP2008005603A JP 2008005603 A JP2008005603 A JP 2008005603A JP 2006171416 A JP2006171416 A JP 2006171416A JP 2006171416 A JP2006171416 A JP 2006171416A JP 2008005603 A JP2008005603 A JP 2008005603A
Authority
JP
Japan
Prior art keywords
coil
phase
coils
coil group
synchronous machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006171416A
Other languages
Japanese (ja)
Inventor
Masaya Inoue
正哉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006171416A priority Critical patent/JP2008005603A/en
Publication of JP2008005603A publication Critical patent/JP2008005603A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a synchronous machine that makes it possible to reduce vibration, electromagnetic noise, and the like arising from torque ripples, is small in the number of wire connecting points and thus excellent in ease of miniaturization and mass productivity, and is high in operating efficiency. <P>SOLUTION: The number of field poles 9 and the number of coils 7 have the relation expressed as 10:12. Each coil 7 is of double three-phase and is constructed of first and second coil groups. The individual coils 7 contained in the first and second coil groups are alternately disposed in the direction of the circumference of a stator 2. The coils contained in the first coil group and the coils contained in the second coil group are respectively delta-connected. The coils 7 of each phase contained in the first and second coil groups are connected in series with one another on a phase-by-phase basis in the respective coil groups. The individual coils contained in the first coil group are so wound that their winding direction is opposite to that of the individual coils contained in the second coil group. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、トルク脈動や騒音を有効に低減した同期電動機や同期発電機等の同期機、およびこの同期機を同期発電機として用いた発電システムに関する。   The present invention relates to a synchronous machine such as a synchronous motor or a synchronous generator that effectively reduces torque pulsation and noise, and a power generation system using the synchronous machine as a synchronous generator.

従来から同期機、例えば3相同期電動機においては、トルクリプルに起因した負荷振動や軸ねじり振動が問題とされ、また、同期発電機において、発電電流リプルに起因した蓄電装置あるいは平滑コンデンサの寿命低下や電磁ノイズなどが問題とされている。特に、電気角で基本波の6倍の周波数をもつ、いわゆる6fトルクリプルは、多極大型機の場合において騒音、振動に対して問題となる。その理由は、多極で径の大きな同期電動機は、直径が大きな円環となるために相対的に固有振動数が低下する一方で、6fトルクリプルは可聴域に近付く傾向となる。例えば20極機では、120rpmで基本波は200Hzとなることから、6f成分はその6倍の1.2kHzとなって可聴域となるため、人間が不快に感じ易い帯域での運転となる。   Conventionally, in a synchronous machine, for example, a three-phase synchronous motor, load vibration and shaft torsional vibration caused by torque ripple have been a problem, and in a synchronous generator, the life of a power storage device or a smoothing capacitor caused by generated current ripple is reduced. Electromagnetic noise is a problem. In particular, the so-called 6f torque ripple having an electrical angle that is six times the fundamental wave is a problem with respect to noise and vibration in the case of a multi-polar large machine. The reason is that a multi-pole synchronous motor with a large diameter is a ring with a large diameter, so that the natural frequency is relatively lowered, while the 6f torque ripple tends to approach the audible range. For example, in a 20-pole machine, the fundamental wave becomes 200 Hz at 120 rpm, so the 6f component becomes 1.2 kHz, which is six times that, and becomes an audible range.

上述した6fトルクリプルは、界磁コイルもしくは永久磁石で磁極を形成する際に、回転子と固定子の間の空隙磁界が台形状となり、空間周波数で3次、5次、7次、…と奇数次成分の高調波成分が含有されることによって生じる。そこで、回転子と固定子の間の空隙磁界が台形状とならないように、回転子側において、例えば磁石の外形をかまぼこ状に面落としをしたり、スキューをしたりするなどの工夫を行うことにより、奇数次成分の高調波成分を低減することが試みられているが、同時に基本波の周波数が低下して出力低下を招くという不具合を生じる。   In the 6f torque ripple described above, when the magnetic pole is formed by a field coil or a permanent magnet, the air gap magnetic field between the rotor and the stator becomes trapezoidal, and the third, fifth, seventh,. This is caused by the inclusion of the harmonic component of the next component. Therefore, in order to prevent the gap magnetic field between the rotor and the stator from becoming trapezoidal, on the rotor side, for example, the outer shape of the magnet is chamfered or skewed. Thus, attempts have been made to reduce the harmonic components of the odd-order components, but at the same time, the frequency of the fundamental wave is lowered, causing a problem that the output is reduced.

そこで、従来技術では、出力低下を招くことなくトルクリプルを低減するために、固定子側において、分布巻した3相分のコイルからなるコイル群を2つ設けた、いわゆる2重3相同期電動機が提案されている(例えば、特許文献1参照)。   Therefore, in the prior art, in order to reduce torque ripple without causing a decrease in output, there is a so-called double three-phase synchronous motor provided with two coil groups consisting of three-phase coils distributed on the stator side. It has been proposed (see, for example, Patent Document 1).

このように構成された特許文献1の2重3相同期電動機は、電気角で60度の位相差の出力電圧を実質6相分のコイルに印加することができるため、電圧波形の歪み少なくして高調波成分を抑えることができ、トルクリプルの発生を低減することができる。   The double three-phase synchronous motor of Patent Document 1 configured as described above can apply an output voltage having a phase difference of 60 degrees in terms of electrical angle to coils for substantially six phases, thereby reducing distortion of the voltage waveform. Therefore, harmonic components can be suppressed, and the occurrence of torque ripple can be reduced.

しかし、上記の特許文献1に記載の電動機は、各スロットにコイルを分布巻きしているため、コイルエンド部の形状が大きく、小型化を図る上で制限があるとともに、2つのコイル群が互いに重複しているために、コイル群間に大きな相互インダクタンスを有し、電流制御性が著しく低下するという問題がある。   However, since the electric motor described in Patent Document 1 has a coil wound in each slot in a distributed manner, the shape of the coil end portion is large, and there are limitations in reducing the size, and the two coil groups are mutually connected. Due to the overlap, there is a problem in that the coil group has a large mutual inductance and current controllability is significantly reduced.

このため、従来技術では、さらに、トルクリプルの発生を低減しつつ、コイルエンド部の形状が小さくて小型化が可能で、かつ、2つのコイル群の互いの重複を避けることによりコイル群間の相互インダクタンスを低減した2重3相同期電動機が提案されている(例えば、特許文献2参照)。   For this reason, in the prior art, the generation of torque ripple is further reduced, the shape of the coil end portion is small and the size can be reduced, and the mutual overlap between the two coil groups is avoided by avoiding the mutual overlap of the two coil groups. A double three-phase synchronous motor with reduced inductance has been proposed (see, for example, Patent Document 2).

この特許文献2記載の従来技術の場合、2つのコイル群をそれぞれインバータで個別に駆動するのでトルクリプルを低減することができ、かつ、集中巻き方式なのでコイルエンド部の形状が小さくて小型化、量産性に優れ、さらに、コイル間の相互インダクタンスも小さいものが得られる。   In the case of the prior art described in Patent Document 2, since the two coil groups are individually driven by an inverter, torque ripple can be reduced, and the concentrated winding method reduces the size of the coil end portion, thereby reducing the size and mass production. In addition, it is possible to obtain a coil having a low mutual inductance between coils.

特許第3351258号公報Japanese Patent No. 3351258 特開平7−264822号公報JP-A-7-264822

しかしながら、上記の特許文献2の従来技術のものは、2つのコイル群をそれぞれY結線方式で結線しているために、結線個所が多数発生する。特に、量産性を重んじて集中巻き方式の多極機であれば、1相あたりのティース数が多く、これらを並列に結線することが多い。すなわち、Y結線であれば、全てのティースについてU,V,W相の電源線と中性線の4つの電線に対して結線する必要があるため、結線個所が多数発生する。例えば、20極24スロットの例では、24個のコイルそれぞれに2箇所、合計で48箇所もの結線が必要となる。3相の電源線と各コイル端子との結線作業は、電線という柔軟物を扱うために自動化することが難しく、人手で結線作業をした場合には時間がかかり、多極機の生産コストを高くする大きな要因となっている。   However, since the prior art disclosed in Patent Document 2 connects the two coil groups by the Y-connection method, a large number of connection points are generated. In particular, in the case of a multi-pole machine using a concentrated winding method in consideration of mass productivity, the number of teeth per phase is large, and these are often connected in parallel. That is, in the case of Y connection, since it is necessary to connect all the teeth to four electric wires of the U, V, and W phase power lines and neutral wires, a large number of connection points are generated. For example, in the case of 20 poles and 24 slots, it is necessary to connect as many as 48 locations in total, with two locations for each of the 24 coils. The connection work between the three-phase power line and each coil terminal is difficult to automate because of the handling of flexible materials such as electric wires, and it takes time if the connection work is done manually, increasing the production cost of multipolar machines. It has become a major factor.

また、コスト低減のためにY結線に代えてΔ結線を適用することも考えられるが、単純にΔ結線を行うと、3次の高調波に対して循環電流を流すために損失が大きくなり、電動機の効率を低下させるだけでなく、3次の循環する高調波電流によって騒音を生じる恐れがある。   In addition, it is conceivable to use Δ connection instead of Y connection for cost reduction, but if Δ connection is simply performed, a loss increases because a circulating current flows for the third harmonic, In addition to reducing the efficiency of the electric motor, there is a risk of noise being generated by the third-order circulating harmonic current.

本発明は、上記の課題を解決するためになされたもので、トルクリプルに起因した振動や電磁音、あるいは発電リプルを低減するとともに、小型化、量産性に優れ、しかもΔ結線が適用可能で結線個所を削減でき、さらに3次高調波による循環電流によって生じる損失を低減して効率を高めた同期機、およびこれを発電機として用いた発電システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and reduces vibration, electromagnetic noise, or power generation ripple caused by torque ripple, and is excellent in downsizing and mass productivity, and can be applied with Δ connection. It is an object of the present invention to provide a synchronous machine that can reduce the number of places and further reduce the loss caused by the circulating current due to the third harmonic and increase the efficiency, and a power generation system using this synchronous machine.

上記の目的を達成するために、本発明は、電機子を構成する各コイルは電機子鉄心に集中巻きされた状態で一列に配列され、上記電機子の各コイルに対してN、S交互に界磁極が配置された同期機において、次の構成を採用している。   In order to achieve the above object, according to the present invention, the coils constituting the armature are arranged in a row in a state of being concentratedly wound around the armature core, and N and S are alternately arranged with respect to the coils of the armature. The following configuration is adopted in the synchronous machine in which the field pole is arranged.

すなわち、本発明では、上記界磁極の極数とコイルの数が12±2極:12コイルとなる関係を1単位とした構成を少なくとも1単位分備えており、この1単位内に含まれる各コイルは、3相分のコイルからなる第1のコイル群と、3相分のコイルからなる第2のコイル群とからなり、第1のコイル群に含まれる各コイルと、第2のコイル群に含まれる各コイルとはその配列方向に沿って交互に配置されるとともに、第1のコイル群に含まれる各コイルは、Δ結線されるとともに、各相のコイルの内、同相のコイル同士が互いに直列接続され、また、第2のコイル群に含まれる各コイルは、Δ結線されるとともに、各相のコイルの内、同相のコイル同士が互いに直列接続され、さらに、第1のコイル群に含まれる各コイルは、第2のコイル群に含まれる各コイルに対して巻き付け方向が逆になるように巻装されていることを特徴としている。   That is, in the present invention, at least one unit is provided with a configuration in which the relationship that the number of poles of the field pole and the number of coils is 12 ± 2 poles: 12 coils is one unit. The coil is composed of a first coil group consisting of coils for three phases and a second coil group consisting of coils for three phases, each coil included in the first coil group, and second coil group Are arranged alternately along the arrangement direction, and each coil included in the first coil group is Δ-connected, and among the coils in each phase, the coils in the same phase are connected to each other. The coils connected in series with each other and the coils included in the second coil group are Δ-connected, and among the coils in each phase, the coils in the same phase are connected in series with each other. Each coil included in the second coil group Murrell winding direction for each coil is characterized in that it is wound to have opposite.

また、本発明の発電システムは、上記請求項1記載の同期機の第1、第2のコイル群がそれぞれ3相整流ダイオードブリッジに個別に接続され、上記各3相整流ダイオードブリッジの直流出力が当該出力電力を蓄電する蓄電手段に接続されていることを特徴としている。   In the power generation system of the present invention, the first and second coil groups of the synchronous machine according to claim 1 are individually connected to a three-phase rectifier diode bridge, and the DC output of each of the three-phase rectifier diode bridges is It is characterized by being connected to power storage means for storing the output power.

本発明の同期機は、同相内の2つの直列接続されたコイル内の位相差が60度(=π/3)異なるため、界磁の有する3次高調波成分に起因するコイル内の3次の循環電流が同相のコイル内部で相殺されて流れなくなる。この作用により、Δ結線時に問題となる3次高調波による循環電流によって生じる無駄な損失が無くなる。したがって、集中巻きによるΔ結線を行えるために、結線箇所を削減できるとともにコイルエンド部が小さくなり、小型化、量産性に優れ、生産コストを下げることができる。しかも、第1、第2のコイル群の互いに隣接するコイル同士は電気角で位相が30度(=π/6)異なるため、5次、7次の高調波も互いに相殺されて、全体的にトルクリプルが低減される。その結果、トルクリプルに起因した振動や電磁音、あるいは発電リプルを低減することができ、低騒音な同期機を供給することができる。   In the synchronous machine of the present invention, the phase difference in two series-connected coils in the same phase is different by 60 degrees (= π / 3), so the third order in the coil due to the third harmonic component of the field Circulated currents cancel each other out of the coils in the same phase and no longer flow. This action eliminates the useless loss caused by the circulating current due to the third harmonic, which is a problem during Δ connection. Therefore, since Δ connection by concentrated winding can be performed, the number of connection points can be reduced, the coil end portion can be reduced, the size and mass productivity can be improved, and the production cost can be reduced. Moreover, since the coils adjacent to each other in the first and second coil groups are different in electrical angle by 30 degrees (= π / 6), the fifth and seventh harmonics cancel each other, and overall Torque ripple is reduced. As a result, vibration, electromagnetic noise or power generation ripple caused by torque ripple can be reduced, and a low-noise synchronous machine can be supplied.

また、本発明の同期機を発電機とした発電機システムにおいては、3相コイルの2つのコイル群を設けることで、発電時の1相の通電区間が、通常の3相ダイオードブリッジで整流する際の120度通電から60度通電へと小さくできる。このため、リプル電圧が低減されると同時に、平均出力が増大する。そして、リプル電圧が低下することにより、バッテリやキャパシタなどの蓄電手段に流れるリプル電流も低減する。その結果、車載用においては、バッテリの寿命低下や、リプルノイズによるラジオなどの車載電源機器が供給する電気機器へのノイズやライトのちらつきなどの低減に寄与することができる。   Moreover, in the generator system using the synchronous machine of the present invention as a generator, by providing two coil groups of three-phase coils, a one-phase energization section during power generation is rectified by a normal three-phase diode bridge. The current can be reduced from 120 degrees energization to 60 degrees energization. For this reason, the ripple voltage is reduced and at the same time the average output is increased. As the ripple voltage is lowered, the ripple current flowing in the power storage means such as a battery or a capacitor is also reduced. As a result, in the case of in-vehicle use, it is possible to contribute to reduction of battery life and noise or light flickering to electric equipment supplied by in-vehicle power supply equipment such as radio due to ripple noise.

実施の形態1.
図1は本発明の実施の形態1における同期機としての2重3相同期電動機の断面図、図2は図1の電動機を直線状に展開して結線状態を示すようにした断面図である。
Embodiment 1 FIG.
1 is a cross-sectional view of a double three-phase synchronous motor as a synchronous machine according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view in which the electric motor of FIG. .

この実施の形態1における2重3相同期電動機1は、電機子となる固定子2と、この固定子2の内部に空間を存して配置された回転子3とを有する。固定子1は、電磁鋼板などで形成された鉄心4に多数(本例では12個)のスロット5が形成され、両隣のスロット5で挟まれた間に同じ数(12個)のT字型のティース6が形成されている。そして、各ティース6にコイル7が集中巻きされている。一方、回転子3はヨーク8の外周部に界磁極となる多極(本例では10極)の永久磁石9がN、S交互に着磁されて貼り付けられている。したがって、この実施の形態1では、界磁極:コイルの数が10:12となる関係であり、また、各ティース6間のピッチは電気角で150度となっている。   A double three-phase synchronous motor 1 according to the first embodiment includes a stator 2 serving as an armature, and a rotor 3 disposed with a space inside the stator 2. The stator 1 has a large number (12 in this example) of slots 5 formed in an iron core 4 formed of an electromagnetic steel plate or the like, and the same number (12) of T-shapes between the adjacent slots 5. Teeth 6 are formed. A coil 7 is concentratedly wound around each tooth 6. On the other hand, in the rotor 3, a multi-pole (10 poles in this example) permanent magnet 9 which is a field pole is attached to the outer peripheral portion of the yoke 8 with N and S being alternately magnetized. Therefore, in this Embodiment 1, it is the relationship which the number of field poles: coil becomes 10:12, and the pitch between each tooth | gear 6 is 150 degree | times by an electrical angle.

上記の各コイル7は、U(U1,U2),V(V1,V2),W(W1,W2)の3相のコイル(計6個)からなる第1のコイル群と、X(X1,X2),Y(Y1,Y2),Z(Z1,Z2)の3相のコイル(計6個)からなる第2のコイル群とからなる。そして、第1のコイル群に含まれるU(U1,U2),V(V1,V2),W(W1,W2)の6個の各コイルと、第2のコイル群に含まれるX(X1,X2),Y(Y1,Y2),Z(Z1,Z2)の6個の各コイルは、固定子2の周方向に沿って交互に配置されている。   Each of the coils 7 includes a first coil group composed of three-phase coils (6 in total) of U (U1, U2), V (V1, V2), and W (W1, W2), and X (X1, X2), Y (Y1, Y2), and Z (Z1, Z2), and a second coil group consisting of three-phase coils (total of six). Then, each of six coils U (U1, U2), V (V1, V2), W (W1, W2) included in the first coil group and X (X1, X1) included in the second coil group. The six coils X2), Y (Y1, Y2), and Z (Z1, Z2) are alternately arranged along the circumferential direction of the stator 2.

しかも、図2に示すように、第1のコイル群に含まれる同相のコイル同士U1とU2,V1とV2,W1とW2が互いに直列接続されている。同様に、第1のコイル群に含まれる同相のコイル同士X1とX2,Y1とY2,Z1とZ2が互いに直列接続されている。   In addition, as shown in FIG. 2, in-phase coils U1, U2, V1, V2, W1, and W2 included in the first coil group are connected in series with each other. Similarly, in-phase coils X1, X2, Y1, Y2, Z1, and Z2 included in the first coil group are connected in series.

さらに、第1のコイル群に含まれるU(U1,U2),V(V1,V2),W(W1,W2)の3相の各コイルがΔ結線されている。同様に、第2のコイル群に含まれるX(X1,X2),Y(Y1,Y2),Z(Z1,Z2)の3相の各コイルもΔ結線されている。   Furthermore, each of the three-phase coils U (U1, U2), V (V1, V2), and W (W1, W2) included in the first coil group is Δ-connected. Similarly, the three-phase coils X (X1, X2), Y (Y1, Y2), and Z (Z1, Z2) included in the second coil group are also Δ-connected.

また、各コイル7の巻き線方向については、第1のコイル群に含まれるU(U1,U2),V(V1,V2),W(W1,W2)の3相の各コイルは全て正方向巻き、第2のコイル群に含まれるX(X1,X2),Y(Y1,Y2),Z(Z1,Z2)の3相の各コイルは全て逆方向巻きとなるように巻装されている。   As for the winding direction of each coil 7, all the three-phase coils U (U1, U2), V (V1, V2), and W (W1, W2) included in the first coil group are in the positive direction. Each of the three-phase coils X (X1, X2), Y (Y1, Y2), and Z (Z1, Z2) included in the second coil group is wound in a reverse direction. .

このようにして、10極の永久磁石9と12個のコイル7とを組み合わせることで、2重3相同期電動機を得ることができる。この場合の各コイル7の接続関係および電気位相の関係をまとめると、図3に示すようになる。   In this manner, a double three-phase synchronous motor can be obtained by combining the 10-pole permanent magnet 9 and the 12 coils 7. In this case, the connection relationship and the electrical phase relationship of the coils 7 are summarized as shown in FIG.

ここで、第1のコイル群と第2のコイル群の巻き付け方向は互いに逆になっており、かつ、第1のコイル群と第2のコイル群の各コイルは固定子2の周方向に沿って交互に配置されていて互いに隣接しているので、第1、第2のコイル群の互いに隣接するコイル同士は電気角で位相が30度異なったものとなる。例えば、第1のコイル群に属するU1相のコイルとこれに隣接する第2のコイル群に属するX1相のコイルの同士は位相が30度異なっている。したがって、各コイル7について30度間隔の12個のベクトルが得られるので、それらの電圧位相のベクトル関係は図4に示すようになる。   Here, the winding directions of the first coil group and the second coil group are opposite to each other, and the coils of the first coil group and the second coil group are along the circumferential direction of the stator 2. Therefore, the adjacent coils of the first and second coil groups are different in electrical angle by 30 degrees. For example, the phase of the U1 phase coil belonging to the first coil group and the X1 phase coil belonging to the second coil group adjacent thereto are different by 30 degrees. Accordingly, twelve vectors with an interval of 30 degrees are obtained for each coil 7, and the voltage phase vector relationship is as shown in FIG.

また、Δ結線を行った場合の第1、第2の各コイル群に含まれるコイルの電気位相のベクトル図は、図5(a),(b)に示すようになる。すなわち、第1、第2の各コイル群において、互いに直列に結線された1相分のコイル同士の電気位相は60度異なったものとなる。例えば、U1とU2のコイルでは、反時計回りを正とすると、位相が−60度異なっている。   Further, vector diagrams of the electrical phases of the coils included in the first and second coil groups when Δ connection is performed are as shown in FIGS. That is, in each of the first and second coil groups, the electrical phases of the coils for one phase connected in series are different by 60 degrees. For example, the coils U1 and U2 have a phase difference of −60 degrees when the counterclockwise direction is positive.

図4および図5(a)、(b)のベクトル図から分かるように、60度位相が異なる2つのティース位置のコイル7を直列に結線することで1相を形成している。したがって、基本波にとって60度の位相差は、界磁に含まれる3次高調波にとってはその3倍の180度となることから同相のコイル内で相殺できる。このため、界磁の3次高調波がある場合でも循環電流を流す起電力が消失するのでΔ結線が可能となる。   As can be seen from the vector diagrams of FIG. 4 and FIGS. 5A and 5B, one phase is formed by connecting the coils 7 at two teeth positions different in phase by 60 degrees in series. Therefore, the phase difference of 60 degrees for the fundamental wave is 180 degrees, which is three times that of the third harmonic contained in the field, and can be canceled out in the in-phase coil. For this reason, even when there is a third-order harmonic of the field, the electromotive force that causes the circulating current to disappear disappears, so that Δ connection is possible.

因みに、この実施の形態1の2重3相同期電動機1の特性と対比するために、前述の特許文献2に記載された従来の2重3相同期電動機のコイルの結線状態を示すと、図6のようになっている。   Incidentally, in order to contrast with the characteristics of the double three-phase synchronous motor 1 of the first embodiment, the connection state of the coil of the conventional double three-phase synchronous motor described in Patent Document 2 described above is shown in FIG. It is like 6.

従来のものは、3相コイルの2つのコイル群をそれぞれ集中巻き方式でY結線しているので、結線個所が多数発生する。すなわち、図7(a)に示すように、従来の集中巻きでY結線を採用した場合には、U、V、Wの3相、もしくはX、Y、Zの3相の各コイルは、いずれも巻き初めを電源側にとると、他方を中性線側に接続する必要があるため、中性線を別途配置する必要があり、結線用の電線の本数が増えるとともに結線個所が多くなる。特に、これは多極機では多大な労力を要する。これに対して、この実施の形態1のようにΔ結線を行う場合は、図7(b)に示すように中性線が不要なため、結線処理を簡単に行える。   In the conventional one, two coil groups of three-phase coils are Y-connected by the concentrated winding method, so that many connection points are generated. That is, as shown in FIG. 7 (a), when Y-connection is adopted in the conventional concentrated winding, each of the three-phase coils of U, V, and W or the three-phase coils of X, Y, and Z If the winding start is taken on the power source side, the other side needs to be connected to the neutral wire side, so that the neutral wire needs to be separately arranged, and the number of wires for connection increases and the number of connection points increases. In particular, this requires a lot of labor in a multipole machine. On the other hand, when the Δ connection is performed as in the first embodiment, since the neutral line is unnecessary as shown in FIG. 7B, the connection process can be easily performed.

また、図6に示したY結線状態での各コイル7の接続関係および電気位相は、図8に示すようになっている。すなわち、従来のものでは、各ティース6間のコイル7は、30度の位相差しかなく、6次高調波に対してはトクルリップルを低減することができるものの、その3次高調波に対しては90度の位相差となり、リップル低減効果はなく、環状電流による損失が生じて電動機の効率が低下する。これに対して、この実施の形態1では、Δ結線を行っているが、前述のごとく、互いに直列に結線された1相分のコイル同士の電気位相は60度異なっているため、3次高調波に対してはその3倍の180度の位相差となり、界磁の有する3次高調波成分に起因するコイル内の3次の循環電流が同相のコイル内部で相殺されて流れなくなる。   Moreover, the connection relationship and electrical phase of each coil 7 in the Y-connection state shown in FIG. 6 are as shown in FIG. That is, in the conventional one, the coil 7 between the teeth 6 has a phase difference of 30 degrees and can reduce the torque ripple with respect to the sixth harmonic, but with respect to the third harmonic. Has a phase difference of 90 degrees, has no ripple reduction effect, causes a loss due to an annular current, and reduces the efficiency of the motor. On the other hand, in the first embodiment, Δ connection is performed. As described above, the electrical phase of coils for one phase connected in series with each other is different by 60 degrees. The phase difference of 180 degrees, which is three times that of the wave, is canceled by the third-order circulating current in the coil caused by the third-order harmonic component of the field, being canceled in the in-phase coil.

さらに、従来のものでは、図8に示すように巻き線方向が、正、逆、逆、正、正、逆、逆、…となり、第1のコイル群に含まれる各相のコイルU(U1,U2),V(V1,V2),W(W1,W2)相互間で巻き方向が正逆存在し、また、第2のコイル群に含まれる各相のコイルX(X1,X2),Y(Y1,Y2),Z(Z1,Z2)についても相互間で巻き方向が正逆存在する。このためコイル7の巻き付けに手間がかかる。これに対して、この実施の形態1では、図3に示したように、第1のコイル群に含まれる各相のコイルU(U1,U2),V(V1,V2),W(W1,W2)は全て正方向のみ、第2のコイル群に含まれる各相のコイルX(X1,X2),Y(Y1,Y2),Z(Z1,Z2)は逆方向のみとなる。つまり、同じコイル群に属する各コイル7は巻き線方向が全て同一方向となるので、連続巻き線時のΔ結線における自動化が極めて容易となる。   Further, in the conventional device, as shown in FIG. 8, the winding direction is normal, reverse, reverse, normal, normal, reverse, reverse,..., And each phase coil U (U1) included in the first coil group. , U2), V (V1, V2), W (W1, W2), the winding directions are normal and reverse, and coils X (X1, X2), Y of each phase included in the second coil group As for (Y1, Y2) and Z (Z1, Z2), the winding direction exists between the forward and reverse directions. For this reason, it takes time to wind the coil 7. In contrast, in the first embodiment, as shown in FIG. 3, coils U (U1, U2), V (V1, V2), W (W1, W1) of each phase included in the first coil group. W2) is all in the positive direction only, and coils X (X1, X2), Y (Y1, Y2), and Z (Z1, Z2) of each phase included in the second coil group are only in the reverse direction. That is, since the winding directions of the coils 7 belonging to the same coil group are all the same, automation in Δ connection during continuous winding is extremely easy.

以上のように、この実施の形態1の2重3相同期電動機1は、同相内の2つの直列接続されたコイル内の位相差が60度(=π/3)異なるため、界磁の有する3次高調波成分に起因するコイル内の3次の循環電流が同相のコイル内部で相殺されて流れなくなる。この作用により、Δ結線時に問題となる3次高調波による循環電流によって生じる無駄な損失が無くなる。これにより、集中巻きによるΔ結線を行えるために、結線箇所を削減できるとともにコイルエンド部が小さくなり、小型化、量産性に優れ、生産コストを下げることができる。   As described above, the double three-phase synchronous motor 1 according to the first embodiment has a field because the phase difference between two series-connected coils in the same phase differs by 60 degrees (= π / 3). The third-order circulating current in the coil caused by the third-order harmonic component is canceled out in the in-phase coil and stops flowing. By this action, useless loss caused by the circulating current due to the third harmonic, which is a problem at the time of Δ connection, is eliminated. Thereby, since Δ connection by concentrated winding can be performed, the number of connection points can be reduced, the coil end portion can be reduced, and the size and mass productivity can be improved, and the production cost can be reduced.

しかも、第1、第2のコイル群の互いに隣接するコイル同士は電気角で位相差が30度(=π/6)異なるため、5次、7次の高調波も互いに相殺されて、全体的にトルクリプルが低減される。その結果、トルクリプルに起因した振動や電磁音、あるいは発電リプルを低減することができ、低騒音な同期機を供給することができる。   In addition, since the adjacent coils of the first and second coil groups are different in electrical angle by a phase difference of 30 degrees (= π / 6), the fifth and seventh harmonics cancel each other, and the overall Torque ripple is reduced. As a result, vibration, electromagnetic noise or power generation ripple caused by torque ripple can be reduced, and a low-noise synchronous machine can be supplied.

なお、上記の実施の形態1では、極数とコイルの数が10極:12コイルの場合を示したが、極数=コイル数でなければ任意の極数:コイル数の組合せが成立する。3相電動機に限定しても、例えばその他に8極:9コイル、32極:30コイルなどの組合せが成立する。しかし、2重3相(6相)化するにはティースピッチが電気角で150度、もしくは30度となる6±1極:6コイルを1単位とする組合せが最も有利である。実際には奇数極の電動機はリニア式では可能であるが、回転式の電動機では現実的ではなく、偶数極とする必要があるので、本例のように10極:12ティースを1単位として構成するか、あるいは14極:12ティースを1単位として構成するのが好ましい。   In the first embodiment, the case where the number of poles and the number of coils is 10 poles: 12 coils is shown. However, if the number of poles is not equal to the number of coils, any combination of poles: the number of coils is established. Even if it is limited to a three-phase motor, for example, other combinations such as 8 poles: 9 coils, 32 poles: 30 coils are established. However, the combination of 6 ± 1 poles: 6 coils as one unit is most advantageous in order to obtain a double three-phase (six-phase) tooth pitch of 150 ° or 30 ° in electrical angle. Actually, the odd pole motor is possible with the linear type, but it is not realistic with the rotary motor, and it is necessary to use the even pole, so it is configured with 10 poles: 12 teeth as one unit as in this example. Or 14 poles: 12 teeth are preferably configured as one unit.

また、この実施の形態1の2重3相同期電動機1は、次の副次的な効果も得られる。
すなわち、この同期電動機は、3相回路を2系統もつ構造であるが、これを駆動するインバータ回路は3相用にモジュール化されているものが多い。したがって、それらをそのまま利用することができるので、回路構成が容易である。また、コイル間の相互インダクタンスが小さいので、U,V,Wの各相のコイルとX,Y,Zの各相のコイルのそれぞれに既存の3相センサレス制御コントローラを2つ設けることで低リプルに運転することが可能となる。
Further, the double three-phase synchronous motor 1 of the first embodiment can also obtain the following secondary effects.
That is, this synchronous motor has a structure having two systems of three-phase circuits, but an inverter circuit for driving the same is often modularized for three phases. Therefore, since they can be used as they are, the circuit configuration is easy. In addition, since the mutual inductance between the coils is small, two existing three-phase sensorless control controllers are provided in each of the U, V, and W phase coils and the X, Y, and Z phase coils, thereby reducing ripples. It becomes possible to drive to.

また、この実施の形態1の2重3相同期電動機1は、極数とコイル数の最小公倍数が大きいために、コギングが小さくトルクリプルに影響しない。さらに、界磁極のピッチとコイルの配置ピッチの比が1に近いために、永久磁石9の発生磁束のほとんどが有効にコイルに鎖交し、少ない電流で大きなトルクを発生することができ、銅損が少なく高効率である。また、等ピッチにコイル7を配置しているので3相不平衡を招かず、このため、通常の3相電動機の制御方式をそのまま適用することができる。加えて、2重3相の構成であるが、磁気的にも相互結合度が小さい。よって、第1、第2のコイル群のいずれか一方が故障した場合、出力に制限はあるものの、残りの3相分のコイル群を使って運転を継続できるためフェールセーフ性が高い。   In addition, since the double three-phase synchronous motor 1 of the first embodiment has a least common multiple of the number of poles and the number of coils, the cogging is small and does not affect the torque ripple. Further, since the ratio between the pitch of the field pole and the arrangement pitch of the coil is close to 1, most of the generated magnetic flux of the permanent magnet 9 is effectively linked to the coil, and a large torque can be generated with a small current. Low loss and high efficiency. Further, since the coils 7 are arranged at an equal pitch, a three-phase unbalance is not caused, and therefore a normal three-phase motor control method can be applied as it is. In addition, although it has a double three-phase configuration, the degree of mutual coupling is also small magnetically. Therefore, when either one of the first and second coil groups fails, the output is limited, but the operation can be continued using the remaining three-phase coil groups, so the fail-safe property is high.

実施の形態2.
図9は図1の2重3相の構成の同期機を発電機として用いた場合のこの実施の形態2における発電システムの要部を示す回路構成図である。
Embodiment 2. FIG.
FIG. 9 is a circuit configuration diagram showing a main part of the power generation system according to the second embodiment when the synchronous machine having the double three-phase configuration of FIG. 1 is used as a generator.

この実施の形態2では、図1に示した同期機1を構成するU,V,W3相分の第1コイル群と、X,Y,Z3相分の第2コイル群とがそれぞれ独立した2つの3相整流ダイオードブリッジ11,12に接続され、各3相整流ダイオードブリッジ11,12の直流出力が、当該出力電力を蓄電するバッテリ、キャパシタなどの蓄電手段13に接続されている。この種の組み合わせは、例えばディーゼルの自家用発電機など一定速運転を行う発電機で蓄電手段としてのバッテリと組み合わせて用いられることが多い。   In the second embodiment, the first coil group for U, V, W3 phases and the second coil group for X, Y, Z3 phases constituting the synchronous machine 1 shown in FIG. The three-phase rectifier diode bridges 11 and 12 are connected to each other, and the DC output of each of the three-phase rectifier diode bridges 11 and 12 is connected to a storage means 13 such as a battery or a capacitor that stores the output power. This type of combination is often used in combination with a battery as a power storage means in a generator that operates at a constant speed, for example, a diesel private generator.

U,V,Wの3相コイルを有する通常の同期発電機を一つの3相整流ダイオードブリッジに接続した場合の整流前の3相の各電圧波形を図10に、整流後のDC電圧波形を図11に示す。図10に示すように、整流前は60度毎に通電相が入れ替わるような正弦波形であるが、この正弦波形を整流すると図11に示すように基本波の6倍の周波数のリプル成分が現れる。このリプル電圧を含む波形をバッテリやキャパシタなどの蓄電手段に接続するとリプル電流が流れて発熱し、寿命が低下する。   FIG. 10 shows the three-phase voltage waveforms before rectification when a normal synchronous generator having three-phase coils of U, V, and W is connected to one three-phase rectifier diode bridge, and FIG. 10 shows the DC voltage waveforms after rectification. As shown in FIG. As shown in FIG. 10, the sine waveform is such that the energized phase is switched every 60 degrees before rectification, but when this sine waveform is rectified, a ripple component having a frequency six times the fundamental wave appears as shown in FIG. . When a waveform including this ripple voltage is connected to power storage means such as a battery or a capacitor, a ripple current flows and heat is generated, and the life is shortened.

これに対して、この実施の形態2のように、図1に示した発電機1を構成するU,V,W3相分の第1コイル群と、X,Y,Z3相分の第2コイル群とがそれぞれ独立した2つの3相整流ダイオードブリッジ11,12に接続した場合の整流前の2重3相の各電圧波形を図12に、整流後のDC電圧波形を図13に示す。図12に示すように、整流前は30度毎に通電相が入れ替わるような正弦波形となり、この正弦波形を整流すると図13に示すように基本波の12倍の周波数のリプル成分が現れ、かつ、図11に示した場合に較べてリプルの振幅が下がる。   On the other hand, like this Embodiment 2, the 1st coil group for U, V, and W3 phases which comprise the generator 1 shown in FIG. 1, and the 2nd coil for X, Y, and Z3 phases FIG. 12 shows double three-phase voltage waveforms before rectification, and FIG. 13 shows DC voltage waveforms after rectification when two groups of independent three-phase rectifier diode bridges 11 and 12 are connected. As shown in FIG. 12, before the rectification, a sinusoidal waveform in which the energized phase is switched every 30 degrees is obtained, and when this sine waveform is rectified, a ripple component having a frequency 12 times the fundamental wave appears as shown in FIG. As compared with the case shown in FIG. 11, the amplitude of the ripple is lowered.

その結果、リプル電流が低減して蓄電手段13の寿命が延びる。また、リプル電流に起因する電磁騒音や電磁ノイズが減るなどの諸問題を回避できる。また、通電区間は通常の3相整流ダイオードの60度から30度と細かくなるために、正弦波状の線間電圧のピーク付近の高い部分のみを利用するため、平均発電出力も上昇するという効果も得られる。   As a result, the ripple current is reduced and the life of the power storage means 13 is extended. In addition, problems such as electromagnetic noise and electromagnetic noise due to ripple current can be avoided. In addition, since the current-carrying section is as narrow as 60 degrees to 30 degrees of a normal three-phase rectifier diode, only the high portion near the peak of the sinusoidal line voltage is used, so that the average power output also increases. can get.

さらに、発電機1は、固定子2のコイル7が集中巻きであるため生産性が良く、コイル7の導体占積率が高くできるため発電効率も高い。その結果、蓄電手段13としてバッテリを使用する場合には寿命が長くなり、またノイズなどの問題がなく、騒音も小さいという特性の良い発電システムが得られる。   Further, the generator 1 has high productivity because the coil 7 of the stator 2 is concentrated winding, and the power generation efficiency is high because the conductor space factor of the coil 7 can be increased. As a result, when a battery is used as the power storage means 13, a power generation system having a good characteristic that the lifetime is extended, there is no problem such as noise, and noise is low is obtained.

本発明は上記の実施の形態1,2の構成に限定されるものではなく、その趣旨を逸脱しない範囲内において各種の変形を加えることができる。   The present invention is not limited to the configurations of the first and second embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、実施の形態1、2で示した同期電動機や同期発電機は、説明の都合上、ティース6にコイル7を巻装されている例を示したが、ティース6が無いスロットレスの電動機についても適用することが可能である。さらに、本発明は、回転式の同期電動機に適用できるだけでなく、リニア式の同期電動機についても適用することが可能である。   For example, in the synchronous motor and the synchronous generator shown in the first and second embodiments, the coil 7 is wound around the tooth 6 for convenience of explanation, but the slotless electric motor without the tooth 6 is shown. Can also be applied. Furthermore, the present invention can be applied not only to a rotary synchronous motor but also to a linear synchronous motor.

本発明の実施の形態1における同期機としての2重3相同期電動機の断面図である。It is sectional drawing of the double 3 phase synchronous motor as a synchronous machine in Embodiment 1 of this invention. 図1に示す電動機を直線状に展開して結線状態を示すようにした断面図である。FIG. 2 is a cross-sectional view in which the electric motor shown in FIG. 1 is developed linearly to show a connection state. 実施の形態1の2重3相同期電動機における各コイルの接続関係および電気位相の関係を示す説明図である。It is explanatory drawing which shows the connection relation of each coil in the double 3 phase synchronous motor of Embodiment 1, and the relationship of an electrical phase. 実施の形態1の2重3相同期電動機において、第1、第2のコイル群に含まれる各コイルの電気位相の関係をベクトルで表示した説明図である。In the double three-phase synchronous motor of Embodiment 1, it is explanatory drawing which displayed the relationship of the electric phase of each coil contained in the 1st, 2nd coil group by the vector. 実施の形態1の2重3相同期電動機において、Δ結線を行った第1、第2のコイル群に含まれる各コイル相互の電気位相の関係をベクトルで表示した説明図である。In the double three-phase synchronous motor of Embodiment 1, it is explanatory drawing which displayed the relationship of the electrical phase of each coil contained in the 1st, 2nd coil group which carried out (DELTA) connection by the vector. 本発明と対比するために従来の2重3相同期電動機を直線状に展開して結線状態を示すようにした断面図である。In order to contrast with the present invention, it is a cross-sectional view in which a conventional double three-phase synchronous motor is developed linearly to show a connection state. Δ結線とY結線の状態を対比して示す説明図である。It is explanatory drawing which compares and shows the state of (DELTA) connection and Y connection. 図6に示した従来の2重3相同期電動機における各コイルの接続関係および電気位相の関係を示す説明図である。It is explanatory drawing which shows the connection relationship of each coil and the relationship of an electrical phase in the conventional double 3 phase synchronous motor shown in FIG. 図1の2重3相の構成の同期機を発電機として用いた場合のこの実施の形態2における発電システムの要部を示す回路構成図である。It is a circuit block diagram which shows the principal part of the electric power generation system in this Embodiment 2 at the time of using the synchronous machine of the structure of the double 3 phase of FIG. 1 as a generator. 従来の3相同期発電機の発電電圧を示す波形図である。It is a wave form diagram which shows the electric power generation voltage of the conventional three-phase synchronous generator. 図10に示す電圧波形を3相整流ダイオードブリッジによって整流した後のDC電圧波形を示す波形図である。FIG. 11 is a waveform diagram showing a DC voltage waveform after the voltage waveform shown in FIG. 10 is rectified by a three-phase rectifier diode bridge. 図1の2重3相の構成の同期機を発電機として用いた場合の発電電圧を示す波形図である。It is a wave form diagram which shows the electric power generation voltage at the time of using the synchronous machine of the structure of the double 3 phase of FIG. 1 as a generator. 図12に示す電圧波形を3相整流ダイオードブリッジによって整流した後のDC電圧波形を示す波形図である。FIG. 13 is a waveform diagram showing a DC voltage waveform after the voltage waveform shown in FIG. 12 is rectified by a three-phase rectifier diode bridge.

符号の説明Explanation of symbols

1 2重3相同期電動機(同期機)、2 固定子、3 回転子、5 スロット、
6 ティース、7 コイル、9 永久磁石、11,12 3相整流ダイオードブリッジ、13 蓄電手段。
1 Double 3-phase synchronous motor (synchronous machine) 2 Stator 3 Rotor 5 Slot
6 teeth, 7 coils, 9 permanent magnets, 11, 12 three-phase rectifier diode bridge, 13 power storage means.

Claims (2)

電機子を構成する各コイルは電機子鉄心に集中巻きされた状態で一列に配列され、上記電機子の各コイルに対してN、S交互に界磁極が配置された同期機であって、
上記界磁極の極数とコイルの数が12±2極:12コイルとなる関係を1単位とした構成を少なくとも1単位分備えており、この1単位内に含まれる各コイルは、3相分のコイルからなる第1のコイル群と、3相分のコイルからなる第2のコイル群とからなり、第1のコイル群に含まれる各コイルと、第2のコイル群に含まれる各コイルとはその配列方向に沿って交互に配置されるとともに、第1のコイル群に含まれる各コイルは、Δ結線されるとともに、各相のコイルの内、同相のコイル同士が互いに直列接続され、また、第2のコイル群に含まれる各コイルは、Δ結線されるとともに、各相のコイルの内、同相のコイル同士が互いに直列接続され、さらに、第1のコイル群に含まれる各コイルは、第2のコイル群に含まれる各コイルに対して巻き付け方向が逆になるように巻装されていることを特徴とする同期機。
Each coil constituting the armature is arranged in a row in a state of being concentratedly wound around the armature core, and is a synchronous machine in which field poles are alternately arranged N and S for each coil of the armature,
The structure in which the number of field poles and the number of coils is 12 ± 2 poles: 12 coils is provided for at least one unit, and each of the coils included in one unit has three phases. Each coil included in the first coil group, each coil included in the second coil group, and each coil included in the second coil group. Are alternately arranged along the arrangement direction, and each coil included in the first coil group is Δ-connected, and among the coils of each phase, the coils of the same phase are connected in series with each other. In addition, each coil included in the second coil group is Δ-connected, and among the coils of each phase, the coils in the same phase are connected in series with each other, and each coil included in the first coil group is For each coil included in the second coil group Synchronous machine, characterized in that the direction is wound to have opposite winding.
上記請求項1記載の同期機の第1、第2のコイル群がそれぞれ3相整流ダイオードブリッジに個別に接続され、上記各3相整流ダイオードブリッジの直流出力が当該出力電力を蓄電する蓄電手段に接続されていることを特徴とする発電システム。 The first and second coil groups of the synchronous machine according to claim 1 are individually connected to a three-phase rectifier diode bridge, respectively, and the DC output of each of the three-phase rectifier diode bridges is a storage means for storing the output power. A power generation system characterized by being connected.
JP2006171416A 2006-06-21 2006-06-21 Synchronous machine and power generating system using it as generator Pending JP2008005603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006171416A JP2008005603A (en) 2006-06-21 2006-06-21 Synchronous machine and power generating system using it as generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006171416A JP2008005603A (en) 2006-06-21 2006-06-21 Synchronous machine and power generating system using it as generator

Publications (1)

Publication Number Publication Date
JP2008005603A true JP2008005603A (en) 2008-01-10

Family

ID=39009515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006171416A Pending JP2008005603A (en) 2006-06-21 2006-06-21 Synchronous machine and power generating system using it as generator

Country Status (1)

Country Link
JP (1) JP2008005603A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144946A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous motor drive system
JP2010104112A (en) * 2008-10-22 2010-05-06 Jtekt Corp Electric motor and electric power steering apparatus
FR2946814A1 (en) * 2009-05-14 2010-12-17 Denso Corp ELECTRIC ROTATING MACHINE HAVING IMPROVED STATOR COIL ARRANGEMENT TO REDUCE MAGNETIC NOISE AND TORQUE OVERRIDE.
JP2011015587A (en) * 2009-07-06 2011-01-20 Panasonic Corp Motor control system
JP2011045193A (en) * 2009-08-21 2011-03-03 Denso Corp Rotary electric machine and drive system of the same
JP2015070781A (en) * 2013-10-01 2015-04-13 富士電機株式会社 Wind power generation system
WO2015174091A1 (en) * 2014-05-16 2015-11-19 デンソートリム株式会社 Rotating electric machine for internal combustion engine and method for manufacturing same
US9755560B2 (en) 2014-05-30 2017-09-05 Mitsubishi Electric Corporation Multigroup, multiphase driving system and driving method for rotary electric machine
US10404124B2 (en) 2015-10-28 2019-09-03 Mitsubishi Electric Corporation Rotary electric machine
WO2020162290A1 (en) * 2019-02-08 2020-08-13 株式会社デンソー Armature and rotary electric machine
KR20210039373A (en) * 2018-07-13 2021-04-09 선전 굿패밀리 스포츠 디벨롭먼트 컴퍼니 리미티드 Silent self-generated generator
CN114141479A (en) * 2021-12-01 2022-03-04 中国人民解放军海军工程大学 Slotless linear phase-shifting transformer and control method thereof

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009144946A1 (en) * 2008-05-30 2009-12-03 パナソニック株式会社 Synchronous motor drive system
US8390165B2 (en) 2008-05-30 2013-03-05 Panasonic Corporation Synchronous motor drive system
JP5180297B2 (en) * 2008-05-30 2013-04-10 パナソニック株式会社 Synchronous motor drive system
JP2010104112A (en) * 2008-10-22 2010-05-06 Jtekt Corp Electric motor and electric power steering apparatus
FR2946814A1 (en) * 2009-05-14 2010-12-17 Denso Corp ELECTRIC ROTATING MACHINE HAVING IMPROVED STATOR COIL ARRANGEMENT TO REDUCE MAGNETIC NOISE AND TORQUE OVERRIDE.
US8264114B2 (en) 2009-05-14 2012-09-11 Denso Corporation Electric rotating machine having improved stator coil arrangement for reducing magnetic noise and torque ripple
JP2011015587A (en) * 2009-07-06 2011-01-20 Panasonic Corp Motor control system
JP2011045193A (en) * 2009-08-21 2011-03-03 Denso Corp Rotary electric machine and drive system of the same
US8299674B2 (en) 2009-08-21 2012-10-30 Denso Corporation Electric rotating machine drivable with a single three-phase inverter
US8487499B2 (en) 2009-08-21 2013-07-16 Denso Corporation Electric rotating machine drivable with a single three-phase inverter
JP2015070781A (en) * 2013-10-01 2015-04-13 富士電機株式会社 Wind power generation system
JP2015233401A (en) * 2014-05-16 2015-12-24 デンソートリム株式会社 Rotating electric machine for internal combustion engine and method for manufacturing the same
WO2015174091A1 (en) * 2014-05-16 2015-11-19 デンソートリム株式会社 Rotating electric machine for internal combustion engine and method for manufacturing same
US9755560B2 (en) 2014-05-30 2017-09-05 Mitsubishi Electric Corporation Multigroup, multiphase driving system and driving method for rotary electric machine
US10404124B2 (en) 2015-10-28 2019-09-03 Mitsubishi Electric Corporation Rotary electric machine
KR20210039373A (en) * 2018-07-13 2021-04-09 선전 굿패밀리 스포츠 디벨롭먼트 컴퍼니 리미티드 Silent self-generated generator
JP2021532708A (en) * 2018-07-13 2021-11-25 深▲せん▼市好家庭体育発展有限公司Shenzhen Goodfamily Sports Development Co., Ltd. Mute self-powered generator
JP7309113B2 (en) 2018-07-13 2023-07-18 深▲せん▼市好家庭健康科技有限公司 Low noise self-powered generator
KR102616342B1 (en) * 2018-07-13 2023-12-21 선전 굿패밀리 스포츠 디벨롭먼트 컴퍼니 리미티드 Noise-free self-generating generator
WO2020162290A1 (en) * 2019-02-08 2020-08-13 株式会社デンソー Armature and rotary electric machine
JP2020129925A (en) * 2019-02-08 2020-08-27 株式会社デンソー Armature and rotary electric machine
CN113383482A (en) * 2019-02-08 2021-09-10 株式会社电装 Armature and rotating electrical machine
CN113383482B (en) * 2019-02-08 2023-09-26 株式会社电装 Armature and rotating electrical machine
CN114141479A (en) * 2021-12-01 2022-03-04 中国人民解放军海军工程大学 Slotless linear phase-shifting transformer and control method thereof

Similar Documents

Publication Publication Date Title
JP2008005603A (en) Synchronous machine and power generating system using it as generator
US8299674B2 (en) Electric rotating machine drivable with a single three-phase inverter
US9231513B2 (en) Electric motor system
JP5469873B2 (en) Rotating electric machine
US8471428B2 (en) Rotating electrical machine
US10651711B2 (en) Magnetless rotary electric machine
JP5419991B2 (en) Permanent magnet synchronous motor
JP3564252B2 (en) Armature winding
JP2010136523A (en) Drive control device for rotary electric machine
JP2014050189A (en) Winding wire for generator
CN106487176B (en) Rotating electrical machine
JP2013085381A (en) Synchronous motor drive system
JP2010028957A (en) Inductor and inductor pole-number switching system
JP5619522B2 (en) 3-phase AC rotating machine
JP5734135B2 (en) Electric machine and manufacturing method thereof
JP2020043654A (en) motor
JP2011147258A (en) Motor drive system
KR20090090996A (en) Synchronous electric machine
JP2011130525A (en) Electric motor drive system
JP2005086879A (en) Stator structure of motor
EP3051670B1 (en) Winding design for a stator of an electric machine
WO2019009195A1 (en) Consequent motor
JP2000060092A (en) Multipolar generator
JP2012191758A (en) Rotary electric machine
JP2000060096A (en) Wind-power generation set