[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008004286A - Perovskite type oxide particulate, perovskite type oxide carrying particle, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell - Google Patents

Perovskite type oxide particulate, perovskite type oxide carrying particle, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell Download PDF

Info

Publication number
JP2008004286A
JP2008004286A JP2006170114A JP2006170114A JP2008004286A JP 2008004286 A JP2008004286 A JP 2008004286A JP 2006170114 A JP2006170114 A JP 2006170114A JP 2006170114 A JP2006170114 A JP 2006170114A JP 2008004286 A JP2008004286 A JP 2008004286A
Authority
JP
Japan
Prior art keywords
perovskite
oxide
particles
supported
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006170114A
Other languages
Japanese (ja)
Other versions
JP5214117B2 (en
Inventor
Hiroko Sawaki
裕子 澤木
Mikio Kishimoto
幹雄 岸本
Harumichi Nakanishi
治道 中西
Naruaki Murata
成亮 村田
Masahiro Imanishi
雅弘 今西
Shinichi Matsumoto
信一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006170114A priority Critical patent/JP5214117B2/en
Priority to US12/304,452 priority patent/US8007691B2/en
Priority to CN2007800220315A priority patent/CN101467286B/en
Priority to PCT/JP2007/061825 priority patent/WO2007145216A1/en
Priority to CA2655278A priority patent/CA2655278C/en
Priority to EP07745112A priority patent/EP2037519A4/en
Publication of JP2008004286A publication Critical patent/JP2008004286A/en
Application granted granted Critical
Publication of JP5214117B2 publication Critical patent/JP5214117B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compounds Of Iron (AREA)
  • Catalysts (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide catalyst for an electrode using none other than metal oxide particles capable of being used as a substitute of platinum-carrying carbon particles or metal platinum particles with a possibility of greatly reducing a volume of use of platinum. <P>SOLUTION: The transition metal oxide particulates having a perovskite structure expressed in a general formula of ABO<SB>3</SB>as a main phase is structured with a lattice constant satisfying a conditional expression of: 1.402<2b/(a+c)<1.422. Here, in the conditional expression, a and c denote a length of each minor axis of perovskite type crystal lattices, and b denotes a length of a major axis. Further, in the general formula, A denotes one or more elements selected from lanthanum, strontium, cerium, calcium, yttrium, erbium, praseodymium, neodymium, samarium, europium, silicon, magnesium, barium, niobium, lead, bismuth, and antimony, and B denotes one or more elements selected from iron, cobalt, manganese, copper, titanium, chromium, nickel, and molybdenum. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、特定の結晶格子定数を持つペロブスカイト型酸化物微粒子に関し、さらに詳しくは、構成元素中に遷移金属元素を含み、遷移金属のペロブスカイト型酸化物結晶構造を主相とし、特定の範囲の結晶格子定数を持つペロブスカイト型酸化物微粒子、および、これを導電性担体上に担持させたペロブスカイト型酸化物担持粒子、ならびに、これらを用いて作製した燃料電池用電極等に関するものである。   The present invention relates to a perovskite oxide fine particle having a specific crystal lattice constant. More specifically, the present invention relates to a perovskite oxide crystal structure including a transition metal element in a constituent element and having a transition metal perovskite oxide crystal structure as a main phase. The present invention relates to perovskite-type oxide fine particles having a crystal lattice constant, perovskite-type oxide-supported particles in which the perovskite-type oxide particles are supported on a conductive carrier, and an electrode for a fuel cell produced using these.

従来、金属粒子、合金粒子、金属酸化物粒子等を担体粒子に担持させたものは、消臭、抗菌、自動車排ガスの浄化、燃料電池、NOx還元など、各種触媒として多用されている。この場合の担体粒子としては主に、酸化チタン、酸化ジルコニウム、酸化鉄、酸化ニッケル、酸化コバルトなどの金属酸化物やカーボン等が用いられている。特に導電性を持つカーボン粒子を担体として用いた触媒は燃料電池の電極用触媒として有効なものである。   Conventionally, metal particles, alloy particles, metal oxide particles and the like supported on carrier particles have been widely used as various catalysts such as deodorizing, antibacterial, automobile exhaust gas purification, fuel cell, NOx reduction. As the carrier particles in this case, metal oxides such as titanium oxide, zirconium oxide, iron oxide, nickel oxide, and cobalt oxide, carbon, and the like are mainly used. In particular, a catalyst using conductive carbon particles as a carrier is effective as a catalyst for an electrode of a fuel cell.

中でも、白金とルテニウムの合金粒子をカーボン担体上に担持させたものや、酸化モリブデン、酸化セリウム等の特定の金属酸化物粒子を助触媒として、金属白金微粒子と共にカーボン担体上に担持させたものは、優れた電極用触媒として知られている。例えば特許文献1には、酸化セリウムや酸化ジルコニウムなどの耐食性酸化物粒子に白金粒子を担持させたものを、カーボン担体上に担持させることにより、白金粒子同士の凝集を抑えることができると記載されている。また特許文献2、3では、ペロブスカイト型チタン酸化物粒子表面に白金などの貴金属粒子を担持させ、この貴金属担持酸化物のペーストをカーボン膜上に塗布して、電極触媒として使用する例が挙げられており、ペロブスカイト型チタン酸化物が助触媒として働くことにより、その触媒能が向上することが記載されている。   Among them, the one in which platinum and ruthenium alloy particles are supported on a carbon carrier, and the one in which specific metal oxide particles such as molybdenum oxide and cerium oxide are supported on a carbon carrier together with metal platinum fine particles as a promoter. It is known as an excellent electrode catalyst. For example, Patent Document 1 describes that aggregation of platinum particles can be suppressed by supporting platinum particles supported on corrosion-resistant oxide particles such as cerium oxide and zirconium oxide on a carbon support. ing. Patent Documents 2 and 3 include examples in which noble metal particles such as platinum are supported on the surface of perovskite-type titanium oxide particles, and this noble metal-supported oxide paste is applied onto a carbon film and used as an electrode catalyst. It is described that the catalytic performance of perovskite-type titanium oxide is improved by acting as a promoter.

一方、遷移金属酸化物の一種であるペロブスカイト型酸化物のうち特定の構造を持つものは、NOxを分解する作用を有することが知られており、特許文献4では、これを担体に担持させたNOx接触触媒が提案されている。特許文献5には、ペロブスカイト型Fe酸化物を担体にしてPt,Pd,Rhなどの貴金属を担持させたものでは、500℃を上回る高温においても優れた触媒作用を持つことが記載されている。さらに特許文献6には、ペロブスカイト型Fe酸化物(一般式AFeO3 で表される)に対して、そのFeサイトをPt,Pd,Rhなどの貴金属で一部置換することにより、高温のみならず低温においても優れた触媒作用を持ち、さらに耐硫黄被毒性も向上することが記載されている。 On the other hand, it is known that a perovskite oxide, which is a kind of transition metal oxide, having a specific structure has an action of decomposing NOx. In Patent Document 4, this is supported on a carrier. NOx contact catalysts have been proposed. Patent Document 5 describes that a perovskite-type Fe oxide as a carrier and a noble metal such as Pt, Pd, Rh supported thereon have excellent catalytic action even at a high temperature exceeding 500 ° C. Further, Patent Document 6 discloses that a perovskite type Fe oxide (represented by the general formula AFeO 3 ) is partially replaced with a noble metal such as Pt, Pd, Rh, etc. It describes that it has an excellent catalytic action even at low temperatures, and further improves sulfur poisoning resistance.

鉄、コバルト、ニッケルなどの遷移金属元素を含む一部のペロブスカイト型複合金属酸化物は、固体酸化物型燃料電池(SOFC)の空気極用触媒としても実用化されている。固体酸化物型燃料電池は、その使用環境が約800℃程度以上の高温であるが、この様な高温条件下では、含有されている遷移金属元素そのものが酸素分解能を持つ触媒として機能することが知られている。   Some perovskite-type composite metal oxides containing transition metal elements such as iron, cobalt, and nickel have been put to practical use as air electrode catalysts for solid oxide fuel cells (SOFC). A solid oxide fuel cell is used at a high temperature of about 800 ° C. or higher. Under such a high temperature condition, the contained transition metal element itself may function as a catalyst having oxygen decomposability. Are known.

さらに特許文献7には、アルミナ、シリカ、酸化マンガン、酸化鉄、酸化コバルト等の金属酸化物粒子と白金粒子とを、共にカーボン粒子上に担持させることにより、担体上の白金粒子のシンタリングを抑制し、高価な白金粒子の低減化を図ることができると記載されている。   Further, in Patent Document 7, platinum particles on a carrier are sintered by supporting both metal oxide particles such as alumina, silica, manganese oxide, iron oxide, cobalt oxide and platinum particles on carbon particles. It is described that it is possible to suppress and to reduce expensive platinum particles.

各種金属酸化物を担体表面に担持させる一般的な方法としては、主に次のような方法が挙げられる。
(1)金属コロイド粒子を担体に吸着させる方法。
(2)金属塩水溶液中に担体粒子を分散させ、アルカリ剤により金属水酸化物を担体表面に沈着させる方法。
(3)あらかじめ微粒子を分散させた微粒子分散液から、微粒子を担体表面に固着させる方法。
As a general method for supporting various metal oxides on the support surface, the following methods are mainly exemplified.
(1) A method of adsorbing metal colloidal particles on a carrier.
(2) A method in which carrier particles are dispersed in an aqueous metal salt solution, and a metal hydroxide is deposited on the carrier surface with an alkali agent.
(3) A method in which fine particles are fixed to the surface of a carrier from a fine particle dispersion in which fine particles are previously dispersed.

このような液相法を用いた公知例としては特許文献8や特許文献9がある。このうち、特許文献8では、あらかじめ白金を担持させたカーボン粒子を、他の所定の金属塩の混合溶液中に分散させ、アルカリ剤によりカーボン粒子に前記金属の水酸化物を沈着させ、還元雰囲気下で1000℃以上に加熱することにより、カーボン粒子に合金微粒子(白金・モリブデン・ニッケル・鉄の4元素の合金微粒子)を担持させることが行われている。そこでは、担持された合金微粒子は約3nm以上とされている。   Known examples using such a liquid phase method include Patent Document 8 and Patent Document 9. Among these, in Patent Document 8, carbon particles preliminarily supporting platinum are dispersed in a mixed solution of other predetermined metal salt, the metal hydroxide is deposited on the carbon particles with an alkali agent, and a reducing atmosphere is obtained. Under heating at 1000 ° C. or higher, alloy particles (four-element alloy particles of platinum, molybdenum, nickel, and iron) are supported on carbon particles. In this case, the supported fine alloy particles are about 3 nm or more.

特許文献9では、五酸化バナジウムをカーボンに担持させた粒子を得るにあたり、有機バナジウム溶液に有機溶媒を加えることにより、溶媒和させて有機錯体を作製し、これをカーボンに吸着、担持させる方法がとられている。この場合にはカーボンに担持された五酸化バナジウムは非晶質となっている。   In Patent Document 9, in order to obtain particles in which vanadium pentoxide is supported on carbon, an organic solvent is added to the organic vanadium solution to solvate it to produce an organic complex, which is adsorbed and supported on carbon. It has been taken. In this case, the vanadium pentoxide supported on carbon is amorphous.

ペロブスカイト型酸化物を担体表面に担持させる方法としては、金属塩を含む水溶液を担体上に塗布し、乾燥させた後、高温で熱処理を施し、担体表面に析出させる方法もある。例えば、特許文献10には、ペロブスカイト型鉄酸化物微粒子を担体上に担持させるに際し、あらかじめPdを結晶格子中に含むペロブスカイト型鉄酸化物粒子を合成し、これを用いて作製したスラリーを担体上にコーティングした後、熱処理を施すといった方法が記載されている。この場合には、あらかじめ合成されたペロブスカイト型鉄酸化物粒子はサブミクロンサイズであり、担体はスラリーを塗布できる程度の面積を持つ担体となっている。   As a method for supporting the perovskite oxide on the support surface, there is a method in which an aqueous solution containing a metal salt is applied on the support, dried, and then subjected to heat treatment at a high temperature to be deposited on the support surface. For example, Patent Document 10 discloses that when perovskite-type iron oxide fine particles are supported on a carrier, perovskite-type iron oxide particles containing Pd in the crystal lattice are synthesized in advance, and a slurry prepared using this is prepared on the carrier. A method of applying a heat treatment after coating is described. In this case, the perovskite-type iron oxide particles synthesized in advance have a submicron size, and the carrier is a carrier having an area enough to apply the slurry.

そのほか、特許文献11には、マイクロ波を用いたプラズマ処理により炭素系材料に金属酸化物粒子を担持させる方法が記載されている。その具体例としては、酸化チタン、酸化ニッケル、酸化コバルトを炭素上に担持させた例が挙げられており、本文中にはペロブスカイト型複合金属酸化物にも適用できると記載されている。この方法によれば、酸化温度が高く、担体である炭素が燃焼してしまうために炭素上に担持させることが困難であった金属酸化物を、炭素系担体上に担持させることができるが、プラズマ処理するために特殊な装置が必要となる。   In addition, Patent Document 11 describes a method of supporting metal oxide particles on a carbon-based material by plasma treatment using microwaves. Specific examples thereof include an example in which titanium oxide, nickel oxide, and cobalt oxide are supported on carbon, and it is described in the text that it can be applied to perovskite-type composite metal oxides. According to this method, the metal oxide, which has been difficult to be supported on carbon because the oxidation temperature is high and carbon as the support burns, can be supported on the carbon-based support. Special equipment is required for plasma treatment.

特開2004−363056号公報JP 2004-363056 A 特開2005−50759号公報JP 2005-50759 A 特開2005−50760号公報Japanese Patent Laying-Open No. 2005-50760 特開平5−261289号公報Japanese Patent Laid-Open No. 5-261289 特開2001−269578号公報JP 2001-269578 A 特開2004−321986号公報JP 2004-321986 A 特開2005−270873号公報JP 2005-270873 A 特開平5−217586号公報JP-A-5-217586 特開2000−36303号公報JP 2000-36303 A 特開2004−41866号公報JP 2004-41866 A 特開平11−28357号公報JP-A-11-28357

上述のように遷移金属酸化物それ自体は、各種触媒として、あるいは耐食性を向上させる助触媒として公知の物質であり、特にペロブスカイト型酸化物は固体酸化物型燃料電池用触媒として利用されており、さらにその構成元素の一部を貴金属で、特にパラジウムで置換したペロブスカイト型酸化物は、排ガス浄化用触媒として利用されている既知の材料であるとも言える。   As described above, the transition metal oxide itself is a known substance as various catalysts or as a co-catalyst for improving corrosion resistance, and in particular, the perovskite oxide is used as a catalyst for a solid oxide fuel cell. Furthermore, it can be said that the perovskite oxide in which a part of the constituent elements is replaced with a noble metal, in particular palladium, is a known material used as an exhaust gas purification catalyst.

しかしながら、固体高分子型燃料電池(PEFC)においては、MxOy、MOOH、Mx(OH)y等(Mは遷移金属元素)で表される一般的な金属酸化物について、貴金属元素と共に担持されて助触媒として利用される例はあっても、これら遷移金属酸化物そのものを電極用触媒として使用した例は見られない。   However, in a polymer electrolyte fuel cell (PEFC), a general metal oxide represented by MxOy, MOOH, Mx (OH) y, etc. (M is a transition metal element) is supported together with a noble metal element. Although there is an example used as a catalyst, there is no example in which these transition metal oxides themselves are used as an electrode catalyst.

また、特にペロブスカイト型酸化物については、カーボンブラックをはじめとするカーボン粒子などのように導電性を有し、しかも安価かつ容易に入手できる粒子状の物質を担体とし、これにペロブスカイト型酸化物粒子を担持させて利用するものは見当たらない。これまで得られているものは、適用目的が固体酸化物型燃料電池(SOFC)あるいは排ガス浄化用触媒であるために、ペロブスカイト型酸化物粒子そのものを担体として用いるか、あるいは、これを担持させる場合でも、その担体としてアルミナやセリウム系などの耐熱性酸化物を使用したものである。これは、自動車エンジン等の排ガス浄化用触媒として用いる場合には、担体がカーボンブラックなどのように導電性を持つ必要がないこと、および、固体酸化物型燃料電池用触媒、排ガス浄化用触媒ともに、使用環境が1000℃近い高温であるためにカーボンブラックは燃焼してしまい担体として使用できないこと等によるものと思われる。   In particular, for perovskite oxides, a particulate material having conductivity, such as carbon black and other carbon particles, which is easily available at low cost, is used as a carrier, and perovskite oxide particles There are no products that support and use. What has been obtained so far is a case where the perovskite oxide particles themselves are used as a support or are supported because the application object is a solid oxide fuel cell (SOFC) or an exhaust gas purification catalyst. However, a heat-resistant oxide such as alumina or cerium is used as the carrier. This is because, when used as an exhaust gas purification catalyst for an automobile engine or the like, the carrier does not need to have conductivity like carbon black, and both the solid oxide fuel cell catalyst and the exhaust gas purification catalyst This is probably because carbon black burns and cannot be used as a carrier because the use environment is a high temperature close to 1000 ° C.

さらに、これまでは、金属酸化物粒子そのものを固体高分子型燃料電池(PEFC)の電極用触媒として利用するという考えそのものが存在しなかった。理由は、固体高分子型燃料電池の場合には電解質として高分子材料を用いるため、高々300℃以下という低温で作動させる必要があり、例えば固体酸化物型燃料電池で有効であるペロブスカイト型酸化物であっても触媒能が発揮されないことにより、この様な低温では、貴金属粒子以外では触媒効果がないと考えられていたためである。このような理由で、現状では主に白金粒子が固体高分子型燃料電池の電極触媒として用いられており、特にカソード用触媒における白金使用量の削減は大きな課題となっている。   Furthermore, until now, there has been no idea of using metal oxide particles themselves as a catalyst for an electrode of a polymer electrolyte fuel cell (PEFC). The reason is that in the case of a polymer electrolyte fuel cell, a polymer material is used as an electrolyte, so it is necessary to operate at a low temperature of 300 ° C. or less. For example, a perovskite oxide that is effective in a solid oxide fuel cell However, since the catalytic ability is not exhibited, it is considered that there is no catalytic effect other than the noble metal particles at such a low temperature. For these reasons, at present, platinum particles are mainly used as an electrode catalyst for a polymer electrolyte fuel cell, and in particular, reduction of the amount of platinum used in a cathode catalyst is a major issue.

本発明は、上記のような事情に照らして、白金の使用量を減らすべく、金属酸化物粒子そのものを用いた固体高分子型燃料電池の電極用触媒を提供することを主たる目的とする。   In light of the above circumstances, the main object of the present invention is to provide a catalyst for an electrode of a polymer electrolyte fuel cell using metal oxide particles per se in order to reduce the amount of platinum used.

本発明者らは、固体高分子型燃料電池の電極用触媒としての使用環境下において、通常であれば高々300℃以下という低温では酸素分子を還元させるような活性を持たない遷移金属酸化物について、ある特定の条件下では、室温においても、含有される遷移金属元素の酸化・還元活性に伴い、酸素分子を還元・解離させることができることを初めて見出した。これらの現象について理由は明らかではないが、遷移金属元素の酸化・還元活性は、ペロブスカイト格子中の酸素原子の移動に伴って起こるものであり、この酸素原子の移動が、表面に吸着した酸素分子の還元・解離に効果を及ぼすとも考えられる。   The present inventors have described transition metal oxides that do not have the activity of reducing oxygen molecules at a low temperature of not more than 300 ° C., usually under a use environment as an electrode catalyst for a polymer electrolyte fuel cell. It has been found for the first time that oxygen molecules can be reduced / dissociated under certain conditions, even at room temperature, in accordance with the oxidation / reduction activity of the contained transition metal element. Although the reason for these phenomena is not clear, the oxidation / reduction activity of transition metal elements occurs with the movement of oxygen atoms in the perovskite lattice, and this movement of oxygen atoms is caused by oxygen molecules adsorbed on the surface. It is also considered to have an effect on the reduction and dissociation of.

さらに、酸素分子の還元・解離を起こすことが可能となる条件として、ペロブスカイト型酸化物の格子定数が重要な役割を果たすことを、本発明において初めて見出した。このような現象および相関関係は、これまで全く知られていなかったことであり、画期的な発見である。   Furthermore, the present inventors have found for the first time that the lattice constant of a perovskite oxide plays an important role as a condition that enables reduction and dissociation of oxygen molecules. Such phenomena and correlations have never been known before and are groundbreaking discoveries.

ここで、酸素分子の還元・解離に有効な格子定数の範囲は非常に狭く、限られた範囲であり、本発明者らは、このような格子定数を持つペロブスカイト型酸化物を作製するために鋭意検討した。酸化物の格子定数は、構成元素のイオン半径および、その存在比率、格子欠陥の量、さらに、ナノメートル(nm)サイズの微粒子である場合には粒子径なども複雑に影響を及ぼし合い、変化していくものであり、詳細な微調整が必要となる。   Here, the range of lattice constants effective for reduction / dissociation of oxygen molecules is very narrow and limited, and the present inventors have developed a perovskite oxide having such a lattice constant. We studied diligently. The lattice constants of oxides change in a complex manner, including the ionic radius of constituent elements and their abundance, the amount of lattice defects, and, in the case of nanometer (nm) sized particles, the particle diameter. It is necessary to make fine adjustments.

本発明においては、詳細な検討を重ねた結果、鉄を主元素とするペロブスカイト型酸化物については、イオン半径の関係上、Aサイト元素として主にランタンを用い、白金元素を鉄サイトに添加することが有効であり、特定の範囲内にある格子定数を持つペロブスカイト型酸化物となることを見出した。   In the present invention, as a result of repeated detailed studies, as for the perovskite type oxide containing iron as the main element, lanthanum is mainly used as the A site element and platinum element is added to the iron site due to the ionic radius. It was found that a perovskite oxide having a lattice constant within a specific range was obtained.

すなわち本発明は、遷移金属元素を含み、特定の範囲内の結晶格子定数を持つペロブスカイト型酸化物微粒子に関するもので、酸素分子の還元・解離に最適な結晶格子定数を持たせることにより、室温において遷移金属酸化物粒子そのものが酸素還元活性を発現するように構成したものである。このようなペロブスカイト型酸化物微粒子の実現は、白金使用量の低減に対する解決策の大きな糸口となる。   That is, the present invention relates to a perovskite-type oxide fine particle containing a transition metal element and having a crystal lattice constant within a specific range, and has an optimum crystal lattice constant for reduction / dissociation of oxygen molecules at room temperature. The transition metal oxide particles themselves are configured to exhibit oxygen reduction activity. The realization of such perovskite oxide fine particles is a great clue to a solution for reducing the amount of platinum used.

本発明によれば、遷移金属元素を含むペロブスカイト型酸化物であり、その結晶格子定数を特定の範囲内とすることにより、結晶格子中の酸素元素の移動により酸素還元活性が発現することを特徴とする、ペロブスカイト型酸化物微粒子を得ることができ、得られた微粒子は燃料電池用カソード電極として有用なものである。またこれらのペロブスカイト型酸化物微粒子をカーボンなどの導電性担体上に担持させることにより、燃料電池用電極触媒としてより優れた効果を発揮する。   According to the present invention, the oxide is a perovskite oxide containing a transition metal element, and the oxygen reduction activity is expressed by the movement of the oxygen element in the crystal lattice by setting the crystal lattice constant within a specific range. The perovskite oxide fine particles can be obtained, and the obtained fine particles are useful as a cathode electrode for a fuel cell. Further, by supporting these perovskite oxide fine particles on a conductive carrier such as carbon, a more excellent effect as an electrode catalyst for a fuel cell is exhibited.

本発明のペロブスカイト型酸化物粒子を作製するにあたっては、いずれの作製方法を用いてもよく、公知の作製方法が適用できる。本発明においては、あらかじめ金属の錯イオンを含む溶液を調整し、次に導電性担体上に担持させる場合には、前記溶液中に担体粒子を分散させることにより、金属の錯イオンを担体粒子表面に吸着させ、これを乾燥させることにより、担体表面に酸化物微粒子前駆体を析出させ、加熱処理することによって、ペロブスカイト型酸化物担持粒子を作製する。   In producing the perovskite type oxide particles of the present invention, any production method may be used, and a known production method can be applied. In the present invention, when a solution containing metal complex ions is prepared in advance and then supported on a conductive support, the metal complex ions are dispersed on the surface of the support particles by dispersing the support particles in the solution. The oxide fine particle precursor is precipitated on the surface of the carrier by drying it and then heat-treated to produce perovskite type oxide-supported particles.

本発明では、ペロブスカイト型酸化物結晶について、格子定数が以下の式(1)を満たし、かつ、ペロブスカイト型結晶格子中で安定に存在しうる遷移金属元素を、ペロブスカイト型酸化物(一般式:ABO3 )のBサイト中に含有させたものについて、結晶格子中の遷移金属元素が酸化・還元活性であり、室温において酸素還元活性を持つことを初めて見出したものであり、これをカーボンなどの導電性担体上に担持させたて得られたペロブスカイト型酸化物担持粒子は、燃料電池用カソード電極触媒用途の使用に特に適した機能性材料となる。
1.402<2b/(a+c)<1.422 (1)
ここで、aおよびcはペロブスカイト型結晶格子の各短軸の長さを表し、bは長軸の長さを表す。
In the present invention, for a perovskite type oxide crystal, a transition metal element that has a lattice constant satisfying the following formula (1) and can exist stably in the perovskite type crystal lattice is converted into a perovskite type oxide (general formula: ABO). 3 ) It was found for the first time that the transition metal element in the crystal lattice has an oxidation / reduction activity and an oxygen reduction activity at room temperature. Perovskite-type oxide-supported particles obtained by being supported on a functional carrier are functional materials particularly suitable for use in cathode electrode catalyst applications for fuel cells.
1.402 <2b / (a + c) <1.422 (1)
Here, a and c represent the length of each short axis of the perovskite crystal lattice, and b represents the length of the long axis.

本発明においては、燃料電池用電極触媒として遷移金属元素の酸化・還元活性により起こる、結晶格子中の酸素原子の出入りを利用するため、白金などの貴金属元素の使用量を減少させる、あるいは、使用せずに触媒の機能を発現させるための糸口となることが期待できる。   In the present invention, the amount of use of a noble metal element such as platinum is reduced or used in order to utilize the entry / exit of oxygen atoms in the crystal lattice caused by the oxidation / reduction activity of a transition metal element as an electrode catalyst for a fuel cell. It can be expected that this will become a clue for developing the function of the catalyst without the use of the catalyst.

以下、本発明のペロブスカイト型酸化物微粒子について詳細に説明する。ペロブスカイト型構造ABO3 のBサイトに主たる元素として含有される遷移金属元素としては、銅(Cu),マンガン(Mn),鉄(Fe),チタン(Ti),モリブデン(Mo),コバルト(Co)等の遷移金属元素から1種以上の元素を選択するが、結晶格子中で容易に磁性を持ち得る元素として、鉄、銅、マンガンのうちの少なくとも一種が含有されていることが好ましい。後述する実施例においては、Bサイトの主元素として鉄を使用しているが、一般に、ペロブスカイト型酸化物は添加元素などを加えることにより磁性を持つものが多く、その選択肢の幅は鉄に限らず広いと考えられる。いずれの場合にも、結晶格子中で強磁性体となる可能性を持つ元素を、主元素とすることがより好ましい。これは、強磁性体となるペロブスカイト型酸化物が往々にして優れた導電性を示し、結晶格子内におけるイオンの移動度が高い場合が多いためである。イオンの移動度が高いことは、すなわち結晶格子中の酸素原子の移動が容易に起こることを示しており、結晶表面における酸素の出入りがより容易となる。 Hereinafter, the perovskite oxide fine particles of the present invention will be described in detail. Transition metal elements contained as main elements at the B site of the perovskite structure ABO 3 include copper (Cu), manganese (Mn), iron (Fe), titanium (Ti), molybdenum (Mo), and cobalt (Co). One or more elements are selected from the transition metal elements such as, but it is preferable that at least one of iron, copper, and manganese is contained as an element that can easily have magnetism in the crystal lattice. In the examples to be described later, iron is used as the main element of the B site. In general, many perovskite oxides have magnetism by adding an additive element, and the range of options is limited to iron. It is considered wide. In any case, it is more preferable that an element having a possibility of becoming a ferromagnetic substance in the crystal lattice is a main element. This is because perovskite oxides, which are ferromagnetic materials, often exhibit excellent electrical conductivity and often have high ion mobility within the crystal lattice. A high ion mobility indicates that oxygen atoms in the crystal lattice easily move, and oxygen enters and exits the crystal surface more easily.

ペロブスカイト型構造ABO3 のうち、Aサイトの金属元素としては、安定に存在し得るものであれば特に限定されるものではない。例えば、前記遷移金属元素の中からBサイトと異なる種類の遷移金属元素を1種以上選択しても良いし、その他の金属元素として、ランタン(La),ストロンチウム(Sr),セリウム(Ce),カルシウム(Ca),イットリウム(Y),エルビウム(Er),プラセオジム(Pr),ネオジム(Nd),サマリウム(Sm),ユウロピウム(Eu),ケイ素(Si),マグネシウム(Mg),バリウム(Ba)、クロム(Cr),ニッケル(Ni),ニオブ(Nb),鉛(Pb),ビスマス(Bi),アンチモン(Sb)等の元素から1種以上の元素を選択しても良い。本発明においては、鉄元素を主元素としたことに対応して、主にランタン元素を使用しているが、これらの元素はB元素に選ばれた元素の種類に応じて、適宜選択する。 In the perovskite structure ABO 3 , the metal element at the A site is not particularly limited as long as it can exist stably. For example, one or more transition metal elements different from the B site may be selected from the transition metal elements, and other metal elements include lanthanum (La), strontium (Sr), cerium (Ce), Calcium (Ca), yttrium (Y), erbium (Er), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), silicon (Si), magnesium (Mg), barium (Ba), One or more elements may be selected from elements such as chromium (Cr), nickel (Ni), niobium (Nb), lead (Pb), bismuth (Bi), and antimony (Sb). In the present invention, lanthanum elements are mainly used in response to the iron element as the main element, but these elements are appropriately selected according to the type of element selected as the B element.

次に、格子定数を最適な範囲に操作するために、添加元素を選択する。本発明では、イオン半径の面から、ランタン−鉄系のペロブスカイト型酸化物に対しては白金元素が最適であったために白金元素を使用しているが、格子定数を変化させると共に、強磁性体組成とすることができるものであれば、当然、白金元素に限定されるものではない。結晶格子中に安定的に存在しうるものであれば、その種類は問わない。   Next, an additive element is selected in order to manipulate the lattice constant within an optimum range. In the present invention, the platinum element is used for the lanthanum-iron-based perovskite type oxide in terms of the ionic radius, and thus the platinum element is used. Of course, the element is not limited to platinum element as long as it can have a composition. Any type can be used as long as it can exist stably in the crystal lattice.

本発明のペロブスカイト型酸化物微粒子は、それ自体導電性を持つため、そのものを用いても電極用の触媒として利用できるが、より特性を向上させるためには、カーボンなどの導電性担体上に担持させることもできる。例えばカーボン粒子であれば、電気化学工業社製のデンカブラック(登録商標)、CABOT社製のバルカン(登録商標)等の、アセチレンブラックあるいはケッチェンブラック、ファーネスカーボン等を用いて、これらのカーボン粒子担体上にペロブスカイト型酸化物粒子を担持させる。担持させる方法は、いずれの方法でも良く、一般的な微粒子担持法を用いればよい。   Since the perovskite oxide fine particles of the present invention have conductivity per se, they can be used as a catalyst for electrodes even if they are used, but in order to improve their characteristics, they are supported on a conductive carrier such as carbon. It can also be made. For example, in the case of carbon particles, acetylene black or ketjen black, furnace carbon, etc., such as Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd. and Vulcan (registered trademark) manufactured by CABOT, are used. Perovskite oxide particles are supported on a carrier. Any method may be used for supporting, and a general particle supporting method may be used.

この際、最終生成物であるペロブスカイト型酸化物担持粒子の平均粒子径は20〜70nmであることが好ましい。平均粒子径が20nm以下でも最終生成物であるペロブスカイト型酸化物担持粒子の触媒能においては問題ないが、合成過程において粒子径が小さいために凝集が激しく、均一分散することが困難となるため、好ましくない。平均粒子径が70nm以上でも、最終生成物の触媒能が完全になくなることはないが、比表面積が小さくなるため触媒能が低下し、好ましくない。   At this time, the average particle diameter of the perovskite oxide-supported particles as the final product is preferably 20 to 70 nm. Even if the average particle size is 20 nm or less, there is no problem in the catalytic performance of the perovskite type oxide-supported particles as the final product, but since the particle size is small in the synthesis process, the aggregation is intense and it becomes difficult to uniformly disperse. It is not preferable. Even if the average particle diameter is 70 nm or more, the catalytic ability of the final product is not completely lost, but the specific surface area is small, so that the catalytic ability is lowered, which is not preferable.

なお、カーボン粒子の平均粒子径は、透過型電子顕微鏡(TEM)写真で観測される粒子100個の平均から求める。この際、溶液中に含まれる金属元素量を、最終生成物であるペロブスカイト型酸化物担持粒子中の当該ペロブスカイト型酸化物量が、5〜50重量%となるようにする。ペロブスカイト型酸化物担持粒子中の当該ペロブスカイト型酸化物担持量が、5重量%より少なくても問題はないが、例えば触媒として利用する場合には、全体としての有効触媒量が少なくなるためにその機能が発現しにくくなる恐れがあり、また、50重量%以上でも問題はないが、含有量が多くなれば、担体粒子表面に単層で被着せずに、微粒子同士が重なり合ったり凝集してしまったりする恐れがあり、好ましくない。   The average particle diameter of the carbon particles is determined from the average of 100 particles observed with a transmission electron microscope (TEM) photograph. At this time, the amount of the metal element contained in the solution is set such that the amount of the perovskite oxide in the perovskite oxide-supporting particles as the final product is 5 to 50% by weight. There is no problem even if the amount of the perovskite oxide supported particles in the perovskite oxide supported particles is less than 5% by weight, but for example, when used as a catalyst, the effective catalyst amount as a whole decreases, The function may be difficult to develop, and there is no problem even if it is 50% by weight or more. However, if the content is increased, the fine particles may overlap or aggregate without being deposited as a single layer on the surface of the carrier particles. There is a risk that it may fall back.

また、燃料電池用の電極として利用する際には、これらのペロブスカイト型酸化物微粒子を単体で用いることも可能であり、ペロブスカイト型酸化物粒子と貴金属粒子とを組み合わせて利用することも可能である。   Further, when used as an electrode for a fuel cell, these perovskite oxide fine particles can be used alone, or a combination of perovskite oxide particles and noble metal particles can be used. .

以上、基本的な粒子の構成を示したが、ペロブスカイト型酸化物の組成などは、個々に最適なものを選択していく必要がある。すなわち、ペロブスカイト型酸化物を構成する元素の組み合わせとしては、安定的に存在しうるものであれば問わないが、その組成に関しては、最適な格子定数を取り得る範囲である必要がある。しかしながら、格子定数は組成のみでは決まらず、粒子サイズ、合成条件などにより様々に変化する。従って、含有される元素の組み合わせ、組成、粒子サイズ、合成条件などについては、個々において最適である条件が全て異なり、それぞれについて調整する必要がある。   Although the basic particle configuration has been described above, it is necessary to select an optimal composition for the perovskite oxide. That is, the combination of elements constituting the perovskite oxide is not limited as long as it can exist stably, but the composition needs to be within a range where an optimum lattice constant can be obtained. However, the lattice constant is not determined only by the composition, and varies depending on the particle size, synthesis conditions, and the like. Therefore, regarding the combination of elements to be contained, composition, particle size, synthesis conditions, etc., all optimum conditions are different for each, and it is necessary to adjust each of them.

以上の事柄を全て最適に調整することにより、遷移金属元素を含み、かつ、下記条件式(1)の範囲内の結晶格子定数を持ち、結晶子サイズが1nmから20nmの範囲にあるペロブスカイト型酸化物粒子、および、これを導電性担体上に担持した、平均粒子径が20〜70nmのペロブスカイト型酸化物担持粒子が得られる。
1.402<2b/(a+c)<1.422 (1)
ここで、格子定数a,b,cはそれぞれ、a,cが各短軸の長さ、bが長軸の長さを表す。
By optimally adjusting all of the above matters, a perovskite type oxidation containing a transition metal element, having a crystal lattice constant within the range of the following conditional expression (1), and a crystallite size in the range of 1 nm to 20 nm. Product particles and perovskite-type oxide-supported particles having an average particle diameter of 20 to 70 nm, which are supported on a conductive carrier.
1.402 <2b / (a + c) <1.422 (1)
Here, in the lattice constants a, b, and c, a and c are the lengths of the respective short axes, and b is the length of the long axis.

上記格子定数の値が条件式(1)を満たす場合に、燃料電池用電極として有効なものとなるが、境界線外の数値をとる場合には徐々に性能は下降していくために好ましくない。また、格子定数のうちa,c軸に関しては、結晶構造が完全に対称である場合にはa=cとなるべきものであり、添加元素を一切加えない、例えばLaFeO3 のような結晶の場合には、かなり対称性が高く、a,cの値が一致はしないが近いものとなる。本発明においては、上式で示される格子定数の範囲内であり、かつ、a,c軸長の差が大きい(歪みが大きく対称性が低い)ほど、より良い特性を示す。 When the value of the lattice constant satisfies the conditional expression (1), it is effective as a fuel cell electrode. However, when taking a numerical value outside the boundary line, the performance gradually decreases, which is not preferable. . In addition, regarding the a and c axes of the lattice constant, a = c should be obtained when the crystal structure is completely symmetric, and in the case of a crystal such as LaFeO 3 without any added element. Is quite symmetric, and the values of a and c are not coincident but close to each other. In the present invention, better characteristics are exhibited as the lattice constant is within the range represented by the above equation and the difference between the a and c axis lengths is large (the distortion is large and the symmetry is low).

これは、はっきりとした理由は明らかではないが、格子定数のみならず歪みも関与している傾向が見られることから、ペロブスカイト型酸化物結晶格子中に含まれるA、Bサイトに含まれる原子間の距離ではなく、酸素原子間の距離が大きく影響を及ぼしていると推測される。酸素原子間の距離が変化することにより、酸素の還元・解離に適した距離ではなくなるためではないかと考えられる。一般的に、ペロブスカイト型酸化物が導電性を持つ場合には、結晶格子中の酸素イオン移動度は高いと考えられるため、組成として導電性を持つ場合に、表面吸着酸素分子の還元・解離が起こりやすくなる。しかしながら本発明では、特定の格子定数の範囲内のみでより優れた酸素分子の還元・解離が起こることから、組成として導電性を持つか否かだけではなく、表面に現れるペロブスカイト型酸化物結晶中の酸素原子間距離が、重要な影響を及ぼしていると考えることができる。   The reason for this is not clear, but since there is a tendency to involve not only the lattice constant but also the strain, the interatomic atoms contained in the A and B sites contained in the perovskite oxide crystal lattice It is presumed that the distance between oxygen atoms has a large influence, not the distance of. This is probably because the distance between oxygen atoms changes and the distance is not suitable for oxygen reduction / dissociation. In general, when the perovskite oxide has conductivity, the oxygen ion mobility in the crystal lattice is considered to be high. Therefore, when the composition has conductivity, the reduction and dissociation of surface adsorbed oxygen molecules is not possible. It tends to happen. However, in the present invention, since oxygen molecules are more excellently reduced and dissociated only within a specific lattice constant range, not only the composition has conductivity but also the perovskite type oxide crystals appearing on the surface. It can be considered that the distance between the oxygen atoms of has an important influence.

それぞれの粒子の平均粒子径は、TEM写真で観測される100個の粒子の平均から求める。この際、ペロブスカイト型酸化物微粒子の結晶子サイズは1nm以下でも、触媒としての特性上はかまわないと考えられるが、ペロブスカイト型酸化物の格子間隔は通常0.5nm(5Å)前後であることが多く、結晶構造上、格子点の数が少なすぎるために安定な結合が起こらず、酸化物の構造を保持することが難しくなると同時に、このような理由により作製すること自体が非常に困難である。また、結晶子サイズ20nm以上である場合でも、表面に結晶格子中の酸素原子が現れている限り触媒としての特性が完全に失われることはないが、十分な比表面積が得られないために触媒としての性能が劣化する傾向にある。   The average particle diameter of each particle is determined from the average of 100 particles observed in the TEM photograph. At this time, even if the crystallite size of the perovskite-type oxide fine particles is 1 nm or less, it is considered that the characteristics as a catalyst are acceptable, but the lattice spacing of the perovskite-type oxide is usually around 0.5 nm (5Å). In many cases, the number of lattice points is too small due to the crystal structure, so that stable bonding does not occur and it is difficult to maintain the oxide structure, and at the same time, it is very difficult to manufacture the oxide itself. . Even when the crystallite size is 20 nm or more, the characteristics as a catalyst are not completely lost as long as oxygen atoms in the crystal lattice appear on the surface. However, a sufficient specific surface area cannot be obtained. As a result, the performance tends to deteriorate.

以上の理由により、ペロブスカイト型酸化物微粒子の結晶子サイズは、1〜20nmとすることが好ましい。この際、20nm以下のような微粒子においては、1つの粒子内で多結晶構造をとることは稀であり、ほとんどの場合に単結晶の粒子となる。従って、担持された微粒子の平均粒子径は、TEM写真から平均を求める方法の他に、粉末X線回折スペクトルから求められる平均結晶子サイズからも求めることができる。特に、粒子径が数nm以下であるような微粒子の場合には、TEM写真などから目視で粒子径を求める際の測定誤差が大きく、平均結晶子サイズから求めることが好ましい。ただし、多結晶構造を持つ粗大な粒子が存在している場合には、その粗大粒子に含まれる結晶子のサイズを測定している可能性もあるため、平均結晶子サイズから求められた粒子径と、TEMで観察される粒子の大きさに整合性があるかどうかを確認することが必要である。   For the above reasons, the crystallite size of the perovskite oxide fine particles is preferably 1 to 20 nm. At this time, in a fine particle of 20 nm or less, it is rare to take a polycrystalline structure in one particle, and in most cases, it becomes a single crystal particle. Therefore, the average particle diameter of the supported fine particles can be obtained from the average crystallite size obtained from the powder X-ray diffraction spectrum in addition to the method for obtaining the average from the TEM photograph. In particular, in the case of fine particles having a particle diameter of several nanometers or less, the measurement error when the particle diameter is visually determined from a TEM photograph or the like is large, and it is preferable to determine the average crystallite size. However, if coarse particles with a polycrystalline structure are present, the size of the crystallites contained in the coarse particles may be measured, so the particle diameter determined from the average crystallite size It is necessary to confirm whether or not the particle size observed by the TEM is consistent.

得られた微粒子に関しては、粉末X線回折スペクトルを測定し、得られたピーク位置から結晶格子定数を計算する。スペクトルの測定範囲は、格子定数を特定できる範囲であれば良く、20〜80度の範囲があれば十分である。   For the obtained fine particles, a powder X-ray diffraction spectrum is measured, and a crystal lattice constant is calculated from the obtained peak position. The spectrum measurement range may be a range in which the lattice constant can be specified, and a range of 20 to 80 degrees is sufficient.

また、遷移金属元素が高い酸化・還元活性を持つ場合、すなわち結晶格子中の酸素イオンの移動度が高い場合には、この粉末のサイクリックボルタンメトリー(CV)曲線上の約0.6〜0.8Vの範囲に、鉄に由来すると考えられる酸化還元ピークが現れる。この際、活性が高ければ高いほど、CV曲線上に現れる活性ピークは明確に鋭いピークを描き、かつ、酸化還元の各活性エネルギー間の差が小さくなる。逆に、活性が低くなると、CV曲線上の活性ピークがブロードになり、酸化還元の各活性エネルギー間のエネルギー差が大きくなったり、あるいは、活性ピークそのものが現れなくなることで確認することが可能である。   When the transition metal element has a high oxidation / reduction activity, that is, when the mobility of oxygen ions in the crystal lattice is high, about 0.6 to 0.00 on the cyclic voltammetry (CV) curve of this powder. An oxidation-reduction peak considered to be derived from iron appears in the range of 8V. At this time, the higher the activity, the clearer the activity peak appearing on the CV curve, and the smaller the difference between the redox activity energies. Conversely, when the activity decreases, the activity peak on the CV curve becomes broader, and the energy difference between the redox activity energies increases, or the activity peak itself does not appear. is there.

次に、本発明に係るペロブスカイト型酸化物微粒子を電極用触媒材料として用いた燃料電池用電極の具体例として、該ペロブスカイト型酸化物微粒子を用いて作製される燃料電池用の膜電極接合体(MEA)について説明する。   Next, as a specific example of a fuel cell electrode using the perovskite oxide fine particles according to the present invention as a catalyst material for electrodes, a membrane electrode assembly for fuel cells produced using the perovskite oxide fine particles ( MEA) will be described.

図1に、燃料電池用の膜電極接合体(MEA)の断面構造を模式的に示す。この膜電極接合体10は、固体高分子電解質膜1の厚み方向の片側に配置された空気極2と、他の片側に配置された燃料極3と、空気極2の外側に配置された空気極用ガス拡散層4と、燃料極3の外側に配置された燃料極用ガス拡散層5とを有する構成である。このうち、固体高分子電解質膜1としては、ポリパーフルオロスルホン酸樹脂膜、具体的には、デュポン社製の“ナフィオン”(商品名)、旭硝子社製の“フレミオン”(商品名)、旭化成工業社製の“アシプレックス”(商品名)などの膜を使用できる。またガス拡散層4・5としては、多孔質のカーボンクロスあるいはカーボンシートなどを使用できる。この膜電極接合体10の作製方法としては、以下の一般的な方法が適用できる。   FIG. 1 schematically shows a cross-sectional structure of a membrane electrode assembly (MEA) for a fuel cell. The membrane electrode assembly 10 includes an air electrode 2 disposed on one side in the thickness direction of the solid polymer electrolyte membrane 1, a fuel electrode 3 disposed on the other side, and an air disposed outside the air electrode 2. The electrode gas diffusion layer 4 and the fuel electrode gas diffusion layer 5 disposed outside the fuel electrode 3 are provided. Among these, as the solid polymer electrolyte membrane 1, a polyperfluorosulfonic acid resin membrane, specifically, “Nafion” (trade name) manufactured by DuPont, “Flemion” (trade name) manufactured by Asahi Glass Co., Ltd., Asahi Kasei A membrane such as “Aciplex” (trade name) manufactured by Kogyo Co., Ltd. can be used. As the gas diffusion layers 4 and 5, porous carbon cloth or carbon sheet can be used. As a manufacturing method of the membrane electrode assembly 10, the following general methods can be applied.

エタノール、プロパノールなどの低級アルコールを主成分とする溶媒に、触媒担持カーボン粒子、高分子材料、さらに必要に応じてバインダなどを混合し、マグネチックスターラー、ボールミル、超音波分散機などの一般的な分散器具を用いて分散させて、触媒塗料を作製する。この際、塗料の粘度を塗布方法に応じて最適なものとすべく、溶媒量を調整する。次に、得られた触媒塗料を用いて空気極2あるいは燃料極3を形成していくが、この後の手順としては、一般的には下記の3種の方法(1)〜(3)が挙げられる。本発明の微粒子担持カーボン粒子の評価手段としてはいずれを用いてもかまわないが、比較評価を行う際には作製方法をいずれか一つに統一して評価することが重要である。   General solvents such as magnetic stirrers, ball mills, ultrasonic dispersers, etc. are mixed with catalyst-supporting carbon particles, polymer materials, and binders as necessary in solvents based on lower alcohols such as ethanol and propanol. A catalyst paint is produced by dispersing using a dispersing device. At this time, the amount of the solvent is adjusted so that the viscosity of the paint is optimized in accordance with the application method. Next, the air electrode 2 or the fuel electrode 3 is formed by using the obtained catalyst paint, and the following three methods (1) to (3) are generally used as the subsequent procedure. Can be mentioned. Any means may be used as the means for evaluating the fine particle-supporting carbon particles of the present invention, but it is important that the production methods are unified and evaluated when performing comparative evaluation.

(1) 得られた触媒塗料を、バーコータなどを用いて、ポリテトラフルオロエチレン(PTFE)フィルム、ポリエチレンテレフタレート(PET)フィルム、ポリイミドフィルム、PTFEコートポリイミドフィルム、PTFEコートシリコンシート、PTFEコートガラスクロスなどの離型性基板上に均一塗布し、乾燥させて、離型性基板上に電極膜を形成する。この電極膜を剥し取り、所定の電極サイズに裁断する。このような電極膜を2種作製し、それぞれを空気極および燃料極として用いる。その後、上記電極膜を固体高分子電解質膜の両面に、ホットプレスあるいはホットロールプレスにより接合させた後、空気極および燃料極の両側にガス拡散層をそれぞれ配置し、ホットプレスして一体化させ、膜電極接合体を作製する。   (1) Using the obtained catalyst paint, a polytetrafluoroethylene (PTFE) film, a polyethylene terephthalate (PET) film, a polyimide film, a PTFE-coated polyimide film, a PTFE-coated silicon sheet, a PTFE-coated glass cloth, etc. An electrode film is formed on the releasable substrate by uniformly coating on the releasable substrate and drying. The electrode film is peeled off and cut into a predetermined electrode size. Two kinds of such electrode films are produced and used as an air electrode and a fuel electrode, respectively. Thereafter, the electrode membrane is bonded to both sides of the solid polymer electrolyte membrane by hot pressing or hot roll pressing, and then gas diffusion layers are arranged on both sides of the air electrode and the fuel electrode, and are integrated by hot pressing. A membrane electrode assembly is produced.

(2) 得られた触媒塗料を、空気極用ガス拡散層および燃料極用ガス拡散層にそれぞれ塗布し、乾燥させて、空気極および燃料極を形成する。この際、塗布方法は、スプレー塗布やスクリーン印刷などの方法がとられる。次に、これらの電極膜が形成されたガス拡散層で、固体高分子電解質膜を挟み、ホットプレスして一体化させ、膜電極接合体を作製する。   (2) The obtained catalyst paint is applied to the air electrode gas diffusion layer and the fuel electrode gas diffusion layer, respectively, and dried to form the air electrode and the fuel electrode. At this time, the application method is a spray application method or a screen printing method. Next, the polymer electrolyte membrane is sandwiched between the gas diffusion layers on which these electrode membranes are formed and integrated by hot pressing to produce a membrane electrode assembly.

(3) 得られた触媒塗料を、固体高分子電解質膜の両面に、スプレー塗布などの方法を用いて塗布し、乾燥させて、空気極および燃料極を形成する。その後、空気極および燃料極の両側にガス拡散層を配置し、ホットプレスして一体化させ、膜電極接合体を作製する。   (3) The obtained catalyst paint is applied to both surfaces of the solid polymer electrolyte membrane by a method such as spray coating and dried to form an air electrode and a fuel electrode. Thereafter, gas diffusion layers are arranged on both sides of the air electrode and the fuel electrode and integrated by hot pressing to produce a membrane electrode assembly.

以上のようにして得られた図1に示すごとき膜電極接合体10において、空気極2側および燃料極3側のそれぞれに集電板(図示せず)を設けて電気的な接続を行い、燃料極3に水素を、空気極2に空気(酸素)をそれぞれ供給することにより、燃料電池として作用させることができる。   In the membrane electrode assembly 10 as shown in FIG. 1 obtained as described above, a current collector plate (not shown) is provided on each of the air electrode 2 side and the fuel electrode 3 side for electrical connection, By supplying hydrogen to the fuel electrode 3 and air (oxygen) to the air electrode 2, the fuel cell can be operated.

《La(Fe0.95Pt0.05)O3 /C・40重量%担持》
硝酸ランタン六水和物2.23g、硝酸鉄九水和物1.98gおよび塩化白金酸六水和物0.14gを、水80ml/エタノール20mlの混合溶液に溶解し、2.16gのクエン酸を加え、ランタン、鉄および白金のクエン酸錯イオンを含む水溶液を調整した。
<< La (Fe 0.95 Pt 0.05 ) O 3 / C, 40 wt% supported >>
2.23 g of lanthanum nitrate hexahydrate, 1.98 g of iron nitrate nonahydrate and 0.14 g of chloroplatinic acid hexahydrate were dissolved in a mixed solution of 80 ml of water / 20 ml of ethanol to obtain 2.16 g of citric acid. Was added to prepare an aqueous solution containing citrate complex ions of lanthanum, iron and platinum.

次に、カーボン粒子として2gのバルカンXC−72(登録商標、CABOT社製のカーボンブラック、平均粒子径30nm、以下同様。)に対して、上記クエン酸錯イオンを含む水溶液を含浸させ、前記錯化合物をバルカン表面に吸着させた。このカーボン粒子を窒素中600℃で加熱処理した後、水洗し、ペロブスカイト型複合酸化物微粒子La(Fe0.95Pt0.05)O3 担持カーボン粒子を得た。 Next, 2 g of Vulcan XC-72 (registered trademark, carbon black manufactured by CABOT, average particle diameter of 30 nm, the same shall apply hereinafter) as carbon particles is impregnated with an aqueous solution containing the citrate complex ion. The compound was adsorbed on the Vulcan surface. The carbon particles were heat-treated at 600 ° C. in nitrogen and then washed with water to obtain perovskite complex oxide fine particles La (Fe 0.95 Pt 0.05 ) O 3 -supported carbon particles.

このようにして得られたLa(Fe0.95Pt0.05)O3 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、図2に示すように、ペロブスカイト型構造の明確な単一相のピークが現れ、ピーク位置から求められる格子定数が5.5672×7.867×5.5437(Å)であり、2b/(a+c)=1.416であることが確認された。粉末X線回折スペクトルにおいて、白金元素が含まれているにも関わらず白金に起因する構造を表すピークが現れなかったことから、白金元素はペロブスカイト構造の格子内に取り込まれていることがわかる。この際、回折ピークの半値幅から求めた平均結晶子サイズは10.3nmであった。また、透過型電子顕微鏡(TEM)観察を行った結果、約10nmの複合金属酸化物微粒子がカーボン粒子表面に担持されていることが確認された。なお、組成分析および担持量分析は、蛍光X線分析およびXPSを用いて行った。 As a result of the powder X-ray diffraction spectrum measurement of the La (Fe 0.95 Pt 0.05 ) O 3 -supported carbon particles obtained in this way, as shown in FIG. 2, a clear single-phase peak with a perovskite structure is obtained. And the lattice constant determined from the peak position was 5.5672 × 7.867 × 5.5437 (Å), and it was confirmed that 2b / (a + c) = 1.416. In the powder X-ray diffraction spectrum, although the peak representing the structure due to platinum did not appear despite the inclusion of platinum element, it can be seen that platinum element was incorporated in the lattice of the perovskite structure. At this time, the average crystallite size obtained from the half width of the diffraction peak was 10.3 nm. Further, as a result of observation with a transmission electron microscope (TEM), it was confirmed that about 10 nm of composite metal oxide fine particles were supported on the surface of the carbon particles. The composition analysis and the loading amount analysis were performed using fluorescent X-ray analysis and XPS.

《La(Fe0.95Pt0.05)O3 /C・40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、硝酸ランタン六水和物、硝酸鉄九水和物および塩化白金酸六水和物を、水100mlに溶解した以外は実施例1と同様にして、鉄および白金のクエン酸錯イオンを含む水溶液を調整し、合計100mlのクエン酸錯イオンを含む水溶液をカーボン粒子に含浸させ、前記錯化合物をバルカン表面に吸着させた。その後、窒素雰囲気中で約2時間の90℃加熱を行い、さらに窒素雰囲気中600℃で熱処理を施し、ペロブスカイト型複合酸化物微粒子La(Fe0.95Pt0.05)O3 担持カーボン粒子を得た。
<< La (Fe 0.95 Pt 0.05 ) O 3 / C, 40 wt% supported >>
In the method for producing fine particle-supporting carbon particles of Example 1, lanthanum nitrate hexahydrate, iron nitrate nonahydrate and chloroplatinic acid hexahydrate were dissolved in 100 ml of water in the same manner as in Example 1. Then, an aqueous solution containing iron and platinum citrate complex ions was prepared, carbon particles were impregnated with a total of 100 ml of an aqueous solution containing citrate complex ions, and the complex compound was adsorbed on the Vulcan surface. Thereafter, heating was performed at 90 ° C. for about 2 hours in a nitrogen atmosphere, and further heat treatment was performed at 600 ° C. in a nitrogen atmosphere to obtain perovskite-type composite oxide fine particles La (Fe 0.95 Pt 0.05 ) O 3 -supported carbon particles.

このようにして得られたLa(Fe0.95Pt0.05)O3 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様、ペロブスカイト型構造の単一ピークが現れ、その格子定数が5.5645×7.8348×5.5536(Å)であり、2b/(a+c)=1.410であることが確認された。この際、回折ピークの半値幅から求めた平均結晶子サイズは14.7nmであった。また、TEM観察を行った結果、約15nmの複合金属酸化物微粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the La (Fe 0.95 Pt 0.05 ) O 3 -supported carbon particles obtained in this way, a single peak with a perovskite structure appeared as in Example 1, and its lattice The constant was 5.5645 × 7.8348 × 5.5536 (×), and it was confirmed that 2b / (a + c) = 1.410. At this time, the average crystallite size obtained from the half width of the diffraction peak was 14.7 nm. As a result of TEM observation, it was confirmed that about 15 nm of composite metal oxide fine particles were supported on the carbon particle surfaces.

《La(Fe0.98Pt0.02)O3 /C・40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、硝酸鉄九水和物を1.98gから2.04gへ変更し、塩化白金酸六水和物を0.14gから0.06gに変更した以外は、実施例1と同様にして鉄および白金のクエン酸錯イオンを含む水溶液を調整し、合計100mlのクエン酸錯イオンを含む水溶液を含浸させ、前記錯化合物をバルカン表面に吸着させた。その後、窒素雰囲気中600℃で熱処理を施し、ペロブスカイト型複合酸化物微粒子La(Fe0.98Pt0.02)O3 担持カーボン粒子を得た。
<< La (Fe 0.98 Pt 0.02 ) O 3 / C, 40% by weight supported >>
In the method for producing fine particle-supporting carbon particles of Example 1, except that iron nitrate nonahydrate was changed from 1.98 g to 2.04 g and chloroplatinic acid hexahydrate was changed from 0.14 g to 0.06 g. Prepared an aqueous solution containing iron and platinum citrate complex ions in the same manner as in Example 1, impregnated with a total of 100 ml of an aqueous solution containing citrate complex ions, and adsorbed the complex compound on the Vulcan surface. Thereafter, heat treatment was performed at 600 ° C. in a nitrogen atmosphere to obtain perovskite-type composite oxide fine particles La (Fe 0.98 Pt 0.02 ) O 3 -supported carbon particles.

このようにして得られたLa(Fe0.98Pt0.02)O3 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様、ペロブスカイト型構造の単一ピークが現れ、その格子定数が5.5407×7.8400×5.5468(Å)であり、2b/(a+c)=1.414であることが確認された。この際、回折ピークの半値幅から求めた平均結晶子サイズは12.6nmであった。また、TEM観察を行った結果、約10〜15nmの複合金属酸化物微粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the La (Fe 0.98 Pt 0.02 ) O 3 -supported carbon particles obtained in this way, a single peak of a perovskite structure appeared as in Example 1, and its lattice The constant was 5.5407 × 7.8400 × 5.5468 (Å), and it was confirmed that 2b / (a + c) = 1.414. At this time, the average crystallite size obtained from the half width of the diffraction peak was 12.6 nm. As a result of TEM observation, it was confirmed that about 10 to 15 nm of composite metal oxide fine particles were supported on the surface of the carbon particles.

《La(Fe0.97Pt0.03)O3 /C・40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、硝酸鉄九水和物を1.98gから2.02gへ変更し、塩化白金酸六水和物を0.14gから0.08gに変更した以外は、実施例1と同様にして鉄および白金のクエン酸錯イオンを含む水溶液を調整し、合計100mlのクエン酸錯イオンを含む水溶液を含浸させ、前記錯化合物をバルカン表面に吸着させた。その後、窒素雰囲気中600℃で熱処理を施し、ペロブスカイト型複合酸化物微粒子La(Fe0.97Pt0103)O3 担持カーボン粒子を得た。
<< La (Fe 0.97 Pt 0.03 ) O 3 / C, 40% by weight supported >>
In the production method of fine particle-supporting carbon particles of Example 1, except that iron nitrate nonahydrate was changed from 1.98 g to 2.02 g and chloroplatinic acid hexahydrate was changed from 0.14 g to 0.08 g. Prepared an aqueous solution containing iron and platinum citrate complex ions in the same manner as in Example 1, impregnated with a total of 100 ml of an aqueous solution containing citrate complex ions, and adsorbed the complex compound on the Vulcan surface. Thereafter, heat treatment was performed at 600 ° C. in a nitrogen atmosphere to obtain perovskite-type composite oxide fine particles La (Fe 0.97 Pt 0103 ) O 3 -supported carbon particles.

このようにして得られたLa(Fe0.97Pt0.03)O3 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様、ペロブスカイト型構造の単一ピークが現れ、その格子定数が5.5899×7.8246×5.5524(Å)であり、2b/(a+c)=1.404であることが確認された。この際、回折ピークの半値幅から求めた平均結晶子サイズは16.6nmであった。また、TEM観察を行った結果、約15nmの複合金属酸化物微粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the La (Fe 0.97 Pt 0.03 ) O 3 -supported carbon particles obtained in this way, a single peak with a perovskite structure appeared as in Example 1, and the lattice The constant was 5.5899 × 7.8246 × 5.5524 (×), and it was confirmed that 2b / (a + c) = 1.404. At this time, the average crystallite size obtained from the half width of the diffraction peak was 16.6 nm. As a result of TEM observation, it was confirmed that about 15 nm of composite metal oxide fine particles were supported on the carbon particle surfaces.

[比較例1]
《La(Fe0.95Pt0.05)O3 /C・40重量%担持》
実施例1の微粒子担持カーボン粒子の作製方法において、窒素中600℃の熱処理を行う前に、空気中250℃で1時間の加熱処理を施し、その後、窒素中600℃の熱処理を行い、ペロブスカイト型複合酸化物微粒子La(Fe0.95Pt0.05)O3 担持カーボン粒子を得た。
[Comparative Example 1]
<< La (Fe 0.95 Pt 0.05 ) O 3 / C, 40 wt% supported >>
In the method for producing fine particle-supporting carbon particles of Example 1, before heat treatment at 600 ° C. in nitrogen, heat treatment is performed at 250 ° C. in air for 1 hour, and then heat treatment at 600 ° C. in nitrogen is performed to obtain a perovskite type. Composite oxide fine particles La (Fe 0.95 Pt 0.05 ) O 3 -supported carbon particles were obtained.

このようにして得られたLa(Fe0.95Pt0.05)O3 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様、ペロブスカイト型構造の単一ピークが現れ、その格子定数が5.6220×7.7639×5.5979(Å)であり、2b/(a+c)=1.384であることが確認された。この際、回折ピークの半値幅から求めた平均結晶子サイズは7.5nmであった。また、TEM観察を行った結果、約5〜10nmの複合金属酸化物微粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the La (Fe 0.95 Pt 0.05 ) O 3 -supported carbon particles obtained in this way, a single peak with a perovskite structure appeared as in Example 1, and its lattice The constant was 5.6220 × 7.73939 × 5.5979 (Å), and it was confirmed that 2b / (a + c) = 1.384. At this time, the average crystallite size obtained from the half width of the diffraction peak was 7.5 nm. As a result of TEM observation, it was confirmed that about 5 to 10 nm of composite metal oxide fine particles were supported on the carbon particle surfaces.

[比較例2]
《La(Fe0.99Pt0.01)O3 /C・40重量%担持》
硝酸鉄九水和物を1.98gから2.06gへ変更し、塩化白金酸六水和物を0.14gから0.03gに変更した以外は、実施例1と同様にして鉄および白金のクエン酸錯イオンを含む水溶液を調整し、合計100mlのクエン酸錯イオンを含む水溶液を含浸させ、前記錯化合物をバルカン表面に吸着させた。その後、窒素雰囲気中550℃で熱処理を施し、ペロブスカイト型複合酸化物微粒子La(Fe0.99Pt0.01)O3 担持カーボン粒子を得た。
[Comparative Example 2]
<< La (Fe 0.99 Pt 0.01 ) O 3 / C · 40 wt% supported >>
Iron and platinum were changed in the same manner as in Example 1 except that iron nitrate nonahydrate was changed from 1.98 g to 2.06 g and chloroplatinic acid hexahydrate was changed from 0.14 g to 0.03 g. An aqueous solution containing a citrate complex ion was prepared, impregnated with a total of 100 ml of an aqueous solution containing a citrate complex ion, and the complex compound was adsorbed on the vulcanized surface. Thereafter, heat treatment was performed at 550 ° C. in a nitrogen atmosphere to obtain perovskite-type composite oxide fine particles La (Fe 0.99 Pt 0.01 ) O 3 -supported carbon particles.

このようにして得られたLa(Fe0.99Pt0.01)O3 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様、ペロブスカイト型構造の単一ピークが現れ、その格子定数が5.5852×7.8352×5.6069(Å)であり、2b/(a+c)=1.400であることが確認された。この際、回折ピークの半値幅から求めた平均結晶子サイズは18.2nmであった。また、TEM観察を行った結果、約20nmの複合金属酸化物微粒子がカーボン粒子表面に担持されていることが確認された。 As a result of the powder X-ray diffraction spectrum measurement of the La (Fe 0.99 Pt 0.01 ) O 3 -supported carbon particles obtained in this way, a single peak of a perovskite structure appeared as in Example 1, and its lattice It was confirmed that the constant was 5.5852 × 7.8352 × 5.6060 (Å) and 2b / (a + c) = 1.400. At this time, the average crystallite size obtained from the half width of the diffraction peak was 18.2 nm. As a result of TEM observation, it was confirmed that about 20 nm of composite metal oxide fine particles were supported on the surface of the carbon particles.

[比較例3]
《La(Fe0.8 Pt0.2 )O3 /C・40重量%担持》
硝酸鉄九水和物を1.98gから1.67gへ変更し、塩化白金酸六水和物を0.14gから0.56gに変更した以外は、実施例1と同様にして鉄および白金のクエン酸錯イオンを含む水溶液を調整し、合計100mlのクエン酸錯イオンを含む水溶液を含浸させ、前記錯化合物をバルカン表面に吸着させた。その後、空気中270℃で4時間の加熱処理を行った後、窒素雰囲気中600℃で熱処理を施し、ペロブスカイト型複合酸化物微粒子La(Fe0.8 Pt0.2 )O3 担持カーボン粒子を得た。
[Comparative Example 3]
<< La (Fe 0.8 Pt 0.2 ) O 3 / C, 40% by weight supported >>
Except for changing the iron nitrate nonahydrate from 1.98 g to 1.67 g and changing the chloroplatinic acid hexahydrate from 0.14 g to 0.56 g, iron and platinum An aqueous solution containing a citrate complex ion was prepared, impregnated with a total of 100 ml of an aqueous solution containing a citrate complex ion, and the complex compound was adsorbed on the vulcanized surface. Thereafter, heat treatment was performed at 270 ° C. for 4 hours in air, and then heat treatment was performed at 600 ° C. in a nitrogen atmosphere to obtain perovskite-type composite oxide fine particles La (Fe 0.8 Pt 0.2 ) O 3 -supported carbon particles.

このようにして得られたLa(Fe0.8 Pt0.2 )O3 担持カーボン粒子について、粉末X線回折スペクトル測定を行った結果、実施例1と同様、ペロブスカイト型構造の単一ピークが現れ、その格子定数が5.5056×7.8846×5.5728(Å)であり、2b/(a+c)=1.423であることが確認された。この際、回折ピークの半値幅から求めた平均結晶子サイズは20.3nmであった。また、TEM観察を行った結果、約20nmの複合金属酸化物微粒子がカーボン粒子表面に担持されていることが確認された。 As a result of powder X-ray diffraction spectrum measurement of the La (Fe 0.8 Pt 0.2 ) O 3 -supported carbon particles obtained in this way, a single peak of a perovskite structure appeared as in Example 1, and its lattice The constant was 5.5056 × 7.88846 × 5.5728 (Å), and it was confirmed that 2b / (a + c) = 1.423. At this time, the average crystallite size obtained from the half width of the diffraction peak was 20.3 nm. As a result of TEM observation, it was confirmed that about 20 nm of composite metal oxide fine particles were supported on the surface of the carbon particles.

次に、上述の各実施例および比較例で得られた微粒子担持カーボン粒子の触媒特性を評価するため、燃料電池用の膜電極接合体(MEA)を作製し、それを用いて燃料電池としての出力特性を調べた。膜電極接合体(MEA)を構成する電極に上記のような微粒子担持カーボン粒子を使用する場合、空気極と燃料極とでは、最大の効果が得られる微粒子担持カーボン粒子の酸化物組成(カーボン粒子に担持されている酸化物微粒子の組成)が異なる。そこで、本実施例では、一律に評価を行うために、燃料極に微粒子担持カーボン粒子電極膜を用い、空気極には以下に示す標準電極膜を用いた。   Next, in order to evaluate the catalytic characteristics of the fine particle-supported carbon particles obtained in each of the above-described examples and comparative examples, a membrane electrode assembly (MEA) for a fuel cell was produced and used as a fuel cell The output characteristics were examined. When the fine particle-supported carbon particles as described above are used for the electrodes constituting the membrane electrode assembly (MEA), the oxide composition of the fine particle-supported carbon particles (carbon particles) that can achieve the maximum effect between the air electrode and the fuel electrode. The composition of the oxide fine particles supported on the particles is different. Therefore, in this example, in order to perform uniform evaluation, a particulate-supported carbon particle electrode film was used for the fuel electrode, and a standard electrode film shown below was used for the air electrode.

〈微粒子担持カーボン粒子電極膜〉
上記各実施例および比較例で得られた微粒子担持カーボン粒子1質量部を、ポリパーフルオロスルホン酸樹脂の5質量%溶液であるアルドリッチ(Aldrich)社製の“ナフィオン (Nafion)”(商品名、EW=1000)溶液9.72質量部およびポリパーフルオロスルホン酸樹脂の20質量%溶液であるデュポン社製の“ナフィオン(Nafion)”(商品名)2.52質量部および水1質量部に添加し、均一に分散するよう混合液を充分に攪拌することで触媒塗料を調製した。次に、PTFEフィルム上に上記触媒塗料を、白金担持量が0.03mg/cm2 となるように塗布し、乾燥した後剥がし取り、微粒子担持カーボン粒子電極膜を得た。
<Fine particle supported carbon electrode film>
1 part by weight of the fine particle-supported carbon particles obtained in each of the above examples and comparative examples was replaced with “Nafion” (trade name, manufactured by Aldrich) which is a 5% by mass solution of polyperfluorosulfonic acid resin. EW = 1000) Added to 9.72 parts by mass of a solution and 2.52 parts by mass of “Nafion” (trade name) manufactured by DuPont, which is a 20% by mass solution of polyperfluorosulfonic acid resin, and 1 part by mass of water Then, the catalyst coating material was prepared by sufficiently stirring the mixed solution so as to disperse uniformly. Next, the catalyst paint was applied onto the PTFE film so that the platinum loading was 0.03 mg / cm 2 , dried and peeled off to obtain a fine particle-supporting carbon particle electrode film.

〈標準電極膜〉
標準電極としては、白金を50質量%担持させた田中貴金属工業社製の白金担持カーボン“10E50E”(商品名)を用いて、上記と同様にして触媒塗料を調整した後、PTFEフィルム上に、白金担持量が0.5mg/cm2 となるように塗布し、乾燥した後剥し取り、標準電極膜を得た。
<Standard electrode membrane>
As a standard electrode, a platinum-supported carbon “10E50E” (trade name) manufactured by Tanaka Kikinzoku Kogyo Co., Ltd. supporting 50% by mass of platinum was used, and after adjusting the catalyst paint in the same manner as described above, on the PTFE film, It was applied so that the amount of platinum supported was 0.5 mg / cm 2 , dried and then peeled off to obtain a standard electrode film.

〈膜電極接合体〉
固体高分子電解質膜としては、デュポン(DuPont)社製のポリパーフルオロスルホン酸樹脂膜“Nafion112”(商品名)を所定のサイズに切り出して用いた。この固体高分子電解質膜の両面に、先に作製した微粒子担持カーボン粒子電極膜と標準電極膜とを重ね合わせ、温度160℃、圧力4.4MPaの条件でホットプレスを行い、これらを接合した。次に、あらかじめ撥水処理を施したカーボン不織布(東レ社製、TGP−H−120)と、両面に電極膜を形成した固体高分子電解質膜とをホットプレスで接合し、膜電極接合体を作製した。
<Membrane electrode assembly>
As the solid polymer electrolyte membrane, a polyperfluorosulfonic acid resin membrane “Nafion112” (trade name) manufactured by DuPont was cut into a predetermined size and used. The fine particle-supporting carbon particle electrode film prepared above and the standard electrode film were superposed on both surfaces of the solid polymer electrolyte membrane, and hot pressing was performed under the conditions of a temperature of 160 ° C. and a pressure of 4.4 MPa to join them. Next, a carbon non-woven fabric (TGP-H-120, manufactured by Toray Industries, Inc.) that has been subjected to water-repellent treatment in advance and a solid polymer electrolyte membrane having electrode films formed on both sides thereof are joined by hot pressing, and a membrane electrode assembly is obtained. Produced.

〔電池特性評価〕
以上のようにして得られた膜電極接合体を用いて、サイクリックボルタンメトリー(CV)測定を行いCV曲線を得、さらに燃料電池としての出力特性(ここでは最大出力密度)を測定した。出力特性測定の際には、膜電極接合体を含む測定系を60℃に保持し、燃料極側に60℃の露点となるよう加湿・加温した水素ガスを供給し、空気極側に60℃の露点となるよう加湿・加温した空気を供給して測定を行った。
[Battery characteristics evaluation]
Using the membrane electrode assembly obtained as described above, cyclic voltammetry (CV) measurement was performed to obtain a CV curve, and the output characteristics (maximum output density in this case) as a fuel cell were measured. When measuring output characteristics, the measurement system including the membrane electrode assembly is held at 60 ° C., hydrogen gas humidified and heated to a dew point of 60 ° C. is supplied to the fuel electrode side, and 60 ° to the air electrode side. The measurement was performed by supplying air that was humidified and heated to a dew point of ° C.

このうち、CV曲線上に鉄の酸化・還元ピークがはっきりと現れる例として、実施例1で得られた粒子を用いた場合のCV測定結果を図3に示す。また、鉄の酸化・還元ピークが非常に弱く、触媒能が劣る場合の例として、比較例1で得られた粒子を用いた場合のCV測定結果を図4に示す。   Among these, as an example in which the iron oxidation / reduction peak clearly appears on the CV curve, FIG. 3 shows the CV measurement results when the particles obtained in Example 1 are used. In addition, FIG. 4 shows a CV measurement result when the particles obtained in Comparative Example 1 are used as an example in which the oxidation / reduction peak of iron is very weak and the catalytic ability is inferior.

表1に、上記の実施例1〜4および比較例1〜3で得られた各微粒子担持カーボン粒子についての測定結果と、これらの微粒子担持カーボン粒子を用いて実施例5で作製した各膜電極接合体についての測定結果をまとめて示す。ただし、CV測定結果は、鉄原子に起因するピークの様子を相対的に評価したものであり、図3に代表されるようなはっきりとしたピークを示すものを○、図4に代表されるような非常にブロードなピークを示すものを×とし、中間状態を△とした。   Table 1 shows the measurement results for the fine particle-supported carbon particles obtained in Examples 1 to 4 and Comparative Examples 1 to 3, and the membrane electrodes produced in Example 5 using these fine particle-supported carbon particles. The measurement result about a joined_body | zygote is shown collectively. However, the CV measurement results are obtained by relatively evaluating the state of the peak due to the iron atom, and those having a clear peak as represented by FIG. Those showing a very broad peak were marked with × and the intermediate state was marked with Δ.

次に図5で示されるグラフは、ペロブスカイト型構造の格子定数をa,b,cとし、長軸をbとした場合に、グラフ横軸がa軸およびc軸の平均長さを、グラフ縦軸にb軸長さをとり、各実施例および比較例で得られたペロブスカイト型酸化物をプロットしたグラフである。図中、グレーで示した帯域が、下記の式(1)を満たす領域を表す。
1.402<2b/(a+c)<1.422 (1)
Next, in the graph shown in FIG. 5, when the lattice constants of the perovskite structure are a, b, c and the long axis is b, the horizontal axis of the graph indicates the average length of the a axis and the c axis, It is the graph which plotted the perovskite type oxide obtained by taking each axis and b axis length in each example and a comparative example. In the figure, the band shown in gray represents a region that satisfies the following formula (1).
1.402 <2b / (a + c) <1.422 (1)

Figure 2008004286
Figure 2008004286

表1および図5から明らかなように、各実施例で得られた、特定の範囲内の格子定数を持つ微粒子担持カーボン粒子については、いずれの場合にも、CV曲線上に鉄元素に起因すると考えられる酸化・還元ピークが現れ、含有される鉄元素が酸化・還元活性を持ち、燃料電池用カソード触媒として有効なことがわかる。一方、各比較例においては、組成や構造などは各実施例と類似であるにも関わらず、格子定数が特定の範囲から外れているために、含有される遷移金属元素はごく微弱な酸化・還元活性しか持たず、燃料電池用カソード触媒としては不適切であることがわかる。   As is apparent from Table 1 and FIG. 5, the fine particle-supporting carbon particles having a lattice constant within a specific range obtained in each example are attributed to iron elements on the CV curve in any case. Possible oxidation / reduction peaks appear, indicating that the contained iron element has oxidation / reduction activity and is effective as a cathode catalyst for fuel cells. On the other hand, in each comparative example, although the composition and structure are similar to each example, the lattice constant is out of a specific range, so the transition metal element contained is very weakly oxidized. It can be seen that it has only reducing activity and is inappropriate as a cathode catalyst for fuel cells.

燃料電池用の膜電極接合体(MEA)の一構造例を模式的に示す断面図である。一般的な膜電極接合体の模式断面図である。It is sectional drawing which shows typically one structural example of the membrane electrode assembly (MEA) for fuel cells. It is a schematic cross section of a general membrane electrode assembly. 実施例1で作製した10nmのLa(Fe0.95Pt0.05)O3 粒子を担持したカーボン粒子(ペロブスカイト型酸化物担持粒子)の粉末X線回折スペクトルを示す図である。FIG. 3 is a graph showing a powder X-ray diffraction spectrum of carbon particles (perovskite oxide-carrying particles) carrying 10 nm La (Fe 0.95 Pt 0.05 ) O 3 particles produced in Example 1. 実施例1で作製した粒子を用いて、実施例5で得られたCV曲線を表す図である。It is a figure showing the CV curve obtained in Example 5 using the particle | grains produced in Example 1. FIG. 比較例1で作製した粒子を用いて、実施例5で得られたCV曲線を表す図である。It is a figure showing the CV curve obtained in Example 5 using the particle | grains produced by the comparative example 1. FIG. 各実施例および比較例で得られた粒子についての格子定数を表したグラフである。It is the graph showing the lattice constant about the particle | grains obtained by each Example and the comparative example.

Claims (13)

一般式ABO3 (式中、Aで示される元素は、ランタン,ストロンチウム,セリウム,カルシウム,イットリウム,エルビウム,プラセオジム,ネオジム,サマリウム,ユウロピウム,ケイ素,マグネシウム,バリウム,ニオブ,鉛,ビスマス,アンチモンから選ばれる一種以上の元素を示し、Bで示される元素は、鉄,コバルト,マンガン,銅,チタン,クロム,ニッケル,モリブデンから選ばれる一種以上の元素を示す。)で表されるペロブスカイト型構造を主相に持つ遷移金属酸化物微粒子であり、当該酸化物微粒子の格子定数が下記条件式(1)を満たすことを特徴とするペロブスカイト型酸化物微粒子。
1.402<2b/(a+c)<1.422 (1)
ここで、aおよびcはペロブスカイト型結晶格子の各短軸の長さを表し、bは長軸の長さを表す。
General formula ABO 3 (wherein the element represented by A is selected from lanthanum, strontium, cerium, calcium, yttrium, erbium, praseodymium, neodymium, samarium, europium, silicon, magnesium, barium, niobium, lead, bismuth, antimony) The element represented by B represents one or more elements selected from iron, cobalt, manganese, copper, titanium, chromium, nickel, and molybdenum.) A perovskite oxide fine particle, which is a transition metal oxide fine particle in a phase and the lattice constant of the oxide fine particle satisfies the following conditional expression (1).
1.402 <2b / (a + c) <1.422 (1)
Here, a and c represent the length of each short axis of the perovskite crystal lattice, and b represents the length of the long axis.
前記Bで示される元素(B元素)として、鉄を主に含んでいる、請求項1記載のペロブスカイト型酸化物微粒子。   The perovskite-type oxide fine particles according to claim 1, which mainly contain iron as the element represented by B (B element). 平均粒子径が1〜20nmである、請求項1または2記載のペロブスカイト型酸化物微粒子。   The perovskite oxide fine particles according to claim 1 or 2, having an average particle diameter of 1 to 20 nm. 当該酸化物微粒子には貴金属が含有されている、請求項1ないし3のいずれかに記載のペロブスカイト型酸化物微粒子。   The perovskite oxide fine particles according to any one of claims 1 to 3, wherein the fine oxide particles contain a noble metal. 前記貴金属は、貴金属元素として、酸化物結晶格子を構成する元素の一部を置換しているか、あるいは貴金属結晶として、酸化物結晶と複合体を形成しているか、あるいは貴金属粒子として、酸化物表面に被着している、請求項4記載のペロブスカイト型酸化物微粒子。   The noble metal, as a noble metal element, replaces part of the elements constituting the oxide crystal lattice, or as a noble metal crystal, forms a complex with an oxide crystal, or as a noble metal particle, an oxide surface The perovskite-type oxide fine particles according to claim 4, which are deposited on. 前記貴金属の含有量が、前記B元素の総量に対して元素比で1〜20%である、請求項4または5記載のペロブスカイト型酸化物微粒子。   The perovskite oxide fine particles according to claim 4 or 5, wherein the content of the noble metal is 1 to 20% in terms of element ratio with respect to the total amount of the B element. 請求項1ないし6のいずれかに記載のペロブスカイト型酸化物微粒子を導電性担体上に担持してなるペロブスカイト型酸化物担持粒子。   A perovskite oxide-carrying particle comprising the perovskite oxide fine particle according to any one of claims 1 to 6 supported on a conductive carrier. 前記導電性担体が導電性カーボン粒子である、請求項7記載のペロブスカイト型酸化物担持粒子。   The perovskite oxide-carrying particles according to claim 7, wherein the conductive carrier is conductive carbon particles. ペロブスカイト型酸化物担持粒子中のペロブスカイト型酸化物微粒子の担持量が、重量比(「ペロブスカイト型酸化物微粒子の重量」/「当該酸化物担持粒子全体の重量」)で、5〜50重量%である、請求項7または8記載のペロブスカイト型酸化物担持粒子。   The supported amount of the perovskite type oxide fine particles in the perovskite type oxide supported particles is 5 to 50% by weight in a weight ratio (“weight of perovskite type oxide fine particles” / “weight of the whole oxide supported particle”). The perovskite type oxide-supporting particles according to claim 7 or 8, wherein 請求項1ないし9のいずれかに記載したペロブスカイト型酸化物微粒子を主成分とする触媒材料。   The catalyst material which has the perovskite type oxide fine particle as described in any one of claims 1 to 9 as a main component. 請求項1ないし9のいずれかに記載したペロブスカイト型酸化物微粒子を主成分とする酸素還元用触媒材料。   A catalyst material for oxygen reduction comprising the perovskite oxide fine particles according to any one of claims 1 to 9 as a main component. 請求項11記載の酸素還元用触媒材料の酸素還元作用を利用した燃料電池用触媒材料。   A catalyst material for a fuel cell utilizing the oxygen reduction action of the catalyst material for oxygen reduction according to claim 11. 請求項12記載の燃料電池用触媒材料を用いてなる燃料電池用電極。   A fuel cell electrode comprising the fuel cell catalyst material according to claim 12.
JP2006170114A 2006-06-13 2006-06-20 Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst materials, fuel cell electrodes Expired - Fee Related JP5214117B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2006170114A JP5214117B2 (en) 2006-06-20 2006-06-20 Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst materials, fuel cell electrodes
US12/304,452 US8007691B2 (en) 2006-06-13 2007-06-12 Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
CN2007800220315A CN101467286B (en) 2006-06-13 2007-06-12 Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
PCT/JP2007/061825 WO2007145216A1 (en) 2006-06-13 2007-06-12 Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
CA2655278A CA2655278C (en) 2006-06-13 2007-06-12 Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
EP07745112A EP2037519A4 (en) 2006-06-13 2007-06-12 Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006170114A JP5214117B2 (en) 2006-06-20 2006-06-20 Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst materials, fuel cell electrodes

Publications (2)

Publication Number Publication Date
JP2008004286A true JP2008004286A (en) 2008-01-10
JP5214117B2 JP5214117B2 (en) 2013-06-19

Family

ID=39008518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006170114A Expired - Fee Related JP5214117B2 (en) 2006-06-13 2006-06-20 Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst materials, fuel cell electrodes

Country Status (1)

Country Link
JP (1) JP5214117B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238546A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Fine particle carrying metal oxide catalyst, its manufacturing method, and electrode for fuel cell
WO2010126020A1 (en) 2009-04-28 2010-11-04 昭和電工株式会社 Catalyst, method for production of same, and use of same
WO2011065471A1 (en) 2009-11-27 2011-06-03 国立大学法人山梨大学 Oxide-based stable high-potential carrier for solid polymer fuel cell
US8404610B2 (en) 2009-07-16 2013-03-26 Showa Denko K.K. Process for producing fuel cell catalyst, fuel cell catalyst obtained by production process, and uses thereof
US8815470B2 (en) 2005-02-24 2014-08-26 Toyota Jidosha Kabushiki Kaisha Fuel cell catalyst, membrane electrode assembly and solid polymer electrolyte fuel cell
US9048499B2 (en) 2009-05-11 2015-06-02 Showa Denko K.K. Catalyst, production process therefor and use thereof
JP2015111534A (en) * 2013-12-06 2015-06-18 株式会社ノリタケカンパニーリミテド Electrode material for solid oxide fuel cell and use thereof
WO2016200206A1 (en) * 2015-06-11 2016-12-15 주식회사 엘지화학 Cathode composition, cathode and fuel cell including same
US9570757B2 (en) 2011-09-09 2017-02-14 Showa Denko K.K. Fuel cell catalyst layer and uses thereof
CN112547092A (en) * 2020-11-30 2021-03-26 大连海事大学 Perovskite-based catalyst for constructing plasma catalytic air purification system and preparation method thereof
CN114195228A (en) * 2021-12-14 2022-03-18 中南大学 Wastewater organic pollutant degradation system based on perovskite three-dimensional electrode
WO2022085979A1 (en) * 2020-10-20 2022-04-28 재단법인대구경북과학기술원 Membrane-electrode assembly and fuel cell including same
CN115805069A (en) * 2022-11-14 2023-03-17 天津大学 Catalyst for diesel engine based on highly dispersed perovskite catalytic component and preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093029A (en) * 1996-09-13 1998-04-10 Toshiba Corp Thin-film dielectric element
JP2000307171A (en) * 1999-03-19 2000-11-02 Internatl Business Mach Corp <Ibm> Pinning layer of magnetic device
JP2003288905A (en) * 2002-03-27 2003-10-10 Asahi Kasei Corp Method of manufacturing for electrode catalyst
JP2006062953A (en) * 2004-07-30 2006-03-09 Daihatsu Motor Co Ltd Method for manufacturing carbon nanotube and catalyst for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1093029A (en) * 1996-09-13 1998-04-10 Toshiba Corp Thin-film dielectric element
JP2000307171A (en) * 1999-03-19 2000-11-02 Internatl Business Mach Corp <Ibm> Pinning layer of magnetic device
JP2003288905A (en) * 2002-03-27 2003-10-10 Asahi Kasei Corp Method of manufacturing for electrode catalyst
JP2006062953A (en) * 2004-07-30 2006-03-09 Daihatsu Motor Co Ltd Method for manufacturing carbon nanotube and catalyst for manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8815470B2 (en) 2005-02-24 2014-08-26 Toyota Jidosha Kabushiki Kaisha Fuel cell catalyst, membrane electrode assembly and solid polymer electrolyte fuel cell
JP2010238546A (en) * 2009-03-31 2010-10-21 Equos Research Co Ltd Fine particle carrying metal oxide catalyst, its manufacturing method, and electrode for fuel cell
US9190670B2 (en) 2009-04-28 2015-11-17 Showa Denko K.K. Catalyst, production process therefor, and use thereof
WO2010126020A1 (en) 2009-04-28 2010-11-04 昭和電工株式会社 Catalyst, method for production of same, and use of same
KR101342825B1 (en) 2009-04-28 2013-12-17 쇼와 덴코 가부시키가이샤 Catalyst, method for production of same, and use of same
US9048499B2 (en) 2009-05-11 2015-06-02 Showa Denko K.K. Catalyst, production process therefor and use thereof
US8404610B2 (en) 2009-07-16 2013-03-26 Showa Denko K.K. Process for producing fuel cell catalyst, fuel cell catalyst obtained by production process, and uses thereof
WO2011065471A1 (en) 2009-11-27 2011-06-03 国立大学法人山梨大学 Oxide-based stable high-potential carrier for solid polymer fuel cell
US9570757B2 (en) 2011-09-09 2017-02-14 Showa Denko K.K. Fuel cell catalyst layer and uses thereof
DE112011105599B4 (en) 2011-09-09 2020-01-16 Showa Denko K.K. Fuel cell catalyst layer and its uses
JP2015111534A (en) * 2013-12-06 2015-06-18 株式会社ノリタケカンパニーリミテド Electrode material for solid oxide fuel cell and use thereof
WO2016200206A1 (en) * 2015-06-11 2016-12-15 주식회사 엘지화학 Cathode composition, cathode and fuel cell including same
CN107743660A (en) * 2015-06-11 2018-02-27 株式会社Lg化学 Air electrode composition, air electrode and the fuel cell including the air electrode
CN107743660B (en) * 2015-06-11 2021-01-15 株式会社Lg化学 Air electrode composition, air electrode and fuel cell including the same
WO2022085979A1 (en) * 2020-10-20 2022-04-28 재단법인대구경북과학기술원 Membrane-electrode assembly and fuel cell including same
CN112547092A (en) * 2020-11-30 2021-03-26 大连海事大学 Perovskite-based catalyst for constructing plasma catalytic air purification system and preparation method thereof
CN112547092B (en) * 2020-11-30 2023-05-19 大连海事大学 Perovskite-based catalyst for constructing plasma catalytic air purification system and preparation method thereof
CN114195228A (en) * 2021-12-14 2022-03-18 中南大学 Wastewater organic pollutant degradation system based on perovskite three-dimensional electrode
CN115805069A (en) * 2022-11-14 2023-03-17 天津大学 Catalyst for diesel engine based on highly dispersed perovskite catalytic component and preparation method
CN115805069B (en) * 2022-11-14 2024-03-19 天津大学 Catalyst for diesel engine based on high-dispersion perovskite catalytic component and preparation method thereof

Also Published As

Publication number Publication date
JP5214117B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5214117B2 (en) Perovskite-type oxide fine particles, perovskite-type oxide-supported particles, catalyst materials, fuel cell electrodes
JP4875410B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
US8007691B2 (en) Fine particle of perovskite oxide, particle having deposited perovskite oxide, catalyst material, catalyst material for oxygen reduction, catalyst material for fuel cell, and electrode for fuel cell
JP4713959B2 (en) Fuel cell supported catalyst and fuel cell
JP6495249B2 (en) catalyst
JP6172281B2 (en) Catalyst particles and electrode catalyst, electrolyte membrane-electrode assembly and fuel cell using the same
KR101494432B1 (en) Electrode catalyst for fuel cell, manufacturing method thereof, and fuel cell using the same
Kakinuma et al. Influence of ionomer content on both cell performance and load cycle durability for polymer electrolyte fuel cells using Pt/Nb-SnO2 cathode catalyst layers
JP4879658B2 (en) Fine particle-supporting carbon particles, method for producing the same, and fuel cell electrode
WO2006114942A1 (en) Particle containing carbon particle, platinum and ruthenium oxide, and method for producing same
JP4901143B2 (en) Electrode catalyst, electrode for fuel electrode, fuel cell device, and method for producing electrode catalyst
JP5283913B2 (en) Proton-conducting inorganic material used in fuel cells and anode for fuel cells using the same
EP1938896A1 (en) Particulate carbon carrying fine particle thereon, process for production thereof, and electrodes for fuel cells
WO2006090907A1 (en) Catalyst for fuel cell, membrane electrode assembly, and solid polymer electrolyte fuel cell
JP2008123860A (en) Metal oxide-carrying carbon and fuel cell electrode employing it
JP2007115668A (en) Particulate-carrying carbon particle, its manufacturing method, and fuel cell electrode
JP6846210B2 (en) Electrode catalyst and membrane electrode assembly and fuel cell using the electrode catalyst
EP1941943A1 (en) Microparticle-supported carbon particle, method for production thereof, and fuel cell electrode
JP2010238546A (en) Fine particle carrying metal oxide catalyst, its manufacturing method, and electrode for fuel cell
JP2007194138A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell
WO2016104714A1 (en) Catalyst carrier and method for manufacturing same
JP2007194139A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell
JP2007194140A (en) Particulate carrying carbon particle, its manufacturing method, and electrode for solid electrolyte fuel cell
WO2016084762A1 (en) Catalyst carrier and method for manufacturing same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080529

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees