JP2008098503A - 半導体装置およびその製造方法 - Google Patents
半導体装置およびその製造方法 Download PDFInfo
- Publication number
- JP2008098503A JP2008098503A JP2006280184A JP2006280184A JP2008098503A JP 2008098503 A JP2008098503 A JP 2008098503A JP 2006280184 A JP2006280184 A JP 2006280184A JP 2006280184 A JP2006280184 A JP 2006280184A JP 2008098503 A JP2008098503 A JP 2008098503A
- Authority
- JP
- Japan
- Prior art keywords
- insulating film
- gate electrode
- electrode layer
- element isolation
- floating gate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 238000005530 etching Methods 0.000 claims abstract description 12
- 238000002955 isolation Methods 0.000 claims description 105
- 239000000758 substrate Substances 0.000 claims description 45
- 150000004767 nitrides Chemical class 0.000 claims description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 56
- MFHHXXRRFHXQJZ-UHFFFAOYSA-N NONON Chemical compound NONON MFHHXXRRFHXQJZ-UHFFFAOYSA-N 0.000 abstract description 18
- 229920001709 polysilazane Polymers 0.000 abstract description 15
- 229920005591 polysilicon Polymers 0.000 abstract 2
- 229920001296 polysiloxane Polymers 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 104
- 238000000034 method Methods 0.000 description 45
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 36
- 229910052814 silicon oxide Inorganic materials 0.000 description 36
- 230000015572 biosynthetic process Effects 0.000 description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 20
- 230000008569 process Effects 0.000 description 20
- 229910052710 silicon Inorganic materials 0.000 description 20
- 239000010703 silicon Substances 0.000 description 20
- 229910052581 Si3N4 Inorganic materials 0.000 description 16
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 16
- 238000001020 plasma etching Methods 0.000 description 10
- 239000002184 metal Substances 0.000 description 7
- 229910021332 silicide Inorganic materials 0.000 description 7
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 7
- 101100535994 Caenorhabditis elegans tars-1 gene Proteins 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 239000012535 impurity Substances 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 5
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052698 phosphorus Inorganic materials 0.000 description 4
- 239000011574 phosphorus Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000004380 ashing Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 241000293849 Cordylanthus Species 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B41/00—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
- H10B41/30—Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42324—Gate electrodes for transistors with a floating gate
- H01L29/42336—Gate electrodes for transistors with a floating gate with one gate at least partly formed in a trench
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/788—Field effect transistors with field effect produced by an insulated gate with floating gate
- H01L29/7881—Programmable transistors with only two possible levels of programmation
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B69/00—Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Semiconductor Memories (AREA)
- Non-Volatile Memory (AREA)
- Element Separation (AREA)
Abstract
【課題】隣り合う浮遊ゲート電極間の電気的接続を防ぐことができるようにする。
【解決手段】多結晶シリコン層4の高さを95[nm」程度と従来に比較して低く形成し、NONON膜5およびポリシラザン膜15bおよびシリコン酸化膜15aをエッチング処理するときに、多結晶シリコン層4およびNONON膜5間の選択比条件を1:1.5〜2の範囲となる所定条件でエッチング処理する。
【選択図】図3
【解決手段】多結晶シリコン層4の高さを95[nm」程度と従来に比較して低く形成し、NONON膜5およびポリシラザン膜15bおよびシリコン酸化膜15aをエッチング処理するときに、多結晶シリコン層4およびNONON膜5間の選択比条件を1:1.5〜2の範囲となる所定条件でエッチング処理する。
【選択図】図3
Description
本発明は、素子分離絶縁膜により分離された浮遊ゲート電極を有する半導体装置およびその製造方法に関する。
近年、半導体装置としての例えばフラッシュメモリ装置においては、STI(Shallow Trench Isolation)構造の素子分離領域を形成することに先行してゲート電極層(浮遊ゲート電極層)を形成するプロセスが使用されている。このプロセスは、ゲート先作りプロセスと称されている。このプロセスは、半導体基板の主表面上にゲート絶縁膜を形成し、その上にゲート電極層(浮遊ゲート電極層)を形成し、その後、半導体基板の主表面内の所定方向に沿って溝部を形成することによりトランジスタのゲート絶縁膜およびゲート電極層を加工するプロセスである(例えば、特許文献1参照)。
この特許文献1に開示されているプロセスによれば、シリコン基板の上にトンネル絶縁膜を熱酸化法により形成し、不純物がドープされた多結晶シリコン層を浮遊ゲート電極層として形成し、さらにCMP(Chemical Mechanical Polish)法による平坦化処理の際のストッパ膜となるシリコン窒化膜を形成し、RIE(Reactive Ion Etching)法によるエッチング処理の際のマスク材となるシリコン酸化膜を減圧CVD法(LP(Low Pressure)−CVD(Chemical Vapor Deposition)法)により形成する。その後、RIE法によりこれらのシリコン酸化膜、シリコン窒化膜、多結晶シリコン層、トンネル絶縁膜を順次エッチング処理して加工し、さらにシリコン基板をエッチング処理して溝部を形成している。
その後、数工程を経て溝部にシリコン酸化膜をプラズマCVD法により堆積して素子分離溝を完全に埋込み、当該シリコン酸化膜をCMP法によりシリコン窒化膜の上面で平坦化処理し、その後、ストッパ膜となるシリコン窒化膜を除去する。これにより浮遊ゲート電極およびゲート絶縁膜並びに素子分離絶縁膜を加工形成している。
特許文献1に開示されている製造方法を適用するときには、半導体基板の主表面上に各膜を所定の膜厚で堆積し、主表面上のある所定方向に沿って溝部を形成し当該溝部に素子分離絶縁膜を埋込み、所定方向に対して表面内で交差する交差方向に沿って電気的導電性の強い不純物ドープ多結晶シリコン層を除去し、隣接する多結晶シリコン層を分離加工することにより半導体基板の主表面上に対して2次元的に浮遊ゲート電極を形成する。これにより、半導体基板の主表面上に効率よく浮遊ゲート電極を形成できる。
この方法を適用するときには、半導体基板の主表面上の多結晶シリコン層を除去することで所定方向および交差方向に浮遊ゲート電極を2次元的に構成できるものの、素子分離絶縁膜の上面をゲート絶縁膜の形成面(上面)よりも高く形成する必要があるため、隣接する素子分離絶縁膜間に形成された多結晶シリコン層を除去しようとしても素子分離絶縁膜の側壁に沿った溝部の形成方向(所定方向)に沿って残留してしまう。すると、所定方向に隣り合う浮遊ゲート電極が電気的に導通接続されてしまい不具合を生じてしまう。特に、近年、回路設計ルールの縮小化に伴い、素子分離絶縁膜間に形成される浮遊ゲート電極層の幅寸法が狭くなってきている。このため、アスペクト比が高くなり浮遊ゲート電極層を分断するための条件がますます厳しくなってきている。
特開2002−110822号公報
本発明は、隣り合う浮遊ゲート電極間の電気的導通を防ぐことができるようにした半導体装置およびその製造方法を提供することを目的とする。
本発明に係る半導体装置の製造方法は、半導体基板の主表面上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に浮遊ゲート電極層を形成する工程と、前記浮遊ゲート電極層、前記ゲート絶縁膜および前記半導体基板に対して所定方向に沿って溝部を形成し前記浮遊ゲート電極層およびゲート絶縁膜を複数に分断する工程と、上面が前記浮遊ゲート電極層上面よりも下方に位置すると共に前記ゲート絶縁膜の上面よりも上方に位置するように前記溝部内に素子分離絶縁膜を形成する工程と、前記浮遊ゲート電極層、前記素子分離絶縁膜を覆うように酸化膜層および窒化膜層の積層構造からなるゲート間絶縁膜を形成する工程と、前記ゲート間絶縁膜の上に制御ゲート電極層を形成する工程と、前記所定方向に対して交差する交差方向に沿って前記制御ゲート電極層を除去し当該制御ゲート電極層を複数に分断する工程と、浮遊ゲート電極層およびゲート間絶縁膜間の選択比条件を1:1.5〜2の範囲内の所定条件として、前記制御ゲート電極層が分断された分断領域において前記ゲート間絶縁膜および前記素子分離絶縁膜をエッチングする工程と、前記制御ゲート電極層および前記ゲート間絶縁膜を分断した領域下に位置する浮遊ゲート電極層を除去する工程とを備えたことを特徴としている。
本発明に係る半導体装置の製造方法は、半導体基板の主表面上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に90[nm]の膜厚で浮遊ゲート電極層を形成する工程と、前記浮遊ゲート電極層、前記ゲート絶縁膜および前記半導体基板に対して所定方向に沿って溝部を形成し前記浮遊ゲート電極層およびゲート絶縁膜を複数に分断する工程と、上面が前記浮遊ゲート電極層上面から70[nm]以下の段差を有して当該浮遊ゲート電極層上面より下方に位置すると共に前記ゲート絶縁膜の上面よりも上方に位置するように前記溝部内に素子分離絶縁膜を形成する工程と、前記浮遊ゲート電極層、前記素子分離絶縁膜を覆うようにゲート間絶縁膜を形成する工程と、前記ゲート間絶縁膜の上に制御ゲート電極層を形成する工程と、前記所定方向に対して交差する交差方向に沿って前記制御ゲート電極層を除去し当該制御ゲート電極層を複数に分断する工程と、前記制御ゲート電極層が分断された分断領域において前記ゲート間絶縁膜および前記素子分離絶縁膜を除去する工程であって、前記所定方向に沿った前記素子分離絶縁膜の側壁の中央部の前記ゲート絶縁膜からの高さが前記側壁の端部の高さより低くなるよう前記素子分離絶縁膜を除去する工程と、前記制御ゲート電極層および前記ゲート間絶縁膜を分断した領域下に位置する前記浮遊ゲート電極層を除去する工程とを備えたことを特徴とする。
本発明の半導体装置は、素子領域および素子分離領域が所定方向に沿って複数形成された半導体基板と、複数の前記素子領域上にそれぞれにゲート絶縁膜を介して形成された浮遊ゲート電極であって、前記所定方向に沿って所定間隔で複数形成された浮遊ゲート電極と、前記浮遊ゲート電極上に形成されたゲート間絶縁膜と、前記ゲート間絶縁膜上に形成された制御ゲート電極であって、前記所定方向と交差する方向に前記所定間隔で複数形成され、それぞれ前記所定方向と交差する方向に隣接する前記浮遊ゲート電極間にわたり形成された制御ゲート電極と、前記素子分離領域に形成された素子分離絶縁膜であって、上端部が前記ゲート絶縁膜の上面よりも上方に位置するように形成され、前記制御ゲート電極間において、前記所定方向に沿った側壁の中央部の前記半導体基板からの高さが前記側壁の端部の高さより低くなるよう形成されると共に、上面の中央部が前記半導体基板の表面よりも下方に位置するように形成された素子分離絶縁膜とを具備したことを特徴としている。
本発明によれば、隣り合う浮遊ゲート電極間の電気的接続を防ぐことができる。
以下、本発明の半導体装置の製造方法を、NAND型フラッシュメモリ装置のメモリセル領域の製造方法に適用した一実施形態について図面を参照しながら説明する。なお、以下に参照する図面内の記載において、同一または類似の部分には同一又は類似の符号を付して表している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なる。
図1は、NAND型のフラッシュメモリ装置のメモリセル領域に形成されるメモリセルアレイの一部を示す等価回路図である。
この図1に示すように、NAND型のフラッシュメモリ装置1のメモリセル領域Mに構成されるメモリセルアレイArは、2個の選択ゲートトランジスタTrs1およびTrs2と、当該選択ゲートトランジスタTrs1およびTrs2間に対して直列接続された複数個(例えば8個:2のn乗個(nは正数))のメモリセルトランジスタTrmとからなるNANDセルユニットSUが行列状に形成されることにより構成されている。NANDセルユニットSU内において、複数個のメモリセルトランジスタTrmは隣接するもの同士でソース/ドレイン領域を共用して形成されている。
この図1に示すように、NAND型のフラッシュメモリ装置1のメモリセル領域Mに構成されるメモリセルアレイArは、2個の選択ゲートトランジスタTrs1およびTrs2と、当該選択ゲートトランジスタTrs1およびTrs2間に対して直列接続された複数個(例えば8個:2のn乗個(nは正数))のメモリセルトランジスタTrmとからなるNANDセルユニットSUが行列状に形成されることにより構成されている。NANDセルユニットSU内において、複数個のメモリセルトランジスタTrmは隣接するもの同士でソース/ドレイン領域を共用して形成されている。
図1中、X方向(ワード線方向、ゲート幅方向に相当)に配列されたメモリセルトランジスタTrmは、ワード線(コントロールゲート線)WLにより共通接続されている。また、図1中X方向に配列された選択ゲートトランジスタTrs1は選択ゲート線SGL1で共通接続されている。同様に、図1中X方向に配列された選択ゲートトランジスタTrs2は選択ゲート線SGL2で共通接続されている。
選択ゲートトランジスタTrs1のドレイン領域にはビット線コンタクトCBが接続されている。このビット線コンタクトCBは図1中X方向に直交交差するY方向(ゲート長方向、ビット線方向に相当)に延びるビット線BLに接続されている。また、選択ゲートトランジスタTrs2はソース領域を介して図1中X方向に延びるソース線SLに接続されている。
図2は、メモリセル領域の一部(図1のA1領域)のレイアウトパターンを示す平面図である。半導体基板としてのp型のシリコン基板2には、STI(Shallow Trench Isolation)構造の素子分離領域Sbが図2中Y方向に沿って形成されている。この素子分離領域Sbは、X方向に所定間隔で複数本形成されており、これにより素子領域(活性領域)Saが図2中X方向に分離形成されている。
ワード線WLが、素子領域Saと直交する図2中X方向に沿って形成されている。このワード線WLは、制御ゲート電極CG(図3参照)としての機能を奏するもので、図2中のゲート電極形成領域GCに構成されている。ワード線WLは、図2中のY方向に複数本離間して形成されており、複数本のワード線WLはゲート電極分離領域GVに埋め込まれる層間絶縁膜(図示せず)によってY方向に対して互いに電気的に分離されている。
また、ビット線コンタクトCB側の選択ゲートトランジスタTrs1の選択ゲート線SGL1が、図2中X方向に沿って形成されている。本実施形態の特徴には関係しないため詳述しないが、選択ゲート線SGL1は、平面的にはビット線コンタクトCBを挟んで一対形成されており、一対の選択ゲート線SGL1間の素子領域(活性領域)Sa上にはビット線コンタクトCBがそれぞれ形成されている。
ワード線WLと交差する素子領域Sa上には、それぞれ、メモリセルトランジスタTrmの浮遊ゲート電極FGが構成されている。この浮遊ゲート電極FGは、X方向に並設されていると共にY方向に並設されている。ワード線WLは、複数の素子領域Saおよび複数の素子分離領域Sbの上方を図2中X方向に渡って形成されていると共に、X方向に並設された浮遊ゲート電極FGの上を渡って形成されている。また、選択ゲート線SGL1と交差する素子領域Sa上には、選択ゲートトランジスタTrs1の選択ゲート電極SGが構成されており選択ゲート線SGL1によって連結されている。
本実施形態においては、メモリセル領域Mにおける浮遊ゲート電極FGおよび素子分離領域Sbの製造方法に特徴を備えているため、その部分について詳細説明を行い、周辺回路領域の説明については省略する。以下、メモリセルトランジスタTrmの構造について図3を参照しながら説明する。
図3は、図2に示した平面構造のうちゲート電極形成領域GCの1領域およびゲート電極分離領域GVの1領域内の概略的構造を説明するための斜視図である。尚、図3において、NAND型のフラッシュメモリ装置が完成したときにはゲート電極分離領域GV内のシリコン基板2およびゲート絶縁膜3上に層間絶縁膜が形成されるが、本実施形態に係る特徴部分を示すため、層間絶縁膜の構造を省略しており図示していない。また、図3中に示す金属シリサイド層7と層間絶縁膜の上にはバリア膜が形成されるが、このバリア膜の構造も省略しており図示していない。
この図3に示すように、半導体基板としてのp型のシリコン基板2の主表面の素子領域Sa上には、ゲート絶縁膜(トンネル絶縁膜)としてのシリコン酸化膜3が形成されている。シリコン酸化膜3の上には、ゲート電極形成領域GC内において、リン等の不純物がドープされた多結晶シリコン層4、ゲート間絶縁膜およびインターポリ絶縁膜としてのNONON(Nitride-Oxide-Nitride-Oxide-Nitride)膜5、リン等の不純物がドープされた多結晶シリコン層6、金属シリサイド層7が順に積層されている。多結晶シリコン層6および金属シリサイド層7が制御ゲート電極層CGとして構成されている。
多結晶シリコン層4は、シリコン酸化膜3の上にY方向(所定方向)に沿ってゲート電極分離領域GVにおいて分断されつつ並設するように形成されていると共に、これらの並設された複数の多結晶シリコン層のそれぞれに対してX方向(交差方向)にも素子分離領域Sbで分断されつつ並設するように形成されている。NONON膜5は、X方向に並設された複数の多結晶シリコン層4の上を渡って延設されている。
ゲート電極形成領域GC内において、多結晶シリコン層4は、電荷を蓄積する層、所謂浮遊ゲート電極FGとして85[nm]の膜厚で構成されている。従来、140[nm]程度の膜厚で形成されていたが、この厚さを従来に比較して少なく構成している。また、多結晶シリコン層6および金属シリサイド層7は制御ゲート電極CG、ワード線WLとして構成されている。隣り合うゲート電極形成領域GC間の領域となるゲート電極分離領域GVにおいては、シリコン基板2の素子形成領域Sa上にシリコン酸化膜3が形成され、このシリコン酸化膜3の下にはシリコン基板2の表層にソース/ドレイン領域(拡散層)2aが形成されている。
素子分離領域Sbにおいては、シリコン基板2の上面(表面)内の所定方向(図1のY方向)に沿って、多結晶シリコン層4、シリコン酸化膜3、およびシリコン基板2に対して所定の深さで溝部8が形成されている。
この溝部8には素子分離絶縁膜9が埋込まれている。この素子分離絶縁膜9は、ゲート電極形成領域GCおよびゲート電極分離領域GVに渡り、その上部の高さがシリコン基板2上に形成されたシリコン酸化膜3の上面より高くなるように形成されている。この素子分離絶縁膜9は、ゲート電極形成領域GCに形成された第1の素子分離絶縁部9aと、ゲート電極分離領域GVに形成された第2の素子分離絶縁部9bとから構成されている。これらの第1および第2の素子分離絶縁部9aおよび9bは、溝部8に対して同一工程において埋込まれており、その後、第2の素子分離絶縁膜9bの上面側が除去された状態で構成されている。
ゲート電極分離領域GVの第2の素子分離絶縁部9bは、X方向に隣接する複数の素子形成領域Sa(活性領域AA)間を電気的に高抵抗に保持するように形成されており、溝部8の内面に沿って形成されたシリコン酸化膜9baと、当該シリコン酸化膜9baの内側に形成された塗布型酸化膜(塗布型絶縁膜)であるポリシラザン膜9bbとにより構成されている。
ゲート電極分離領域GVの第2の素子分離絶縁部9bは、ゲート電極形成領域GCの第1の素子分離絶縁部9bとの境界に対してZ方向(上下方向)に沿うように形成されている。第2の素子分離絶縁部9bは、Y方向に沿ってシリコン酸化膜3の上面から上方に向けて突出した側壁9eのうち中央部9gの上面の高さがゲート電極形成領域GCとの境界部となる側壁縁部9cの上面の高さより低くなるようほぼU字状に形成されている。
ゲート電極形成領域GCの第1の素子分離絶縁部9aは、溝部8の内面に沿って形成されたシリコン酸化膜9aaと、溝部8に対してシリコン酸化膜9aaの内側に形成されたポリシラザン膜9abとを備えて構成される。これらの第1および第2の素子分離絶縁部9aおよび9bはY方向に渡って連続的に構成される。
素子分離領域Sbの第1の素子分離絶縁部9aの上には、NONON膜5、多結晶シリコン層6、金属シリサイド層7、シリコン窒化膜10が積層されることにより構成されている。図3に示すように、NONON膜5は、ゲート電極形成領域GCに形成された多結晶シリコン層4、および第1の素子分離絶縁部9aを覆うように形成されている。また、ゲート電極分離領域GVに形成されたNONON膜5は、ゲート電極分離領域GVとゲート電極形成領域GCとの境界部となる側壁縁部9cに沿うように形成されていると共に、NONON膜5の境界上部Gaからその下方に位置する第2の素子分離絶縁部9bに対して構造的に接触するように例えば略三角形状に形成されている。
ゲート電極分離領域GVにおいては、第2の素子分離絶縁部9bの上面は、断面が図3中X方向に沿って略U字形状に形成されており、その中央部は、シリコン基板2の表面よりも下方に位置するように形成されている。また、素子領域Saとの境界部分に位置する第2の素子分離絶縁部9bの図3中Y方向に沿った側壁9e全体はシリコン基板2の表面から上方に突出するように形成されており、側壁中央部9gが最低高さとなるように、断面が図3中Y方向に沿って略U字形状となるよう構成されている。また、第2の素子分離絶縁部9bの中央部9dの高さは側壁9eや側壁縁部9cの高さよりも低くなるように形成されている。
これまで、第2の素子分離絶縁膜9bの側壁中央部9gが側壁縁部9cの高さより低く形成されていないときには、多結晶シリコン層4が第2の素子分離絶縁部9bの側壁9eの脇に対してY方向に沿って隣接する浮遊ゲート電極FGまで残留してしまっていた。
本実施形態に係る構成によれば、多結晶シリコン層4の高さを85[nm]の膜厚で従来に比較して低く構成し、第2の素子分離絶縁部9bの側壁中央部9gの高さが側壁縁部9cの高さよりも低くなるように略U字状に形成されているため、側壁9eの脇に対してY方向に沿って多結晶シリコン層4が残留しにくくなる。具体的には、図3に示すように、ゲート電極形成領域GCの多結晶シリコン層4および第2の素子分離絶縁部9bの側壁9eに沿って僅かに残膜4aが残留する。しかし、図2に示すように、ゲート電極形成領域GCの幅をW2と規定したときに、Y方向に沿って残留する残膜4aを含む幅W1を幅W2よりも6[nm]程度以下に抑制できることが確認できている。
したがって、ゲート電極分離領域GVのY方向幅が縮小化されたとしても、導通性の高い多結晶シリコン層4が、隣り合う浮遊ゲート電極FG間を構造的に接合(結合)しなくなり、隣り合う浮遊ゲート電極FG間を電気的に導通接続しなくなる。これにより不具合を防止できる。
以下、NAND型のフラッシュメモリ装置のメモリセル領域の製造方法について、ゲート先作りプロセス(素子分離領域Sbに先行して浮遊ゲート電極FGを形成するプロセス)を適用して詳細説明を行う。尚、本発明を実現できれば、後述説明する工程は必要に応じて省いても良いし、一般的な工程であれば付加しても良い。
図4に示すように、シリコン基板2の上にゲート絶縁膜としてのシリコン酸化膜3を例えば10[nm]の膜厚で熱酸化法によって形成する。次に、このシリコン酸化膜3の上に減圧CVD(Chemical Vapor Deposition)法によりリン等の不純物がドープされた多結晶シリコン層4を90[nm]の膜厚で形成する。尚、この多結晶シリコン層4は、最終的には浮遊ゲート電極FGとなる。次に、多結晶シリコン層4の上に減圧CVD法によりシリコン窒化膜14を形成する。
次に、図5に示すように、シリコン窒化膜14の上にレジスト17を塗布しリソグラフィ技術によりパターンニングする。次に、図6に示すように、パターンニングされたレジスト17をマスクとしてRIE(Reactive Ion Etching)法によりシリコン窒化膜14、不純物がドープされた多結晶シリコン層4、シリコン酸化膜3、シリコン基板2をエッチング処理することによって、所定方向(Y方向)に沿った溝部8をX方向に離間して平行に複数形成する。これにより、多結晶シリコン層4、シリコン酸化膜3が複数に分断される。その後、レジスト17をアッシング技術により除去する。
次に、図7に示すように、これらの加工膜の表面を覆うようにLP(Low Pressure)−CVD(Chemical Vapor Deposition)法によりシリコン酸化膜15aを例えば15[nm]の程度の膜厚で形成した後、この上にポリシラザン膜15bを例えば600[nm]程度塗布し、さらに酸化性雰囲気内において熱処理を行い、ポリシラザン膜15bをシリコン酸化膜に転換する。尚、これらのシリコン酸化膜15aおよびポリシラザン膜15bが前述した素子分離絶縁膜9として構成されるようになる。
次に、図8に示すように、CMP(Chemical Mechanical Polishing)法によりシリコン酸化膜15aおよびポリシラザン膜15bをシリコン窒化膜14の表面(上面)が露出するまで平坦化処理する。
次に、図9に示すように、RIE法によりポリシラザン膜15bおよびシリコン酸化膜15aの表面をエッチバックし、ポリシラザン膜15bおよびシリコン酸化膜15aの表面の高さと多結晶シリコン層4の上面高さとの差が70[nm]以下の段差H1を形成する。この場合、多結晶シリコンに対して高選択性となる条件下でシリコン酸化膜15aおよびポリシラザン膜15bをエッチングする。従来、この段差H1を100[nm]以上としていたが、これを70[nm]以下にする。すると、シリコン基板2の上面からのシリコン酸化膜15aおよびポリシラザン膜15bの高さを従来に比較して低くすることができる。これにより、後にゲート電極分離領域GVの多結晶シリコン層4を除去するときに当該多結晶シリコン層4を除去処理しやすくなる。
次に、図10に示すように、減圧CVD法によりNONON膜5をゲート間絶縁膜として例えば15〜17[nm]程度覆うように形成し、引き続き、その上にリン等の不純物がドープされた多結晶シリコン層6を形成する。次に、図11に示すように、多結晶シリコン層6の上に減圧CVD法によりシリコン窒化膜16を形成する。
次に、図12に示すように、シリコン窒化膜16の上にレジスト17を塗布し、このレジスト17をパターンニングする。具体的には、ゲート電極分離領域GVのシリコン窒化膜16の上面を露出させ、ゲート電極形成領域GCをマスクするようにレジスト17をパターンニングする。
次に、図13に示すように、パターンニングされたレジスト17をマスクとしてRIE法によりシリコン窒化膜16を除去することでシリコン窒化膜16を分断し、アッシング技術によりレジスト17を除去する。
次に、図14に示すように、シリコン窒化膜16をマスクとしてNONON膜5に対して高選択性を有する条件下で多結晶シリコン層6をRIE法によりエッチング処理して分断する。
この後、図15および図16に示すように、条件を変更してNONON膜5およびポリシラザン膜15bおよびシリコン酸化膜15aをエッチング処理する。この場合、CF系のガスを使用し、多結晶シリコン層4およびNONON膜5間の選択比条件を1:1.5〜2の範囲となる条件下でエッチング処理する。
すなわち、図15に示すように、多結晶シリコン層4の上に形成されたNONON膜5を除去する処理を行うと同時に、図16に示すように、ゲート電極分離領域GVにおけるポリシラザン膜15bおよびシリコン酸化膜15aの上部、並びに多結晶シリコン層4をエッチング除去する。このような処理が行われると、多結晶シリコン層4の上面がX方向に沿って上側に凸に湾曲する湾曲部4bとなるように形成される。
図15および図16においては、ポリシラザン膜15bおよびシリコン酸化膜15aの上部を除去する前に一旦処理をストップしているように示しているが、これら図15および図16は形状変化を理解しやすくするために示したもので、実際にはこれらの処理は同一工程で行われる。
図16に示すように、多結晶シリコン層4およびNONON膜5間の選択比条件を1:1.5〜2の範囲となる条件下でエッチング処理することにより、ゲート電極分離領域GVにおいて、素子領域Saと素子分離領域Sbとの境界部分に位置する素子分離絶縁膜9の側壁を、図16中Y方向に沿って側壁中央部9gが側壁縁部9cより低い所謂断面U字形状に形成する。ここで、側壁中央部9gの高さはシリコン酸化膜3の上面より高くなるように形成する。また、この処理により、ゲート電極分離領域GVにおいて、素子分離絶縁膜9は図16中X方向に沿って中央部9dが側壁縁部9cより低い所謂断面U字形状に形成される。さらに、ゲート電極分離領域GVにおいて、多結晶シリコン層4の上面はX方向に沿って上側に凸に湾曲する湾曲部4bとなるように形成される。
次に、図3に示すように、シリコン酸化膜に対して高選択性を有する条件下でRIE法(異方性エッチング)によってゲート電極分離領域GVの多結晶シリコン層4をエッチング処理する。すると、多結晶シリコン層4の残膜4aは、側壁9eの脇全面に沿って残留することなく、図2および図3に示すように、ゲート電極形成領域GCおよびゲート電極分離領域GV間の境界部に沿って6nm程度とわずかな残膜4aとして残留するのみである。
この後、一般的には熱酸化処理が行われる。側壁9eの脇に沿って多結晶シリコン層4が残留したとしても、高温で熱酸化処理することによって酸化することは可能であるが、シリコン酸化膜3にバーズビークを生じたり、多結晶シリコン層4が収縮してしまうため好ましくない。
本実施形態においては、多結晶シリコン層4の高さを従来に比較して格段に低く90[nm]の膜厚で形成すると共に、その後の第2の素子分離絶縁部9bの上部のエッチバック処理を多結晶シリコン層4の上面から下方70[nm]以下に抑えている。また、多結晶シリコン層4とNONON膜5との間の選択比条件を1:1.5〜2の範囲となる所定条件としてエッチング処理して多結晶シリコン層4の上面、NONON膜5、シリコン酸化膜15a、ポリシラザン15bを除去している。
このため、浮遊ゲート電極FGを従来に比較して低く形成できると共に、第2の素子分離絶縁部9bの側壁中央部9gを窪むように低く形成できるため、ゲート電極分離領域GV内の多結晶シリコン層4をRIE法によって除去するときに側壁9eの脇全体に残膜4aが残留しなくなる。これにより、隣り合う浮遊ゲート電極FGおよびFG間の導通を防ぐことができる。
この後、シリコン基板2の表層にソース/ドレイン領域2aを形成する。次に、例えばTEOS(Tetra Ethyl Ortho Silicate)からなる層間絶縁膜をゲート電極分離領域GV内に埋め込むと共に、シリコン窒化膜16を除去し、金属シリサイド層7、層間絶縁膜および金属シリサイド層7の上を渡るバリア膜や、その他配線層(図示せず)等を形成し、さらにその他の膜処理や後工程を経てNAND型のフラッシュメモリ装置1を構成できるが、この工程の詳細については本実施形態の特徴ではないためこの工程の詳細説明を省略する。
(他の実施形態)
本発明は、上記実施例にのみ限定されるものではなく、次のように変形または拡張できる。
半導体基板としてシリコン基板2に適用した実施形態を示したが、その他の材質の半導体基板に適用しても良い。
シリコン酸化膜3に代えて他のゲート絶縁膜材料を適用しても良い。
本発明は、上記実施例にのみ限定されるものではなく、次のように変形または拡張できる。
半導体基板としてシリコン基板2に適用した実施形態を示したが、その他の材質の半導体基板に適用しても良い。
シリコン酸化膜3に代えて他のゲート絶縁膜材料を適用しても良い。
多結晶シリコン層4、6に代えて他の導電材料を適用しても良い。
ゲート間絶縁膜としてNONON膜5に適用したが、ONO膜等の酸化膜層と窒化膜層の積層構造に適用してもよいし、他の高誘電体材料膜に適用しても良い。
ゲート間絶縁膜としてNONON膜5に適用したが、ONO膜等の酸化膜層と窒化膜層の積層構造に適用してもよいし、他の高誘電体材料膜に適用しても良い。
Y軸方向(所定方向)およびX軸方向(交差方向)に沿って浮遊ゲート電極がそれぞれ並設されるように形成されているメモリ構造を備えた半導体装置であれば、どのような半導体装置に適用しても良い。
溝部8内に素子分離絶縁膜9を形成するときに、素子分離絶縁膜9の上面が多結晶シリコン層4の上面と一致するように形成すると共に、NONON膜5を形成するときに多結晶シリコン層4の上面および素子分離絶縁膜9の上面を渡って平面状(平坦面状)に形成するようにしても良い。この場合も前述とほぼ同様の作用効果が得られる。
素子分離絶縁膜9を形成するときに、素子分離絶縁膜9の上端部の高さがシリコン基板2の表面上から35[nm]以下とすると良い。この場合、多結晶シリコン層4の除去処理をより容易に行うことができる。
NAND型のフラッシュメモリ装置に適用したが、必要に応じてその他EEPROMやEPROM、NOR型のフラッシュメモリ装置に適用しても良いし、その他の不揮発性半導体記憶装置、半導体記憶装置、半導体装置に適用しても良い。
図面中、1はフラッシュメモリ装置(半導体装置)、2はシリコン基板(半導体基板)、3はシリコン酸化膜(ゲート絶縁膜)、4は多結晶シリコン層(浮遊ゲート電極層)、5はNONON膜(ゲート間絶縁膜)、8は溝部、9は素子分離絶縁膜、FGは浮遊ゲート電極層、CGは制御ゲート電極層である。
Claims (5)
- 半導体基板の主表面上にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上に浮遊ゲート電極層を形成する工程と、
前記浮遊ゲート電極層、前記ゲート絶縁膜および前記半導体基板に対して所定方向に沿って溝部を形成し前記浮遊ゲート電極層およびゲート絶縁膜を複数に分断する工程と、
上面が前記浮遊ゲート電極層上面よりも下方に位置すると共に前記ゲート絶縁膜の上面よりも上方に位置するように前記溝部内に素子分離絶縁膜を形成する工程と、
前記浮遊ゲート電極層、前記素子分離絶縁膜を覆うように酸化膜層および窒化膜層の積層構造からなるゲート間絶縁膜を形成する工程と、
前記ゲート間絶縁膜の上に制御ゲート電極層を形成する工程と、
前記所定方向に対して交差する交差方向に沿って前記制御ゲート電極層を除去し当該制御ゲート電極層を複数に分断する工程と、
浮遊ゲート電極層およびゲート間絶縁膜間の選択比条件を1:1.5〜2の範囲内の所定条件として、前記制御ゲート電極層が分断された分断領域において前記ゲート間絶縁膜および前記素子分離絶縁膜をエッチングする工程と、
前記制御ゲート電極層および前記ゲート間絶縁膜を分断した領域下に位置する浮遊ゲート電極層を除去する工程とを備えたことを特徴とする半導体装置の製造方法。 - 前記エッチング工程では、前記素子分離絶縁膜を、前記所定方向に沿った前記素子分離絶縁膜の側壁の中央部の前記ゲート絶縁膜からの高さが前記側壁の端部の高さより低くなるよう形成することを特徴とする請求項1記載の半導体装置の製造方法。
- 半導体基板の主表面上にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上に90[nm]の膜厚で浮遊ゲート電極層を形成する工程と、
前記浮遊ゲート電極層、前記ゲート絶縁膜および前記半導体基板に対して所定方向に沿って溝部を形成し前記浮遊ゲート電極層およびゲート絶縁膜を複数に分断する工程と、
上面が前記浮遊ゲート電極層上面から70[nm]以下の段差を有して当該浮遊ゲート電極層上面より下方に位置すると共に前記ゲート絶縁膜の上面よりも上方に位置するように前記溝部内に素子分離絶縁膜を形成する工程と、
前記浮遊ゲート電極層、前記素子分離絶縁膜を覆うようにゲート間絶縁膜を形成する工程と、
前記ゲート間絶縁膜の上に制御ゲート電極層を形成する工程と、
前記所定方向に対して交差する交差方向に沿って前記制御ゲート電極層を除去し当該制御ゲート電極層を複数に分断する工程と、
前記制御ゲート電極層が分断された分断領域において前記ゲート間絶縁膜および前記素子分離絶縁膜を除去する工程であって、前記所定方向に沿った前記素子分離絶縁膜の側壁の中央部の前記ゲート絶縁膜からの高さが前記側壁の端部の高さより低くなるよう前記素子分離絶縁膜を除去する工程と、
前記制御ゲート電極層および前記ゲート間絶縁膜を分断した領域下に位置する前記浮遊ゲート電極層を除去する工程とを備えたことを特徴とする半導体装置の製造方法。 - 前記溝部内に素子分離絶縁膜を形成する工程では、当該素子分離絶縁膜の上端部の高さが前記半導体基板の表面上から35[nm]以下の高さとなるように形成することを特徴とする請求項3記載の半導体装置の製造方法。
- 素子領域および素子分離領域が所定方向に沿って複数形成された半導体基板と、
複数の前記素子領域上にそれぞれにゲート絶縁膜を介して形成された浮遊ゲート電極であって、前記所定方向に沿って所定間隔で複数形成された浮遊ゲート電極と、
前記浮遊ゲート電極上に形成されたゲート間絶縁膜と、
前記ゲート間絶縁膜上に形成された制御ゲート電極であって、前記所定方向と交差する方向に前記所定間隔で複数形成され、それぞれ前記所定方向と交差する方向に隣接する前記浮遊ゲート電極間にわたり形成された制御ゲート電極と、
前記素子分離領域に形成された素子分離絶縁膜であって、上端部が前記ゲート絶縁膜の上面よりも上方に位置するように形成され、前記制御ゲート電極間において、前記所定方向に沿った側壁の中央部の前記半導体基板からの高さが前記側壁の端部の高さより低くなるよう形成されると共に、上面の中央部が前記半導体基板の表面よりも下方に位置するように形成された素子分離絶縁膜とを具備したことを特徴とする半導体装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006280184A JP2008098503A (ja) | 2006-10-13 | 2006-10-13 | 半導体装置およびその製造方法 |
CNB2007101524023A CN100541765C (zh) | 2006-10-13 | 2007-10-11 | 半导体装置及其制造方法 |
US11/871,591 US7651912B2 (en) | 2006-10-13 | 2007-10-12 | Semiconductor device and method of fabricating the same |
KR1020070102883A KR100914810B1 (ko) | 2006-10-13 | 2007-10-12 | 반도체 장치 및 그 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006280184A JP2008098503A (ja) | 2006-10-13 | 2006-10-13 | 半導体装置およびその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008098503A true JP2008098503A (ja) | 2008-04-24 |
Family
ID=39297594
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006280184A Pending JP2008098503A (ja) | 2006-10-13 | 2006-10-13 | 半導体装置およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7651912B2 (ja) |
JP (1) | JP2008098503A (ja) |
KR (1) | KR100914810B1 (ja) |
CN (1) | CN100541765C (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100998945B1 (ko) * | 2008-09-05 | 2010-12-09 | 주식회사 하이닉스반도체 | 비휘발성 메모리 소자 제조 방법 |
JP5670777B2 (ja) * | 2011-02-10 | 2015-02-18 | ルネサスエレクトロニクス株式会社 | 半導体装置の製造方法 |
CN104716099B (zh) * | 2013-12-13 | 2018-12-14 | 旺宏电子股份有限公司 | 非挥发性记忆体及其制造方法 |
KR102675909B1 (ko) * | 2017-02-20 | 2024-06-18 | 삼성전자주식회사 | 반도체 소자 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4237344B2 (ja) * | 1998-09-29 | 2009-03-11 | 株式会社東芝 | 半導体装置及びその製造方法 |
JP4149644B2 (ja) * | 2000-08-11 | 2008-09-10 | 株式会社東芝 | 不揮発性半導体記憶装置 |
JP4074054B2 (ja) | 2000-09-28 | 2008-04-09 | 株式会社東芝 | 不揮発性半導体記憶装置の製造方法 |
JP4160283B2 (ja) * | 2001-09-04 | 2008-10-01 | 株式会社東芝 | 半導体装置の製造方法 |
JP2005085996A (ja) * | 2003-09-09 | 2005-03-31 | Toshiba Corp | 半導体装置及びその製造方法 |
JP3966850B2 (ja) * | 2003-11-20 | 2007-08-29 | 株式会社東芝 | 半導体装置およびその製造方法 |
JP2005332885A (ja) * | 2004-05-18 | 2005-12-02 | Toshiba Corp | 不揮発性半導体記憶装置及びその製造方法 |
JP4594796B2 (ja) * | 2005-05-24 | 2010-12-08 | 株式会社東芝 | 半導体装置およびその製造方法 |
KR100781563B1 (ko) * | 2005-08-31 | 2007-12-03 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 그 제조 방법. |
-
2006
- 2006-10-13 JP JP2006280184A patent/JP2008098503A/ja active Pending
-
2007
- 2007-10-11 CN CNB2007101524023A patent/CN100541765C/zh not_active Expired - Fee Related
- 2007-10-12 KR KR1020070102883A patent/KR100914810B1/ko not_active IP Right Cessation
- 2007-10-12 US US11/871,591 patent/US7651912B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US7651912B2 (en) | 2010-01-26 |
US20080315283A1 (en) | 2008-12-25 |
CN101162709A (zh) | 2008-04-16 |
KR20080034080A (ko) | 2008-04-18 |
KR100914810B1 (ko) | 2009-09-02 |
CN100541765C (zh) | 2009-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5330004B2 (ja) | 半導体装置の製造方法 | |
JP5091452B2 (ja) | 半導体装置の製造方法 | |
JP2008078298A (ja) | 半導体装置及びその製造方法 | |
JP5606388B2 (ja) | パターン形成方法 | |
JP2010087160A (ja) | 不揮発性半導体記憶装置の製造方法および不揮発性半導体記憶装置 | |
JP2010080853A (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
JP2008091614A (ja) | 半導体装置およびその製造方法 | |
JP5268979B2 (ja) | 半導体装置および半導体装置の製造方法。 | |
JP2010087159A (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
JP2009289813A (ja) | 不揮発性半導体記憶装置の製造方法 | |
JP4799189B2 (ja) | 半導体装置の製造方法 | |
JP2008098503A (ja) | 半導体装置およびその製造方法 | |
KR100655283B1 (ko) | 이이피롬 장치 및 그 제조 방법 | |
JP2006278967A (ja) | 半導体装置およびその製造方法 | |
JP4594796B2 (ja) | 半導体装置およびその製造方法 | |
JP2008177223A (ja) | 半導体装置およびその製造方法 | |
JP2008016777A (ja) | 半導体装置およびその製造方法 | |
JP2009252773A (ja) | 不揮発性半導体記憶装置およびその製造方法 | |
JP2012129453A (ja) | 半導体装置および半導体装置の製造方法 | |
JP2013026331A (ja) | 不揮発性半導体記憶装置の製造方法 | |
JP2009076636A (ja) | 不揮発性半導体記憶装置の製造方法 | |
JP4649265B2 (ja) | 不揮発性半導体記憶装置の製造方法 | |
JP2010034291A (ja) | 不揮発性半導体記憶装置の製造方法 | |
JP2008085162A (ja) | 半導体装置およびその製造方法 | |
JP4509653B2 (ja) | 不揮発性半導体記憶装置の製造方法 |