JP2008085073A - 膜形成用組成物、絶縁膜及び電子デバイス - Google Patents
膜形成用組成物、絶縁膜及び電子デバイス Download PDFInfo
- Publication number
- JP2008085073A JP2008085073A JP2006263358A JP2006263358A JP2008085073A JP 2008085073 A JP2008085073 A JP 2008085073A JP 2006263358 A JP2006263358 A JP 2006263358A JP 2006263358 A JP2006263358 A JP 2006263358A JP 2008085073 A JP2008085073 A JP 2008085073A
- Authority
- JP
- Japan
- Prior art keywords
- film
- compound
- carbon atoms
- forming composition
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02118—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/312—Organic layers, e.g. photoresist
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/28—Applying non-metallic protective coatings
- H05K3/285—Permanent coating compositions
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Formation Of Insulating Films (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
【課題】低い誘電率を有し、かつ経時変化しない安定性を具備したカゴ型構造を有する膜形成用組成物を提供すること。さらには該組成物を用いて得られる電子デバイスの層間絶縁膜および該絶縁膜を層構成層として有する電子デバイスを提供すること。
【解決手段】カゴ型構造を有する化合物と、共役ジエン構造を有する化合物とを含有することを特徴とする膜形成用組成物。
【選択図】なし
【解決手段】カゴ型構造を有する化合物と、共役ジエン構造を有する化合物とを含有することを特徴とする膜形成用組成物。
【選択図】なし
Description
本発明は絶縁膜形成用組成物に関し、さらに詳しくは電子デバイスなどに用いられる誘電率、機械強度等の膜特性が良好な絶縁膜を形成できる組成物に関し、さらには該絶縁膜の形成方法、および,絶縁膜を有する電子デバイスに関する。
近年、電子材料分野においては、高集積化、多機能化、高性能化の進行に伴い、回路抵抗や配線間のコンデンサー容量が増大し、消費電力や遅延時間の増大を招いている。中で
も、遅延時間の増大は、デバイスの信号スピードの低下やクロストークの発生の大きな要因となるため、この遅延時間を減少させてデバイスの高速化を図るべく、寄生抵抗や寄生容量の低減が求められている。この寄生容量を低減するための具体策の一つとして、配線の周辺を低誘電性の層間絶縁膜で被覆することが試みられている。また、層間絶縁膜には、実装基板製造時の薄膜形成工程やチップ接続、ピン付け等の後工程に耐えうる優れた耐熱性やウェットプロセスに耐え得る耐薬品性が求められている。さらに、近年は、Al配線から低抵抗のCu配線が導入されつつあり、これに伴い、CMP(ケミカルメカニカルポリッシング)による平坦化が一般的となっており、このプロセスに耐え得る高い機械的強度が求められている。
も、遅延時間の増大は、デバイスの信号スピードの低下やクロストークの発生の大きな要因となるため、この遅延時間を減少させてデバイスの高速化を図るべく、寄生抵抗や寄生容量の低減が求められている。この寄生容量を低減するための具体策の一つとして、配線の周辺を低誘電性の層間絶縁膜で被覆することが試みられている。また、層間絶縁膜には、実装基板製造時の薄膜形成工程やチップ接続、ピン付け等の後工程に耐えうる優れた耐熱性やウェットプロセスに耐え得る耐薬品性が求められている。さらに、近年は、Al配線から低抵抗のCu配線が導入されつつあり、これに伴い、CMP(ケミカルメカニカルポリッシング)による平坦化が一般的となっており、このプロセスに耐え得る高い機械的強度が求められている。
高耐熱性の層間絶縁膜としては古くからポリベンゾオキサゾール、ポリイミド、ポリアリーレン(エーテル)等が開示されているが、高速デバイスを実現するためには更に誘電率の低い材料が要望されている。該材料のようにポリマー分子内に酸素、窒素、硫黄等のヘテロ原子や芳香族炭化水素ユニットを導入すると、高モル分極に起因して誘電率が高くなったり、吸湿に起因して経時で誘電率が上昇したり、さらには電子デバイスの信頼性を損なう問題が生じるため改良が必要であった。
一方、飽和炭化水素で構成されるポリマーは含ヘテロ原子ユニットや芳香族炭化水素ユニットで構成されるポリマーと比べてモル分極が小さくなるため、より低い誘電率を示すという利点がある。しかし、例えばポリエチレン等のフレキシビリティーの高い炭化水素は耐熱性が不十分であり、電子デバイス用途に利用することは出来ない。
リジッドなカゴ構造の飽和炭化水素であるアダマンタンやジアマンタンを分子内に導入したポリマーが開示されている(特許文献1)。アダマンタンやジアマンタンはダイヤモンドイド構造を有し、高い耐熱性と低い誘電率を示す点で好ましいユニットである。
一方、飽和炭化水素で構成されるポリマーは含ヘテロ原子ユニットや芳香族炭化水素ユニットで構成されるポリマーと比べてモル分極が小さくなるため、より低い誘電率を示すという利点がある。しかし、例えばポリエチレン等のフレキシビリティーの高い炭化水素は耐熱性が不十分であり、電子デバイス用途に利用することは出来ない。
リジッドなカゴ構造の飽和炭化水素であるアダマンタンやジアマンタンを分子内に導入したポリマーが開示されている(特許文献1)。アダマンタンやジアマンタンはダイヤモンドイド構造を有し、高い耐熱性と低い誘電率を示す点で好ましいユニットである。
特許文献1に記載されたカゴ構造を有する化合物を含有する膜形成組成物を用いて作成した絶縁膜は低い誘電率と機械強度を両立するものであるが、膜形成後高湿条件で保存すると誘電率が変化する場合があり、更なる耐久性の向上が求められていた。
本発明は、このような背景に基いてなされたものであって、その目的は、カゴ構造を有する化合物を含有する膜形成組成物の高湿条件での経時不安定性を改善して、低い誘電率と優れた機械強度と耐久性・保存性とが鼎立する膜形成用組成物を提供することにある。
さらには該膜形成組成物を用いて電子デバイスの層間絶縁膜を提供し、また該絶縁膜を層構成層として有する電子デバイスを提供することである。
本発明は、このような背景に基いてなされたものであって、その目的は、カゴ構造を有する化合物を含有する膜形成組成物の高湿条件での経時不安定性を改善して、低い誘電率と優れた機械強度と耐久性・保存性とが鼎立する膜形成用組成物を提供することにある。
さらには該膜形成組成物を用いて電子デバイスの層間絶縁膜を提供し、また該絶縁膜を層構成層として有する電子デバイスを提供することである。
本発明者は、特許文献1に記載のカゴ構造を有する化合物の重合体は、多数の二重結合、場合によっては共役した多数の二重結合を有するポリエン構造を有している可能性があり、これが耐久性を低下させている原因のひとつではないかと推定して検討を進めたところ、ポリエン構造を持つ重合体に共役ジエン構造を持つ化合物をディールス・アルダー反応により結合させると、共役結合が壊れるとみえて、誘電率を低下させるとともに、重合体の耐久性を向上させることができることを見出し、この発見に基いて本発明を完成するに至った。
絶縁膜にディールス・アルダー反応を適用した例は特開平11−329080号公報にて公知であるが、ポリエンに対する適用例はこれまで例がない。
以下に本発明の構成を示す。
絶縁膜にディールス・アルダー反応を適用した例は特開平11−329080号公報にて公知であるが、ポリエンに対する適用例はこれまで例がない。
以下に本発明の構成を示す。
1.カゴ型構造を有する化合物と、共役ジエン構造を有する化合物とを含有することを特徴とする膜形成用組成物。
2.カゴ型構造がアダマンタン、ビアダマンタン、ジアマンタン、トリアマンタン、およびテトラマンタンから選択される化合物が有するカゴ型構造であることを特徴とする、上記1に記載の膜形成用組成物。
3.カゴ型構造を有する化合物が、下記式(I)〜(VI)の群から選択されるモノマーを遷移金属触媒存在下またはラジカル開始剤存在下で重合して得られる化合物であることを特徴とする、上記1または2に記載の膜形成用組成物。
2.カゴ型構造がアダマンタン、ビアダマンタン、ジアマンタン、トリアマンタン、およびテトラマンタンから選択される化合物が有するカゴ型構造であることを特徴とする、上記1に記載の膜形成用組成物。
3.カゴ型構造を有する化合物が、下記式(I)〜(VI)の群から選択されるモノマーを遷移金属触媒存在下またはラジカル開始剤存在下で重合して得られる化合物であることを特徴とする、上記1または2に記載の膜形成用組成物。
(式(I)〜(VI)中、X1〜X8は水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のアルキニル基、炭素数6〜20のアリール基、炭素数0〜20のシリル基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜20のカルバモイル基等を表す。 Y1〜Y8はハロゲン原子、炭素数1〜10のアルキル基、炭素数6〜20のアリール基または炭素数0〜20のシリル基を表す。m1、m5はそれぞれ独立に1〜16の整数を表し、n1、n5は0〜15の整数を表す。m2、m3、m6、m7はそれぞれ独立に1〜15の整数を表し、n2、n3、n6、n7は0〜14の整数を表す。m4、m8はそれぞれ独立に1〜20の整数を表し、n4、n8は0〜19の整数を表す。)
4.カゴ型構造を有する化合物がポリエン構造を有することを特徴とする、上記1〜3のいずれか1項に記載の膜形成用組成物。
5.カゴ型構造を有する化合物がシクロヘキサノンまたはアニソールに25℃で3質量%以上溶解する化合物であることを特徴とする、上記1〜4のいずれか1項に記載の膜形成用組成物。
6.カゴ型構造を有する化合物と、共役ジエン構造を有する化合物と、さらに有機溶剤とを含有することを特徴とする、上記1〜5のいずれか1項に記載の膜形成用組成物。
7.上記1〜6のいずれか1項に記載の膜形成用組成物を用いて形成したことを特徴とする絶縁膜。
8.上記7に記載の絶縁膜を有することを特徴とする電子デバイス。
4.カゴ型構造を有する化合物がポリエン構造を有することを特徴とする、上記1〜3のいずれか1項に記載の膜形成用組成物。
5.カゴ型構造を有する化合物がシクロヘキサノンまたはアニソールに25℃で3質量%以上溶解する化合物であることを特徴とする、上記1〜4のいずれか1項に記載の膜形成用組成物。
6.カゴ型構造を有する化合物と、共役ジエン構造を有する化合物と、さらに有機溶剤とを含有することを特徴とする、上記1〜5のいずれか1項に記載の膜形成用組成物。
7.上記1〜6のいずれか1項に記載の膜形成用組成物を用いて形成したことを特徴とする絶縁膜。
8.上記7に記載の絶縁膜を有することを特徴とする電子デバイス。
本発明によれば、半導体デバイスなどにおける層間絶縁膜や光学デバイスにおける低屈折率膜として使用するのに適した、低誘電率で、かつヤング率等の膜特性に優れ、さらに耐久性にも優れる膜を形成することができる。
また、これらの膜を電子デバイスの層間絶縁膜などの層構成層として有する電子デバイスを提供することができる。
また、これらの膜を電子デバイスの層間絶縁膜などの層構成層として有する電子デバイスを提供することができる。
以下、本発明を詳細に説明する。
本発明の膜形成用組成物は、カゴ型構造を有する化合物と共役ジエン構造を有する化合物とを含有することを特徴とする。共役ジエン構造を有する化合物を添加することにより、耐久性が向上し、フォトリソ、CMP等各工程に起因する誘電率の変動等の特性劣化を抑制することができる。
<カゴ型構造を有する化合物>
本発明で述べる「カゴ型構造」とは、「カゴ型多環炭素環構造」を指しており、共有結合した原子で形成された複数の炭素環によって容積が定まり、容積内に位置する点は環を通過せずには該容積から離れることができないような炭素環の構造を指す。例えば、アダマンタン構造はカゴ型構造と考えられる。一方、ノルボルナン(ビシクロ[2,2,1]ヘプタン)などの単結合架橋を有する環状構造は、多環炭素環構造ではあっても単結合架
橋した環状化合物の環が容積を定めないことから、カゴ型構造とは考えられない。
本発明で述べる「カゴ型構造」とは、「カゴ型多環炭素環構造」を指しており、共有結合した原子で形成された複数の炭素環によって容積が定まり、容積内に位置する点は環を通過せずには該容積から離れることができないような炭素環の構造を指す。例えば、アダマンタン構造はカゴ型構造と考えられる。一方、ノルボルナン(ビシクロ[2,2,1]ヘプタン)などの単結合架橋を有する環状構造は、多環炭素環構造ではあっても単結合架
橋した環状化合物の環が容積を定めないことから、カゴ型構造とは考えられない。
本発明におけるカゴ型構造は1つ以上の置換基を有していても良く、置換基の例としては、ハロゲン原子(フッ素原子、クロル原子、臭素原子、または沃素原子)、炭素数1〜10の直鎖、分岐、環状のアルキル基(メチル、t−ブチル、シクロペンチル、シクロヘキシル等)、炭素数2〜10のアルケニル基(ビニル、プロペニル等)、炭素数2〜10のアルキニル基(エチニル、フェニルエチニル等)、炭素数6〜20のアリール基(フェニル、1−ナフチル、2−ナフチル等)、炭素数2〜10のアシル基(ベンゾイル等)、炭素数6〜20のアリールオキシ基(フェノキシ等)、炭素数6〜20のアリールスルホニル基(フェニルスルホニル等)、ニトロ基、シアノ基、シリル基(トリエトキシシリル、メチルジエトキシシリル、トリビニルシリル等)等が挙げられる。この中で好ましい置換基はフッ素原子、臭素原子、炭素数1〜5の直鎖、分岐、環状のアルキル基、炭素数2〜5のアルケニル基、炭素数2〜5のアルキニル基、シリル基である。これらの置換基はさらに別の置換基で置換されていてもよい。
本発明におけるカゴ型構造は1〜4価であることが好ましく、より好ましくは2〜4価である。このとき、カゴ型構造に結合する基は1価以上の置換基でも2価以上の連結基でも良い。
本発明においてカゴ型構造はポリマー主鎖に1価以上のペンダント基として組み込まれても良い。カゴ型構造が結合する好ましいポリマー主鎖としては、例えばポリ(アリーレン)、ポリ(アリーレンエーテル)、ポリ(エーテル)、ポリアセチレン等の共役不飽和結合鎖、ポリエチレン等が挙げられ、この中でも耐熱性が良好な点から、ポリ(アリーレンエーテル)、ポリアセチレンがより好ましい。
本発明においてカゴ型構造がポリマー主鎖の一部となっていることも好ましい。すなわちポリマー主鎖の一部になっている場合には、本ポリマーからかご化合物を除去するとポリマー鎖が切断されることを意味する。この形態においては、カゴ型構造はカゴ構造間で直接単結合するかまたは適当な2価以上の連結基によって連結される。連結基の例としては例えば、−C(R1)(R2)−、−C(R3)=C(R4)−、−C≡C−、アリーレン基、−CO−、−O−、−SO2−、−N(R5)−、−Si(R6)(R7)−またはこれらを組み合わせた基が挙げられる。ここで、R1〜R7はそれぞれ独立に水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、アルコキシ基を表す。これらの連結基は置換基で置換されていてもよく、例えば前述の置換基が好ましい例として挙げられる。
この中でより好ましい連結基は、−C(R1)(R2)−、−CH=CH−、−C≡C−、アリーレン基、−O−、−Si(R6)(R7)−またはこれらを組み合わせた基であり、特に好ましいものは、−CH=CH−、−C≡C−、−O−、−Si(R6)(R7)−またはこれらの組み合わせである。
この中でより好ましい連結基は、−C(R1)(R2)−、−CH=CH−、−C≡C−、アリーレン基、−O−、−Si(R6)(R7)−またはこれらを組み合わせた基であり、特に好ましいものは、−CH=CH−、−C≡C−、−O−、−Si(R6)(R7)−またはこれらの組み合わせである。
本発明に使用する「カゴ型構造を有する化合物」は、その分子内にカゴ型構造を1種でも2種以上含んでいても良い。
本発明におけるカゴ型構造はポリマー中にペンダント基として置換していて良く、ポリマー主鎖の一部となっていても良いが、ポリマー主鎖の一部となっている形態がより好ましい。
本発明のカゴ型構造を有する化合物とは、低分子化合物であっても高分子化合物(たとえばポリマー)であっても良いが、好ましいものはポリマーである。カゴ型構造を有する化合物がポリマーである場合、その重量平均分子量は好ましくは1000〜500000、より好ましくは5000〜200000、特に好ましくは10000〜100000である。カゴ型構造を有するポリマーは分子量分布を有する樹脂組成物として絶縁膜形成用塗布液に含まれていても良い。カゴ型構造を有する化合物が低分子化合物である場合、その分子量は好ましくは150〜3000、より好ましくは200〜2000、特に好ましくは220〜1000である。
本発明のカゴ型構造を有する化合物は、少なくとも1つの、好ましく、2個以上の重合可能な炭素−炭素二重結合または炭素−炭素三重結合を有するモノマーの重合体であることがより好ましい。
本発明のカゴ型構造を有する化合物として、下に示した分子構造を持つ化合物の重合体であることが特に好ましい。
本発明のカゴ型構造を有する化合物として、下に示した分子構造を持つ化合物の重合体であることが特に好ましい。
式(I)〜(VI)中、 X1〜X8はそれぞれ独立に水素原子、アルキル基(好ましくは炭素数1〜10)、アルケニル基(好ましくは炭素数2〜10)、アルキニル基(好ましくは炭素数2〜10)、アリール基(好ましくは炭素数6〜20)、シリル基(好ましくは炭素数0〜20)、アシル基(好ましくは炭素数2〜10)、アルコキシカルボニル基(好ましくは炭素数2〜10)、カルバモイル基(好ましくは炭素数1〜20)等を表す。このうち、好ましくは水素原子、炭素数1〜10のアルキル基、炭素数6〜20のアリール基、炭素数0〜20のシリル基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜20のカルバモイル基であり、より好ましくは水素原子、炭素数6〜20のアリール基であり、特に好ましくは水素原子である。
Y1〜Y8はそれぞれ独立に、アルキル基(好ましくは炭素数1〜10)、アリール基(好ましくは炭素数6〜20)またはシリル基(好ましくは炭素数0〜20)を表し、より好ましくは置換基を有していても良い炭素数1〜10のアルキル基、炭素数6〜20のアリール基であり、特に好ましくはアルキル基(メチル基等)である。
X1〜X8、Y1〜Y8はさらに別の置換基で置換されていてもよく、その場合の置換基は、X1〜X8、Y1〜Y8として上記した置換基が好ましい。
Y1〜Y8はそれぞれ独立に、アルキル基(好ましくは炭素数1〜10)、アリール基(好ましくは炭素数6〜20)またはシリル基(好ましくは炭素数0〜20)を表し、より好ましくは置換基を有していても良い炭素数1〜10のアルキル基、炭素数6〜20のアリール基であり、特に好ましくはアルキル基(メチル基等)である。
X1〜X8、Y1〜Y8はさらに別の置換基で置換されていてもよく、その場合の置換基は、X1〜X8、Y1〜Y8として上記した置換基が好ましい。
m1及びm5は、各々独立に、1〜16の整数を表し、好ましくは1〜4であり、より好ましくは1〜3であり、特に好ましくは2である。
n1及びn5は、それぞれ独立に0〜15の整数を表し、好ましくは0〜4であり、より好ましくは0または1であり、特に好ましくは0である。
m2、m3、m6及びm7は、各々独立に、1〜15の整数を表し、好ましくは1〜4であり、より好ましくは1〜3であり、特に好ましくは2である。
n2、n3、n6及びn7は、各々独立に、0〜14の整数を表し、好ましくは0〜4であり、より好ましくは0または1であり、特に好ましくは0である。
m4及びm8は、それぞれ独立に1〜20の整数を表し、好ましくは1〜4であり、より好ましくは1〜3であり、特に好ましくは2である。
n4及びn8は、はそれぞれ独立に0〜19の整数を表し、好ましくは0〜4であり、より好ましくは0または1であり、特に好ましくは0である。
n1及びn5は、それぞれ独立に0〜15の整数を表し、好ましくは0〜4であり、より好ましくは0または1であり、特に好ましくは0である。
m2、m3、m6及びm7は、各々独立に、1〜15の整数を表し、好ましくは1〜4であり、より好ましくは1〜3であり、特に好ましくは2である。
n2、n3、n6及びn7は、各々独立に、0〜14の整数を表し、好ましくは0〜4であり、より好ましくは0または1であり、特に好ましくは0である。
m4及びm8は、それぞれ独立に1〜20の整数を表し、好ましくは1〜4であり、より好ましくは1〜3であり、特に好ましくは2である。
n4及びn8は、はそれぞれ独立に0〜19の整数を表し、好ましくは0〜4であり、より好ましくは0または1であり、特に好ましくは0である。
本発明のカゴ型構造を有するモノマーは好ましくは上記式(II)、(III)、(V)又は(VI)で表される化合物であり、より好ましくは上記式(II)又は(III)で表される化合物であり、特に好ましくは上記式(III)で表される化合物である。
本発明のカゴ型構造を有する化合物は2つ以上を併用しても良く、また、本発明のカゴ型構造を有するモノマーを2種以上共重合しても良い。
本発明のカゴ型構造を有する化合物はポリエン構造を有することが好ましい。カゴ型構造とポリエン構造とを併せ持つ化合物は、例えば炭素−炭素三重結合を有するモノマーをラジカル重合することにより合成することができる。
以下に本発明で使用できるカゴ構造を有するモノマーの具体例を記載するが、本発明はこれらに限定はされず、下記構造を一部に含む化合物にも本発明は適用可能である。
本発明において、モノマーの重合反応はモノマーに置換した重合性基によって起こる。該重合反応としてはどのような重合反応でも良いが、例えばラジカル重合、カチオン重合、アニオン重合、開環重合、重縮合、重付加、付加縮合、遷移金属触媒重合、酸化カップリング等が挙げられる。
本発明の好ましい重合反応のひとつとして、アルケニル基またはアルキニル基を有するモノマーを、加熱によって炭素ラジカルや酸素ラジカル等の遊離ラジカルを発生して重合を開始させる非金属の重合開始剤存在下で重合させる方法が挙げられる。
重合開始剤としては特に有機過酸化物または有機アゾ系化合物が好ましく用いられる。
有機過酸化物としては、日本油脂株式会社より市販されているパーヘキサH等のケトンパーオキサイド類、パーヘキサTMH等のパーオキシケタール類、パーブチルH−69等のハイドロパーオキサイド類、パークミルD、パーブチルC、パーブチルD等のジアルキルパーオキサイド類、ナイパーBW等のジアシルパーオキサイド類、パーブチルZ、パーブチルL等のパーオキシエステル類、パーロイルTCP等のパーオキシジカーボネート、ジイソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジ‐n‐プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ‐sec−ブチルパーオキシジカーボネート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、ジ(4−t−ブチルクロヘキシル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシネオヘプタノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、ジ(3,5,5−トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ‐2−エチルヘキサノエート、ジコハク酸パーオキサイド、2,5−ジメチルー2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ヘキシルパーオキシ-2-エチルヘキサノエート、ジ(4−メチルベンゾイル)パーオキサイド、t−ブチルパーオキシ‐2−エチルヘキサノエート、ジ(3−メチルベンゾイル)パーオキサイド、ベンゾイル(3−メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジベンゾイルパーオキサイド、1,1−ジ(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、2,2−ジ(4,4−ジ‐(t−ブチルパーオキシ)シクロヘキシル)プロパン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシ‐3,5,5、−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、2,5−ジ‐メチル‐2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、2,2−ジー(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシベンゾエート、n−ブチル4,4−ジーt−ブチルパーオキシバレレート、ジ(2−t−ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ‐t−ヘキシルパーオキサイド、2,5−ジメチル‐2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーイキサイド、ジ‐t−ブチルパーオキサイド、p−メタンヒドロパーオキサイド、2,5−ジメチル-2,5−ジ(t−ブチルパーオキシ)ヘキシン‐3、ジイソプロピルベンゼンヒドロパーオキサイド、1,1,3,3−テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、t−ブチルヒドロパーオキサイド、2,3−ジメチルー2,3−ジフェニルブタン、2,4−ジクロロベンゾイルパーオキサイド、o−クロロベンゾイルパーオキサイド、p−クロロベンゾイルパーオキサイド、トリス‐(t−ブチルパーオキシ)トリアジン、2,4,4−トリメチルペンチルパーオキシネオデカノエート、α‐クミルパーオキシネオデカノエート、t−アミルパーオキシ2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、ジーt−ブチルパーオキシヘキサヒドロテレフタレート、ジ‐t−ブチルパーオキシトリメチルアジペート、ジ‐3−メトキシブチルパーオキシジカーボネート、ジ‐イソプロピルパーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート、1,6−ビス(t−ブチルパーオキシカルボニルオキシ)ヘキサン、ジエチレングリコールビス(t−ブチルパーオキシカーボネート)、t−ヘキシルパーオキシネオデカノエート等が好ましく用いられる。
有機アゾ系化合物としては和光純薬工業株式会社で市販されているV−30、V−40、V−59、V−60、V−65、V−70等のアゾニトリル化合物類、VA−080、VA−085、VA−086、VF−096、VAm−110、VAm−111等のアゾアミド化合物類、VA−044、VA−061等の環状アゾアミジン化合物類、V−50、VA−057等のアゾアミジン化合物類、2,2−アゾビス(4−メトキシ-2,4−ジメチルバレロニトリル)、2,2−アゾビス(2,4−ジメチルバレロニトリル) 、2,2−アゾビス(2−メチルプロピオニトリル)、2,2−アゾビス(2,4−ジメチルブチロニトリル)、1,1−アゾビス(シクロヘキサン−1−カーボニトリル)、1−〔(1−シアノ-1−メチルエチル)アゾ〕ホルムアミド、2,2−アゾビス{2−メチル-N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2,2−アゾビス〔2−メチル-N−(2−ヒドロキシブチル)プロピオンアミド〕、2,2−アゾビス〔N−(2−プロペニル)−2−メチルプロピオンアミド〕、2,2−アゾビス(N−ブチルー2−メチルプロピオンアミド)、2,2−アゾビス(N−シクロヘキシル-2−メチルプロピオアミド)、2,2−アゾビス〔2−(2−イミダゾリン-2−イル)プロパン〕ジヒドロクロリド、2,2−アゾビス〔2−(2−イミダゾリン-2−イル)プロパン〕ジスルフェートジヒドレート、2,2−アゾビス{2−〔1−(2−ヒドロキシエチル)−2−イミダゾリン‐2−イル〕プロパン}ジヒドロクロリド、2,2−アゾビス〔2−〔2−イミダゾリン‐2−イル〕プロパン〕、2,2−アゾビス(1−イミノー1−ピロリジノ‐2−メチルプロパン)ジヒドロクロリド、2,2−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド、2,2−アゾビス〔N−(2−カルボキシエチル)−2−メチルプロピオンアミジン〕テトラヒドレート、ジメチル2,2−アゾビス(2−メチルプロピオネート)、4,4−アゾビス(4−シアノバレリックアシッド)、2,2−アゾビス(2,4,4−トリメチルペンタン)等が好ましく用いられる。
重合開始剤としては特に有機過酸化物または有機アゾ系化合物が好ましく用いられる。
有機過酸化物としては、日本油脂株式会社より市販されているパーヘキサH等のケトンパーオキサイド類、パーヘキサTMH等のパーオキシケタール類、パーブチルH−69等のハイドロパーオキサイド類、パークミルD、パーブチルC、パーブチルD等のジアルキルパーオキサイド類、ナイパーBW等のジアシルパーオキサイド類、パーブチルZ、パーブチルL等のパーオキシエステル類、パーロイルTCP等のパーオキシジカーボネート、ジイソブチリルパーオキサイド、クミルパーオキシネオデカノエート、ジ‐n‐プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ジ‐sec−ブチルパーオキシジカーボネート、1,1,3,3−テトラメチルブチルパーオキシネオデカノエート、ジ(4−t−ブチルクロヘキシル)パーオキシジカーボネート、ジ(2−エチルヘキシル)パーオキシジカーボネート、t−ヘキシルパーオキシネオデカノエート、t−ブチルパーオキシネオデカノエート、t−ブチルパーオキシネオヘプタノエート、t−ヘキシルパーオキシピバレート、t−ブチルパーオキシピバレート、ジ(3,5,5−トリメチルヘキサノイル)パーオキサイド、ジラウロイルパーオキサイド、1,1,3,3−テトラメチルブチルパーオキシ‐2−エチルヘキサノエート、ジコハク酸パーオキサイド、2,5−ジメチルー2,5−ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ヘキシルパーオキシ-2-エチルヘキサノエート、ジ(4−メチルベンゾイル)パーオキサイド、t−ブチルパーオキシ‐2−エチルヘキサノエート、ジ(3−メチルベンゾイル)パーオキサイド、ベンゾイル(3−メチルベンゾイル)パーオキサイド、ジベンゾイルパーオキサイド、ジベンゾイルパーオキサイド、1,1−ジ(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ジ(t−ブチルパーオキシ)シクロヘキサン、2,2−ジ(4,4−ジ‐(t−ブチルパーオキシ)シクロヘキシル)プロパン、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシ‐3,5,5、−トリメチルヘキサノエート、t−ブチルパーオキシラウレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ2−エチルヘキシルモノカーボネート、t−ヘキシルパーオキシベンゾエート、2,5−ジ‐メチル‐2,5−ジ(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート、2,2−ジー(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシベンゾエート、n−ブチル4,4−ジーt−ブチルパーオキシバレレート、ジ(2−t−ブチルパーオキシイソプロピル)ベンゼン、ジクミルパーオキサイド、ジ‐t−ヘキシルパーオキサイド、2,5−ジメチル‐2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルクミルパーイキサイド、ジ‐t−ブチルパーオキサイド、p−メタンヒドロパーオキサイド、2,5−ジメチル-2,5−ジ(t−ブチルパーオキシ)ヘキシン‐3、ジイソプロピルベンゼンヒドロパーオキサイド、1,1,3,3−テトラメチルブチルヒドロパーオキサイド、クメンヒドロパーオキサイド、t−ブチルヒドロパーオキサイド、2,3−ジメチルー2,3−ジフェニルブタン、2,4−ジクロロベンゾイルパーオキサイド、o−クロロベンゾイルパーオキサイド、p−クロロベンゾイルパーオキサイド、トリス‐(t−ブチルパーオキシ)トリアジン、2,4,4−トリメチルペンチルパーオキシネオデカノエート、α‐クミルパーオキシネオデカノエート、t−アミルパーオキシ2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、ジーt−ブチルパーオキシヘキサヒドロテレフタレート、ジ‐t−ブチルパーオキシトリメチルアジペート、ジ‐3−メトキシブチルパーオキシジカーボネート、ジ‐イソプロピルパーオキシジカーボネート、t−ブチルパーオキシイソプロピルカーボネート、1,6−ビス(t−ブチルパーオキシカルボニルオキシ)ヘキサン、ジエチレングリコールビス(t−ブチルパーオキシカーボネート)、t−ヘキシルパーオキシネオデカノエート等が好ましく用いられる。
有機アゾ系化合物としては和光純薬工業株式会社で市販されているV−30、V−40、V−59、V−60、V−65、V−70等のアゾニトリル化合物類、VA−080、VA−085、VA−086、VF−096、VAm−110、VAm−111等のアゾアミド化合物類、VA−044、VA−061等の環状アゾアミジン化合物類、V−50、VA−057等のアゾアミジン化合物類、2,2−アゾビス(4−メトキシ-2,4−ジメチルバレロニトリル)、2,2−アゾビス(2,4−ジメチルバレロニトリル) 、2,2−アゾビス(2−メチルプロピオニトリル)、2,2−アゾビス(2,4−ジメチルブチロニトリル)、1,1−アゾビス(シクロヘキサン−1−カーボニトリル)、1−〔(1−シアノ-1−メチルエチル)アゾ〕ホルムアミド、2,2−アゾビス{2−メチル-N−[1,1−ビス(ヒドロキシメチル)−2−ヒドロキシエチル]プロピオンアミド}、2,2−アゾビス〔2−メチル-N−(2−ヒドロキシブチル)プロピオンアミド〕、2,2−アゾビス〔N−(2−プロペニル)−2−メチルプロピオンアミド〕、2,2−アゾビス(N−ブチルー2−メチルプロピオンアミド)、2,2−アゾビス(N−シクロヘキシル-2−メチルプロピオアミド)、2,2−アゾビス〔2−(2−イミダゾリン-2−イル)プロパン〕ジヒドロクロリド、2,2−アゾビス〔2−(2−イミダゾリン-2−イル)プロパン〕ジスルフェートジヒドレート、2,2−アゾビス{2−〔1−(2−ヒドロキシエチル)−2−イミダゾリン‐2−イル〕プロパン}ジヒドロクロリド、2,2−アゾビス〔2−〔2−イミダゾリン‐2−イル〕プロパン〕、2,2−アゾビス(1−イミノー1−ピロリジノ‐2−メチルプロパン)ジヒドロクロリド、2,2−アゾビス(2−メチルプロピオンアミジン)ジヒドロクロリド、2,2−アゾビス〔N−(2−カルボキシエチル)−2−メチルプロピオンアミジン〕テトラヒドレート、ジメチル2,2−アゾビス(2−メチルプロピオネート)、4,4−アゾビス(4−シアノバレリックアシッド)、2,2−アゾビス(2,4,4−トリメチルペンタン)等が好ましく用いられる。
本発明で使用する重合開始剤は1種のみ、または2種以上を混合して用いてもよい。
本発明の重合開始剤の使用量はモノマー1モルに対して、好ましくは0.001〜2モル、より好ましくは0.01〜1モル、特に好ましくは0.05〜0.5モルである。
本発明の重合開始剤の使用量はモノマー1モルに対して、好ましくは0.001〜2モル、より好ましくは0.01〜1モル、特に好ましくは0.05〜0.5モルである。
本発明で使用するモノマーの重合反応は遷移金属触媒存在下で行うことも好ましい。例えば、重合可能な炭素−炭素二重結合または炭素−炭素三重結合を有するモノマーを例えばPd(PPh3)4、Pd(OAc)2等のPd系触媒、Ziegler−Natta触媒、ニッケルアセチルアセトネート等のNi系触媒、WCl6等のW系触媒、MoCl5等のMo系触媒、TaCl5等のTa系触媒、NbCl5等のNb系触媒、Rh系触媒、Pt系触媒等を用いて重合することが好ましい。
本発明で使用する遷移金属触媒は1種のみ、または2種以上を混合して用いてもよい。
本発明で使用する遷移金属触媒の使用量はモノマー1モルに対して、好ましくは0.001〜2モル、より好ましくは0.01〜1モル、特に好ましくは0.05〜0.5モルである。
電子材料分野では製品中に不純物としてメタルが混入すると性能に悪影響を及ぼす懸念があるため、重合を促進する添加剤としては非金属の重合開始剤がより好ましい。
本発明で使用する遷移金属触媒の使用量はモノマー1モルに対して、好ましくは0.001〜2モル、より好ましくは0.01〜1モル、特に好ましくは0.05〜0.5モルである。
電子材料分野では製品中に不純物としてメタルが混入すると性能に悪影響を及ぼす懸念があるため、重合を促進する添加剤としては非金属の重合開始剤がより好ましい。
重合反応で使用する溶媒は、原料モノマーが必要な濃度で溶解可能であり、かつ得られる重合体から形成する膜の特性に悪影響を与えないものであればどのようなものを使用しても良い。例えば水やメタノール、エタノール、プロパノール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン等のケトン系溶剤、酢酸エチル、酢酸ブチル、プロピレングリコールモノメチルエーテルアセテート、γ−ブチロラクトン、メチルベンゾエート等のエステル系溶剤、ジブチルエーテル、アニソール、テトラヒドロフラン等のエーテル系溶剤、トルエン、キシレン、メシチレン、1,3,5−トリイソプロピルベンゼン等の芳香族炭化水素系溶剤、N−メチルピロリジノン、ジメチルアセトアミド等のアミド系溶剤、四塩化炭素、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼン等のハロゲン系溶剤、ヘキサン、ヘプタン、オクタン、シクロヘキサン等の脂肪族炭化水素系溶剤などが利用できる。これらの中でより好ましい溶剤はアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、アセトフェノン、酢酸エチル、プロピレングリコールモノメチルエーテルアセテート、γ−ブチロラクトン、アニソール、テトラヒドロフラン、トルエン、キシレン、メシチレン、1,3,5−トリイソプロピルベンゼン、1,2−ジクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼンであり、より好ましくはテトラヒドロフラン、γ−ブチロラクトン、アニソール、トルエン、キシレン、メシチレン、1,3,5−トリイソプロピルベンゼン、1,2−ジクロロエタン、クロロベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼンであり、特に好ましくはγ−ブチロラクトン、アニソール、メシチレン、1,3,5−トリイソプロピルベンゼン、1,2−ジクロロベンゼン、1,2,4−トリクロロベンゼンである。これらは単独でも2種以上を混合して用いてもよい。
反応液中のモノマーの濃度は好ましくは1〜50質量%、より好ましくは5〜30質量%、特に好ましくは10〜20質量%である。
反応液中のモノマーの濃度は好ましくは1〜50質量%、より好ましくは5〜30質量%、特に好ましくは10〜20質量%である。
本発明における重合反応の最適な条件は、重合開始剤、モノマー、溶媒の種類、濃度等によって異なるが、好ましくは内温0℃〜220℃、より好ましくは40℃〜180℃、特に好ましくは80℃〜150℃である。また、反応時間は、好ましくは1〜50時間、より好ましくは2〜20時間、特に好ましくは3〜10時間の範囲である。
また、酸素による重合阻害を抑制するために不活性ガス雰囲気下(例えば窒素、アルゴン等)で反応させることが好ましい。反応時の酸素濃度は好ましくは100ppm以下、より好ましくは50ppm以下、特に好ましくは20ppm以下である。
また、酸素による重合阻害を抑制するために不活性ガス雰囲気下(例えば窒素、アルゴン等)で反応させることが好ましい。反応時の酸素濃度は好ましくは100ppm以下、より好ましくは50ppm以下、特に好ましくは20ppm以下である。
本発明の重合体の重量平均分子量は好ましくは1000〜500000、より好ましくは5000〜200000、特に好ましくは10000〜100000である。
本発明の重合体は分子量分布を有する樹脂組成物として膜形成用組成物に含まれていても良い。
本発明の重合体は分子量分布を有する樹脂組成物として膜形成用組成物に含まれていても良い。
<共役ジエン構造を有する化合物>
本発明の共役ジエン構造を有する化合物は、少なくとも1個の共役ジエン構造を有していれば、低分子化合物でも高分子化合物でもよいが、分子量50〜20000の低分子化合物であることが好ましく、分子量50〜10000の化合物であることがより好ましく、分子量50〜5000の化合物であることがさらに好ましい。
本発明に用いることができる共役ジエン構造を有する低分子化合物はとしては、直鎖状の化合物でも、分岐を有する鎖状の化合物でも、環状構造を有する化合物でもよい。本発明の共役ジエン構造を有する化合物は、炭素および水素以外に酸素、窒素、いおう、又はハロゲン等のヘテロ原子を有していてもよいが、炭素および水素からなる炭化水素化合物であることが好ましい。
本発明に用いることができる共役ジエン構造を有する低分子化合物の好ましい具体例としては、1,3−ブタジエン、イソプレン、2,3−ジメチルブタジエン、1,3−ペンタジエン、cis−ピペリレン(cis-piperylene)、trans−ピペリレン(trans-piperylene)、trans−2−メチル−1,3−ペンタジエン、3−メチル−1,3−ペンタジエン、2,4−ジメチル−1,3−ペンタジエン、1,3−ヘキサジエン、2,4−ヘキサジエン、2,5−ジメチル−2,4−ヘキサジエン、1,3,5−ヘキサトリエン、2,6−ジメチル−2,4,6−オクタトリエン、ミルセン(myrcene)、1,3−シクロヘキサジエン、1,3−シクロヘプタジエン、cis,cis−1,3−シクロオクタジエン、1,2,3,4−テトラメチル−1,3−シクロペンタジエン、1,2,3,4,5−ペンタメチルシクロペンタジエン、エチルテトラメチルシクロペンタジエン、α−テルピネン、シクロヘプタトリエン、(5R)−5−イソプロピル−2−メチル−1,3−シクロヘキサジエン、(5,5−ジメチル−4−フェニル−1,3−シクロペンタジエン−1−イル)ベンゼン、[2,4−シクロペンタジエン−1−イリデン(フェニル)メチル]ベンゼン、シクロオクタテトラエン、6,6−ジメチルフルバレン、
本発明の共役ジエン構造を有する化合物は、少なくとも1個の共役ジエン構造を有していれば、低分子化合物でも高分子化合物でもよいが、分子量50〜20000の低分子化合物であることが好ましく、分子量50〜10000の化合物であることがより好ましく、分子量50〜5000の化合物であることがさらに好ましい。
本発明に用いることができる共役ジエン構造を有する低分子化合物はとしては、直鎖状の化合物でも、分岐を有する鎖状の化合物でも、環状構造を有する化合物でもよい。本発明の共役ジエン構造を有する化合物は、炭素および水素以外に酸素、窒素、いおう、又はハロゲン等のヘテロ原子を有していてもよいが、炭素および水素からなる炭化水素化合物であることが好ましい。
本発明に用いることができる共役ジエン構造を有する低分子化合物の好ましい具体例としては、1,3−ブタジエン、イソプレン、2,3−ジメチルブタジエン、1,3−ペンタジエン、cis−ピペリレン(cis-piperylene)、trans−ピペリレン(trans-piperylene)、trans−2−メチル−1,3−ペンタジエン、3−メチル−1,3−ペンタジエン、2,4−ジメチル−1,3−ペンタジエン、1,3−ヘキサジエン、2,4−ヘキサジエン、2,5−ジメチル−2,4−ヘキサジエン、1,3,5−ヘキサトリエン、2,6−ジメチル−2,4,6−オクタトリエン、ミルセン(myrcene)、1,3−シクロヘキサジエン、1,3−シクロヘプタジエン、cis,cis−1,3−シクロオクタジエン、1,2,3,4−テトラメチル−1,3−シクロペンタジエン、1,2,3,4,5−ペンタメチルシクロペンタジエン、エチルテトラメチルシクロペンタジエン、α−テルピネン、シクロヘプタトリエン、(5R)−5−イソプロピル−2−メチル−1,3−シクロヘキサジエン、(5,5−ジメチル−4−フェニル−1,3−シクロペンタジエン−1−イル)ベンゼン、[2,4−シクロペンタジエン−1−イリデン(フェニル)メチル]ベンゼン、シクロオクタテトラエン、6,6−ジメチルフルバレン、
が挙げられる。
本発明の膜形成用組成物は溶剤を含んでいてもよく、塗布液として使用することもできる。溶剤は特に限定はされないが、例えばメタノール、エタノール、2−プロパノール、1−ブタノール、2−エトキシメタノール、3−メトキシプロパノール,1−メトキシー2−プロパノール等のアルコール系溶剤、アセトン、アセチルアセトン、メチルエチルケトン、メチルイソブチルケトン、2−ペンタノン、3−ペンタノン、2−ヘプタノン、3−ヘプタノン、シクロペンタノン,シクロヘキサノン等のケトン系溶剤、酢酸エチル、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸ブチル、プロピオン酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、乳酸メチル、乳酸エチル、γ−ブチロラクトン等のエステル系溶剤、ジイソプロピルエーテル、ジブチルエーテル、エチルプロピルエーテル、アニソール、フェネトール、ベラトロール等のエーテル系溶剤、メシチレン、エチルベンゼン、ジエチルベンゼン、プロピルベンゼン、t−ブチルベンゼン等の芳香族炭化水素系溶剤、N−メチルピロリジノン、ジメチルアセトアミド等のアミド系溶剤などが挙げられ、これらは単独でも2種以上を混合して用いてもよい。
より好ましい溶剤は、1−メトキシー2−プロパノール、プロパノール、アセチルアセトン,シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、酢酸ブチル,乳酸メチル、乳酸エチル、γ−ブチロラクトン、アニソール、メシチレン、t−ブチルベンゼンであり、特に好ましくは1−メトキシー2−プロパノール,シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル,γ−ブチロラクトン、t−ブチルベンゼン,アニソールである。
本発明の膜形成用組成物の全固形分濃度は、好ましくは0.1〜50質量%であり、より好ましくは1.0〜20質量%であり、特に好ましくは2.0〜10質量%である。
ここで全固形分とは、この組成物を用いて得られる絶縁膜を構成する全成分に相当する。
より好ましい溶剤は、1−メトキシー2−プロパノール、プロパノール、アセチルアセトン,シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、酢酸ブチル,乳酸メチル、乳酸エチル、γ−ブチロラクトン、アニソール、メシチレン、t−ブチルベンゼンであり、特に好ましくは1−メトキシー2−プロパノール,シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル,γ−ブチロラクトン、t−ブチルベンゼン,アニソールである。
本発明の膜形成用組成物の全固形分濃度は、好ましくは0.1〜50質量%であり、より好ましくは1.0〜20質量%であり、特に好ましくは2.0〜10質量%である。
ここで全固形分とは、この組成物を用いて得られる絶縁膜を構成する全成分に相当する。
本発明で使用する重合体は塗布液を含む組成物の保存経時で不溶物の析出を防止する観点から、溶剤への溶解度が高いほうが好ましい。好ましい溶解度は25℃でシクロヘキサノンまたはアニソールに3質量%以上、より好ましくは5質量%以上、特に好ましくは10質量%以上である。
本発明の膜形成用組成物には不純物としての金属含量が充分に少ないことが好ましい。膜形成用組成物の金属濃度はICP−MS法にて高感度に測定可能であり、その場合の遷移金属以外の金属含有量は好ましくは30ppm以下、より好ましくは3ppm以下、特に好ましくは300ppb以下である。また、遷移金属に関しては酸化を促進する触媒能が高く、プリベーク、熱硬化プロセスにおいて酸化反応によって本発明で得られた膜の誘電率を上げてしまうという観点から、含有量がより少ないほうがよく、好ましくは10ppm以下、より好ましくは1ppm以下、特に好ましくは100ppb以下である。
膜形成用組成物の金属濃度は本発明の膜形成用組成物を用いて得た膜に対して全反射蛍光X線測定を行うことによっても評価できる。X線源としてW線を用いた場合、金属元素としてK、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Pdが観測可能であり、それぞれ100×1010atom・cm-2以下が好ましく、より好ましくは50×1010atom・cm-2以下、特に好ましくは10×1010atom・cm-2以下である。また、ハロゲンであるBrも観測可能であり、残存量は10000×1010atom・cm-2以下が好ましく、より好ましくは1000×1010atom・cm-2以下、特に好ましくは400×1010atom・cm-2以下である。また、ハロゲンとしてClも観測可能であるが、CVD装置、エッチング装置等へダメージを与えるという観点から残存量は100×1010atom・cm-2以下が好ましく、より好ましくは50×1010atom・cm-2以下、特に好ましくは10×1010atom・cm-2以下である。
膜形成用組成物の金属濃度は本発明の膜形成用組成物を用いて得た膜に対して全反射蛍光X線測定を行うことによっても評価できる。X線源としてW線を用いた場合、金属元素としてK、Ca、Ti、Cr、Mn、Fe、Co、Ni、Cu、Zn、Pdが観測可能であり、それぞれ100×1010atom・cm-2以下が好ましく、より好ましくは50×1010atom・cm-2以下、特に好ましくは10×1010atom・cm-2以下である。また、ハロゲンであるBrも観測可能であり、残存量は10000×1010atom・cm-2以下が好ましく、より好ましくは1000×1010atom・cm-2以下、特に好ましくは400×1010atom・cm-2以下である。また、ハロゲンとしてClも観測可能であるが、CVD装置、エッチング装置等へダメージを与えるという観点から残存量は100×1010atom・cm-2以下が好ましく、より好ましくは50×1010atom・cm-2以下、特に好ましくは10×1010atom・cm-2以下である。
更に、本発明の膜形成用組成物には、得られる絶縁膜の特性(耐熱性、誘電率、機械強度、塗布性、密着性等)を損なわない範囲で、ラジカル発生剤、コロイド状シリカ、界面活性剤、密着促進剤などの添加剤を添加してもよい。
本発明には界面活性剤を使用してもよいが、例えば、ノニオン系界面活性剤、アニオン系界面活性剤、カチオン系界面活性剤などが挙げられ、さらにシリコーン系界面活性剤、含フッ素系界面活性剤、ポリアルキレンオキシド系界面活性剤、アクリル系界面活性剤が挙げられる。本発明で使用する界面活性剤は、一種類でも良いし、二種類以上でも良い。界面活性剤としては、シリコーン系界面活性剤、ノニオン系界面活性剤、含フッ素系界面活性剤、アクリル系界面活性剤が好ましく、特にシリコーン系界面活性剤が好ましい。
本発明で使用する界面活性剤の添加量は、膜形成用組成物の全量に対して0.01質量%以上1質量%以下であることが好ましく、0.1質量%以上0.5質量%以下であることが更に好ましい。
本発明にはいかなる密着促進剤を使用してもよいが、例えば、トリメトキシシリル安息香酸、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、トリメトキシビニルシラン、γ-アミノプロピルトリエトキシシラン、アルミニウムモノエチルアセトアセテートジイソプロピレート、ビニルトリス(2-メトキシエトキシ)シラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、3-クロロプロピルメチルジメトキシシラン、3-クロロプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メルカプトプロピルトリメトキシシラン、トリメチルクロロシラン、ジメチルビニルクロロシラン、メチルジフエニルクロロシラン、クロロメチルジメチルクロロシラン、トリメチルメトキシシラン、ジメチルジエトキシシラン、メチルジメトキシシラン、ジメチルビニルエトキシシラン、ポリビニルメトキシシロキサン、ジフエニルジメトキシシラン、フエニルトリエトキシシラン、ヘキサメチルジシラザン、N,N’−ビス(トリメチルシリル)ウレア、ジメチルトリメチルシリルアミン、トリメチルシリルイミダゾール、ビニルトリクロロシラン、ベンゾトリアゾール、ベンズイミダゾール、インダゾール、イミダゾール、2−メルカプトベンズイミダゾール、2−メルカプトベンゾチアゾール、2−メルカプトベンゾオキサゾール、ウラゾール、チオウラシル、メルカプトイミダゾール、メルカプトピリミジン、1,1−ジメチルウレア、1,3−ジメチルウレア、チオ尿素化合物等を挙げることができる。密着促進剤の好ましい使用量は、全固形分100質量部に対して10質量部以下、特に0.05〜5質量部であることが好ましい。
本発明の膜形成用組成物には膜の機械強度の許す範囲内で、空孔形成因子を使用して、膜を多孔質化し、低誘電率化を図ることができる。
空孔形成剤となる添加剤としての空孔形成因子としては特に限定はされないが、非金属化合物が好適に用いられ、膜形成用組成物に含有してもよい溶剤との溶解性、本発明にかかる共重合体との相溶性を同時に満たすことが必要である。
空孔形成剤としてはポリマーも使用することができる。空孔形成剤として使用できるポリマーとしては、例えば、ポリビニル芳香族化合物(ポリスチレン、ポリビニルピリジン、ハロゲン化ポリビニル芳香族化合物など)、ポリアクリロニトリル、ポリアルキレンオキシド(ポリエチレンオキシドおよびポリプロピレンオキシドなど)、ポリエチレン、ポリ乳酸、ポリシロキサン、ポリカプロラクトン、ポリカプロラクタム、ポリウレタン、ポリメタクリレート(ポリメチルメタクリレートなど)またはポリメタクリル酸、ポリアクリレート(ポリメチルアクリレートなど)およびポリアクリル酸、ポリジエン(ポリブタジエンおよびポリイソプレンなど)、ポリビニルクロライド、ポリアセタール、およびアミンキャップドアルキレンオキシド、その他、ポリフェニレンオキシド、ポリ(ジメチルシロキサン)、ポリテトラヒドロフラン、ポリシクロヘキシルエチレン、ポリエチルオキサゾリン、ポリビニルピリジン、ポリカプロラクトン等であってもよい。
特にポリスチレンは、空孔形成剤として好適に使用できる。ポリスチレンはとしては、たとえば、アニオン性重合ポリスチレン、シンジオタクチックポリスチレン、未置換および置換ポリスチレン(たとえば、ポリ(α−メチルスチレン))が挙げられ、未置換ポリスチレンが好ましい。
また、空孔形成剤としては熱可塑性のポリマーも使用することができる。熱可塑性空孔形成用ポリマーの例としては、ポリアクリレート、ポリメタクリレート、ポリブタジエン、ポリイソプレン、ポリフェニレンオキシド、ポリプロピレンオキシド、ポリエチレンオキシド、ポリ(ジメチルシロキサン)、ポリテトラヒドロフラン、ポリエチレン、ポリシクロヘキシルエチレン、ポリエチルオキサゾリン、ポリカプロラクトン、ポリ乳酸およびポリビニルピリジン等が挙げられる。
またこの空孔形成剤の沸点若しくは分解温度は、好ましくは100〜500℃、より好ましくは200〜450℃、特に好ましくは250〜400℃である。分子量としては、200〜50000であることが好ましく、より好ましくは300〜10000、特に好ましくは400〜5000である。添加量は膜を形成する共重合体に対して、質量%で好ましくは0.5〜75%、より好ましくは0.5〜30%、特に好ましくは1%〜20%である。また、空孔形成因子として、共重合体の中に分解性基を含んでいても良く、その分解温度は好ましくは100〜500℃、より好ましくは200〜450℃、特に好ましくは250〜400℃であると良い。分解性基の含有率は膜を形成する重合体のモノマー量に対して、モル%で0.5〜75%、より好ましくは0.5〜30%、特に好ましくは1〜20%である。
空孔形成剤となる添加剤としての空孔形成因子としては特に限定はされないが、非金属化合物が好適に用いられ、膜形成用組成物に含有してもよい溶剤との溶解性、本発明にかかる共重合体との相溶性を同時に満たすことが必要である。
空孔形成剤としてはポリマーも使用することができる。空孔形成剤として使用できるポリマーとしては、例えば、ポリビニル芳香族化合物(ポリスチレン、ポリビニルピリジン、ハロゲン化ポリビニル芳香族化合物など)、ポリアクリロニトリル、ポリアルキレンオキシド(ポリエチレンオキシドおよびポリプロピレンオキシドなど)、ポリエチレン、ポリ乳酸、ポリシロキサン、ポリカプロラクトン、ポリカプロラクタム、ポリウレタン、ポリメタクリレート(ポリメチルメタクリレートなど)またはポリメタクリル酸、ポリアクリレート(ポリメチルアクリレートなど)およびポリアクリル酸、ポリジエン(ポリブタジエンおよびポリイソプレンなど)、ポリビニルクロライド、ポリアセタール、およびアミンキャップドアルキレンオキシド、その他、ポリフェニレンオキシド、ポリ(ジメチルシロキサン)、ポリテトラヒドロフラン、ポリシクロヘキシルエチレン、ポリエチルオキサゾリン、ポリビニルピリジン、ポリカプロラクトン等であってもよい。
特にポリスチレンは、空孔形成剤として好適に使用できる。ポリスチレンはとしては、たとえば、アニオン性重合ポリスチレン、シンジオタクチックポリスチレン、未置換および置換ポリスチレン(たとえば、ポリ(α−メチルスチレン))が挙げられ、未置換ポリスチレンが好ましい。
また、空孔形成剤としては熱可塑性のポリマーも使用することができる。熱可塑性空孔形成用ポリマーの例としては、ポリアクリレート、ポリメタクリレート、ポリブタジエン、ポリイソプレン、ポリフェニレンオキシド、ポリプロピレンオキシド、ポリエチレンオキシド、ポリ(ジメチルシロキサン)、ポリテトラヒドロフラン、ポリエチレン、ポリシクロヘキシルエチレン、ポリエチルオキサゾリン、ポリカプロラクトン、ポリ乳酸およびポリビニルピリジン等が挙げられる。
またこの空孔形成剤の沸点若しくは分解温度は、好ましくは100〜500℃、より好ましくは200〜450℃、特に好ましくは250〜400℃である。分子量としては、200〜50000であることが好ましく、より好ましくは300〜10000、特に好ましくは400〜5000である。添加量は膜を形成する共重合体に対して、質量%で好ましくは0.5〜75%、より好ましくは0.5〜30%、特に好ましくは1%〜20%である。また、空孔形成因子として、共重合体の中に分解性基を含んでいても良く、その分解温度は好ましくは100〜500℃、より好ましくは200〜450℃、特に好ましくは250〜400℃であると良い。分解性基の含有率は膜を形成する重合体のモノマー量に対して、モル%で0.5〜75%、より好ましくは0.5〜30%、特に好ましくは1〜20%である。
本発明の膜形成用組成物を使用して得られる膜は、膜形成用組成物をスピンコーティング法、ローラーコーティング法、ディップコーティング法、スキャン法等の任意の方法により基板に塗布した後、溶剤を加熱処理で除去することにより形成することができる。乾燥のための加熱条件としては、100℃〜250℃で1分〜5分行うことが好ましい。基板に塗布する方法としては、スピンコーティング法、スキャン法によるものが好ましい。特に好ましくは、スピンコーティング法によるものである。スピンコーティングについては、市販の装置を使用できる。例えば,クリーントラックシリーズ(東京エレクトロン製)、D−スピンシリーズ(大日本スクリーン製)、SSシリーズあるいはCSシリーズ(東京応化工業製)等が好ましく使用できる。スピンコート条件としては、いずれの回転速度でもよいが、膜の面内均一性の観点より、300mmシリコン基板においては1300rpm程度の回転速度が好ましい。また膜形成用組成物の吐出方法においては、回転する基板上に膜形成用組成物を吐出する動的吐出、静止した基板上へ膜形成用組成物を吐出する静的吐出のいずれでもよいが、膜の面内均一性の観点より、動的吐出が好ましい。また、膜形成用組成物の消費量を抑制する観点より、溶剤のみを基板上に吐出して液膜を形成した後、その上から組成物を吐出するという方法を用いることもできる。スピンコート時間については特に制限はないが、スループットの観点から180秒以内が好ましい。また,基板の搬送の観点より、基板エッジ部の膜を残存させないための処理(エッジリンス、バックリンス)をすることも好ましい。熱処理の方法は、特に限定されないが、一般的に使用されているホットプレート加熱、ファーネス炉を使用した加熱方法、RTP(Rapid Thermal Processor)等によるキセノンランプを使用した光照射加熱等を適用することができる。好ましくは,ホットプレート加熱,ファーネスを使用した加熱方法である。ホットプレートとしては市販の装置を好ましく使用でき,クリーントラックシリーズ(東京エレクトロン製),D−スピンシリーズ(大日本スクリーン製),SSシリーズあるいはCSシリーズ(東京応化工業製)等が好ましく使用できる。ファーネスとしては,αシリーズ(東京エレクトロン製)等が好ましく使用できる。
本発明に使用する重合体は基板上に塗布した後に加熱処理することによって硬化(焼成)させることが特に好ましい。硬化には例えば重合体中に残存する重合性基の後加熱時の重合反応が利用できる。この後加熱処理の条件は、好ましくは100〜450℃、より好ましくは200〜420℃、特に好ましくは350℃〜400℃で、好ましくは1分〜2時間、より好ましくは10分〜1.5時間、特に好ましくは30分〜1時間の範囲である。
後加熱処理は数回に分けて行っても良い。また、この後加熱は酸素による熱酸化を防ぐために窒素雰囲気下で行うことが特に好ましい。
後加熱処理は数回に分けて行っても良い。また、この後加熱は酸素による熱酸化を防ぐために窒素雰囲気下で行うことが特に好ましい。
また、本発明では加熱処理ではなく高エネルギー線を照射することで共重合体中に残存する炭素三重結合の重合反応を起こして硬化(焼成)させても良い。高エネルギー線とは、電子線、紫外線、X線などが挙げられるが、特にこれらの方法に限定されるものではない。
高エネルギー線として、電子線を使用した場合のエネルギーは50keV以下が好ましく、より好ましくは30keV以下、特に好ましくは20keV以下である。電子線の総ドーズ量は好ましくは5μC/cm2以下、より好ましくは2μC/cm2以下、特に好ましくは1μC/cm2以下である。電子線を照射する際の基板温度は0〜450℃が好ましく、より好ましくは0〜400℃、特に好ましくは0〜350℃である。圧力は好ましくは0〜133kPa、より好ましくは0〜60kPa、特に好ましくは0〜20kPaである。本発明の共重合体の酸化を防止するという観点から、基板周囲の雰囲気はAr、He、窒素などの不活性雰囲気を用いることが好ましい。また、電子線との相互作用で発生するプラズマ、電磁波、化学種との反応を目的に酸素、炭化水素、アンモニアなどのガスを添加してもよい。本発明における電子線照射は複数回行ってもよく、この場合は電子線照射条件を毎回同じにする必要はなく、毎回異なる条件で行ってもよい。
高エネルギー線として紫外線を用いてもよい。紫外線を用いる際の照射波長領域は190〜400nmが好ましく、その出力は基板直上において0.1〜2000mWcm-2が好ましい。紫外線照射時の基板温度は250〜450℃が好ましく、より好ましくは250〜400℃、特に好ましくは250〜350℃である。本発明の重合物の酸化を防止するという観点から、基板周囲の雰囲気はAr、He、窒素などの不活性雰囲気を用いることが好ましい。また、その際の圧力は0〜133kPaが好ましい。
高エネルギー線として、電子線を使用した場合のエネルギーは50keV以下が好ましく、より好ましくは30keV以下、特に好ましくは20keV以下である。電子線の総ドーズ量は好ましくは5μC/cm2以下、より好ましくは2μC/cm2以下、特に好ましくは1μC/cm2以下である。電子線を照射する際の基板温度は0〜450℃が好ましく、より好ましくは0〜400℃、特に好ましくは0〜350℃である。圧力は好ましくは0〜133kPa、より好ましくは0〜60kPa、特に好ましくは0〜20kPaである。本発明の共重合体の酸化を防止するという観点から、基板周囲の雰囲気はAr、He、窒素などの不活性雰囲気を用いることが好ましい。また、電子線との相互作用で発生するプラズマ、電磁波、化学種との反応を目的に酸素、炭化水素、アンモニアなどのガスを添加してもよい。本発明における電子線照射は複数回行ってもよく、この場合は電子線照射条件を毎回同じにする必要はなく、毎回異なる条件で行ってもよい。
高エネルギー線として紫外線を用いてもよい。紫外線を用いる際の照射波長領域は190〜400nmが好ましく、その出力は基板直上において0.1〜2000mWcm-2が好ましい。紫外線照射時の基板温度は250〜450℃が好ましく、より好ましくは250〜400℃、特に好ましくは250〜350℃である。本発明の重合物の酸化を防止するという観点から、基板周囲の雰囲気はAr、He、窒素などの不活性雰囲気を用いることが好ましい。また、その際の圧力は0〜133kPaが好ましい。
本発明の膜形成用組成物を使用して得られる膜は、半導体用層間絶縁膜として使用する際、その配線構造において、配線側面にはメタルマイグレーションを防ぐためのバリア層があっても良く、また、配線や層間絶縁膜の上面底面にはCMPでの剥離を防ぐキャップ層、層間密着層の他、エッチングストッパー層等があってもよく、更には層間絶縁膜の層を必要に応じて他種材料で複数層に分けても良い。
本発明の膜形成用組成物を使用して得られる膜は、銅配線あるいはその他の目的でエッチング加工をすることができる。エッチングとしてはウエットエッチング、ドライエッチングのいずれでもよいが、ドライエッチングが好ましい。ドライエッチングは、アンモニア系プラズマ、フルオロカーボン系プラズマのいずれもが適宜使用できる。これらプラズマにはArだけでなく、酸素、あるいは窒素、水素、ヘリウム等のガスを用いることができる。また、エッチング加工後に、加工に使用したフォトレジスト等を除く目的でアッシングすることもでき、さらにはアッシング時の残渣を除くため、洗浄することもできる。
本発明の膜形成用組成物を使用して得られる膜は、銅配線加工後に、銅めっき部を平坦化するためCMP(化学的機械的研磨)をすることができる。CMPスラリー(薬液)としては,市販のスラリー(例えば、フジミ製、ロデールニッタ製、JSR製、日立化成製等)を適宜使用できる。また、CMP装置としては市販の装置(アプライドマテリアル社製,荏原製作所製等)を適宜使用することができる。さらにCMP後のスラリー残渣除去のため、洗浄することができる。
本発明の膜形成用組成物を使用して得られる膜は、多様の目的に使用することが出来る。例えばLSI、システムLSI、DRAM、SDRAM、RDRAM、D−RDRAM等の半導体装置、マルチチップモジュール多層配線板等の電子部品における絶縁皮膜として好適であり、半導体用層間絶縁膜、エッチングストッパー膜、表面保護膜、バッファーコート膜の他、LSIにおけるパッシベーション膜、α線遮断膜、フレキソ印刷版のカバーレイフィルム、オーバーコート膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、液晶配向膜等として使用することが出来る。
<実施例1>
Macromolecules.,5266(1991)に記載の合成法に従って、4,9−ジエチニルジアマンタンを合成した。次に、4,9−ジエチニルジアマンタン2gとジクミルパーオキサイド(パークミルD、日本油脂製)0.4g、オルトジクロロベンゼン10mlを窒素気流下で内温140℃で5時間攪拌、重合した。反応液を室温にした後、メタノール100mlに添加、析出した固体を濾過して、メタノールで洗浄した。質量平均分子量約1.4万の重合体(A)を1.0g得た。
得られた重合体(A)1.0gをAldrich社製2,3-ジメチル-1,3ブタジエン9gに溶解し60℃で1時間攪拌した。これを窒素雰囲気下で200℃1時間加熱し、乾燥させ化合物(B)1.1gを得た。
得られた化合物(B)を0.90gをシクロヘキサノン10gに完全に溶解させて塗布液を調製した。この溶液を0.1ミクロンのテトラフルオロエチレン製フィルターでろ過した後、シリコンウェハー上にスピンコートし、この塗膜を窒素気流下ホットプレート上で200℃60秒間加熱した後、更に窒素置換した400℃のオーブン中で60分焼成した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.38であったのに対し、2.39であり、酸化促進条件でも、比誘電率に変化がないことが確認された。また、FT-IRスペクトルに酸化に由来するピークは確認されなかった。
Macromolecules.,5266(1991)に記載の合成法に従って、4,9−ジエチニルジアマンタンを合成した。次に、4,9−ジエチニルジアマンタン2gとジクミルパーオキサイド(パークミルD、日本油脂製)0.4g、オルトジクロロベンゼン10mlを窒素気流下で内温140℃で5時間攪拌、重合した。反応液を室温にした後、メタノール100mlに添加、析出した固体を濾過して、メタノールで洗浄した。質量平均分子量約1.4万の重合体(A)を1.0g得た。
得られた重合体(A)1.0gをAldrich社製2,3-ジメチル-1,3ブタジエン9gに溶解し60℃で1時間攪拌した。これを窒素雰囲気下で200℃1時間加熱し、乾燥させ化合物(B)1.1gを得た。
得られた化合物(B)を0.90gをシクロヘキサノン10gに完全に溶解させて塗布液を調製した。この溶液を0.1ミクロンのテトラフルオロエチレン製フィルターでろ過した後、シリコンウェハー上にスピンコートし、この塗膜を窒素気流下ホットプレート上で200℃60秒間加熱した後、更に窒素置換した400℃のオーブン中で60分焼成した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.38であったのに対し、2.39であり、酸化促進条件でも、比誘電率に変化がないことが確認された。また、FT-IRスペクトルに酸化に由来するピークは確認されなかった。
<実施例2>
実施例1の2,3-ジメチル-1,3ブタジエンをAldrich社製ジシクロペンタジエンに代えた以外は同じ方法で、塗布液を作成し、製膜した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.39であったのに対し、2.40であり、酸化促進条件でも、比誘電率に変化がないことが確認された。また、FT-IRスペクトルに酸化に由来するピークは確認されなかった。
実施例1の2,3-ジメチル-1,3ブタジエンをAldrich社製ジシクロペンタジエンに代えた以外は同じ方法で、塗布液を作成し、製膜した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.39であったのに対し、2.40であり、酸化促進条件でも、比誘電率に変化がないことが確認された。また、FT-IRスペクトルに酸化に由来するピークは確認されなかった。
<実施例3>
実施例1の2,3-ジメチル-1,3ブタジエンをAldrich社製1,3-シクロヘキサジエンに代えた以外は同じ方法で、塗布液を調合し、製膜した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.38であったのに対し、2.39であり、酸化促進条件でも、比誘電率に変化がないことが確認された。また、FT-IRスペクトルに酸化に由来するピークは確認されなかった。
実施例1の2,3-ジメチル-1,3ブタジエンをAldrich社製1,3-シクロヘキサジエンに代えた以外は同じ方法で、塗布液を調合し、製膜した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.38であったのに対し、2.39であり、酸化促進条件でも、比誘電率に変化がないことが確認された。また、FT-IRスペクトルに酸化に由来するピークは確認されなかった。
<実施例4>
実施例1の2,3-ジメチル-1,3ブタジエンをAldrich社製1,3-シクロオクタジエンに代えた以外は同じ方法で、塗布液を調合し、製膜した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.38であったのに対し、2.39であり、酸化促進条件でも、比誘電率に変化がないことが確認された。また、FT-IRスペクトルに酸化に由来するピークは確認されなかった。
実施例1の2,3-ジメチル-1,3ブタジエンをAldrich社製1,3-シクロオクタジエンに代えた以外は同じ方法で、塗布液を調合し、製膜した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.38であったのに対し、2.39であり、酸化促進条件でも、比誘電率に変化がないことが確認された。また、FT-IRスペクトルに酸化に由来するピークは確認されなかった。
<比較例1>
実施例1において、化合物(B)の0.90gをシクロヘキサノン10gに完全に溶解させる代わりに、重合体(A)の0.90gをシクロヘキサノン10gに完全に溶解させて塗布液を調製した。塗布液を塗付し、製膜した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃、湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃、1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.41であったのに対し、2.62であり、酸化促進条件で、比誘電率が変化することが確認された。また、FT-IRスペクトルに酸化に由来するピークが顕著に検出された。
実施例1において、化合物(B)の0.90gをシクロヘキサノン10gに完全に溶解させる代わりに、重合体(A)の0.90gをシクロヘキサノン10gに完全に溶解させて塗布液を調製した。塗布液を塗付し、製膜した結果、膜厚0.5ミクロンのブツのない均一な膜が得られた。膜を温度45℃、湿度90%の恒温恒湿槽に24時間保管し、その後大気中温度200℃、1分さらした。膜の比誘電率をフォーディメンジョンズ製水銀プローバおよび横川ヒューレットパッカード製のHP4285ALCRメーターを用いて1MHzにおける容量値から算出したところ、製膜直後が2.41であったのに対し、2.62であり、酸化促進条件で、比誘電率が変化することが確認された。また、FT-IRスペクトルに酸化に由来するピークが顕著に検出された。
Claims (8)
- カゴ型構造を有する化合物と、共役ジエン構造を有する化合物とを含有することを特徴とする膜形成用組成物。
- カゴ型構造がアダマンタン、ビアダマンタン、ジアマンタン、トリアマンタン、およびテトラマンタンから選択される化合物が有するカゴ型構造であることを特徴とする、請求項1に記載の膜形成用組成物。
- カゴ型構造を有する化合物が、下記式(I)〜(VI)の群から選択されるモノマーを遷移金属触媒存在下またはラジカル開始剤存在下で重合して得られる化合物であることを特徴とする、請求項1または2に記載の膜形成用組成物。
X1〜X8は水素原子、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数2〜10のアルキニル基、炭素数6〜20のアリール基、炭素数0〜20のシリル基、炭素数2〜10のアシル基、炭素数2〜10のアルコキシカルボニル基、炭素数1〜20のカルバモイル基等を表す。
Y1〜Y8はハロゲン原子、炭素数1〜10のアルキル基、炭素数6〜20のアリール基または炭素数0〜20のシリル基を表す。
m1、m5はそれぞれ独立に1〜16の整数を表し、n1、n5は0〜15の整数を表す。
m2、m3、m6、m7はそれぞれ独立に1〜15の整数を表し、n2、n3、n6、n7は0〜14の整数を表す。
m4、m8はそれぞれ独立に1〜20の整数を表し、n4、n8は0〜19の整数を表す。) - カゴ型構造を有する化合物がポリエン構造を有することを特徴とする、請求項1〜3のいずれか1項に記載の膜形成用組成物。
- カゴ型構造を有する化合物がシクロヘキサノンまたはアニソールに25℃で3質量%以上溶解する化合物であることを特徴とする、請求項1〜4のいずれか1項に記載の膜形成用組成物。
- カゴ型構造を有する化合物と、共役ジエン構造を有する化合物と、さらに有機溶剤とを含有することを特徴とする、請求項1〜5のいずれか1項に記載の膜形成用組成物。
- 請求項1〜6のいずれか1項に記載の膜形成用組成物を用いて形成したことを特徴とする絶縁膜。
- 請求項7に記載の絶縁膜を有することを特徴とする電子デバイス。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006263358A JP2008085073A (ja) | 2006-09-27 | 2006-09-27 | 膜形成用組成物、絶縁膜及び電子デバイス |
US11/854,821 US7569649B2 (en) | 2006-09-27 | 2007-09-13 | Film forming composition, insulating film, and electronic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006263358A JP2008085073A (ja) | 2006-09-27 | 2006-09-27 | 膜形成用組成物、絶縁膜及び電子デバイス |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008085073A true JP2008085073A (ja) | 2008-04-10 |
Family
ID=39225872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006263358A Pending JP2008085073A (ja) | 2006-09-27 | 2006-09-27 | 膜形成用組成物、絶縁膜及び電子デバイス |
Country Status (2)
Country | Link |
---|---|
US (1) | US7569649B2 (ja) |
JP (1) | JP2008085073A (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4368319B2 (ja) * | 2005-03-14 | 2009-11-18 | 富士フイルム株式会社 | 絶縁膜とそれを製造する方法、およびそれを用いた電子デバイス |
JP2007119706A (ja) * | 2005-09-28 | 2007-05-17 | Fujifilm Corp | 重合体および膜形成用組成物 |
US20090048421A1 (en) * | 2007-08-15 | 2009-02-19 | Fujifilm Corporation | Film forming composition, film, and electronic device |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3639362A (en) * | 1967-03-24 | 1972-02-01 | Sun Oil Co | Adamantane acrylate and methacrylate esters and polymers thereof |
US3580964A (en) * | 1967-09-06 | 1971-05-25 | Sun Oil Co | Curable linear polyesters |
US4942210A (en) * | 1986-02-05 | 1990-07-17 | Exxon Chemical Patents Inc. | Branched isoolefin polymer prepared with adamantane catalyst system |
US5462680A (en) * | 1994-04-19 | 1995-10-31 | Exxon Research & Engineering Co. | Free radical adducts of fullerenes with hydrocarbons and polymers |
US5759725A (en) * | 1994-12-01 | 1998-06-02 | Kabushiki Kaisha Toshiba | Photoconductors and electrophotographic photoreceptors containing amorphous fullerenes |
JPH11329080A (ja) | 1998-05-13 | 1999-11-30 | Fujitsu Ltd | 低誘電率絶縁膜形成材料及びこれを用いた回路基板 |
JP3916532B2 (ja) * | 2002-08-06 | 2007-05-16 | 松下電器産業株式会社 | 層間絶縁膜、その形成方法及び重合体組成物 |
JP4878779B2 (ja) | 2004-06-10 | 2012-02-15 | 富士フイルム株式会社 | 膜形成用組成物、絶縁膜及び電子デバイス |
-
2006
- 2006-09-27 JP JP2006263358A patent/JP2008085073A/ja active Pending
-
2007
- 2007-09-13 US US11/854,821 patent/US7569649B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US7569649B2 (en) | 2009-08-04 |
US20080076888A1 (en) | 2008-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008075047A (ja) | トリプチセン誘導体の重合体を含有する組成物、それを用いた絶縁膜、及び電子デバイス | |
JP2007254551A (ja) | 膜形成用組成物 | |
JP2008231174A (ja) | 膜形成用組成物、絶縁膜及び電子デバイス | |
JP2008078470A (ja) | 絶縁膜の製造方法、絶縁膜、積層体および電子デバイス | |
JP2008218632A (ja) | 電子デバイス | |
JP2008081598A (ja) | 膜形成用組成物、該組成物から形成された膜、絶縁膜およびそれを有する電子デバイス | |
JP2008085073A (ja) | 膜形成用組成物、絶縁膜及び電子デバイス | |
JP2007161784A (ja) | 絶縁膜、化合物、膜形成用組成物及び電子デバイス | |
JP5155541B2 (ja) | 絶縁膜形成用組成物の製造方法、該製造方法により製造された絶縁膜形成用組成物、絶縁膜および電子デバイス | |
JP2009206447A (ja) | 膜形成用組成物、絶縁膜、及び、電子デバイス | |
JP2009051971A (ja) | 層間絶縁膜用組成物 | |
JP2007161786A (ja) | 重合体、膜形成用組成物、絶縁膜及び電子デバイス | |
JP2007308677A (ja) | 膜形成組成物 | |
JP2007161778A (ja) | 膜形成用組成物 | |
JP4792282B2 (ja) | 重合体および膜形成用組成物 | |
JP2010043176A (ja) | 膜形成用組成物、絶縁膜、および電子デバイス | |
JP2009046540A (ja) | 膜形成用組成物、膜及び電子デバイス | |
JP2009227838A (ja) | 膜形成用組成物、絶縁膜、及び、電子デバイス | |
JP2007161780A (ja) | 膜形成用組成物、該組成物を用いた絶縁膜及び電子デバイス | |
JP2007161782A (ja) | 膜形成用組成物、該組成物を用いた絶縁膜及び電子デバイス | |
JP2009079195A (ja) | 層間絶縁膜用組成物 | |
JP2009046622A (ja) | 膜形成用組成物、膜及び電子デバイス | |
JP5113466B2 (ja) | 絶縁膜の製造方法、及び、絶縁膜 | |
JP2007211103A (ja) | 重合体の製造方法およびその重合体を用いた膜形成用組成物、絶縁膜及び電子デバイス | |
JP2008085062A (ja) | 膜形成用組成物、該組成物から形成された絶縁膜およびそれを有する電子デバイス |