[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008052010A - 立体像表示装置と撮影装置 - Google Patents

立体像表示装置と撮影装置 Download PDF

Info

Publication number
JP2008052010A
JP2008052010A JP2006227526A JP2006227526A JP2008052010A JP 2008052010 A JP2008052010 A JP 2008052010A JP 2006227526 A JP2006227526 A JP 2006227526A JP 2006227526 A JP2006227526 A JP 2006227526A JP 2008052010 A JP2008052010 A JP 2008052010A
Authority
JP
Japan
Prior art keywords
lens
image
transmission
pinhole
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006227526A
Other languages
English (en)
Inventor
Noriji Ooishi
則司 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006227526A priority Critical patent/JP2008052010A/ja
Publication of JP2008052010A publication Critical patent/JP2008052010A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

【課題】 インテグラルフォトグラフィを使った立体動画の撮影・表示装置の画質を改善する。
【解決手段】 動画を表示する装置の表示面に蝿の目レンズシートを重ねて立体像を表示する装置において、蝿の目レンズシートに各凸レンズの透過・不透過を切り替える透過光制御手段を加え、透過部が不連続になる透過パターンと対応する表示画像を切り替えて、時分割で全レンズによる立体像を表示する。さらにこの装置で表示する画像は、ピンホールの並んだピンホール板に、各ピンホールの透過・不透過を切り替える透過光制御手段を加え、これを通して被写体の像を撮影する装置によって、ピンホールの透過パターンを表示装置に合わせて切り替えることで直接撮影することができる。
【選択図】 図1

Description

本発明は、レンチキュラーレンズやレンズシートを使って表示する立体像を、より高品質で表示する装置と、対応する画像を撮影する装置に関する。
インテグラルフォトグラフィの原理に基づきレンチキュラーレンズやレンズシートを使って立体像を表示する方法は、リアルな立体像を実現できる有望な手法として期待されているが、高画質や広い視域を確保するためには極めて解像度の高い元画像を必要とするという特徴がある。このため解像度の高い写真フィルムや印刷物などを元画像に使って静止画を表示する場合には、実用的な品質の立体像を表示することが可能であるが、動画の表示については、近年CRT、液晶パネルやプラズマディスプレイなどの表示装置の性能は向上しているものの、そのまま元画像に使用して十分な画質と視域を確保するのは未だ困難である。
また、インテグラルフォトグラフィによる立体像の撮影には、そのままでは像の遠近感が逆転する偽立体像になってしまうという特有の問題が存在する。最近ではコンピューターを使ったCGで元画像を作成することが可能であるため撮影が必須でなくなり、撮影技術を伴わずに表示技術の開発が進む傾向があるが、情報の記録と伝達と言う意味からは、表示技術は対応する撮影技術を伴うことが望ましい。
本発明の課題は、解像度が限られた動画表示手段を使ってより高品質の立体像を表示する立体像表示装置を実現すること、及び同装置で表示するための元画像を撮影する立体像撮影装置を実現することである。
本発明の請求項1は、表示内容を切り替え可能な画像表示手段に、面上に凸レンズが並んだレンズシートと、該レンズシートの各凸レンズの透過と不透過を切り替える透過光制御手段を重ねてなる表示装置であって、該透過光制御手段のパターンは、少なくとも一つの方向について連続することがないように一定の間隔で透過部が繰り返し、かつ時間の経過とともに透過部を切り替えて、所定の時間周期内に全ての凸レンズが一度ずつ透過の状態になるよう繰り返し、該画像表示手段には各瞬間に透過の状態にある凸レンズに合わせて小画像を並べて表示することを特徴とする立体像表示装置である。
本発明の請求項2は、面上にピンホールが並んでなるピンホール板と、該ピンホール板の各ピンホールの透過と不透過を切り替える透過光制御手段と、該ピンホール板を通る光を撮影レンズによって撮像面に投影して動画を撮影するカメラからなり、該ピンホール板を通して被写体の像を撮影する装置であって、該透過光制御手段のパターンは、少なくとも一つの方向について連続することがないように一定の間隔で透過部が繰り返し、一コマ撮影するとともに透過部を切り替えて、所定のコマ数内に全てのピンホールが一度ずつ透過の状態になるよう繰り返し、該撮像面は撮影レンズによって該ピンホール板のピンホール群の像が結ばれる位置より、所定の距離だけ撮影レンズに近い位置にあり、各ピンホールの通過光が撮像面上に像を形成し、かつ各コマで隣り合う像どうしが重なり合わないことを特徴とする立体像撮影装置である。
本発明の請求項3は、請求項2のピンホール板の撮影レンズ側に、該ピンホール板の各ピンホールと一対一に対応する凸レンズが並んだレンズシートを、該凸レンズの焦点距離より該ピンホール板に接近して置くことを特徴とする、請求項2に記載の立体像撮影装置である。
本発明の請求項4は、請求項2のピンホール板の被写体側に、該ピンホール板の各ピンホールと一対一に対応する凹レンズが並んだレンズシートを置くことを特徴とする、請求項2に記載の立体像撮影装置である。
本発明の請求項5は、表示内容を切り替え可能な画像表示手段に、面上にシリンドリカル凸レンズが並んだレンチキュラーレンズと、該レンチキュラーレンズの各シリンドリカル凸レンズの透過と不透過を切り替える透過光制御手段を重ねてなる表示装置であって、該透過光制御手段のパターンは透過部が連続することがないように一定の間隔で繰り返し、かつ時間の経過とともに透過部を切り替えて、所定の時間周期内に全てのシリンドリカル凸レンズが一度ずつ透過の状態になるよう繰り返し、該画像表示手段には各瞬間に透過の状態にあるシリンドリカル凸レンズに合わせて細画像を並べて表示することを特徴とする立体像表示装置である。
本発明の請求項6は、面上に平行なスリットが並んでなるスリット板と、該スリット板の各スリットの透過と不透過を切り替える透過光制御手段と、該スリット板を通る光を撮影レンズによって撮像面に投影して動画を撮影するカメラからなり、該スリット板を通して被写体の像を撮影する装置であって、該透過光制御手段のパターンは透過部が連続することがないように一定の間隔で繰り返し、一コマ撮影するとともに透過部を切り替えて、所定のコマ数内に全てのスリットが一度ずつ透過の状態になるよう繰り返し、該撮像面は撮影レンズによって該スリット板のスリット群の像が結ばれる位置より、所定の距離だけ撮影レンズに近い位置にあり、各スリットの通過光が撮像面上に細長い像を形成し、かつ各コマで隣り合う像どうしが重なり合わないことを特徴とする立体像撮影装置である。
本発明の請求項7は、請求項6のスリット板の撮影レンズ側に、該スリット板の各スリットと一対一に対応するシリンドリカル凸レンズが並んだレンチキュラーレンズを、該シリンドリカル凸レンズの焦点距離より該スリット板に接近して置くことを特徴とする、請求項6に記載の立体像撮影装置である。
本発明の請求項8は、請求項6のスリット板の被写体側に、該スリット板の各スリットと一対一に対応するシリンドリカル凹レンズが並んだレンチキュラーレンズを置くことを特徴とする、請求項6に記載の立体像撮影装置である。
本発明の立体像表示装置によれば、CRTや液晶パネルなど動画を再生可能なディスプレイの表示面に、蝿の目レンズシートやレンチキュラーレンズを重ねて立体像を再生する装置において、有効なレンズを所定のパターンに分け、順次切り替え時分割で表示することにより各レンズに対応する単位画像の面積を増やし、これによって表示像の解像度や視域角を改善することが出来る。
また本発明の立体像撮影装置によれば、本発明の立体像表示装置によって表示する元画像を一台のカメラによって直接撮影することが出来、複数のカメラによる撮影と画像の合成を必要としない。このため本発明によれば、立体像の撮影から表示まで一貫したシステムを構成することが可能である。
図1に本発明請求項1の立体像表示装置の例を斜視図をもって示す。本装置は表示内容を切り替え可能な画像表示手段に液晶パネル1を用い、これに透明板4と液晶シャッター2、凸レンズが面上に並んだ(蝿の目)レンズシート3を重ねている。ここで透過と不透過を切り替える透過光制御手段には液晶シャッター2を使っているが、現時点ではこれが最も現実的な選択で、原理的にはメカニカルなシャッターも使用可能ではあるが、反応スピードや加工技術の難しさを考えると実用的ではない。液晶シャッター2はレンズシート3の各凸レンズと一対一に対応する小さなシャッターが並んだもので、各凸レンズの透過光を個別にオン・オフすることができる。
図2を使って本表示装置の作用を説明する。液晶パネルにレンズシート6を重ねたのみの通常の表示装置では、図2(1)のように液晶パネルの表示面5に表示する単位画像の大きさはレンズピッチに等しくしなければならず、視域角θもこれによって制限される。これに対して本発明の表示装置では、例えば図2(2)のように液晶シャッター2の透過部を一つおきに並べ、斜線で示した不透過部を作ることで表示面7に表示する単位画像の大きさをレンズピッチの倍にすることが出来、その結果視域角φを倍近く大きくとることが出来る。もちろんこのままでは解像度が1/2になってしまうが、次の瞬間に液晶シャッター2の透過部と不透過部を逆転し、それに伴い表示面7の内容も換えれば(1)と同じ解像度の像が時分割で表示できることになり、これを高速で繰り返せば解像度の低下も起こらなくなる。以上は本発明の効果を視域角の拡大として説明したが、視域と解像度はトレードオフの関係なので本発明を解像度の改善につなげることも出来る。例えば図2の例で(2)のレンズピッチを1/2とすれば視域角は変わらず解像度が倍になるし、もちろんその効果を視域と解像度の両方にバランス良く割り振ることも可能である。
さらに液晶シャッター2の二次元的なパターンの例を図3と図4を使って説明する。図3は二つの相補的な透過パターンを切り替える例を示したものである。液晶シャッター2には配線部などの不透過部8に囲まれるように開口部が並んでいるが、(a)と(b)はいずれも市松模様のパターンで半分の開口部が透過状態になり、(a)では開口部9がオン(透過)、開口部10がオフ(不透過)であるのに対し、(b)では開口部9がオフ、開口部10がオンと逆転している。各開口部はそれぞれ対応する凸レンズの透過・不透過を制御しており、各レンズに対応する単位画像の境界を点線で示したとおり、単位画像の幅はレンズ(及び開口部の)ピッチの2倍になる。なおここでは横に長い単位画像を選択しているが、市松模様のパターンでは縦に長い単位画像を選択することもできる。ただ一般に立体像は横(水平)の視域を広くとることが望まれるため、通常は横に長い単位画像をとることが望ましい。(a)と(b)の状態を短時間に切り替えれば全ての凸レンズによって立体像が完成され、これを繰り返して動画を表示する。
単位画像の拡大方向が一方向に限られる場合には、液晶シャッター2の透過パターンはストライプ状であってもかまわない。この際には液晶シャッター自体をストライプ状のものとする事が出来るため製作も容易となる。ただ瞬間的にはストライプ状の像が見えることになるため、切り替えスピードが遅めの時には縞模様が見えてちらつき感を生じる恐れがある。
図4は四つの透過パターンを切り替える例である。(A)〜(D)はそれぞれ開口部の1/4が透過の状態にあり、その境界を点線で示したように単位画像の幅は縦横にレンズ(及び開口部の)ピッチの2倍になり、面積は4倍になる。この結果視域も縦横に2倍になり、(A)〜(D)を短時間で切り替えて表示することによりレンズピッチで決まる解像度で立体像が表示される。先に説明した通り解像度と視域はトレードオフの関係なので、視域を欲張らなければ、本発明の効果を解像度を上げることに役立てることもできる。
以上ここでは二つ及び四つの透過パターンを切り替える例を説明したが、一般化すればN×Mの開口部の一つを透過としてN×M通りの透過パターンを切り替える方法が使用できる。ただ表示装置と液晶シャッターの応答速度には限りがあるため、あまり切り替え数が大きくなると表示像のちらつき感が強くなって好ましくない。実際には使用する部品の応答速度や解像度を考慮してバランスの良い選択を行う必要がある。
請求項1の立体像表示装置において、透過光制御手段は各凸レンズの透過・不透過を制御するためレンズシートに密着して置かれなければならない。図1の実施例では液晶シャッター2をレンズシート3の裏面に密着するように置いているが、スペースの問題でこれが困難であればレンズシートの表面の側に置いても良い。図5にこの様子を断面図で示したが、表示面11の上にレンズシート12を重ね、さらに液晶シャッター13をのせる構成で図2(2)と同じ機能を果たしていることがわかる。この場合にはレンズシート12にある程度の厚みのあるものが使え、また図1より部品点数が一つ少ないというメリットもある。
図6に本発明請求項2の立体像撮影装置の光学系を斜視図をもって示す。ここではその光学系のみを表し、光学系を収納する暗箱や構造材は省略する。本光学系は面上にピンホールが並んだピンホール板14と液晶シャッター15、絞り16、撮影レンズ17、撮像面18とからなり、被写体からの光を、ピンホール板14と液晶シャッター15を通し、撮影レンズ17によって撮像面18に投影して撮影するもので、撮像面18はCCD撮像素子の撮像面などである。ここで液晶シャッター15はピンホール板14の各ピンホールの透過・不透過を図3、図4に説明したパターンのように制御している。撮影レンズ17の焦点距離をfとすると、平面図を図7に示す通り1/f=1/A+1/Bを満たす位置に、撮影レンズ17によるピンホール板14のピンホール21の像22が結ばれるが、撮像面18をBよりdだけ撮影レンズ17に近い位置に置くと、撮像面18にはピンホール板14のピンホール21によって形成されるピンホールカメラの像が投影されることになる。結果として撮像面18にはピンホール板14の各ピンホールに対応する小さなピンホールカメラ像が並ぶが、撮影レンズ17と絞り16による瞳の幅をR、透過の状態にある隣り合うピンホールの間隔をpとするとき、Rd/B ≦ p(B−d)/A すなわち d = pB(B−d)/ARであれば隣り合うピンホールカメラ像が重ならず、かつ隙間もなく並ぶことになる。このようにして撮像面18で撮影された像は、インテグラルフォトグラフィで言う正しい立体像の条件を満たしており、あとは液晶シャッター15のパターンを請求項1の表示装置の液晶シャッター2や13に合わせて切り替えれば、それぞれのパターンに対応する元画像が撮影できることになる。
なお図6、図7のレンズ19はフィールドレンズのような働きをするもので、撮影される立体像の視域を調整する機能を有する。これ無しでは絞り16の位置に絞りの形状に等しい視域を持つ立体像になるが、レンズ19を置くことで、レンズ19による絞りの像の位置に視域が移動しその面積も若干広くなる。ただ図6、図7の装置で撮影出来る視域は撮影レンズ17の口径によって制限されるため、視域の大きな立体像を撮影するためには撮影レンズ17に大口径かつ厚肉な高性能レンズを使わなければならず、実際にはこのままで視域の大きな立体像を撮ることはかなり難しい。そこで請求項3および請求項4ではピンホール板にレンズシートを組み合わせることでこの問題を改善し、視域角の大きな立体像の撮影を容易にすることを可能にした。
ピンホール板14にレンズシートを組み合わせる様子を図8に示した。ここで(a)は凸レンズを面上に並べたレンズシート23を撮影レンズ17側に置く請求項3の例を部分図で示したもので、図の右側が撮影レンズ17のある側であり、左側が被写体20のある側である。レンズシート23の各凸レンズはピンホール板14の各ピンホールと一対一に対応し、凸レンズの作用によって被写体側から角度αでピンホールに入る光をαより小さい角度βの光に変換する。ここで角度αが撮影像の視域角、角度βが撮影レンズで撮影可能な角度範囲であると考えれば、撮影可能な角度範囲が小さくとも、レンズシート23の各凸レンズの働きによって大きな視域角の立体像を撮影することが可能になることが分かる。なおレンズシート23はピンホール板14から各凸レンズの焦点距離より短い距離に置かれなければならない。もし焦点距離に等しい距離に置かれるとβ=0となって本発明の原理が成り立たず、また焦点距離より遠い距離に置かれるとβが負になり、像が倒立してしまうため好ましくない。この際液晶シャッター15は被写体側におけば邪魔にならない。
さらに図8(b)は凹レンズを面上に並べたレンズシート24を被写体側に置く請求項4の例を部分図で示したもので、同様に右側が撮影レンズ17のある側、左側が被写体20のある側である。レンズシート24の各凹レンズはピンホール板14の各ピンホールと一対一に対応し、凹レンズの作用によって被写体側から角度αでピンホールに入る光をαより小さい角度βの光に変換する。あとは請求項3と同様の理屈で、撮影可能な角度範囲が小さくとも、レンズシート24の各凹レンズの働きによって大きな視域角の立体像を撮影することが可能になることが分かる。凹レンズには凸レンズのような距離条件はないが、ピンホールと一対一の対応関係が崩れるほど、ピンホール板14から離しすぎては好ましくないため、この点に留意して適当な位置を決めればよい。また液晶シャッター15はレンズシート24の反対側、すなわち撮影レンズ17の側に置けば邪魔にならず好ましい。
請求項1〜4の立体像表示装置と撮影装置の原理は、レンチキュラーレンズを使った立体像の表示と撮影にも容易に応用できる。図9は請求項1の原理を応用した請求項5の立体像表示装置の実施例を射視図によって示したものである。レンズシートがレンチキュラーレンズ27に変わり、液晶シャッター26がストライプ状のものになった事以外は図1の表示装置と同じで、液晶シャッター26の透過パターンは例えば図10に示した(a)(b)のように切り替えて表示する。ここで隣り合う開口部30,31の透過・不透過が交互に切り替わり、対応する細画像は点線で示した境界を持ってレンズピッチの倍の幅を持つことになる。このときのxz断面図は図2(2)と全く同じであり、同様の原理で視域が拡大されることがわかる。ストライプ状の液晶シャッターでは配線部29もストライプ状になるため、開口率が大きくとれて若干明るくなるという利点もある。ここでは二つの透過パターンを切り替える例を説明したが、一般化すれば開口部を周期Nで透過とし、間を不透過とするN通りの透過パターンを切り替える方法が使用できる。
さらに請求項5の立体像表示装置で表示する元画像は請求項6の撮影装置で撮影することが出来る。図11に請求項6の立体像撮影装置の光学系を斜視図をもって示した。本光学系は面上に平行な縦のスリットが並んだスリット板32と液晶シャッター33、絞り34、撮影レンズ35、撮像面36とからなり、被写体からの光を、スリット板32と液晶シャッター33を通し、撮影レンズ35によって撮像面35に投影して撮影するものである。ここで液晶シャッター33はスリット板32に対応して図10のようなストライプ状の開口部を持ち、絞り34は縦に幅を絞って被写界深度を大きくしている。本装置のxz平面図は図7と等価になり、撮影像はx軸方向にはインテグラルフォトグラフィで言う正しい立体像となる。一方y軸方向には通常の平面像の性質になるから、これはレンチキュラーレンズで表示できる立体像になり、あとは液晶シャッターの透過パターンを表示装置に対応するように切り替えて撮影する。
加えて撮影装置の視域を拡大するためには請求項3及び請求項4の原理を応用することが出来、シリンドリカル凸レンズが並んだレンチキュラーレンズをスリット板32の撮影レンズ35側に置く(請求項7)か、シリンドリカル凹レンズが並んだレンチキュラーレンズをスリット板32の被写体側に置けば(請求項8)良い。この場合のxz平面図は図8と等価になる。
本発明は表示内容を切り替え可能な装置を使って表示することを前提とするため、基本的に動画の立体像を撮影・表示する立体映画や立体テレビに利用できる可能がある。
請求項1による立体像表示装置の実施例である。 請求項1の原理を説明する断面図である。 図1の装置における液晶シャッターの透過パターンの一例である。 図1の装置における液晶シャッターの透過パターンの他の例である。 請求項1の他の形態を説明する断面図である。 請求項2による立体像撮影装置の光学系である。 図6に示した光学系のyz平面図である。 請求項3及び請求項4を説明する部分断面図である。 請求項5による立体像表示装置の実施例である。 図9の装置における液晶シャッターの透過パターンの一例である。 請求項6による立体像撮影装置の光学系である。
符号の説明
1 ・・・ 液晶パネル
2,13 ・・・ 液晶シャッター
3 ・・・ 凸レンズが並んだレンズシート
4 ・・・ 透明板
5,7,11 ・・・ 表示面
6,12 ・・・ 凸レンズが並んだレンズシート
8 ・・・ 液晶シャッターの配線部
9,10 ・・・ 開口部
14 ・・・ ピンホール板
15 ・・・ 液晶シャッター
16 ・・・ 絞り
17 ・・・ 撮影レンズ
18 ・・・ 撮像面
19 ・・・ 凸レンズ
20 ・・・ 被写体
21 ・・・ ピンホール
22 ・・・ ピンホールの像
23 ・・・ 凸レンズが並んだレンズシート
24 ・・・ 凹レンズが並んだレンズシート
25 ・・・ 液晶パネル
26 ・・・ 液晶シャッター
27 ・・・ レンチキュラーレンズ
28 ・・・ 透明板
29 ・・・ 液晶シャッターの配線部
30,31 ・・・ 開口部
32 ・・・ スリット板
33 ・・・ 液晶シャッター
34 ・・・ 絞り
35 ・・・ 撮影レンズ
36 ・・・ 撮像面
37 ・・・ 凸レンズ

Claims (8)

  1. 表示内容を切り替え可能な画像表示手段に、面上に凸レンズが並んだレンズシートと、該レンズシートの各凸レンズの透過と不透過を切り替える透過光制御手段を重ねてなる表示装置であって、該透過光制御手段のパターンは、少なくとも一つの方向について連続することがないように一定の間隔で透過部が繰り返し、かつ時間の経過とともに透過部を切り替えて、所定の時間周期内に全ての凸レンズが一度ずつ透過の状態になるよう繰り返し、該画像表示手段には各瞬間に透過の状態にある凸レンズに合わせて小画像を並べて表示することを特徴とする立体像表示装置。
  2. 面上にピンホールが並んでなるピンホール板と、該ピンホール板の各ピンホールの透過と不透過を切り替える透過光制御手段と、該ピンホール板を通る光を撮影レンズによって撮像面に投影して動画を撮影するカメラからなり、該ピンホール板を通して被写体の像を撮影する装置であって、該透過光制御手段のパターンは、少なくとも一つの方向について連続することがないように一定の間隔で透過部が繰り返し、一コマ撮影するとともに透過部を切り替えて、所定のコマ数内に全てのピンホールが一度ずつ透過の状態になるよう繰り返し、該撮像面は撮影レンズによって該ピンホール板のピンホール群の像が結ばれる位置より、所定の距離だけ撮影レンズに近い位置にあり、各ピンホールの通過光が撮像面上に像を形成し、かつ各コマで隣り合う像どうしが重なり合わないことを特徴とする立体像撮影装置。
  3. 請求項2のピンホール板の撮影レンズ側に、該ピンホール板の各ピンホールと一対一に対応する凸レンズが並んだレンズシートを、該凸レンズの焦点距離より該ピンホール板に接近して置くことを特徴とする、請求項2に記載の立体像撮影装置。
  4. 請求項2のピンホール板の被写体側に、該ピンホール板の各ピンホールと一対一に対応する凹レンズが並んだレンズシートを置くことを特徴とする、請求項2に記載の立体像撮影装置。
  5. 表示内容を切り替え可能な画像表示手段に、面上にシリンドリカル凸レンズが並んだレンチキュラーレンズと、該レンチキュラーレンズの各シリンドリカル凸レンズの透過と不透過を切り替える透過光制御手段を重ねてなる表示装置であって、該透過光制御手段のパターンは透過部が連続することがないように一定の間隔で繰り返し、かつ時間の経過とともに透過部を切り替えて、所定の時間周期内に全てのシリンドリカル凸レンズが一度ずつ透過の状態になるよう繰り返し、該画像表示手段には各瞬間に透過の状態にあるシリンドリカル凸レンズに合わせて細画像を並べて表示することを特徴とする立体像表示装置。
  6. 面上に平行なスリットが並んでなるスリット板と、該スリット板の各スリットの透過と不透過を切り替える透過光制御手段と、該スリット板を通る光を撮影レンズによって撮像面に投影して動画を撮影するカメラからなり、該スリット板を通して被写体の像を撮影する装置であって、該透過光制御手段のパターンは透過部が連続することがないように一定の間隔で繰り返し、一コマ撮影するとともに透過部を切り替えて、所定のコマ数内に全てのスリットが一度ずつ透過の状態になるよう繰り返し、該撮像面は撮影レンズによって該スリット板のスリット群の像が結ばれる位置より、所定の距離だけ撮影レンズに近い位置にあり、各スリットの通過光が撮像面上に細長い像を形成し、かつ各コマで隣り合う像どうしが重なり合わないことを特徴とする立体像撮影装置。
  7. 請求項6のスリット板の撮影レンズ側に、該スリット板の各スリットと一対一に対応するシリンドリカル凸レンズが並んだレンチキュラーレンズを、該シリンドリカル凸レンズの焦点距離より該スリット板に接近して置くことを特徴とする、請求項6に記載の立体像撮影装置。
  8. 請求項6のスリット板の被写体側に、該スリット板の各スリットと一対一に対応するシリンドリカル凹レンズが並んだレンチキュラーレンズを置くことを特徴とする、請求項6に記載の立体像撮影装置。
JP2006227526A 2006-08-24 2006-08-24 立体像表示装置と撮影装置 Pending JP2008052010A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227526A JP2008052010A (ja) 2006-08-24 2006-08-24 立体像表示装置と撮影装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227526A JP2008052010A (ja) 2006-08-24 2006-08-24 立体像表示装置と撮影装置

Publications (1)

Publication Number Publication Date
JP2008052010A true JP2008052010A (ja) 2008-03-06

Family

ID=39236128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227526A Pending JP2008052010A (ja) 2006-08-24 2006-08-24 立体像表示装置と撮影装置

Country Status (1)

Country Link
JP (1) JP2008052010A (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248032A (ja) * 2010-05-26 2011-12-08 Nippon Hoso Kyokai <Nhk> 立体撮像装置
JP2016046645A (ja) * 2014-08-21 2016-04-04 日本放送協会 立体映像表示装置、その製造方法、及び、その位置ずれ調整装置
JP2016110146A (ja) * 2014-12-08 2016-06-20 パナソニックIpマネジメント株式会社 画像表示装置
JP2018163282A (ja) * 2017-03-27 2018-10-18 日本放送協会 立体映像表示装置
CN109254412A (zh) * 2018-11-20 2019-01-22 成都工业学院 基于矩形针孔阵列的双视3d显示装置
CN109298538A (zh) * 2018-11-20 2019-02-01 成都工业学院 均匀光学效率的双视3d显示装置
KR20190026019A (ko) * 2016-07-15 2019-03-12 라이트 필드 랩 인코포레이티드 홀로그램 초해상도를 위한 인코딩된 에너지 도파관
JP6700504B1 (ja) * 2018-12-11 2020-05-27 株式会社アスカネット 立体像表示装置及び立体像表示方法
WO2020122053A1 (ja) * 2018-12-11 2020-06-18 株式会社アスカネット 立体像表示装置及び立体像表示方法
JP2020140192A (ja) * 2019-02-27 2020-09-03 三星電子株式会社Samsung Electronics Co.,Ltd. 立体像表示装置、立体像表示方法及び立体像生成表示システム
US11181749B2 (en) 2018-01-14 2021-11-23 Light Field Lab, Inc. Systems and methods for transverse energy localization in energy relays using ordered structures
US11275255B2 (en) 2015-09-25 2022-03-15 Lg Innotek Co., Ltd. Integral image processing device and vehicular lamp using same

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011248032A (ja) * 2010-05-26 2011-12-08 Nippon Hoso Kyokai <Nhk> 立体撮像装置
JP2016046645A (ja) * 2014-08-21 2016-04-04 日本放送協会 立体映像表示装置、その製造方法、及び、その位置ずれ調整装置
JP2016110146A (ja) * 2014-12-08 2016-06-20 パナソニックIpマネジメント株式会社 画像表示装置
US11275255B2 (en) 2015-09-25 2022-03-15 Lg Innotek Co., Ltd. Integral image processing device and vehicular lamp using same
US11733448B2 (en) 2016-07-15 2023-08-22 Light Field Lab, Inc. System and methods for realizing transverse Anderson localization in energy relays using component engineered structures
KR20220134672A (ko) * 2016-07-15 2022-10-05 라이트 필드 랩 인코포레이티드 홀로그램 초해상도를 위한 인코딩된 에너지 도파관
KR20190026019A (ko) * 2016-07-15 2019-03-12 라이트 필드 랩 인코포레이티드 홀로그램 초해상도를 위한 인코딩된 에너지 도파관
JP2019525323A (ja) * 2016-07-15 2019-09-05 ライト フィールド ラボ、インコーポレイテッド 高密度エネルギー指向装置
JP2019529966A (ja) * 2016-07-15 2019-10-17 ライト フィールド ラボ、インコーポレイテッド ホログラフィック超解像度のための符号化されたエネルギー導波路
US12228766B2 (en) 2016-07-15 2025-02-18 Light Field Lab, Inc. Energy relays with traverse energy localization
US12061356B2 (en) 2016-07-15 2024-08-13 Light Field Lab, Inc. High density energy directing device
JP7430870B2 (ja) 2016-07-15 2024-02-14 ライト フィールド ラボ、インコーポレイテッド ホログラフィック超解像度のための符号化されたエネルギー導波路
KR102600432B1 (ko) * 2016-07-15 2023-11-09 라이트 필드 랩 인코포레이티드 홀로그램 초해상도를 위한 인코딩된 광 에너지 가이딩 요소
US11221670B2 (en) 2016-07-15 2022-01-11 Light Field Lab, Inc. System and methods for realizing transverse Anderson localization in energy relays using component engineered structures
US11796733B2 (en) 2016-07-15 2023-10-24 Light Field Lab, Inc. Energy relay and Transverse Anderson Localization for propagation of two-dimensional, light field and holographic energy
US11740402B2 (en) 2016-07-15 2023-08-29 Light Field Lab, Inc. Energy relays with traverse energy localization
US11726256B2 (en) 2016-07-15 2023-08-15 Light Field Lab, Inc. High-density energy directing devices for two-dimensional, stereoscopic, light field and holographic displays
US11681092B2 (en) 2016-07-15 2023-06-20 Light Field Lab, Inc. Selective propagation of energy in light field and holographic waveguide arrays
JP7088904B2 (ja) 2016-07-15 2022-06-21 ライト フィールド ラボ、インコーポレイテッド ホログラフィック超解像度のための符号化されたエネルギー導波路
JP2022120078A (ja) * 2016-07-15 2022-08-17 ライト フィールド ラボ、インコーポレイテッド ホログラフィック超解像度のための符号化されたエネルギー導波路
KR102450992B1 (ko) * 2016-07-15 2022-10-05 라이트 필드 랩 인코포레이티드 홀로그램 초해상도를 위한 인코딩된 에너지 도파관
US11681091B2 (en) 2016-07-15 2023-06-20 Light Field Lab, Inc. High density energy directing device
JP7289523B2 (ja) 2016-07-15 2023-06-12 ライト フィールド ラボ、インコーポレイテッド 高密度エネルギー指向装置
JP2018163282A (ja) * 2017-03-27 2018-10-18 日本放送協会 立体映像表示装置
US11237307B2 (en) 2018-01-14 2022-02-01 Light Field Lab, Inc. Systems and methods for forming energy relays with transverse energy localization
US11181749B2 (en) 2018-01-14 2021-11-23 Light Field Lab, Inc. Systems and methods for transverse energy localization in energy relays using ordered structures
US11280940B2 (en) 2018-01-14 2022-03-22 Light Field Lab, Inc. Systems and methods for directing multiple 4D energy fields
US11885988B2 (en) 2018-01-14 2024-01-30 Light Field Lab, Inc. Systems and methods for forming energy relays with transverse energy localization
CN109254412B (zh) * 2018-11-20 2024-03-22 成都航空职业技术学院 基于矩形针孔阵列的双视3d显示装置
CN109254412A (zh) * 2018-11-20 2019-01-22 成都工业学院 基于矩形针孔阵列的双视3d显示装置
CN109298538A (zh) * 2018-11-20 2019-02-01 成都工业学院 均匀光学效率的双视3d显示装置
CN109298538B (zh) * 2018-11-20 2024-03-26 成都航空职业技术学院 均匀光学效率的双视3d显示装置
US11630323B2 (en) 2018-12-11 2023-04-18 Asukanet Company, Ltd. Stereoscopic image display device and stereoscopic image display method
CN114594614A (zh) * 2018-12-11 2022-06-07 亚斯卡奈特股份有限公司 立体像显示装置以及立体像显示方法
WO2020122053A1 (ja) * 2018-12-11 2020-06-18 株式会社アスカネット 立体像表示装置及び立体像表示方法
JP6700504B1 (ja) * 2018-12-11 2020-05-27 株式会社アスカネット 立体像表示装置及び立体像表示方法
JP7424786B2 (ja) 2019-02-27 2024-01-30 三星電子株式会社 立体像表示装置、立体像表示方法及び立体像生成表示システム
JP2020140192A (ja) * 2019-02-27 2020-09-03 三星電子株式会社Samsung Electronics Co.,Ltd. 立体像表示装置、立体像表示方法及び立体像生成表示システム

Similar Documents

Publication Publication Date Title
JP2008052010A (ja) 立体像表示装置と撮影装置
US20070109505A1 (en) Projection three-dimensional display apparatus
EP1150518B1 (en) Three-dimensional image sensing device and method, and three-dimensional image displaying device and method
JP3105888B2 (ja) 多視点3次元映像表示装置
JP2007336002A (ja) 多視点映像表示装置
JPH10253926A (ja) 立体画像表示方法およびその方法を用いる立体画像表示装置
JP2008058583A (ja) 三次元画像表示装置および三次元画像表示方法
JP3500083B2 (ja) 眼鏡無し立体映像表示装置
JP2008046525A (ja) 立体像撮影装置と表示装置
JP2005091447A (ja) 立体表示装置
JP4233660B2 (ja) 3次元画像撮影装置および方法ならびに3次元画像表示装置および方法
JP2744478B2 (ja) 立体表示装置
JP3108351B2 (ja) 投写型立体映像表示装置
WO1997006524A1 (en) Device for integrating multiple images and method of making same
JPH07248467A (ja) 3次元情報入力装置及び3次元情報再生装置
JP3234354B2 (ja) 投写型映像表示装置
JP3463960B2 (ja) 立体画像表示装置
JP3059962B1 (ja) 眼鏡無し立体映像表示装置
JP2007101929A (ja) 投影型三次元表示装置
JPH0728178A (ja) 投写型3次元画像表示装置
JP2005128277A (ja) 立体像撮影装置
JP2006010786A (ja) 多視点立体像を撮影、表示する装置
JP4217322B2 (ja) 3次元画像表示位置変換装置および方法
Eichenlaub Further advances in autostereoscopic technology at Dimension Technologies Inc.
JP4484261B2 (ja) 3次元画像撮影装置および方法