[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007311653A - Solder coating method, solder coating unit, and die bonder - Google Patents

Solder coating method, solder coating unit, and die bonder Download PDF

Info

Publication number
JP2007311653A
JP2007311653A JP2006140622A JP2006140622A JP2007311653A JP 2007311653 A JP2007311653 A JP 2007311653A JP 2006140622 A JP2006140622 A JP 2006140622A JP 2006140622 A JP2006140622 A JP 2006140622A JP 2007311653 A JP2007311653 A JP 2007311653A
Authority
JP
Japan
Prior art keywords
solder
wire
lead frame
substrate
coated surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006140622A
Other languages
Japanese (ja)
Inventor
Shigeru Ogawa
重 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2006140622A priority Critical patent/JP2007311653A/en
Publication of JP2007311653A publication Critical patent/JP2007311653A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L2224/743Apparatus for manufacturing layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/83053Bonding environment
    • H01L2224/83054Composition of the atmosphere
    • H01L2224/83075Composition of the atmosphere being inert

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solder coating unit excellent in workability and quality of solder application, and a die bonder. <P>SOLUTION: While a first point P1 of a substrate 1' is stopped just below a solder wire 2 supported by a solder supply unit 4, the solder wire 2 is let out down below at a constant speed so that the end of the wire is brought in contact and melted with the first point P1. In succession, the whole solder supply unit 4 is horizontally moved in a direction parallel to the coated surface of the substrate 1' by a drive control system 20 to successively melt the solder wire 2 bit by bit from its end on the substrate 1', and the melted solder 2d is applied to the coated surface of the substrate 1' in a horizontal and approximately elliptical shape. If the solder wire 2 is moved as far as a second point P2, the solder wire 2 is pulled up to finalize the one-stroke solder application operation on the substrate. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、リードフレームに定量の半田を塗布する半田塗布方法、半田塗布ユニット、この半田塗布方法・ユニットを使用してリードフレームに半導体チップを半田接合するダイボンダーに関する。   The present invention relates to a solder application method for applying a certain amount of solder to a lead frame, a solder application unit, and a die bonder for soldering a semiconductor chip to a lead frame using this solder application method / unit.

半導体製造設備であるダイボンダーは、リードフレームの複数のアイランドに順に定量の半田を供給して溶融させ、溶融した半田上に半導体チップをマウントする。このダイボンダーにおいては、リードフレームを半田融点以上に予熱しながら非酸化雰囲気中で水平方向に間欠搬送するヒーターレールを使用している(例えば、特許文献1参照)。ヒーターレールは、リードフレーム搬送方向に長尺な水平レールで、非酸化雰囲気に保たれたトンネル状のリードフレーム搬送路を有する。リードフレーム搬送路には、半田塗布ポジション、半田整形ポジション、チップ供給ポジションが連続して配置され、この各ポジションにリードフレームのアイランドが順に間欠搬送される。リードフレームの間欠搬送で1つのアイランドが半田塗布ポジションに搬入されて停止すると、同ポジションに設置された半田塗布ユニットでアイランド上の所定の面積領域である被塗布面に定量の半田が供給され、アイランドの予熱で溶融する。アイランドが次の半田整形ポジションに間欠搬送されると、同ポジションに設置された半田整形ユニットでアイランド上の溶融半田が半導体チップの形状に合わせて整形される。アイランドが次のチップ供給ポジションに間欠搬送されると、同ポジションに設置されたチップ供給ユニットで整形済みの溶融半田上に半導体チップがマウントされる。   A die bonder, which is a semiconductor manufacturing facility, supplies a predetermined amount of solder to a plurality of islands of a lead frame and melts them in order, and mounts a semiconductor chip on the melted solder. This die bonder uses a heater rail that intermittently conveys the lead frame in the horizontal direction in a non-oxidizing atmosphere while preheating the lead frame to the solder melting point or higher (see, for example, Patent Document 1). The heater rail is a horizontal rail that is long in the lead frame transport direction, and has a tunnel-like lead frame transport path maintained in a non-oxidizing atmosphere. A solder application position, a solder shaping position, and a chip supply position are continuously arranged in the lead frame conveyance path, and islands of the lead frame are intermittently conveyed in order to each position. When one island is brought into the solder application position and stopped by the intermittent conveyance of the lead frame, a certain amount of solder is supplied to the surface to be applied, which is a predetermined area area on the island, by the solder application unit installed at the position, Melts with island preheating. When the island is intermittently conveyed to the next solder shaping position, the molten solder on the island is shaped according to the shape of the semiconductor chip by the solder shaping unit installed at the same position. When the island is intermittently conveyed to the next chip supply position, the semiconductor chip is mounted on the molten solder shaped by the chip supply unit installed at the same position.

リードフレームのアイランドに定量の半田を塗布する半田塗布ユニットは、半田ワイヤを送りローラなどでワイヤ軸方向に繰り出す半田供給装置を使用したものが公知である(例えば、特許文献2参照)。この半田供給装置は、ワイヤ供給ノズルから半田ワイヤを軸方向に繰り出し、ワイヤ先端を予熱されたアイランドに当接させてドット状に溶融させることで、アイランドに定量の半田を塗布する。アイランドの半田が塗布される被塗布面の面積に応じて、被塗布面の一箇所あるいは複数箇所に半田が塗布される。例えば、被塗布面の二箇所にドット状に半田を塗布する半田塗布方法、半田塗布ユニットを図9および図10で説明する。   A known solder application unit that applies a certain amount of solder to an island of a lead frame uses a solder supply device that feeds a solder wire in a wire axial direction with a feed roller or the like (see, for example, Patent Document 2). This solder supply device applies a certain amount of solder to the island by feeding the solder wire from the wire supply nozzle in the axial direction, bringing the tip of the wire into contact with the preheated island and melting it in a dot shape. The solder is applied to one or a plurality of locations on the surface to be coated, depending on the area of the surface to be coated on which the solder of the island is applied. For example, FIG. 9 and FIG. 10 describe a solder application method and a solder application unit in which solder is applied in two dots on the surface to be applied.

図9に示すヒーターレール5は、リードフレーム1を水平に保持して長手方向に間欠搬送する。リードフレーム1は、リードフレーム搬送方向に長尺な平板で、半導体チップ3がマウントされる複数のアイランド1’を等間隔で有する。アイランド1’は、半導体チップ3より大きな面積の金属基板で、以下、必要に応じて基板1’と称する。ヒーターレール5は、蓋板6で塞がれたトンネル状のリードフレーム搬送路7を有する。リードフレーム搬送路7は、窒素ガスなどの酸化防止ガスが吹き込まれて非酸化雰囲気に保たれる。ヒーターレール5が、図示しないヒーターで半田融点以上の適温に予熱される。蓋板6に形成された複数、例えば3つの作業用開口8a〜8cは、リードフレーム搬送方向で上流側から半田塗布用開口8a、半田攪拌整形用開口8b、チップ供給用開口8cである。各作業用開口8a〜cの部所に半田塗布ユニットU1、半田整形ユニットU2、チップ供給ユニットU3が設置される。   The heater rail 5 shown in FIG. 9 holds the lead frame 1 horizontally and intermittently conveys it in the longitudinal direction. The lead frame 1 is a flat plate elongated in the lead frame conveyance direction, and has a plurality of islands 1 ′ on which the semiconductor chips 3 are mounted at equal intervals. The island 1 'is a metal substrate having an area larger than that of the semiconductor chip 3, and is hereinafter referred to as a substrate 1' as necessary. The heater rail 5 has a tunnel-like lead frame conveyance path 7 closed by a cover plate 6. The lead frame transport path 7 is maintained in a non-oxidizing atmosphere by blowing an antioxidant gas such as nitrogen gas. The heater rail 5 is preheated to an appropriate temperature above the solder melting point by a heater (not shown). A plurality of, for example, three work openings 8a to 8c formed in the cover plate 6 are a solder application opening 8a, a solder stirring shaping opening 8b, and a chip supply opening 8c from the upstream side in the lead frame conveying direction. A solder application unit U1, a solder shaping unit U2, and a chip supply unit U3 are installed at the positions of the respective work openings 8a to 8c.

図9と図10に示す半田塗布ユニットU1は、半田ワイヤ2を保持してワイヤ軸方向に送りを掛ける半田供給装置4を備える。半田供給装置4は、半田ワイヤ2を挟持して軸方向の送りを掛ける一対の送りローラ9、10、この送りローラ9、10を正逆回転させるローラ駆動制御装置11、半田ワイヤ2の先端部をガイドする供給ノズル12を備える。半田供給装置4は、図示しないXYテーブルに支持されて水平なXY方向に自在に移動する。半田塗布ユニットU1は、半田供給装置4とXYテーブルを含む。   The solder application unit U1 shown in FIGS. 9 and 10 includes a solder supply device 4 that holds the solder wire 2 and feeds it in the wire axial direction. The solder supply device 4 includes a pair of feed rollers 9 and 10 that sandwich the solder wire 2 and apply an axial feed, a roller drive control device 11 that rotates the feed rollers 9 and 10 forward and backward, and a tip portion of the solder wire 2. A supply nozzle 12 for guiding the above is provided. The solder supply device 4 is supported by an XY table (not shown) and freely moves in the horizontal XY direction. The solder application unit U1 includes a solder supply device 4 and an XY table.

リードフレーム1が1回間欠搬送されて、1つの基板1’が半田塗布用開口8aの真下に搬入されると、図9の鎖線位置で待機する供給ノズル12から真下に半田ワイヤ2が繰り出される。ワイヤ繰り出しは、一対の送りローラ9、10の正回転動作で行われる。繰り出された半田ワイヤ2は、その先端(下端)が基板1’の被塗布面の一点に当接し、基板1’の予熱で溶融する。半田ワイヤ2を定量だけ繰り出すと、送りローラ9、10が逆回転動作をして半田ワイヤ2を供給ノズル12側に定ストロークで引き上げて、基板1’上の始めの一点にドット状に溶融半田2aを塗布する。次に、半田供給装置4が図9の実線位置に水平移動して停止し、この実線位置で送りローラ9、10が再び正回転動作して半田ワイヤ2を真下に繰り出し、基板1’の別の一点に半田ワイヤ2の先端を当接させて溶融させる。送りローラ9、10が再び逆回転動作して半田ワイヤ2を引き上げ、基板1’上の二点目の箇所にドット状に溶融半田2bを塗布する(図11参照)。   When the lead frame 1 is intermittently conveyed once and one substrate 1 ′ is carried directly under the solder application opening 8 a, the solder wire 2 is drawn out from the supply nozzle 12 waiting at the chain line position in FIG. 9. . Wire feeding is performed by forward rotation of the pair of feed rollers 9 and 10. The tip (lower end) of the drawn-out solder wire 2 comes into contact with one point on the surface to be coated of the substrate 1 ′ and is melted by preheating the substrate 1 ′. When the solder wire 2 is fed out in a fixed amount, the feed rollers 9 and 10 are reversely rotated to pull up the solder wire 2 to the supply nozzle 12 side with a constant stroke, and at the first point on the substrate 1 ′, molten solder is formed in a dot shape. 2a is applied. Next, the solder supply device 4 moves horizontally to the solid line position in FIG. 9 and stops. At this solid line position, the feed rollers 9 and 10 again rotate forward to feed the solder wire 2 straight down, and separate the substrate 1 ′. The tip of the solder wire 2 is brought into contact with one point and melted. The feed rollers 9 and 10 again rotate reversely to pull up the solder wire 2 and apply the molten solder 2b in the form of dots at the second point on the substrate 1 '(see FIG. 11).

リードフレーム1の間欠搬送で半田塗布を受けた基板1’が、次の半田攪拌整形用開口8bの真下に搬送されて停止すると、半田整形ユニットU2の攪拌ツール13が開口8bを下降して、基板1’上の二点の溶融半田2a、2bを押圧して平坦に押し拡げる作業(たたき作業)をし、半導体チップ3と同程度の形状に整形する。攪拌ツール13の下端は、半導体チップ3の形状に合わせた凹面で、この凹面で二箇所の溶融半田2a、2bを同時に押圧して等厚の溶融半田2cに整形する(図12参照)。   When the substrate 1 ′, which has been subjected to solder application by intermittent conveyance of the lead frame 1, is conveyed and stopped immediately below the next solder agitation shaping opening 8 b, the agitation tool 13 of the solder shaping unit U 2 descends the opening 8 b, The work (tapping work) for pressing and spreading the two molten solders 2 a and 2 b on the substrate 1 ′ flatly is performed and shaped into a shape similar to that of the semiconductor chip 3. The lower end of the stirring tool 13 is a concave surface that matches the shape of the semiconductor chip 3, and the molten solder 2 a and 2 b at two locations are simultaneously pressed by this concave surface to shape the molten solder 2 c with an equal thickness (see FIG. 12).

半田整形ユニットU2で半田整形を受けた基板1’が、次のチップ供給用開口8cの真下に搬送されて停止すると、チップ供給ユニットU3のチップ供給ツール14が半導体チップ3を真空吸引した状態で開口8cを下降する。チップ供給ツール14は、吸着した半導体チップ3を基板1’上の溶融半田2c上にマウントすると、真空吸引を解除して上昇し、1つの半導体チップのダイボンディングが終了する。
特開2000−232114号公報(図1) 特許第2826193号
When the substrate 1 ′ that has undergone solder shaping by the solder shaping unit U <b> 2 is conveyed and stopped immediately below the next chip supply opening 8 c, the chip supply tool 14 of the chip supply unit U <b> 3 is in a state where the semiconductor chip 3 is vacuum-sucked. The opening 8c is lowered. When the adsorbed semiconductor chip 3 is mounted on the molten solder 2c on the substrate 1 ′, the chip supply tool 14 is lifted by releasing the vacuum suction, and die bonding of one semiconductor chip is completed.
Japanese Unexamined Patent Publication No. 2000-232114 (FIG. 1) Japanese Patent No. 2826193

図11に示すように、基板1’上の離隔する二点それぞれに溶融半田2a、2bを塗布する場合、各溶融半田2a、2bは同心円状に拡がってほぼ円形に塗布される。このとき、各溶融半田2a、2bの周縁下面部分(基板1’との界面部分)に溶融半田の偏析が生じてボイドが発生することがある。離隔する二点で溶融させた二箇所の溶融半田2a、2bを、図12の溶融半田2cのように押し拡げると、基板1’と溶融半田2cの間に図13に示すようなボイド30が生じることがある。なお、図13は、図12の溶融半田2cのX線投影図を概念的に示した図である。ボイド30の発生は、二点目の溶融半田2bが塗布される間にも偏析が進行する一点目の溶融半田2aの周縁部分で多い。このようなボイド30は、整形済みの溶融半田2cのほぼ中央部に発生して半導体チップ3のマウント性、ボンディング品質に影響を及ぼし、ボイド発生を減少させることが難しい。   As shown in FIG. 11, when the molten solders 2 a and 2 b are applied to two spaced points on the substrate 1 ′, the molten solders 2 a and 2 b spread concentrically and are applied in a substantially circular shape. At this time, segregation of the molten solder may occur on the lower peripheral surface portions of the molten solders 2a and 2b (interface portions with the substrate 1 '), and voids may be generated. When the two molten solders 2a and 2b melted at two points separated from each other are spread out like the molten solder 2c in FIG. 12, a void 30 as shown in FIG. 13 is formed between the substrate 1 ′ and the molten solder 2c. May occur. FIG. 13 conceptually shows an X-ray projection of the molten solder 2c in FIG. The generation of voids 30 is frequent at the peripheral portion of the first molten solder 2a where segregation proceeds while the second molten solder 2b is applied. Such a void 30 is generated almost at the center of the shaped molten solder 2c, affects the mountability and bonding quality of the semiconductor chip 3, and it is difficult to reduce the generation of voids.

また、基板1’上での半田塗布動作において、半田ワイヤ供給点である二点それぞれの位置を正確に調整し、かつ、二点それぞれでの半田供給量を同量に制御することが難しい。そのため、二点それぞれの溶融半田2a、2bの量、形状にばらつきが生じ易い。特に、基板1’上の半田塗布点である二点間の距離が短いと、二点目の溶融半田2bを塗布する際に溶融半田2bが先に塗布された一点目の溶融半田2aに接触することがある。このように二点目の溶融半田2bが一点目の溶融半田2aに接触すると、接触部分から二点目の溶融半田2bが一点目の溶融半田2a側に流入し、両溶融半田2a、2bの塗布量が大小相違し、形状が変形する。そのため、二箇所の両溶融半田2a、2bを攪拌ツール13で押圧して整形した溶融半田2cの形状、厚さが不安定になり、半導体チップ3をマウントしたときに半導体チップ3が傾くなどのマウント不良が発生することがある。   In addition, in the solder application operation on the substrate 1 ′, it is difficult to accurately adjust the positions of the two points as the solder wire supply points and to control the solder supply amounts at the two points to the same amount. Therefore, the amount and shape of the molten solders 2a and 2b at the two points are likely to vary. In particular, if the distance between the two solder application points on the substrate 1 ′ is short, when the second molten solder 2 b is applied, the molten solder 2 b contacts the first molten solder 2 a previously applied. There are things to do. When the second molten solder 2b comes into contact with the first molten solder 2a in this way, the second molten solder 2b flows into the first molten solder 2a side from the contact portion, and the two molten solders 2a, 2b The amount of application is different, and the shape is deformed. Therefore, the shape and thickness of the molten solder 2c formed by pressing the two molten solders 2a and 2b with the stirring tool 13 are unstable, and the semiconductor chip 3 is inclined when the semiconductor chip 3 is mounted. A mounting failure may occur.

また、基板1’上の二点それぞれで半田ワイヤ2を上下動させるため、1回の半田塗布のインデックスが遅く、高速化が難しい。基板1’の被塗布面の面積が大きく、二点、三点と塗布する箇所が増えるほどにインデックスが遅くなり、これがダイボンダーのインデックス改善を難しくしている。   Further, since the solder wire 2 is moved up and down at two points on the substrate 1 ', the index of one solder application is slow and it is difficult to increase the speed. The area of the surface to be coated of the substrate 1 ′ is large, and the index becomes slower as the number of points to be applied increases by two or three points, which makes it difficult to improve the index of the die bonder.

本発明の目的は、半田塗布の作業性と品質性に優れる半田塗布方法、この半田塗布方法に適する半田塗布ユニット、ダイボンダーを提供することにある。   An object of the present invention is to provide a solder coating method excellent in workability and quality of solder coating, a solder coating unit suitable for this solder coating method, and a die bonder.

本発明の上記目的を達成する半田塗布方法は、半田融点以上に予熱された基板の被塗布面に半田供給装置から繰り出した半田ワイヤの先端を当接させて溶融させることで被塗布面に定量の半田を塗布する半田塗布方法であって、被塗布面の離隔する第一箇所と第二箇所の内の第一箇所に半田供給装置から半田ワイヤを繰り出しワイヤ先端を当接させて溶融させながら、当該半田ワイヤを被塗布面の第二箇所まで被塗布面と平行な方向に相対移動させて、被塗布面の第一箇所から第二箇所まで連続して半田を塗布する。   The solder coating method that achieves the above-mentioned object of the present invention is to quantitatively apply to the coated surface by bringing the coated surface of the substrate preheated to the solder melting point or more into contact with the tip of the solder wire fed from the solder supply device and melting it. A solder application method for applying a solder, wherein a solder wire is fed from a solder supply device to a first location of a first location and a second location that are separated from the surface to be coated, and the tip of the wire is brought into contact with and melted. Then, the solder wire is relatively moved in the direction parallel to the coated surface to the second location on the coated surface, and the solder is continuously applied from the first location to the second location on the coated surface.

ここで、基板は、リードフレームのアイランド、リードフレームに一体化した放熱板などの金属板で、接触させた半田ワイヤを溶かす程度の温度に予熱される。基板上の所定の面積領域である被塗布面に設けた離隔する二点を第一箇所と第二箇所としている。被塗布面の第一箇所から第二箇所に向けて半田ワイヤを連続して溶かしながら一筆書き的に塗布することで、被塗布面ほぼ全体に平均的な量で半田を塗布する。ここでの一筆書きは、第一箇所と第二箇所の間の最短距離の一直線書きが塗布動作を正確に制御する上で望ましいが、円弧書きやU字書きのような二次曲線書きも有効である。基板の被塗布面に半田ワイヤを一筆書き的に相対移動させて定量の半田を塗布することで、被塗布面で溶融半田が複数点に分散せず1つにまとまる。1つの溶融半田に偏析が生じてボイドが発生しても、ボイドは溶融半田周縁部に集中して、半導体チップのボンディング品質に影響を及ぼす心配が少なくなる。また、基板に塗布された1つの溶融半田を攪拌ツールで整形すると、その形状が安定して半導体チップのマウント性が良くなり、さらには、基板に塗布された1つの溶融半田を攪拌ツールで整形することなく、溶融半田に直接に半導体チップをマウントすることができる。   Here, the substrate is preheated to a temperature that melts the solder wire that is in contact with a metal plate such as an island of the lead frame or a heat sink integrated with the lead frame. Two spaced apart points provided on the surface to be coated, which is a predetermined area on the substrate, are defined as a first location and a second location. The solder wire is applied in a single stroke while continuously melting the solder wire from the first location to the second location on the surface to be coated, so that the solder is applied in an average amount over almost the entire surface to be coated. One stroke writing here is desirable to accurately control the coating operation with a straight line of the shortest distance between the first place and the second place, but quadratic writing such as arc writing and U-shaped writing is also effective. It is. By applying a fixed amount of solder by moving the solder wire relative to the coated surface of the substrate in a single stroke, the molten solder is not dispersed at a plurality of points on the coated surface. Even if segregation occurs in one molten solder and voids are generated, the voids are concentrated on the peripheral edge of the molten solder, and there is less concern about affecting the bonding quality of the semiconductor chip. In addition, if one molten solder applied to the substrate is shaped with a stirring tool, the shape is stabilized and the mountability of the semiconductor chip is improved. Furthermore, one molten solder applied to the substrate is shaped with the stirring tool. Without this, the semiconductor chip can be mounted directly on the molten solder.

本発明においては、半田供給装置から半田ワイヤを等速で繰り出すと共に、基板の被塗布面に対する第一箇所から第二箇所までの半田ワイヤの相対移動速度を非等速になるよう可変制御することができる。   In the present invention, the solder wire is fed out from the solder supply device at a constant speed, and the relative movement speed of the solder wire from the first position to the second position with respect to the coated surface of the substrate is variably controlled so as to be non-constant. Can do.

すなわち、基板の第一箇所から第二箇所に向けて半田ワイヤを等速で相対移動させると、第一箇所と第二箇所の中間部分で塗布量が少なくなるような場合に、第一箇所と第二箇所の中間部分で相対移動速度を一時的に下げるように可変制御すると、中間部分での塗布量が増して被塗布面に半田を平均的に塗布することができる。   That is, when the solder wire is relatively moved at a constant speed from the first location to the second location on the board, the first location and If variably controlled so as to temporarily lower the relative movement speed at the intermediate portion of the second location, the amount of application at the intermediate portion increases and the solder can be applied on the surface to be coated on average.

また、本発明においては、基板が略水平方向に間欠搬送されるリードフレームで、当該リードフレームの搬送後の停止時に半田ワイヤをリードフレームに対して相対移動させることができる。あるいは、基板が略水平方向に間欠搬送されるリードフレームで、当該リードフレームの搬送時に、リードフレームに向けて定位置で半田供給装置から繰り出される半田ワイヤをリードフレームに対して相対移動させることができる。   In the present invention, the lead wire in which the substrate is intermittently conveyed in a substantially horizontal direction can be moved relative to the lead frame when the lead frame is stopped after conveyance. Alternatively, in the lead frame in which the substrate is intermittently transported in a substantially horizontal direction, when the lead frame is transported, the solder wire fed from the solder supply device at a fixed position toward the lead frame may be moved relative to the lead frame. it can.

この場合の基板は、リードフレームのアイランドである。リードフレームをヒーターレールなどで予熱しながら間欠搬送して、1つのアイランド(基板)が半田ワイヤが待機している半田塗布ポジションに搬入されると、アイランドを停止させて半田ワイヤをアイランドに対して相対移動させる。この塗布方法では、半田塗布ユニットを左右に可動に配置して、停止したリードフレームに対して相対移動させる。または、アイランドが半田塗布ポジションに搬入されるとき、あるいは、アイランドが半田塗布ポジションから搬出されるときの、リードフレーム搬送動作を利用して、アイランドに対して半田ワイヤを相対移動させる。この場合、半田塗布ユニットにおける半田ワイヤは、左右に移動するアイランドに対して1回上下動させるのみでよい。リードフレームの間欠搬送時に半田ワイヤを1回上下動させて被塗布面に定量の半田を塗布すると、リードフレームの1回の間欠搬送が終了した時点で半田塗布動作が終了する。従って、リードフレームの間欠搬送直後に、アイランドに塗布した直後の溶融半田を攪拌ツールで整形したり、アイランドに塗布した直後の溶融半田にチップ供給ツールで半導体チップをマウントすることができる。   The substrate in this case is a lead frame island. When the lead frame is intermittently conveyed while preheating with a heater rail, etc., and one island (substrate) is loaded into the solder application position where the solder wire is waiting, the island is stopped and the solder wire is moved to the island. Move relative. In this coating method, the solder coating unit is movably disposed on the left and right and is moved relative to the stopped lead frame. Alternatively, the solder wire is moved relative to the island using the lead frame transport operation when the island is carried into the solder application position or when the island is carried out of the solder application position. In this case, the solder wire in the solder application unit only needs to be moved up and down once with respect to the island moving left and right. When the solder wire is moved up and down once during the intermittent conveyance of the lead frame and a certain amount of solder is applied to the surface to be coated, the solder application operation ends when the single intermittent conveyance of the lead frame is completed. Accordingly, immediately after the lead frame is intermittently conveyed, the molten solder immediately after being applied to the island can be shaped with the stirring tool, or the semiconductor chip can be mounted on the molten solder immediately after being applied to the island with the chip supply tool.

本発明の半田塗布ユニットは、半田融点以上に予熱されて略水平方向に間欠搬送されるリードフレームの所定の被塗布面に半田供給装置から繰り出した半田ワイヤの先端を当接させて溶融させることで、被塗布面に定量の半田を塗布する半田塗布ユニットであって、リードフレームの被塗布面に設けた離隔する第一箇所と第二箇所の内の第一箇所に半田供給装置から半田ワイヤを繰り出して先端を溶融させながら、当該半田ワイヤを被塗布面の第二箇所まで被塗布面と平行な方向に相対移動させて、被塗布面の第一箇所から第二箇所まで連続して半田を塗布するよう、半田供給装置とリードフレームの双方を相対移動させる駆動制御系を具備したことを特徴とする。   The solder coating unit of the present invention melts the tip of the solder wire fed from the solder supply device in contact with a predetermined coated surface of the lead frame that is preheated to a melting point of the solder and intermittently conveyed in a substantially horizontal direction. A solder application unit for applying a certain amount of solder to the surface to be applied, wherein the solder wire is supplied from the solder supply device to the first and second locations separated on the surface to be applied of the lead frame. While the tip is melted, the solder wire is moved relative to the second surface of the coated surface in a direction parallel to the coated surface to continuously solder the first to second portions of the coated surface. And a drive control system for moving both the solder supply device and the lead frame relative to each other so as to apply the solder.

ここでの駆動制御系は、半田供給装置の全体を支持する水平なXYテーブルのX制御系とY制御系に組み込まれたコンピュータソフトが有効である。   As the drive control system here, computer software incorporated in an X control system and a Y control system of a horizontal XY table that supports the entire solder supply apparatus is effective.

また、本発明のダイボンダーは、半田融点以上に予熱されて略水平方向に間欠搬送されるリードフレームの所定の被塗布面に半田供給装置から繰り出した半田ワイヤの先端を当接させて溶融させることで、被塗布面に定量の半田を塗布する半田塗布ユニットと、半田塗布ユニットで塗布された被塗布面の溶融半田上に半導体チップをマウントするチップ供給ユニットを備えたダイボンダーであって、半田塗布ユニットは、リードフレームの被塗布面に設けた離隔する第一箇所と第二箇所の内の第一箇所に前記半田供給装置から半田ワイヤを繰り出して先端を当接させて溶融させながら、当該半田ワイヤを被塗布面の第二箇所まで被塗布面と平行な方向に相対移動させて、被塗布面の第一箇所から第二箇所まで連続して半田を塗布するよう、半田供給装置とリードフレームの双方を相対移動させる駆動制御系を具備したことを特徴とする。   Further, the die bonder of the present invention melts the tip of the solder wire fed out from the solder supply device in contact with a predetermined coated surface of the lead frame that is preheated to the melting point of the solder and intermittently conveyed in a substantially horizontal direction. A die bonder comprising a solder application unit for applying a fixed amount of solder to the surface to be applied, and a chip supply unit for mounting a semiconductor chip on the molten solder on the surface to be applied applied by the solder application unit. The unit is configured such that the solder wire is fed from the solder supply device to the first part of the first part and the second part, which are provided on the coated surface of the lead frame, and the tip is brought into contact with the first part to melt the solder. In order to apply the solder continuously from the first part to the second part of the coated surface by relatively moving the wire to the second part of the coated surface in a direction parallel to the coated surface. Characterized by comprising a drive control system for relatively moving both the supply device and the lead frame.

また、本発明のダイボンダーにおいては、半田塗布ユニットで塗布された基板の被塗布面の溶融半田を、チップ供給ユニットで半導体チップをマウントする前に、攪拌ツールの平坦な押圧面で押圧して攪拌整形する半田整形ユニットを備えた構造とすることができる。   In the die bonder of the present invention, the molten solder on the surface to be coated of the substrate coated by the solder coating unit is pressed and stirred by the flat pressing surface of the stirring tool before mounting the semiconductor chip by the chip supply unit. It can be set as the structure provided with the solder shaping unit to shape.

本発明の半田塗布方法によれば、リードフレームなどの基板の1つの被塗布面に半田ワイヤの先端を一筆書き的に相対移動させて定量の半田を塗布するので、基板の被塗布面に全体的に平均した量で分散しない単一的な溶融半田を塗布することができる。このような単一的な溶融半田の塗布は、半田ワイヤの1回の上下動のみで行えるのでインデックスが速く、塗布時間の短縮が可能になる。この時間短縮で、半田塗布時に溶融半田に偏析が生じ難く、偏析によるボイド発生が低減される。また、基板の所定の被塗布面の第一箇所から第二箇所に一筆書き的に半田ワイヤを相対移動させて連続的に半田を塗布するので、被塗布面の離隔する二点それぞれに塗布された2つの溶融半田が塗布動作時に接触して形状が変形するといったトラブルが無くなり、常に安定した形状で半田塗布ができ、半田塗布性能の向上が図れる。   According to the solder application method of the present invention, since a fixed amount of solder is applied by moving the tip of a solder wire relative to one application surface of a substrate such as a lead frame in a single stroke, the entire surface is applied to the application surface of the substrate. A single molten solder that does not disperse in an average amount can be applied. Since such single molten solder application can be performed by only one up and down movement of the solder wire, the index is fast and the application time can be shortened. By shortening this time, segregation hardly occurs in the molten solder during solder application, and void generation due to segregation is reduced. In addition, solder is applied continuously by moving the solder wire relative to the second part from the first part to the second part of the predetermined application surface of the substrate, so that it is applied to each of two separate points on the application surface. In addition, there is no trouble that the two molten solders come into contact with each other during the application operation and the shape is deformed, so that the solder can be applied in a stable shape at all times, and the solder application performance can be improved.

また、基板に塗布された溶融半田を整形などして半導体チップをマウントするダイボンダーの場合、基板に塗布された溶融半田の周縁部分にボイドが発生しても、このボイドは溶融半田の中央部分に発生し難く、溶融半田にマウントされる半導体チップのマウント性改善が図れる。   In addition, in the case of a die bonder that mounts a semiconductor chip by shaping the molten solder applied to the substrate, even if a void occurs in the peripheral portion of the molten solder applied to the substrate, the void is formed in the central portion of the molten solder. It is less likely to occur and the mountability of the semiconductor chip mounted on the molten solder can be improved.

以下、本発明の実施の形態を図1〜図8を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1(A)〜(D)は、図9および図10のダイボンダーにおける半田塗布ユニットU1に適用した本発明の半田塗布方法を説明するためのものである。なお、図1〜図8において、図9および図10と基本的に同様な部分は同一符号を付して、説明の重複を避ける。   FIGS. 1A to 1D are for explaining the solder coating method of the present invention applied to the solder coating unit U1 in the die bonder of FIGS. 1 to 8, parts that are basically the same as those in FIGS. 9 and 10 are given the same reference numerals to avoid duplication of explanation.

図1に示す基板1’は、図9のリードフレーム1のアイランドを模式的に示したものである。この場合、基板1’は図6(A)、(B)に示すようにヒーターレール5で半田融点以上の温度に予熱されて間欠搬送される。基板1’が間欠搬送されて停止した状態で、半田塗布ユニットU1の半田供給装置4が半田ワイヤ2を繰り出し、図1で左方向に定ストロークで水平移動して、基板1’上の被塗布面に定量の半田を塗布する。   A substrate 1 ′ shown in FIG. 1 schematically shows an island of the lead frame 1 shown in FIG. 9. In this case, as shown in FIGS. 6A and 6B, the substrate 1 'is preheated to a temperature equal to or higher than the solder melting point by the heater rail 5 and is intermittently conveyed. In a state where the substrate 1 ′ is intermittently conveyed and stopped, the solder supply device 4 of the solder application unit U1 feeds out the solder wire 2 and horizontally moves with a constant stroke in the left direction in FIG. 1 to be coated on the substrate 1 ′. Apply a certain amount of solder to the surface.

基板1’の上面は左右に長尺な長方形の被塗布面で、この被塗布面の図1で右端部の中心に第一箇所P1が設定され、左端部の中心に第二箇所P2が設定される。半田塗布ユニットU1は、基板1’の第一箇所P1から第二箇所P2に向けて半田ワイヤ2を連続して塗布する。   The upper surface of the substrate 1 ′ is a rectangular coated surface that is elongated to the left and right. In FIG. 1, the first location P 1 is set at the center of the right end portion and the second location P 2 is set at the center of the left end portion. Is done. The solder application unit U1 applies the solder wire 2 continuously from the first location P1 to the second location P2 of the substrate 1 '.

半田塗布ユニットU1の半田供給装置4は、半田ワイヤ2を挟持する一対の送りローラ9,10と、送りローラ9、10を正逆回転させるローラ駆動制御装置11と、半田ワイヤ2の上下の送りをガイドする供給ノズル(図1では省略)を備える。半田供給装置4は、図示しないXYテーブルに支持されて水平なXY方向に自在に移動する。半田供給装置4を有する半田塗布ユニットU1に、XYテーブルの駆動を制御するコンピュータソフトとして駆動制御系20を組み込む。駆動制御系20は、半田塗布時に半田供給装置4の全体を図1で左方向に定ストロークで水平移動させる。半田供給装置4は、送りローラ9,10を正回転動作させることで半田ワイヤ2を真下に等速で繰り出し、逆回転動作させることで真上に定ストロークで引き上げる動作を繰り返す。   The solder supply device 4 of the solder application unit U1 includes a pair of feed rollers 9 and 10 that sandwich the solder wire 2, a roller drive control device 11 that rotates the feed rollers 9 and 10 forward and backward, and a vertical feed of the solder wire 2. A supply nozzle (not shown in FIG. 1) is provided. The solder supply device 4 is supported by an XY table (not shown) and freely moves in the horizontal XY direction. A drive control system 20 is incorporated in the solder application unit U1 having the solder supply device 4 as computer software for controlling the drive of the XY table. The drive control system 20 horizontally moves the entire solder supply device 4 in the left direction in FIG. The solder supply device 4 repeats the operation of feeding the solder wires 2 at a constant speed by moving the feed rollers 9 and 10 forward at a constant speed and pulling them up at a constant stroke by rotating them backward.

図1(A)は、間欠搬送した基板1’の第一箇所P1が半田供給装置4に支持された半田ワイヤ2の真下で停止した状態が示される。この状態で送りローラ9,10が正回転動作をして半田ワイヤ2を真下に等速で繰り出し、半田ワイヤ2の先端(下端)を第一箇所P1に当接させて基板1’の予熱で溶融させる。このときの状態が図1(B)で、第一箇所P1に半田ワイヤ2の先端部が溶融して円形の溶融半田2’dが形成される。送りローラ9,10による半田ワイヤ2の真下への等速の繰り出しを継続させながら、駆動制御系20で半田供給装置4の全体を基板1’の被塗布面と平行な方向(図1で左方向)に定ストロークで水平移動させる。この水平移動で半田ワイヤ2を基板1’の第一箇所P1から第二箇所P2へと相対移動させると、図1(C)と図2(B)に示すように、連続して繰り出される半田ワイヤ2が先端から順に基板1’上で溶融して、基板1’の被塗布面上に横長の略楕円状に溶融半田2dが塗布される。半田ワイヤ2が第二箇所P2に移動すると、送りローラ9,10を正回転動作から逆回転動作に切り換えて、図1(D)に示すように半田ワイヤ2を引き上げ、溶融半田2dから離脱させる。これで基板1’への一筆書きの半田塗布動作が終了する。半田塗布動作が終了すると、駆動制御系20が半田供給装置4を図1(A)の元の位置に水平移動させて戻し、次の基板への半田塗布に待機させる。   FIG. 1A shows a state where the first location P1 of the substrate 1 ′ intermittently conveyed is stopped just below the solder wire 2 supported by the solder supply device 4. In this state, the feed rollers 9 and 10 rotate forward to feed the solder wire 2 straight down at a constant speed, and the tip (lower end) of the solder wire 2 is brought into contact with the first place P1 to preheat the substrate 1 ′. Melt. The state at this time is shown in FIG. 1B, and the tip of the solder wire 2 is melted at the first place P1 to form a circular molten solder 2'd. The drive control system 20 moves the entire solder supply device 4 in a direction parallel to the coated surface of the substrate 1 ′ (left in FIG. Direction) with a constant stroke. When the solder wire 2 is relatively moved from the first location P1 to the second location P2 of the substrate 1 ′ by this horizontal movement, as shown in FIGS. 1 (C) and 2 (B), the solder is continuously fed out. The wire 2 is melted on the substrate 1 ′ in order from the tip, and the molten solder 2d is applied in a horizontally long substantially elliptical shape on the surface to be coated of the substrate 1 ′. When the solder wire 2 moves to the second location P2, the feed rollers 9 and 10 are switched from the normal rotation operation to the reverse rotation operation, and the solder wire 2 is pulled up and separated from the molten solder 2d as shown in FIG. . This completes the one-stroke solder application operation on the substrate 1 '. When the solder application operation is completed, the drive control system 20 moves the solder supply device 4 back to the original position in FIG. 1A and waits for the next solder application to the substrate.

図1(B)の略円形の溶融半田2’dの拡大図を図2(A)、平面図を図3(A)に示す。図1(C)の略楕円状の溶融半田2dの拡大図を図2(B)、平面図を図3(B)に示す。また、図4(A)、(B)は図6のダイボンダーによる半田攪拌整形を説明するものであり、図5は半田塗布速度を可変制御したときの半田塗布方法を説明するものである。図1(A)〜(D)の半田塗布方法を、図9のダイボンダーに適用したのが図6(A)、(B)に示すダイボンダーである。図2〜図6の詳細説明の前に、図6のダイボンダーの構造と動作を説明する。   FIG. 2A shows an enlarged view of the substantially circular molten solder 2'd shown in FIG. 1B, and FIG. 3A shows a plan view thereof. An enlarged view of the substantially elliptical molten solder 2d in FIG. 1C is shown in FIG. 2B, and a plan view is shown in FIG. 3B. 4A and 4B illustrate solder agitation shaping by the die bonder of FIG. 6, and FIG. 5 illustrates a solder application method when the solder application speed is variably controlled. The solder bonding method shown in FIGS. 1A to 1D is applied to the die bonder shown in FIG. 9 in the die bonder shown in FIGS. Before the detailed description of FIGS. 2 to 6, the structure and operation of the die bonder of FIG. 6 will be described.

図6のダイボンダーは、ヒーターレール5でリードフレーム1を半田融点程度の温度に予熱しながら間欠搬送する。図6に示される半田塗布ユニットU1は、半田ワイヤ2の先端部をガイドする供給ノズル12を備える。半田塗布ユニットU1は、リードフレーム1が1回間欠搬送されて、1つの基板1’が半田塗布用開口8aの真下に搬入されると、図6(A)に示す状態から半田ワイヤ2を真下に繰り出し、基板1’の第一箇所P1に当接させて溶融させる。半田塗布ユニットU1は、半田ワイヤ2を繰り出しながら駆動制御系20で基板1’の第二箇所P2の方向に水平移動して、図6(B)に示すように基板1’上に半田ワイヤ2を先端から連続して溶融させて、略楕円状の溶融半田2dを形成する。連続した半田塗布が終了すると、送りローラ9、10が逆回転動作をして半田ワイヤ2を引き上げ、駆動制御系20が半田塗布ユニットU1を図6(A)の元の位置に戻す。   The die bonder of FIG. 6 intermittently conveys the lead frame 1 with the heater rail 5 while preheating to a temperature about the solder melting point. The solder application unit U1 shown in FIG. 6 includes a supply nozzle 12 that guides the tip of the solder wire 2. When the lead frame 1 is intermittently conveyed once and one substrate 1 ′ is carried directly under the solder application opening 8a, the solder application unit U1 moves the solder wire 2 directly from the state shown in FIG. To the first location P1 of the substrate 1 'and melted. The solder application unit U1 moves horizontally in the direction of the second portion P2 of the substrate 1 ′ by the drive control system 20 while feeding out the solder wire 2, and the solder wire 2 is placed on the substrate 1 ′ as shown in FIG. 6B. Is melted continuously from the tip to form a substantially elliptical molten solder 2d. When the continuous solder application is completed, the feed rollers 9 and 10 reversely rotate to pull up the solder wire 2, and the drive control system 20 returns the solder application unit U1 to the original position in FIG.

次のリードフレーム1の間欠搬送で、塗布された基板1’が半田攪拌整形用開口8bの真下に搬送されて停止すると、図6(B)に示すように半田整形ユニットU2に設けた攪拌ツール13が基板1’上に塗布された溶融半田2dを押圧して平坦に押し拡げる作業(たたき作業)をする。この作業で、塗布された溶融半田2dが半導体チップ3と同程度の大きさの溶融半田2eに整形される。次のリードフレーム1の間欠搬送で、基板1’がチップ供給用開口8cの真下に搬送されて停止すると、チップ供給ユニットU3に設けたチップ供給ツール14が半導体チップ3を整形された溶融半田2e上にマウントする。以上の半田塗布と半田整形、チップマウントが、図6(B)に示すように連続する開口8a、8b、8cの各作業ポジションで同時進行して行われる。   When the coated substrate 1 ′ is transported immediately below the solder agitation shaping opening 8 b and stopped in the next intermittent conveyance of the lead frame 1, the agitation tool provided in the solder shaping unit U 2 as shown in FIG. 13 performs a work (tapping work) for pressing the molten solder 2d applied on the substrate 1 'to spread it flat. In this operation, the applied molten solder 2d is shaped into a molten solder 2e having the same size as that of the semiconductor chip 3. When the substrate 1 'is conveyed immediately below the chip supply opening 8c and stopped by the next intermittent conveyance of the lead frame 1, the chip supply tool 14 provided in the chip supply unit U3 is melted solder 2e in which the semiconductor chip 3 is shaped. Mount on top. The above-described solder application, solder shaping, and chip mounting are simultaneously performed at the respective work positions of the continuous openings 8a, 8b, and 8c as shown in FIG. 6B.

図2(A)と図3(A)に示すように、半田ワイヤ2の先端部を基板1’の第一箇所P1に当接させて溶融させたとき、円形の溶融半田2’dは溶融直後のために偏析によるボイド発生がほとんど無い。半田ワイヤ2を水平移動させて図2(B)と図3(B)に示すように、基板1’上に略楕円状の溶融半田2dを塗布する。この溶融半田2dは最初の円形溶融半田2’dから極短時間で形成されたものであり、半田ワイヤ2を先端から順に連続して基板1’上で溶融させたものであるから、溶融半田2dにも偏析によるボイド発生がほとんど無い。また、ボイド発生があっても略楕円状の溶融半田2dの周縁部分がほとんどであり、中央部分でのボイド発生はほとんど無い。図4(A)に、略楕円状の溶融半田2dを攪拌ツール13で押圧して整形した溶融半田2eを示す。溶融半田2eは、半導体チップ3より一回り大きな略矩形を成す。整形前の略楕円状の溶融半田2dの周縁部分にボイドが発生していても、溶融半田2dを押し拡げて整形した溶融半田2eの周縁部分に、図4(B)に示すように点状にボイド30が移動する。このような周縁部分のボイド30は、溶融半田2eにマウントした半導体チップ3の周縁部か、周縁から外方に外れた部所にあって、半導体チップのマウント性、ボンディング品質にほとんど影響を及ぼさない。   As shown in FIGS. 2A and 3A, when the tip of the solder wire 2 is brought into contact with the first portion P1 of the substrate 1 ′ and melted, the circular molten solder 2′d is melted. There is almost no void generation due to segregation immediately after. As shown in FIGS. 2B and 3B, the solder wire 2 is moved horizontally to apply a substantially elliptical molten solder 2d on the substrate 1 '. The molten solder 2d is formed in a very short time from the first circular molten solder 2′d, and is obtained by melting the solder wire 2 sequentially on the substrate 1 ′ in order from the tip. There is almost no void generation due to segregation in 2d. Even if voids are generated, the peripheral portion of the substantially elliptical molten solder 2d is almost all, and there is almost no void generation in the central portion. FIG. 4A shows a molten solder 2e formed by pressing a substantially elliptical molten solder 2d with a stirring tool 13. FIG. The molten solder 2 e forms a substantially rectangular shape that is slightly larger than the semiconductor chip 3. As shown in FIG. 4B, even if voids are generated in the peripheral portion of the substantially elliptical molten solder 2d before shaping, the peripheral portion of the molten solder 2e shaped by expanding the molten solder 2d is dotted as shown in FIG. The void 30 moves to the position. Such voids 30 in the peripheral portion are located at the peripheral portion of the semiconductor chip 3 mounted on the molten solder 2e or at a portion outside the peripheral portion, and have little influence on the mountability and bonding quality of the semiconductor chip. Absent.

また、図3(B)に示す略楕円状の溶融半田2dは、基板1’上の所定の被塗布面の多くを占める安定した形状となる。換言すると、略楕円状の溶融半田2dが基板1’上の所定の被塗布面の多くを占めるように、基板1’上に第一箇所P1と第二箇所P2の離隔距離を決め、半田ワイヤ2の繰り出し速度を決める。基板1’の被塗布面の多くを占める溶融半田2dを、攪拌ツール13で押し拡げて図4(A)のように整形する。整形前の溶融半田2dの形状が安定していることと、溶融半田2dを被塗布面で押し拡げる領域が少ないことから、図4(A)の整形済み溶融半田2eの形状が安定し、全体に厚さが平均化する。そのため、半導体チップ3が良好にマウントされる。   Also, the substantially elliptical molten solder 2d shown in FIG. 3B has a stable shape that occupies most of the predetermined coated surface on the substrate 1 '. In other words, the separation distance between the first location P1 and the second location P2 is determined on the substrate 1 ′ so that the substantially elliptical molten solder 2d occupies most of the predetermined coated surface on the substrate 1 ′, and the solder wire Determine the feeding speed of 2. The molten solder 2d occupying most of the coated surface of the substrate 1 'is pushed out by the stirring tool 13 and shaped as shown in FIG. Since the shape of the molten solder 2d before shaping is stable and the area where the molten solder 2d is pushed and spread on the surface to be coated is small, the shape of the shaped molten solder 2e shown in FIG. The thickness is averaged. Therefore, the semiconductor chip 3 is mounted satisfactorily.

1つの基板1’に略楕円状の溶融半田2dを塗布する1回の半田塗布工程において、半田供給装置4は半田ワイヤ2を1回上下動させるのみであるため、半田塗布のインデックスが速くなる。インデックスが速くなる分、溶融半田2dに生じる偏析やボイドが低減され、チップマウント性が良くなる。   In one solder application process in which the substantially elliptical molten solder 2d is applied to one substrate 1 ', the solder supply device 4 only moves the solder wire 2 up and down once, so that the solder application index becomes faster. . As the index becomes faster, segregation and voids generated in the molten solder 2d are reduced, and chip mountability is improved.

図6で説明した半田塗布方法は、停止する基板1’に半田ワイヤ2を等速で繰り出しながら、半田ワイヤ2を等速で水平移動させて基板1’に略楕円状の溶融半田2dを塗布する。基板1’の材質や第一箇所P1と第二箇所P2の離隔距離によっては、溶融半田2dの全体的な量、形状が安定せず、溶融半田2dの中間部分で半田塗布量が不足する場合がある。このような場合は、半田ワイヤ2の水平移動速度(基板1’に対する相対移動速度)を可変制御することができる。その例を図5に示す。   In the solder application method described with reference to FIG. 6, the solder wire 2 is fed out to the substrate 1 ′ to be stopped at a constant speed, and the solder wire 2 is horizontally moved at a constant speed to apply the substantially elliptical molten solder 2 d to the substrate 1 ′. To do. Depending on the material of the substrate 1 ′ and the separation distance between the first location P 1 and the second location P 2, the overall amount and shape of the molten solder 2 d may not be stable, and the solder application amount may be insufficient at the intermediate portion of the molten solder 2 d. There is. In such a case, the horizontal movement speed of the solder wire 2 (relative movement speed with respect to the substrate 1 ') can be variably controlled. An example is shown in FIG.

図5は、基板1’上の略楕円状の溶融半田2dと、これを塗布するときの半田ワイヤ2の移動速度グラフを示している。第一箇所P1から第二箇所P2に向けて半田ワイヤ2を移動させるとき、始めと終りの移動速度Vaより移動中間の時間帯の移動速度Vbを小さく制御する。このようにすると、溶融半田2dの中間部分での幅Wbが両端部分の幅Waより大きくなり、中間部分での半田塗布量不足が解消される。   FIG. 5 shows a substantially elliptical molten solder 2d on the substrate 1 'and a movement speed graph of the solder wire 2 when this is applied. When the solder wire 2 is moved from the first place P1 toward the second place P2, the moving speed Vb in the intermediate time zone is controlled to be smaller than the moving speed Va at the beginning and end. In this way, the width Wb at the intermediate portion of the molten solder 2d becomes larger than the width Wa at both end portions, and the shortage of the solder application amount at the intermediate portion is eliminated.

また、図6の半田塗布方法は、停止する基板1’に対して半田ワイヤ2を水平移動させて基板1’に略楕円状の溶融半田2dを塗布する。本発明においては、定位置で上下動させる半田ワイヤ2に対して基板1’を水平移動させて連続した半田塗布を行うことも可能とする。その例を、図7と図8の二種のダイボンダーの動作で説明する。   Further, in the solder application method of FIG. 6, the solder wire 2 is moved horizontally with respect to the substrate 1 'to be stopped to apply the substantially elliptical molten solder 2d to the substrate 1'. In the present invention, it is also possible to perform continuous solder application by horizontally moving the substrate 1 ′ with respect to the solder wire 2 moved up and down at a fixed position. An example of this will be described with reference to the operations of the two types of die bonders shown in FIGS.

図7(A)〜(C)の動作図で示されるダイボンダーは、ヒーターレール5に沿わせてリードフレーム1を間欠搬送する搬送動作時に半田ワイヤ2で基板1’上に連続して半田塗布を行う。図7(A)は、チップマウントが終了してリードフレーム1が間欠搬送されるときの搬送初期の状態を示す。リードフレーム1が搬送される時点で半田ワイヤ2を等速で繰り出して先端を基板1’の第一箇所P1に当接させ、溶融させる。ワイヤ繰り出しを継続させると、搬送されるリードフレーム1によって半田ワイヤ2の先端が基板1’に対して図7で左方向に相対的に水平移動し、基板1’上に半田が連続して塗布される。図7(B)に示すように、半田ワイヤ2の先端が基板1’の第二箇所P2まで相対移動すると、半田ワイヤ2を引き上げ、連続して溶融した略楕円状の溶融半田2dから離脱させる。リードフレーム1は、残余のストロークだけ搬送して停止する。この停止で、図7(C)に示すように、リードフレーム搬送途上で塗布された溶融半田2dが半田攪拌整形用開口8bの真下に移動する。図7(C)の状態で溶融半田2dが攪拌ツール13で整形され、同時に別の整形済みの溶融半田2eにチップ供給ツール14で半導体チップ3がマウントされる。図7(C)に示す整形される溶融半田2dは塗布直後のもので、偏析やボイド発生がほとんど無く、また、塗布直後の溶融半田2dは整形性が良くて安定した形状で整形できる。   7A to 7C, the die bonder shown in the operation diagram of FIG. 7A continuously applies solder to the substrate 1 ′ with the solder wire 2 during the conveying operation of intermittently conveying the lead frame 1 along the heater rail 5. Do. FIG. 7A shows an initial transfer state when the chip mount is completed and the lead frame 1 is intermittently transferred. When the lead frame 1 is transported, the solder wire 2 is fed out at a constant speed, and the tip is brought into contact with the first location P1 of the substrate 1 'to be melted. When the wire feed is continued, the tip of the solder wire 2 is moved horizontally relative to the left side in FIG. 7 with respect to the substrate 1 ′ by the conveyed lead frame 1, and solder is continuously applied onto the substrate 1 ′. Is done. As shown in FIG. 7B, when the tip of the solder wire 2 moves relative to the second location P2 of the substrate 1 ′, the solder wire 2 is pulled up and separated from the continuously melted substantially elliptical molten solder 2d. . The lead frame 1 is transported by the remaining stroke and stopped. At this stop, as shown in FIG. 7C, the molten solder 2d applied in the course of carrying the lead frame moves to just below the solder stirring shaping opening 8b. In the state of FIG. 7C, the molten solder 2d is shaped by the stirring tool 13, and at the same time, the semiconductor chip 3 is mounted by the chip supply tool 14 on another shaped molten solder 2e. The melted solder 2d to be shaped shown in FIG. 7C is immediately after application, and there is almost no segregation or void generation, and the melted solder 2d just after application has good shapeability and can be shaped in a stable shape.

図8(A)〜(C)の動作図で示されるダイボンダーは、図7のダイボンダーから攪拌ツール13を省略したものである。リードフレーム1の間欠搬送を利用して半田塗布を行う場合、塗布直後の略楕円状溶融半田2dは基板1’の被塗布面に全体的にして平均的な厚さで拡がることから、整形することなく直接的にチップマウントすることができる。その動作例が図8(A)〜(C)である。   The die bonder shown in the operation diagrams of FIGS. 8A to 8C is obtained by omitting the stirring tool 13 from the die bonder of FIG. When solder application is performed using intermittent conveyance of the lead frame 1, the substantially elliptical molten solder 2d immediately after application spreads over the surface to be coated of the substrate 1 'with an average thickness, and is shaped. It is possible to directly mount the chip without using it. An example of the operation is shown in FIGS.

図8(A)は、半田ワイヤ2を繰り出して先端から基板1’の第一箇所P1で溶融させるときの状態を示す。このとき、別の基板1’上の溶融半田2dにチップ供給ツール14が半導体チップ3をマウントする。図8(B)は、リードフレーム1を搬送しながら半田ワイヤ2を相対移動させて基板1’上に略楕円状の溶融半田2dを塗布する状態を示す。図8(C)は、連続した半田塗布が終了し、リードフレーム1が間欠搬送されて停止した状態を示す。このリードフレーム1の搬送停止で、次の半田塗布とチップマウントが同時進行して行われる。以上のように、半田塗布の直後にチップマウントを行うことで、半田整形の工程、ポジションが省略されて、ダイボンダーのインデックス向上が図れる。   FIG. 8A shows a state where the solder wire 2 is drawn out and melted at the first location P1 of the substrate 1 'from the tip. At this time, the chip supply tool 14 mounts the semiconductor chip 3 on the molten solder 2d on another substrate 1 '. FIG. 8B shows a state in which the solder wire 2 is relatively moved while the lead frame 1 is conveyed to apply the substantially elliptical molten solder 2d on the substrate 1 '. FIG. 8C shows a state in which the continuous solder application is finished and the lead frame 1 is intermittently conveyed and stopped. When the lead frame 1 is stopped, the next solder application and chip mounting are performed simultaneously. As described above, by performing chip mounting immediately after solder application, the solder shaping process and position are omitted, and the index of the die bonder can be improved.

(A)〜(D)は、本発明の半田塗布方法を説明するための基板と半田ワイヤの要部の各動作時での斜視図である。(A)-(D) are the perspective views at the time of each operation | movement of the principal part of the board | substrate and solder wire for demonstrating the solder application | coating method of this invention. (A)は図1(B)の部分拡大側面図、(B)は図1(C)の部分拡大側面図である。1A is a partially enlarged side view of FIG. 1B, and FIG. 1B is a partially enlarged side view of FIG. (A)は図2(A)の平面図、(B)は図2(B)の平面図である。2A is a plan view of FIG. 2A, and FIG. 2B is a plan view of FIG. (A)は溶融半田を整形したときの平面図、(B)はそのX線投影図である。(A) is a plan view when the molten solder is shaped, and (B) is an X-ray projection view thereof. 本発明の別の半田塗布方法を説明するための溶融半田の平面図と相対移動速度のグラフ図である。It is a top view of the molten solder for explaining another solder application method of the present invention, and a graph of relative movement speed. (A)、(B)は、ダイボンダーの実施の形態を示す各動作時での部分断面図である。(A), (B) is the fragmentary sectional view at the time of each operation | movement which shows embodiment of a die bonder. (A)〜(C)は、他のダイボンダーの実施の形態を示す各動作時での部分断面図である。(A)-(C) are the fragmentary sectional views at the time of each operation | movement which shows embodiment of another die bonder. (A)〜(C)は、他のダイボンダーの実施の形態を示す各動作時での部分断面図である。(A)-(C) are the fragmentary sectional views at the time of each operation | movement which shows embodiment of another die bonder. 従来のダイボンダーの部分断面図である。It is a fragmentary sectional view of the conventional die bonder. 図9ダイボンダーにおける半田塗布ユニットの要部の斜視図である。9 is a perspective view of the main part of the solder application unit in the die bonder. 図10半田塗布ユニットで半田が塗布された基板の平面図である。10 is a plan view of the substrate coated with solder in the solder application unit. 図11の溶融半田を整形した平面図である。FIG. 12 is a plan view of the molten solder of FIG. 11 shaped. 図11の整形済み半田のX線投影図である。FIG. 12 is an X-ray projection view of the shaped solder of FIG. 11.

符号の説明Explanation of symbols

1 リードフレーム
1’ 基板、アイランド
2 半田ワイヤ
2d 溶融半田
2e 溶融半田
3 半導体チップ
4 半田供給装置
5 ヒーターレール
7 リードフレーム搬送路
9、10 送りローラ
11 ローラ駆動制御装置
12 供給ノズル
13 攪拌ツール
14 チップ供給ツール
20 駆動制御系
30 ボイド
P1 第一箇所
P2 第二箇所
U1 半田塗布ユニット
U2 半田整形ユニット
U3 チップ供給ユニット
DESCRIPTION OF SYMBOLS 1 Lead frame 1 'Board | substrate, island 2 Solder wire 2d Molten solder 2e Molten solder 3 Semiconductor chip 4 Solder supply apparatus 5 Heater rail 7 Lead frame conveyance path 9, 10 Feed roller 11 Roller drive control apparatus 12 Supply nozzle 13 Stirring tool 14 Chip Supply tool 20 Drive control system 30 Void P1 First location P2 Second location U1 Solder application unit U2 Solder shaping unit U3 Chip supply unit

Claims (7)

半田融点以上に予熱された基板の被塗布面に半田供給装置から繰り出した半田ワイヤの先端を当接させて溶融させることで、前記被塗布面に定量の半田を塗布する半田塗布方法であって、
前記被塗布面の離隔する第一箇所と第二箇所の前記第一箇所に前記半田供給装置から前記半田ワイヤを繰り出して先端から溶融させながら、当該半田ワイヤを被塗布面の前記第二箇所まで被塗布面と平行な方向に相対移動させて、被塗布面の第一箇所から第二箇所まで連続して半田を塗布することを特徴とする半田塗布方法。
A solder coating method for applying a fixed amount of solder to the coated surface by bringing the tip of the solder wire fed from the solder supply device into contact with the coated surface of the substrate preheated to a temperature higher than the melting point of the solder. ,
The solder wire is fed from the solder supply device to the first place and the first place that are separated from each other on the surface to be coated and melted from the tip to the second place on the surface to be coated. A solder application method, wherein the solder is applied continuously from a first location to a second location on a surface to be coated by relative movement in a direction parallel to the surface to be coated.
前記半田供給装置から前記半田ワイヤを等速で繰り出すと共に、前記被塗布面に対する前記第一箇所から第二箇所までの前記半田ワイヤの相対移動速度を非等速になるよう可変制御したことを特徴とする請求項1に記載の半田塗布方法。   The solder wire is fed out from the solder supply device at a constant speed, and the relative movement speed of the solder wire from the first place to the second place with respect to the coated surface is variably controlled so as to be non-constant. The solder application method according to claim 1. 前記基板が略水平方向に間欠搬送されるリードフレームで、当該リードフレームの間欠搬送後の停止時に前記半田ワイヤをリードフレームに対して相対移動させることを特徴とする請求項1または2に記載の半田塗布方法。   The lead frame in which the substrate is intermittently conveyed in a substantially horizontal direction, and the solder wire is moved relative to the lead frame when the lead frame is stopped after intermittent conveyance. Solder application method. 前記基板が略水平方向に間欠搬送されるリードフレームで、当該リードフレームの搬送時に、リードフレームに向けて定位置で前記半田供給装置から繰り出される前記半田ワイヤをリードフレームに対して相対移動させることを特徴とする請求項1または2に記載の半田塗布方法。   A lead frame in which the substrate is intermittently conveyed in a substantially horizontal direction, and the solder wire fed out from the solder supply device at a fixed position toward the lead frame is moved relative to the lead frame when the lead frame is conveyed. The solder application method according to claim 1, wherein: 半田融点以上に予熱されて略水平方向に間欠搬送されるリードフレームの被塗布面に半田供給装置から繰り出した半田ワイヤの先端を当接させて溶融させることで、前記被塗布面に定量の半田を塗布する半田塗布ユニットであって、
前記リードフレームの被塗布面に設けた離隔する第一箇所と第二箇所の前記第一箇所に前記半田供給装置から前記半田ワイヤを繰り出して先端から溶融させながら、当該半田ワイヤを被塗布面の前記第二箇所まで被塗布面と平行な方向に相対移動させて、被塗布面の第一箇所から第二箇所まで連続して半田を塗布するよう、前記半田供給装置とリードフレームの双方を相対移動させる駆動制御系を具備したことを特徴とする半田塗布ユニット。
A predetermined amount of solder is applied to the coated surface by bringing the tip of the solder wire fed from the solder supply device into contact with the coated surface of the lead frame that is preheated to the melting point of the solder and is intermittently conveyed in a substantially horizontal direction. A solder application unit for applying
The solder wire is fed from the solder supply device to the first and second locations separated on the coated surface of the lead frame and melted from the tip, and the solder wire is applied to the coated surface. Relatively move both the solder supply device and the lead frame so that the solder is continuously applied from the first location to the second location on the coated surface by relatively moving in the direction parallel to the coated surface to the second location. A solder application unit comprising a drive control system for movement.
半田融点以上に予熱されて略水平方向に間欠搬送されるリードフレームの所定の被塗布面に半田供給装置から繰り出した半田ワイヤの先端を当接させて溶融させることで、前記被塗布面に定量の半田を塗布する半田塗布ユニットと、前記半田塗布ユニットで被塗布面に塗布された溶融半田上に半導体チップをマウントするチップ供給ユニットを備えたダイボンダーであって、
前記半田塗布ユニットは、前記リードフレームの被塗布面に設けた離隔する第一箇所と第二箇所の前記第一箇所に前記半田供給装置から前記半田ワイヤを繰り出して先端から溶融させながら、当該半田ワイヤを被塗布面の前記第二箇所まで被塗布面と平行な方向に相対移動させて、被塗布面の第一箇所から第二箇所まで連続して半田を塗布するよう、前記半田供給装置とリードフレームの双方を相対移動させる駆動制御系を具備したことを特徴とするダイボンダー。
A predetermined amount of the lead frame that is preheated to the melting point of the solder and is intermittently conveyed in a substantially horizontal direction is brought into contact with the predetermined coated surface of the lead frame to be melted by contacting the tip of the solder wire fed from the solder supply device. A die bonder comprising a solder application unit for applying a solder and a chip supply unit for mounting a semiconductor chip on the molten solder applied to the surface to be applied by the solder application unit,
The solder application unit is configured to draw out the solder wire from the solder supply device to the first place of the first place and the second place provided on the coated surface of the lead frame and melt the solder wire from the tip. The solder supply device so as to apply the solder continuously from the first location to the second location on the coated surface by relatively moving the wire to the second location on the coated surface in a direction parallel to the coated surface; A die bonder comprising a drive control system for relatively moving both lead frames.
前記半田塗布ユニットで塗布された前記被塗布面の溶融半田を、前記チップ供給ユニットで半導体チップをマウントする前に、攪拌ツールの平坦な押圧面で押圧して攪拌整形する半田整形ユニットを備えたことを特徴とする請求項6に記載のダイボンダー。   A solder shaping unit is provided that presses the molten solder on the coated surface applied by the solder application unit with a flat pressing surface of a stirring tool to stir and shape the semiconductor chip before mounting the semiconductor chip by the chip supply unit. The die bonder according to claim 6.
JP2006140622A 2006-05-19 2006-05-19 Solder coating method, solder coating unit, and die bonder Pending JP2007311653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006140622A JP2007311653A (en) 2006-05-19 2006-05-19 Solder coating method, solder coating unit, and die bonder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006140622A JP2007311653A (en) 2006-05-19 2006-05-19 Solder coating method, solder coating unit, and die bonder

Publications (1)

Publication Number Publication Date
JP2007311653A true JP2007311653A (en) 2007-11-29

Family

ID=38844217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006140622A Pending JP2007311653A (en) 2006-05-19 2006-05-19 Solder coating method, solder coating unit, and die bonder

Country Status (1)

Country Link
JP (1) JP2007311653A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177142A (en) * 2007-12-07 2009-08-06 Asm Assembly Automation Ltd Solder discharging for mounting semiconductor chip
KR100916609B1 (en) 2009-05-19 2009-09-14 리드텍(주) Die bonding method using solder writing
WO2011081093A1 (en) * 2009-12-28 2011-07-07 東京エレクトロン株式会社 Mounting method and mounting device
KR101739787B1 (en) * 2013-09-11 2017-05-25 에이에스엠 테크놀러지 싱가포르 피티이 엘티디 Die attachment apparatus and method utilizing activated forming gas
JP2021086914A (en) * 2019-11-27 2021-06-03 三菱電機株式会社 Semiconductor manufacturing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009177142A (en) * 2007-12-07 2009-08-06 Asm Assembly Automation Ltd Solder discharging for mounting semiconductor chip
KR101044565B1 (en) * 2007-12-07 2011-06-28 에이에스엠 어쌤블리 오토메이션 리미티드 Dispensing solder for mounting semiconductor chips
KR100916609B1 (en) 2009-05-19 2009-09-14 리드텍(주) Die bonding method using solder writing
CN101890548A (en) * 2009-05-19 2010-11-24 丽台科技公司 Solder printing type die bonding method
CN101890548B (en) * 2009-05-19 2013-03-27 丽台科技公司 Solder printing type die bonding method
WO2011081093A1 (en) * 2009-12-28 2011-07-07 東京エレクトロン株式会社 Mounting method and mounting device
JP2011138901A (en) * 2009-12-28 2011-07-14 Tokyo Electron Ltd Mounting method and mounting device
US8749068B2 (en) 2009-12-28 2014-06-10 Tokyo Electron Limited Mounting method and mounting device
KR101739787B1 (en) * 2013-09-11 2017-05-25 에이에스엠 테크놀러지 싱가포르 피티이 엘티디 Die attachment apparatus and method utilizing activated forming gas
JP2021086914A (en) * 2019-11-27 2021-06-03 三菱電機株式会社 Semiconductor manufacturing device
JP7259714B2 (en) 2019-11-27 2023-04-18 三菱電機株式会社 Semiconductor manufacturing equipment

Similar Documents

Publication Publication Date Title
KR101044565B1 (en) Dispensing solder for mounting semiconductor chips
JP2005235971A (en) Solder device of tab lead for solar battery containing flux coating function
JP2007311653A (en) Solder coating method, solder coating unit, and die bonder
EP2384841A2 (en) System for dispensing soft solder for mounting semiconductor chips using multiple solder wires
JPS62276840A (en) Bonding apparatus
JPH0476926A (en) Semiconductor manufacturing equipment
JP2000012567A (en) Junction material supply method of die bonder and its device
JPH05347321A (en) Method of pre-soldering lead frame
WO2020153366A1 (en) Bonding device
JP2834218B2 (en) Bonding method
JPH10175064A (en) Soldering method and solder used therefor
JP3481025B2 (en) Pellet bonding equipment
JP2010287828A (en) Transfer device
JPH1140599A (en) Substrate transferring equipment
JP3807487B2 (en) Semiconductor device mounting device
JP2006100492A (en) Fixing method of electronic component onto support plate
JP3778426B2 (en) Semiconductor device mounting device
JP2984381B2 (en) Inner lead bonding equipment
JPH10145097A (en) Apparatus for assembling board and method for assembling board
JP3217158B2 (en) Lead frame transport method and apparatus
JP2023134301A (en) Semiconductor manufacturing device, coating applicator, and manufacturing method of semiconductor device
JP4322884B2 (en) Lead frame transfer method and transfer device
JP2011041971A (en) Solder feeder and solder feeding method
JPH04253345A (en) Solder supply device for die bonder
JPH10178261A (en) Method and device for soldering electronic parts

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081015