JP2007237279A - Continuous casting mold and continuous casting method - Google Patents
Continuous casting mold and continuous casting method Download PDFInfo
- Publication number
- JP2007237279A JP2007237279A JP2006066277A JP2006066277A JP2007237279A JP 2007237279 A JP2007237279 A JP 2007237279A JP 2006066277 A JP2006066277 A JP 2006066277A JP 2006066277 A JP2006066277 A JP 2006066277A JP 2007237279 A JP2007237279 A JP 2007237279A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- continuous casting
- casting
- slit
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009749 continuous casting Methods 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 8
- 238000005266 casting Methods 0.000 claims abstract description 51
- 238000001816 cooling Methods 0.000 claims abstract description 43
- 239000002826 coolant Substances 0.000 claims description 13
- 125000004122 cyclic group Chemical group 0.000 claims 1
- 239000000110 cooling liquid Substances 0.000 abstract description 2
- 230000000452 restraining effect Effects 0.000 abstract 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 40
- 229910052802 copper Inorganic materials 0.000 description 40
- 239000010949 copper Substances 0.000 description 40
- 239000000498 cooling water Substances 0.000 description 18
- 229910000831 Steel Inorganic materials 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 12
- 239000010959 steel Substances 0.000 description 11
- 238000007711 solidification Methods 0.000 description 9
- 230000008023 solidification Effects 0.000 description 9
- 238000007747 plating Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 229910000954 Medium-carbon steel Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、連続鋳造鋳型及び連続鋳造方法に係り、特に、鋼の連続鋳造に用いるのに好適な、溶融金属を均一に冷却することが可能な連続鋳造鋳型、及び、これを用いた連続鋳造方法に関する。 The present invention relates to a continuous casting mold and a continuous casting method, and more particularly to a continuous casting mold capable of uniformly cooling molten metal, which is suitable for use in continuous casting of steel, and continuous casting using the same. Regarding the method.
連続鋳造用鋳型の冷却板(銅板とも称する)10は、熱的負荷が大きいため、一般的に、鋳造中の熱歪防止のため、図1(冷却水通路側から見た正面図)及び図2(図1のII−II線に沿う断面図)に示す如く、鋼製のバックアップフレーム20に、縦横にほぼ等間隔で設けられたスタッドボルト22を通じて固定され、このボルト22による固定部を避けるように、銅板10の冷却水通路(スリットとも称する)12が複数本、鋳造方向(図1の上下方向)に平行に直線状に設けられている。図において、14は、銅板10に設けられた測温用の穴、16はモールドフラックス層、18は凝固シェル、24はパッキンである。
Since the cooling plate 10 (also referred to as a copper plate) of the casting mold for continuous casting has a large thermal load, generally, in order to prevent thermal distortion during casting, FIG. 1 (front view seen from the cooling water passage side) and FIG. 2 (cross-sectional view taken along line II-II in FIG. 1), the
このため、スタッドボルト22間のスリット12の間隔は任意に設定できるものの、スタッドボルト22はボルトの直径に影響され、通常、スタッドボルト部を挟んだスリットの間隔は、その他の部位よりも広い構造となる。その結果として、鋳型の幅方向に、スタッドボルトのピッチに対応した周期的な冷却の不均一部が形成され、特に、スタッドボルト部ではスリット12の密度が小さくなって冷却が弱められるという、冷却の不均一が発生する。
For this reason, although the space | interval of the
又、図3(a)に示す如く、溶鋼が湯面位置で凝固開始してから鋳型を出るまでの間、鋳型冷却スリット部で凝固開始した部分は、鋳型を出るまでそのスリットとの位置関係が殆んど変化しない。このような関係は、スタッドボルト部で凝固開始した部分、冷却スリット間で凝固開始した部分に関しても同様である。つまり、幅方向での不均一な冷却状態が、凝固開始から鋳型出側まで持続されることになる。 Also, as shown in FIG. 3 (a), the portion where the molten steel starts to solidify at the molten metal surface position until it exits the mold until the mold cooling slit portion begins to solidify is positioned relative to that slit until it exits the mold. Hardly changes. Such a relationship is the same with respect to a portion where solidification starts at the stud bolt portion and a portion where solidification starts between the cooling slits. That is, the uneven cooling state in the width direction is maintained from the start of solidification to the mold exit side.
このため、冷却が他の部分よりも弱いスタッドボルト部やスリットの無い部位では弱いまま、冷却が他の部位よりも強いスリット部では強いまま、鋳型出側まで冷却されることになる。よって、凝固した鋼からすれば、幅方向での冷却むらが助長される。この結果、凝固したシェルは、幅方向の同じ位置で、鋳造方向に直線状に凝固の遅れ部が形成される傾向が強くなる。このような状況を図2に模式的に示す。この凝固遅れ部に熱歪が集中し易くなり、縦割れが発生することになる。 For this reason, cooling is performed to the mold exit side while the cooling is weak at the stud bolt part or the part without the slit that is weaker than the other part, and the cooling is strong at the slit part that is stronger than the other part. Therefore, if solidified steel is used, uneven cooling in the width direction is promoted. As a result, the solidified shell has a strong tendency to form a solidified delay portion linearly in the casting direction at the same position in the width direction. Such a situation is schematically shown in FIG. Thermal strain tends to concentrate on the solidification delay part, and vertical cracks are generated.
最近では、生産性の向上を目的として、鋳造速度をより一層高速化する傾向にあり、鋳造の安定化や鋳片品質劣化抑制のため、鋳型内溶鋼流動を電磁力で効率的に制御できるように、鋳型銅板内での磁場減衰抑制を狙って、鋳型銅板を従来よりも薄肉化する傾向にあり、上記のような問題が顕在化する。これらの現象は、スラブやブルーム用鋳型銅板の場合に顕著である。 Recently, there is a tendency to further increase the casting speed for the purpose of improving productivity, so that the molten steel flow in the mold can be efficiently controlled by electromagnetic force in order to stabilize the casting and suppress the deterioration of slab quality. In addition, with the aim of suppressing magnetic field attenuation in the mold copper plate, the mold copper plate tends to be thinner than before, and the above-described problems become apparent. These phenomena are prominent in the case of slabs and bloom mold copper plates.
そのため、次のような問題が発生する。 Therefore, the following problems occur.
(1)鋳片の凝固がスタッドボルト部で遅れるため、その部位に対応した鋳片に縦割れや鋳片の座屈(くぼみ)が発生し易い。高速鋳造を実施する場合や、不均一凝固し易い極低炭素鋼や中炭素鋼鋳造時には、これらの問題が顕在化する。 (1) Since solidification of the slab is delayed at the stud bolt portion, vertical cracks and slab buckling (dents) are likely to occur in the slab corresponding to the part. These problems become apparent when high-speed casting is performed, or when casting ultra-low carbon steel or medium carbon steel that tends to solidify unevenly.
(2)スタッドボルト近傍の銅板温度が高温となり、この部位に銅板に亀裂が発生し、銅板寿命が短縮する。又、亀裂部から漏れた水が溶融金属と接触し、水蒸気爆発の可能性もある。 (2) The copper plate temperature in the vicinity of the stud bolt becomes high, and a crack occurs in the copper plate at this portion, and the life of the copper plate is shortened. In addition, water leaking from the cracks may come into contact with the molten metal, causing a steam explosion.
これらの問題を解決するため、特許文献1や2では、スタッドボルト部を挟んだスリットの間隔を、鋳造方向でスタッドボルトが無い部分のみくねらせる方法が提案されている。
In order to solve these problems,
又、非特許文献1では、水平方向にスリットを設ける提案もされている。
Non-Patent
しかしながら、特許文献1や2に記載された技術でも、上記の問題は必ずしも完全に抑制されていない。
However, even with the techniques described in
又、非特許文献1に記載された方法では、冷却水中の気泡の離脱が容易でなくなり、水平方向に温度分布ができてしまって、鋳型冷却能が低下するという問題点を有する。
In addition, the method described in Non-Patent
又、丸状の鋳片(丸ブルーム、丸ビレット)を鋳造する場合、その形状そのものの特性から、上記のようなスラブやブルーム用鋳型銅板構造でなくても、あるいは、不均一凝固し易い極低炭素鋼や中炭素鋼でなくても、鋳片縦割れが発生し易く、この解決のため、鋳型テーパの最適化やモールドフラックスの改善(緩冷却化)が実施されているものの、必ずしも完全に抑制されてはいなかった。 Also, when casting round slabs (round bloom, round billet), due to the characteristics of the shape itself, the slab and bloom mold copper plate structure as described above may be used. Even if it is not low-carbon steel or medium-carbon steel, slab vertical cracks are likely to occur. To solve this problem, mold taper optimization and mold flux improvement (slow cooling) have been implemented, but they are not necessarily complete. It was not suppressed.
本発明は、前記従来の問題点を解消するべくなされたもので、鋳片表面割れを抑制して製品表面品質を向上すると共に、冷却板の亀裂の発生を防止して鋳型冷却板の寿命を延ばすことを課題とする。 The present invention has been made to solve the above-mentioned conventional problems, and suppresses the slab surface cracks to improve the product surface quality, and prevents the occurrence of cracks in the cooling plate to extend the life of the mold cooling plate. The problem is to extend.
本発明は、連続鋳造鋳型用冷却板の冷却液流路が、鋳造方向に対して直角の鋳型断面全周の少なくとも50%以上の部分で、鋳造方向軸に対して傾斜していることを特徴とする連続鋳造鋳型により、前記課題を解決したものである。 The present invention is characterized in that the coolant flow path of the cooling plate for the continuous casting mold is inclined with respect to the casting direction axis at a portion of at least 50% or more of the entire circumference of the mold cross section perpendicular to the casting direction. The above-mentioned problem is solved by a continuous casting mold.
特に、スラブやブルームの場合は、前記冷却液流路の傾斜角を、鋳造方向に、周期的に変化させることが好適であり、冷却液流路の傾斜角の鋳造方向周期が、鋳造方向スタッドボルトピッチの2倍に一致し、その全振幅が、冷却液流路の1ピッチ以上であり、冷却液流路と鋳造方向軸のなす傾斜角の最大値を3〜85°とすることが望ましい。 In particular, in the case of slabs and blooms, it is preferable to periodically change the tilt angle of the coolant flow path in the casting direction, and the casting direction cycle of the tilt angle of the coolant flow path is equal to the casting direction stud. It is desirable that the total amplitude is equal to twice the bolt pitch, the total amplitude is one pitch or more of the coolant channel, and the maximum inclination angle between the coolant channel and the casting direction axis is 3 to 85 °. .
一方、鋳型が円筒である場合は、全部の冷却液流路を鋳造方向にスパイラル状に形成し、冷却水通路と鋳造方向軸のなす傾斜角を3〜85°とすることが望ましい。 On the other hand, when the mold is a cylinder, it is desirable that all the coolant flow paths are formed in a spiral shape in the casting direction, and the inclination angle formed between the cooling water passage and the casting direction axis is 3 to 85 °.
本発明によれば、鋳型幅方向での冷却むらが緩和され、鋳片表面割れやブレークアウトが抑制されて製品表面品質が向上すると共に、冷却板の亀裂発生が防止され鋳型冷却板の寿命が延ばされる。 According to the present invention, uneven cooling in the mold width direction is mitigated, slab surface cracking and breakout are suppressed, the product surface quality is improved, cracking of the cooling plate is prevented, and the life of the mold cooling plate is increased. Extended.
以下、図面を参照して、本発明の実施形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本発明の第1実施形態の銅板10を冷却水通路(スリット)12側から見た正面図を図4に示す。冷却水スリット12を鋳造方向軸に対して傾斜させる構造とし、且つ、幅方向に周期的に傾斜角を変化させて、言わば、正弦波形状を呈したスリット形状としている。このため、溶鋼が凝固開始してから鋳型を出るまでの間に、図3(b)に示す冷却スリット部で凝固開始した部分Eは、スリットとの相対的な位置関係が周期的に変化することになる。例えば、冷却スリット部で凝固を開始する部分Eでは、スリット部→スリット間の銅板部→スリット部→スリット間の銅板部と、交互に凝固シェルの冷却条件が変化する。又、スタッドボルト間で凝固を開始する部分Dでは、スリット間の銅板部→スリット部→スリット間の銅板部→スタッドボルト部→スリット間の銅板部→スリット部→スリット間の銅板部→スリット部→スリット間の銅板部→スタッドボルト部というように、冷却条件が変化する。即ち、凝固シェルが鋳型内を下降中に、冷却部と非冷却部を交互に通過することになるので、凝固シェルからすれば、幅方向での冷却むらが、図3(a)に示した比較例に比べて緩和される効果が得られる。
The front view which looked at the
更にスリットが直線ではなく曲線であることから、本発明でのスリット長さ(入側〜出側間線分長さ)が従来に比べて長くなる。このため、冷却面積(スリット長さ×スリット幅)が増大し、同一水量でも、鋳型抜熱量の増加が期待できる。よって、鋳型幅方向の冷却むら抑制と冷却能増大の相乗効果、更にはスリットの曲線化により、銅板の絶対温度低下、温度むら抑制、そして銅板への熱歪集中緩和をもたらすため、銅板の亀裂の可能性が激減する効果もある。 Further, since the slit is not a straight line but a curve, the slit length (the length of the line segment between the entry side and the exit side) in the present invention is longer than that in the prior art. For this reason, the cooling area (slit length × slit width) increases, and an increase in the amount of heat removed from the mold can be expected even with the same amount of water. Therefore, the synergistic effect of suppressing the cooling unevenness in the mold width direction and increasing the cooling capacity, as well as curving the slits, reduce the absolute temperature of the copper plate, suppress the temperature unevenness, and reduce the thermal strain concentration on the copper plate. There is also an effect of drastically reducing the possibility of.
このようなスリット形状は、スラブやブルーム等の組鋳型では、少なくとも鋳型断面全周の50%以上で施されていることが必要である。スラブの場合、長辺面での縦割れが顕著であり、長辺面の鋳型全周に対する割合は、一般的にはサイズ(100〜300厚み×700〜3000幅)を考慮すると、75%以上が好適である。又、ブルームでは、長辺と短辺の幅の差が小さいために、全周に傾斜スリットを設けることが好適である。 Such a slit shape needs to be applied at least 50% of the entire circumference of the mold cross-section in an assembled mold such as a slab or bloom. In the case of a slab, vertical cracks on the long side surface are prominent, and the ratio of the long side surface to the entire mold periphery is generally 75% or more in consideration of the size (100 to 300 thickness × 700 to 3000 width). Is preferred. In Bloom, since the difference between the width of the long side and the short side is small, it is preferable to provide an inclined slit on the entire circumference.
組鋳型の場合、図5(a)に示すように、スリット12を傾斜させた直線とすると、傾斜させすぎると、スリットの長さが異なる部位が存在するために、スリット1本毎に流れる冷却水圧損も変化し、スリット1本毎の流量の均一性が維持できなくなり、鋳型全体の冷却不均一の原因になる。よって、傾斜角度は、図5(b)に示すように、鋳造する金属を冷却する領域においては、スリット長さを揃えられるようにすることが好適である。
In the case of an assembled mold, as shown in FIG. 5 (a), if the straight line is formed by inclining the
スリットの傾斜は、鋳造方向に周期的に変化させてもよく、その長さはほぼ同じになるような波形、例えば正弦波形が好適である。但し、図6に例示するような丸鋳片を鋳造する鋳型の場合には、この限りではなく、図7に示す第2実施形態のように、鋳型を展開する際にスリットが傾斜した直線となるようにスパイラル(螺旋)状にスリットを施工することが好適である。勿論、組鋳型の場合と同様に、鋳造方向に冷却部と非冷却部を交互になれば効果が発揮できるため、スパイラル状である必要は無く、正弦波状波形でもよい。 The inclination of the slit may be periodically changed in the casting direction, and a waveform having substantially the same length, for example, a sine waveform is preferable. However, in the case of a mold for casting a round slab as illustrated in FIG. 6, this is not a limitation, and a straight line with a slanted slit when the mold is deployed, as in the second embodiment shown in FIG. 7. It is preferable to construct the slit in a spiral shape. Of course, as in the case of the assembled mold, since the effect can be exhibited if the cooling part and the non-cooling part are alternately arranged in the casting direction, it is not necessary to have a spiral shape, and a sinusoidal waveform may be used.
スリットの鋳造方向軸となす傾斜角度は、小さすぎると効果が発揮されなくなり、一方、大きすぎると冷却水を流す圧損の増加につながり、更に冷却水中の気泡の水路内停滞につながり、冷却能が低下することが懸念されるため、垂直方向に対し、最大で3〜85°が好適である。 If the angle of inclination of the slit with the casting direction axis is too small, the effect will not be exhibited.On the other hand, if it is too large, it will lead to an increase in pressure loss that causes cooling water to flow. Since there is a concern about the decrease, a maximum of 3 to 85 ° is preferable with respect to the vertical direction.
正弦波形のように、周期的にスリットの鋳造方向軸となす傾斜角度を変化させる周期は、鋳造方向の冷却むら防止の観点から、鋳造方向のスタッドボルト間に冷却水スリットを設けることができるように、最小でもスタッドボルトの鋳造方向ピッチの2倍にすることが望ましい。 Like the sine waveform, the period of periodically changing the inclination angle between the slit and the casting direction axis is such that a cooling water slit can be provided between the stud bolts in the casting direction from the viewpoint of preventing uneven cooling in the casting direction. In addition, it is desirable that the pitch is at least twice the pitch of the stud bolt in the casting direction.
又、正弦波形のように、周期的にスリットの鋳造方向軸となす傾斜角度を変化させる振幅は、鋳造方向の冷却むら防止の観点から、鋳造方向のスタッドボルト間に冷却水スリットを1本以上設けることができるように、スタッドボルト両隣のスリット間隔以上とすることが望ましい。 Moreover, the amplitude which changes the inclination angle which makes a casting direction axis | shaft of a slit periodically like a sine waveform is one or more cooling water slits between the stud bolts of a casting direction from a viewpoint of cooling nonuniformity of a casting direction. It is desirable that the distance between the slits on both sides of the stud bolt is greater than or equal to the distance between the stud bolts.
以上より、スリットが正弦波形の場合、スリット幅中心線の鋳造方向(Z)軌跡は、次式で表現できる。 From the above, when the slit has a sinusoidal waveform, the casting direction (Z) locus of the slit width center line can be expressed by the following equation.
y=(Wp/2)sin(2πft) …(1) y = (Wp / 2) sin (2πft) (1)
ここに、t=Z/V、f=1/(2Bp/V)として(1)式を整理すると、(2)式を得る。 Here, when formula (1) is arranged with t = Z / V and f = 1 / (2Bp / V), formula (2) is obtained.
y=(Wp/2)sin[πZ/Bp] …(2) y = (Wp / 2) sin [πZ / Bp] (2)
ここで、y:鋳型幅方向スリット位置
Wp:鋳造方向のスタッドボルト間を通る冷却水スリット間隔のn倍、あるいはそれ以外の部位の冷却水スリット間隔のn倍
Where y: slit position in the mold width direction
Wp: n times the cooling water slit interval passing between the stud bolts in the casting direction, or n times the cooling water slit interval in other parts
Bp:鋳造方向スタッドボルトピッチ
V :鋳造速度
t :時間
f :正弦波形スリットの周期
Bp: Casting stud bolt pitch
V: Casting speed
t: time
f: period of sine wave slit
よって、スリットの鋳造方向となす傾斜角度の最大値θmaxは、必然的に決定され((2)式の微分値の最大値)、Bp=80〜150mm、Wp=20〜35mm(n=1)とすると、
θmax=arctan[(dy/dZ)max]
=arctan(πWp/2Bp)
=12〜38°(n=1)、23〜50°(n=2)、32〜64°(n=3)程度となる。
Therefore, the maximum value θmax of the inclination angle formed with the casting direction of the slit is inevitably determined (the maximum value of the differential value of the equation (2)), Bp = 80 to 150 mm, Wp = 20 to 35 mm (n = 1) Then,
θmax = arctan [(dy / dZ) max]
= Arctan (πWp / 2Bp)
= 12 to 38 ° (n = 1), 23 to 50 ° (n = 2), and 32 to 64 ° (n = 3).
正弦波形は、スリットの全長に渡って同一式で表現する必要はなく、鋳造方向の途中でBpが変化していれば、その値に対応して波形のピッチを変化して構成すればよいし、同様に、振幅も銅板幅方向でスリット間隔が変化していれば、その場所毎に変化させても構わない。例えば、スタッドボルト部ではWpをスタッドボルト両隣のスリット間隔とそれ以外の等間隔をなしているスリット間隔の和で与えても良い。等間隔をなしているスリット部では、その整数倍が最適である。 The sinusoidal waveform does not need to be expressed by the same expression over the entire length of the slit, and if Bp changes in the middle of the casting direction, the pitch of the waveform may be changed corresponding to the value. Similarly, the amplitude may be changed for each location as long as the slit interval is changed in the copper plate width direction. For example, in the stud bolt portion, Wp may be given by the sum of the slit interval on both sides of the stud bolt and the other slit interval that is equally spaced. For slit portions that are equally spaced, an integer multiple thereof is optimal.
正弦波形状スリットの加工は、コンピュータ制御によるNC加工により、容易に実施できる。 The sinusoidal slit can be easily processed by NC processing by computer control.
垂直曲げ型連鋳機を用いて、スラブサイズ235mm厚み×1600〜1800mm幅の中炭素鋼(C/0.09〜0.13、Si/0.35〜0.55、Mn/1.0〜1.3、P/0.015〜0.030、S/0.005〜0.020、Al/0.015〜0.040、Nb/0〜0.050、N/0.0035〜0.0100質量%)を鋳造速度1.8〜2.0m/分で鋳造し、鋳片の縦割れ発生率(=スラブ当たりの5mm長さ以上の割れ発生率=割れ発生スラブ本数/総鋳片数)と鋳型銅板の改削寿命(表面めっきの摩耗、剥離、亀裂等の原因で表面再めっきするため銅板表面を改削するまでに鋳造したチャージ回数)を図8に比較して示した。本発明は、長辺銅板のみに適用し、短辺銅板は通常の構造とした。冷却水量は、比較例、本発明例共に、3500L/分/面(長辺)とした。なお、本発明実施時の冷却水供給圧力は、比較例よりも最大で0.5kg/cm2増加したが、問題なく鋳造できた。使用した銅板の冷却スリット形状は、比較例として図1、本発明例として図4とした。銅板材質は銀クロム入り脱酸銅、銅板表面めっきは、Ni0.5mm下地にCrめっき30μm厚みとした。 Using a vertical bending type continuous casting machine, medium carbon steel (C / 0.09 to 0.13, Si / 0.35 to 0.55, Mn / 1.0 to slab size 235 mm thickness x 1600 to 1800 mm width) 1.3, P / 0.015-0.030, S / 0.005-0.020, Al / 0.015-0.040, Nb / 0-0.050, N / 0.0035-0. 0100% by mass) at a casting speed of 1.8 to 2.0 m / min, and the rate of occurrence of vertical cracks in the slab (= crack generation rate of 5 mm or more per slab = number of cracked slabs / total number of slabs ) And the cutting life of the mold copper plate (the number of charges cast before cutting the surface of the copper plate to re-plat the surface due to surface plating wear, peeling, cracks, etc.) are shown in FIG. The present invention is applied only to the long side copper plate, and the short side copper plate has a normal structure. The amount of cooling water was 3500 L / min / surface (long side) in both the comparative example and the present invention example. The cooling water supply pressure at the time of carrying out the present invention increased by 0.5 kg / cm 2 at the maximum from the comparative example, but could be cast without any problem. The cooling slit shape of the copper plate used was shown in FIG. 1 as a comparative example and FIG. 4 as an example of the present invention. The copper plate material was deoxidized copper containing silver chrome, and the copper plate surface plating was a Ni 0.5 mm base with a Cr plating thickness of 30 μm.
図8から判るように、本発明により縦割れ発生率が大幅に減少し、且つ、銅板の使用回数の増加も確認され、本発明の効果が著しいことが分かった。 As can be seen from FIG. 8, the occurrence rate of vertical cracks was greatly reduced by the present invention, and an increase in the number of times of use of the copper plate was confirmed, indicating that the effect of the present invention was remarkable.
湾曲型連鋳機を用いて、丸ビレット製品サイズ170mmφの継目無用油井鋼管素材13%Cr鋼を、鋳造速度1.3〜1.5m/分で鋳造し、鋳片の縦割れ発生率(=スラブ当たりの5mm長さ以上の割れ発生率=割れ発生率スラブ本数/総鋳片数)と鋳型銅板の改削寿命(表面めっきの摩耗、剥離、亀裂等の原因で表面再めっきするため銅板表面を改削するまでに鋳造したチャージ回数)を図9に比較して示した。冷却水量は、比較例、本発明例共に、980L/分とした。なお、本発明実施時の冷却水供給圧力は、比較例よりも最大で0.2kg/cm2増加したが、問題なく鋳造できた。使用した銅板の冷却水スリット形状は、比較例1として図6(スリットなし、リング状の通水路13があるのみ)、比較例2として上下方向の直線スリットを設けたもの、本発明例として図7とした。銅板材質は銀クロム入り脱酸銅、銅板表面めっきは、Ni0.5mm下地にCrめっき50μ厚みとした。
Using a curved continuous caster, a seamless oil well
図9から判るように、本発明により縦割れ発生率、ブレークアウト発生率(発生チャージ回数/総鋳造回数)が大幅に減少し、本発明の効果が著しいことが分かった。 As can be seen from FIG. 9, according to the present invention, the occurrence rate of vertical cracks and the occurrence rate of breakout (number of generated charges / total number of castings) were greatly reduced, indicating that the effect of the present invention was remarkable.
本発明は、連続鋳造する金属、合金の鋳型に適用可能で、鋼の鋳造に限定されることなく、アルミニウム、銅、黄銅等の連続鋳造にも利用でき、冷却用基板(鋼の場合銅合金)にスリット構造を設けることを可能な構造をしている鋳型全般に適用可能である。又、冷却板の材質も銅板に限定されず、冷却液も水に限定されない。 The present invention is applicable to continuous casting metal and alloy molds, and is not limited to steel casting, but can also be used for continuous casting of aluminum, copper, brass, etc., and a cooling substrate (a copper alloy in the case of steel). ) Can be applied to all molds having a structure capable of providing a slit structure. Further, the material of the cooling plate is not limited to the copper plate, and the cooling liquid is not limited to water.
10…冷却板(銅板)
12…冷却水通路(スリット)
20…バックアップフレーム
22…スタッドボルト
10 ... Cooling plate (copper plate)
12 ... Cooling water passage (slit)
20 ...
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006066277A JP4992254B2 (en) | 2006-03-10 | 2006-03-10 | Continuous casting mold and continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006066277A JP4992254B2 (en) | 2006-03-10 | 2006-03-10 | Continuous casting mold and continuous casting method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007237279A true JP2007237279A (en) | 2007-09-20 |
JP4992254B2 JP4992254B2 (en) | 2012-08-08 |
Family
ID=38583320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006066277A Active JP4992254B2 (en) | 2006-03-10 | 2006-03-10 | Continuous casting mold and continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4992254B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010188399A (en) * | 2009-02-19 | 2010-09-02 | Mishima Kosan Co Ltd | Mold for continuous casting |
JP2014077669A (en) * | 2012-10-09 | 2014-05-01 | Daiki Aluminium Industry Co Ltd | Manufacturing method of aluminum alloy reference standard for emission spectral analysis, and aluminum alloy reference standard for emission spectral analysis manufactured by the same method |
JP2015168000A (en) * | 2014-03-10 | 2015-09-28 | Jfeスチール株式会社 | Casting mold for continuous casting and continuous casting method of steel |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5861951A (en) * | 1981-10-07 | 1983-04-13 | Kawasaki Steel Corp | Mold for continuous casting |
JPS6034350U (en) * | 1983-08-15 | 1985-03-08 | 株式会社神戸製鋼所 | Tubular mold for continuous casting |
JPS60221153A (en) * | 1984-03-28 | 1985-11-05 | Nichidoku Jukogyo Kk | Continuous casting mold |
JPH01118846U (en) * | 1988-02-05 | 1989-08-11 |
-
2006
- 2006-03-10 JP JP2006066277A patent/JP4992254B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5861951A (en) * | 1981-10-07 | 1983-04-13 | Kawasaki Steel Corp | Mold for continuous casting |
JPS6034350U (en) * | 1983-08-15 | 1985-03-08 | 株式会社神戸製鋼所 | Tubular mold for continuous casting |
JPS60221153A (en) * | 1984-03-28 | 1985-11-05 | Nichidoku Jukogyo Kk | Continuous casting mold |
JPH01118846U (en) * | 1988-02-05 | 1989-08-11 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010188399A (en) * | 2009-02-19 | 2010-09-02 | Mishima Kosan Co Ltd | Mold for continuous casting |
JP2014077669A (en) * | 2012-10-09 | 2014-05-01 | Daiki Aluminium Industry Co Ltd | Manufacturing method of aluminum alloy reference standard for emission spectral analysis, and aluminum alloy reference standard for emission spectral analysis manufactured by the same method |
JP2015168000A (en) * | 2014-03-10 | 2015-09-28 | Jfeスチール株式会社 | Casting mold for continuous casting and continuous casting method of steel |
Also Published As
Publication number | Publication date |
---|---|
JP4992254B2 (en) | 2012-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5692451B2 (en) | Continuous casting mold and steel continuous casting method | |
JP2008055454A (en) | Method for producing cast slab excellent in surface and inner qualities | |
JP2018192530A (en) | Casting mold for continuous casting and continuous casting method of steel | |
JP6003850B2 (en) | Manufacturing method of continuous casting mold and continuous casting method of steel | |
US10047417B2 (en) | Continuous caster roll for a continuous casting machine | |
JP6003851B2 (en) | Continuous casting mold and steel continuous casting method | |
WO2016067578A1 (en) | Mold for continuous casting and continuous casting method for steel | |
JP4992254B2 (en) | Continuous casting mold and continuous casting method | |
JP5962733B2 (en) | Steel continuous casting method | |
JP6044614B2 (en) | Steel continuous casting method | |
JP6787359B2 (en) | Continuous steel casting method | |
WO2018016101A1 (en) | Continuous casting mold and method for continuous casting of steel | |
JP2005211936A (en) | Method for continuously casting steel slab | |
JP6740924B2 (en) | Continuous casting mold and steel continuous casting method | |
JP6428721B2 (en) | Continuous casting mold and steel continuous casting method | |
JP2019155419A (en) | Continuous casting method for slab | |
JP6947192B2 (en) | Mold for continuous casting of steel and continuous casting method of steel | |
JP6394831B2 (en) | Continuous casting mold and steel continuous casting method | |
JP2017030051A (en) | Continuous casting method of steel | |
JP2018149602A (en) | Method for continuously casting steel | |
JP2020032452A (en) | Mold for continuous casting and continuous casting method for steel | |
JP2024047886A (en) | Mold for continuous casting and manufacturing method of the same | |
WO2024232148A1 (en) | Mold for continuous casting of steel and method for continuous casting of steel | |
JP2024047887A (en) | Mold for continuous casting, manufacturing method of the same and continuous casting method of steel | |
JP2023070335A (en) | Continuous casting method for steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090216 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110811 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110823 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120220 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120410 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120423 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150518 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4992254 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |