[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007236706A - Washing apparatus for washing object to be washed of food manufacturing facility, and washing method - Google Patents

Washing apparatus for washing object to be washed of food manufacturing facility, and washing method Download PDF

Info

Publication number
JP2007236706A
JP2007236706A JP2006064819A JP2006064819A JP2007236706A JP 2007236706 A JP2007236706 A JP 2007236706A JP 2006064819 A JP2006064819 A JP 2006064819A JP 2006064819 A JP2006064819 A JP 2006064819A JP 2007236706 A JP2007236706 A JP 2007236706A
Authority
JP
Japan
Prior art keywords
ozone
cleaning
water
cleaned
food
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006064819A
Other languages
Japanese (ja)
Other versions
JP4919388B2 (en
Inventor
Tetsushi Okuda
哲士 奥田
Wataru Nishijima
渉 西嶋
Mitsumasa Okada
光正 岡田
Hisanao Kano
久直 狩野
Mitsutake Aoyanagi
充建 青柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Rensui Co
Hiroshima University NUC
Original Assignee
Nippon Rensui Co
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Rensui Co, Hiroshima University NUC filed Critical Nippon Rensui Co
Priority to JP2006064819A priority Critical patent/JP4919388B2/en
Publication of JP2007236706A publication Critical patent/JP2007236706A/en
Application granted granted Critical
Publication of JP4919388B2 publication Critical patent/JP4919388B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/02Cleaning pipes or tubes or systems of pipes or tubes
    • B08B9/027Cleaning the internal surfaces; Removal of blockages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C3/00Bottling liquids or semiliquids; Filling jars or cans with liquids or semiliquids using bottling or like apparatus; Filling casks or barrels with liquids or semiliquids
    • B67C3/001Cleaning of filling devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Apparatus For Making Beverages (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a washing apparatus by which flavor components adsorbed by objects to be washed in food manufacturing facilities such as drink producing machines, drink producing tanks or sealing materials of their connecting pipes can be efficiently eliminated. <P>SOLUTION: The washing apparatus 10 for washing the objects to be washed of the food manufacturing facilities 50 is provided with an ozone generator 12 which forms ozone for washing the objects to be washed of the food manufacturing facilities 50, a heater 11 which heats water for dissolving ozone, a mixer 13 which mixes ozone generated by the ozone generator 12 and water heated by the heater 11 and prepares heated ozone-mixed water and pipes 14 which supply the heated ozone-mixed water prepared by the mixer 13 to the objects to be washed using sealing materials made of silicone rubber of the food manufacturing facilities 50. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、食品製造設備における洗浄装置に係り、より詳しくは、食品製造設備の香気成分除去に好適な洗浄装置に関する。   The present invention relates to a cleaning device in a food production facility, and more particularly to a cleaning device suitable for removing aroma components in a food production facility.

食品製造設備を有する例えば飲料工場では、生産品目の切り替え時、操業終了時等に、飲料製造設備の機器、飲料製造タンクおよびこれらの接続配管を分解することなく、洗浄剤をこれらの機器、タンクおよび配管に流すことによって洗浄を行う、いわゆる定置洗浄(CIP:Cleaning In Place)が広く行われている。この定置洗浄によれば、接続配管を分解して洗浄するのに比べて洗浄時間の短縮と労力の軽減を図ることが可能となる。   For example, in a beverage factory having a food production facility, at the time of switching the production item, at the end of the operation, etc., the cleaning agent is supplied to these devices and tanks without disassembling the beverage production facility equipment, beverage production tank and their connection pipes. In addition, so-called in-place cleaning (CIP: Cleaning In Place), in which cleaning is performed by flowing in a pipe, is widely performed. According to this stationary cleaning, it is possible to shorten the cleaning time and labor as compared with disassembling and cleaning the connection pipe.

例えば、この定置洗浄に用いられる洗浄装置は、酸性洗浄剤供給ユニット、アルカリ性洗浄剤供給ユニット、温水循環ユニット、および洗浄効果を高めるために酸性洗浄剤、アルカリ性洗浄剤および水を加熱する加熱装置を備えている。   For example, the cleaning device used for this stationary cleaning includes an acidic cleaning agent supply unit, an alkaline cleaning agent supply unit, a hot water circulation unit, and a heating device that heats the acidic cleaning agent, the alkaline cleaning agent, and water to enhance the cleaning effect. I have.

しかし、飲料製造設備の機器、飲料製造タンクおよびこれらの接続配管のシール材(ガスケット、パッキン、O-リング等)に付着した香気成分(飲料フレーバーなど)は、酸性洗浄剤およびアルカリ性洗浄剤では容易に除去できない。このため、次亜塩素酸ナトリウムや界面活性剤で洗浄する工程を追加することや、これらの薬品による洗浄工程を繰り返し行うことによって、香気成分を除去している。そのために定置洗浄の時間が長くなっており、定置洗浄の時間短縮は、飲料製造設備の生産性向上のための大きな課題となっている。   However, aroma components (beverage flavors, etc.) adhering to beverage manufacturing equipment, beverage manufacturing tanks and seals (gaskets, packings, O-rings, etc.) of these connection pipes are easy with acidic and alkaline cleaners. Cannot be removed. For this reason, the aromatic component is removed by adding a process of washing with sodium hypochlorite or a surfactant, or by repeatedly performing a washing process with these chemicals. For this reason, the time for stationary cleaning has become longer, and shortening the time for stationary cleaning has become a major issue for improving the productivity of beverage production facilities.

定置洗浄時間を短縮する従来技術としては、例えば特許文献1がある。この特許文献1には、オゾン(オゾン水膜、オゾンガス、霧化オゾン水の組み合わせ)による容器、配管類の洗浄装置が記載されている。
また、特許文献2では、オゾン溶解水による洗浄後、酸性洗浄剤、アルカリ性洗浄剤による洗浄を行うことによって洗浄時間を短縮する洗浄装置が提案されている。
一方、特許文献3では、オゾンを水に溶解した後に、このオゾン溶解水を熱交換器で加熱することによってオゾンの反応性を高める処理装置が提案されている。
As a conventional technique for shortening the stationary cleaning time, for example, Patent Document 1 is available. Patent Document 1 describes a container and piping cleaning device using ozone (a combination of ozone water film, ozone gas, and atomized ozone water).
Further, Patent Document 2 proposes a cleaning apparatus that shortens the cleaning time by performing cleaning with an acidic cleaning agent and an alkaline cleaning agent after cleaning with ozone-dissolved water.
On the other hand, Patent Document 3 proposes a treatment apparatus that increases ozone reactivity by dissolving ozone in water and then heating the ozone-dissolved water with a heat exchanger.

特開2005−131453号公報JP 2005-131453 A 特開平8−117708号公報JP-A-8-117708 特表2003−512736号公報Japanese translation of PCT publication No. 2003-512736

上記の特許文献1に記載されたオゾンを単独で用いる洗浄装置や、特許文献2に記載されたオゾンを酸性洗浄剤、アルカリ性洗浄剤と組み合わせて用いる洗浄装置は普及していない。これらの洗浄装置では、飲料製造設備の機器、飲料製造タンクおよびこれらの接続配管に対するオゾンの洗浄効果はあるが、それらの機器、タンクまたは配管に用いられているシール材(ガスケット、パッキン、O-リング等)に吸着した香気成分の除去が容易ではなく、洗浄時間の短縮ができない。これらの機器、タンクおよび配管に多く用いられているシール材はEPDM(エチレン・プロピレン・ジエンゴム)製のシール材で、EPDMシール材は、反発弾性、耐磨耗性、耐老化性、耐オゾン性、耐酸性、耐アルカリ性、および経済性に優れている。しかしながら、EPDMシール材は、香気成分を吸着し易く、かつ、吸着した香気成分は、酸性洗浄剤、アルカリ性洗浄剤、次亜塩素酸ナトリウム、界面活性剤等による洗浄を行っても除去し難く、また、オゾンによる洗浄でも除去し難いという欠点がある。   A cleaning apparatus that uses ozone alone described in Patent Document 1 and a cleaning apparatus that uses ozone described in Patent Document 2 in combination with an acidic cleaning agent and an alkaline cleaning agent are not widespread. These cleaning devices have an ozone cleaning effect on beverage production equipment, beverage production tanks and their connection pipes, but seal materials (gaskets, packings, O--) used in those devices, tanks or pipes. It is not easy to remove aroma components adsorbed on a ring or the like, and the cleaning time cannot be shortened. The seal material often used for these equipment, tanks and pipes is made of EPDM (ethylene propylene diene rubber), and EPDM seal material is rebound resilience, abrasion resistance, aging resistance and ozone resistance. Excellent in acid resistance, alkali resistance, and economy. However, the EPDM sealing material is easy to adsorb fragrance components, and the adsorbed fragrance components are difficult to remove even after washing with an acidic cleaner, an alkaline cleaner, sodium hypochlorite, a surfactant, Further, there is a drawback that it is difficult to remove even by cleaning with ozone.

また、特許文献3に記載された洗浄装置では、オゾンを水に溶解した後に、このオゾン溶解水を熱交換器で加熱することによって、オゾンの反応性を高めている。しかしながら、オゾンを溶解した水を熱交換器で加熱中にオゾンが自己分解を起こすので、オゾンの損失が大きくなる。また、加熱によって熱交換器内で発生する気泡の影響で熱交換の効率が低下し、加熱に余分の熱エネルギが必要となるおそれがある。   Moreover, in the washing | cleaning apparatus described in patent document 3, the ozone reactivity is raised by heating this ozone solution water with a heat exchanger, after melt | dissolving ozone in water. However, since ozone self-decomposes while heating water in which ozone is dissolved with a heat exchanger, the loss of ozone increases. In addition, heat exchange efficiency is reduced due to the influence of bubbles generated in the heat exchanger due to heating, and there is a possibility that extra heat energy is required for heating.

このように、飲料製造設備における従来のオゾンを使用する洗浄装置には、香気成分を短時間で効果的に除去する洗浄機能がなかった。しかしながら、生産性の向上、薬品使用量の削減、省エネルギ、節水、排水量低減による水環境への負荷低減の見地から、飲料製造設備における効率的な洗浄装置の必要性は一層高まっている。   As described above, the conventional cleaning device using ozone in the beverage production facility does not have a cleaning function for effectively removing the aroma component in a short time. However, from the standpoint of improving productivity, reducing chemical usage, saving energy, saving water, and reducing the load on the water environment by reducing drainage, the need for an efficient cleaning device in beverage production facilities is increasing.

本発明は、以上のような技術的課題を解決するためになされたものであって、その目的とするところは、食品製造設備における被洗浄物である飲料製造機器、または飲料製造タンク、またはこれらの接続配管のシール材に吸着した香気成分を効率よく除去することができる洗浄装置を提供することにある。   The present invention has been made to solve the technical problems as described above, and the object of the present invention is to provide a beverage production device, a beverage production tank, or a beverage production tank, which is an object to be cleaned in a food production facility. Another object of the present invention is to provide a cleaning device capable of efficiently removing the aroma component adsorbed on the sealing material of the connecting pipe.

かかる目的のもと、本発明は、食品製造設備の被洗浄物を洗浄する洗浄装置であって、この食品製造設備の被洗浄物を洗浄するためのオゾンを生成するオゾン発生器と、オゾンを溶解させる水を加熱する加熱装置と、オゾン発生器で発生させたオゾンと加熱装置で加熱した水とを混合して加熱オゾン混合水を調製する混合器と、この混合器で調製した加熱オゾン混合水を食品製造設備の被洗浄物に供給する配管とを含む。オゾンとの混合前に水だけを加熱することで、オゾン混合水を加熱する場合に比べてオゾンの損失を大幅に軽減することが可能となる。   For this purpose, the present invention provides a cleaning apparatus for cleaning the object to be cleaned of the food production facility, an ozone generator for generating ozone for cleaning the object to be cleaned of the food manufacturing facility, and ozone. A heating device that heats the water to be dissolved, a mixer that mixes ozone generated by the ozone generator and water heated by the heating device to prepare heated ozone mixed water, and a heated ozone mixture prepared by this mixer And piping for supplying water to the object to be cleaned of the food production facility. By heating only water before mixing with ozone, it is possible to significantly reduce the loss of ozone compared to the case of heating ozone mixed water.

ここで、この食品製造設備の被洗浄物が、シリコンゴム製のシール材を備えた食品製造機器、または食品製造タンク、または接続配管であることを特徴とすれば、シール材に吸着された香気成分を極めて高速に分解できる点で好ましい。   Here, if the object to be cleaned of this food production facility is a food production device, a food production tank, or a connection pipe provided with a silicon rubber sealant, the aroma adsorbed by the sealant This is preferable because the components can be decomposed at a very high speed.

他の観点から捉えると、本発明が適用される洗浄装置は、食品製造設備における被洗浄物を洗浄するためのオゾンを生成するオゾン発生器と、このオゾン発生器で発生させたオゾンと水とを混合してオゾン混合水を調製する混合器と、この混合器で調製したオゾン混合水を食品製造設備の被洗浄物に供給する配管とを含み、この被洗浄物が、シリコンゴム製のシール材を備えた食品製造機器、または食品製造タンク、または接続配管であることを特徴している。   From another point of view, the cleaning apparatus to which the present invention is applied includes an ozone generator that generates ozone for cleaning an object to be cleaned in a food manufacturing facility, and ozone and water generated by the ozone generator. A mixture for preparing ozone mixed water and a pipe for supplying the ozone mixed water prepared in this mixer to the object to be cleaned of the food manufacturing facility, and the object to be cleaned is made of silicon rubber seal It is characterized by being a food production equipment provided with a material, or a food production tank, or a connecting pipe.

また、このオゾン溶解用の水が、電気伝導率1mS/m(25℃)以下の脱塩水であることを特徴とすれば、オゾンの自己分解速度を小さくすることができる点で好ましい。
更に、酸性洗浄剤供給ユニット、アルカリ性洗浄剤供給ユニット、温水循環ユニットのうち、少なくとも1つを含むことを特徴とすることができる。
Further, it is preferable that the ozone-dissolving water is demineralized water having an electric conductivity of 1 mS / m (25 ° C.) or less because the self-decomposition rate of ozone can be reduced.
Furthermore, at least one of an acidic cleaning agent supply unit, an alkaline cleaning agent supply unit, and a warm water circulation unit may be included.

一方、本発明は、食品製造設備の被洗浄物を洗浄する洗浄方法であって、食品製造設備における被洗浄物を洗浄するためのオゾンを生成し、オゾンを溶解させる水を加熱し、生成されたオゾンと加熱された水とを混合してオゾン混合水を調製し、食品製造設備のシリコンゴム製のシール材を備えた食品製造機器、または食品製造タンク、または接続配管からなる被洗浄物を、調製されたオゾン混合水を用いて洗浄することを特徴としている。   On the other hand, the present invention is a cleaning method for cleaning an object to be cleaned in a food production facility, which generates ozone for cleaning the object to be cleaned in a food manufacturing facility, and heats water that dissolves ozone. Prepare ozone-mixed water by mixing the heated ozone and heated water, and prepare the object to be cleaned consisting of food manufacturing equipment, food manufacturing tank, or connecting piping with silicon rubber sealant for food manufacturing equipment. , And using the prepared ozone mixed water.

本発明によれば、食品製造設備における被洗浄物である、例えば飲料製造機器、飲料製造タンク、またはこれらの接続配管のシール材に吸着した香気成分を効率よく除去することができる。   ADVANTAGE OF THE INVENTION According to this invention, the aromatic component adsorb | sucked to the to-be-cleaned object in a foodstuff production equipment, for example, a drink manufacturing apparatus, a drink manufacturing tank, or the sealing material of these connection piping can be removed efficiently.

以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
図1は、本実施の形態が適用される食品製造設備の洗浄システムを示す図である。この図1に示す食品製造設備の洗浄システムでは、被洗浄物である飲料製造設備などの食品製造設備50と、この食品製造設備50を構成する各種装置を洗浄する洗浄装置10とを備えている。本実施の形態では、食品製造設備50にてシリコンゴム製のシール材が用いられ、飲料フレーバーなどの香気成分を除去し易くしている。なお、シリコンゴムは、一般的に機械的強度が強くないことから可動部などには適さない場合があるが、一方で、香気成分の除去機能に非常に優れている(後述)ことから、香気成分の付着し易い箇所に用いられることが好ましい。
Embodiments of the present invention will be described below in detail with reference to the accompanying drawings.
FIG. 1 is a diagram showing a cleaning system for food production equipment to which the present embodiment is applied. The food manufacturing facility cleaning system shown in FIG. 1 includes a food manufacturing facility 50 such as a beverage manufacturing facility that is an object to be cleaned, and a cleaning device 10 that cleans various devices constituting the food manufacturing facility 50. . In the present embodiment, a sealant made of silicon rubber is used in the food production facility 50 to facilitate removal of aroma components such as beverage flavor. Silicone rubber is generally not strong in mechanical strength, so it may not be suitable for moving parts, etc. On the other hand, it has an excellent odor component removal function (described later). It is preferable to be used in a place where the component easily adheres.

洗浄装置10は、機械装置を分解移動させずに洗浄、殺菌を行う定置洗浄(CIP)装置として機能し、食品製造設備50に対して定置洗浄を行う。この洗浄装置10は、食品製造設備50の洗浄のために供給される水を加熱する加熱装置11と、オゾン化ガスを生成するオゾン発生器12と、オゾン発生器12により生成されたオゾン化ガスを加熱装置11により加熱された水に吸収させる混合器13とを備えている。また、混合器13によって調整された加熱オゾン混合水を食品製造設備50の被洗浄物に供給する配管14を有している。更に、加熱装置11に水を供給するポンプ16を備えている。また、アルカリ性洗剤を用いて洗浄を行うためのアルカリ性洗浄剤供給ユニット17と、酸性洗剤を用いて洗浄を行うための酸性洗浄剤供給ユニット18と、温水を循環させて例えば加熱殺菌を行う温水循環ユニット19とを備えている。アルカリ性洗浄剤供給ユニット17や酸性洗浄剤供給ユニット18にて用いられる洗剤は、洗浄する機器の材質や、取り扱われる液の物性によって異なる。そこで、それぞれの使用条件に最も適したものが選定される。   The cleaning device 10 functions as a stationary cleaning (CIP) device that performs cleaning and sterilization without disassembling and moving the mechanical device, and performs stationary cleaning on the food manufacturing facility 50. The cleaning device 10 includes a heating device 11 that heats water supplied for cleaning the food production facility 50, an ozone generator 12 that generates ozonized gas, and an ozonized gas generated by the ozone generator 12. And a mixer 13 that absorbs the water heated by the heating device 11. Moreover, it has the piping 14 which supplies the heating ozone mixing water adjusted with the mixer 13 to the to-be-cleaned object of the foodstuff manufacturing equipment 50. FIG. Furthermore, a pump 16 for supplying water to the heating device 11 is provided. Also, an alkaline cleaning agent supply unit 17 for cleaning with an alkaline detergent, an acidic cleaning agent supply unit 18 for cleaning with an acidic detergent, and hot water circulation for circulating hot water, for example, for heat sterilization Unit 19 is provided. The detergent used in the alkaline cleaning agent supply unit 17 and the acidic cleaning agent supply unit 18 differs depending on the material of the equipment to be cleaned and the physical properties of the liquid to be handled. Therefore, the most suitable one for each use condition is selected.

また、洗浄装置10に供給される水は、オゾン溶解用の水が、電気伝導率1mS/m(25℃)以下の脱塩水であることが望ましい。通常の水道水を用いた場合では、この水道水に含まれるイオンによってオゾンの自己分解を促進してしまう。オゾンは強力な酸化力を有することから、金と白金を除いたほとんどの金属を容易に酸化し、その他多くの無機物および有機物とも反応する。そこで、オゾン溶解用の水の純度を高め、無機物および有機物の濃度を低くすればするほどオゾンの自己分解速度が小さくなる。そこで、本実施の形態では、オゾン溶解用の水として電気伝導率1mS/m(25℃)以下の脱塩水のように不純物の少ない水を用いることによって、混合されるオゾンの損失を小さくしている。   Moreover, as for the water supplied to the washing | cleaning apparatus 10, it is desirable that the water for ozone dissolution is demineralized water whose electrical conductivity is 1 mS / m (25 degreeC) or less. When normal tap water is used, the self-decomposition of ozone is promoted by ions contained in the tap water. Ozone has a strong oxidizing power, so it easily oxidizes most metals except gold and platinum and reacts with many other inorganic and organic substances. Therefore, the higher the purity of ozone-dissolving water and the lower the inorganic and organic concentrations, the lower the ozone self-decomposition rate. In this embodiment, therefore, the loss of ozone to be mixed is reduced by using water with less impurities such as demineralized water having an electric conductivity of 1 mS / m (25 ° C.) or less as water for dissolving ozone. Yes.

ここで、洗浄装置10のアルカリ性洗浄剤供給ユニット17によるアルカリ性洗浄剤や、酸性洗浄剤供給ユニット18による酸性洗浄剤、温水循環ユニット19による温水洗浄によって、有機物(炭水化物、脂肪、タンパク質など)や無機物(カルシウム、マグネシウム、鉄など)が洗浄される。しかしながら、食品製造設備50の各機器、飲料製造タンク、およびこれらの接続配管のシール材(ガスケット、パッキン、O-リング等)に付着した香気成分(飲料フレーバーなど)は、これらの洗浄では容易に除去できない。そこで、本実施の形態では、食品製造設備50にて、配管などのシール材にシリコンゴムを使い、洗浄剤として熱水オゾン(加熱オゾン混合水)を用いることにより、シール材に吸着した香気成分を効率よく除去するように構成した。   Here, organic substances (carbohydrates, fats, proteins, etc.) and inorganic substances are obtained by washing with an alkaline detergent by the alkaline detergent supply unit 17 of the washing apparatus 10, an acidic detergent by the acidic detergent supply unit 18, and warm water washing by the hot water circulation unit 19. (Calcium, magnesium, iron, etc.) are washed. However, fragrance components (beverage flavors, etc.) adhering to each device of the food production facility 50, beverage production tanks, and sealing materials (gaskets, packings, O-rings, etc.) of these connection pipes can be easily washed. It cannot be removed. Therefore, in the present embodiment, in the food production facility 50, the use of silicon rubber as a sealing material for piping and the like, and the use of hot water ozone (heated ozone mixed water) as a cleaning agent, aroma components adsorbed on the sealing material. Was configured to be efficiently removed.

ここで、熱水オゾン(加熱オゾン混合水)の生成方法について説明する。
本実施の形態では、熱水オゾンを生成するのに際して、オゾンが混合された水を加熱するのではなく、水の加熱を先に行い、この加熱された水にオゾンを混合させている。そこで、図1に示すように、混合器13の前段に加熱装置11とオゾン発生器12とを配置している。加熱装置11がオゾン混合の前にあることから、例えば既設の洗浄装置に本実施の形態を追加装備する際、既設の加熱装置が耐オゾン性のないものでもそのまま使用することが可能である。
Here, the production | generation method of hot water ozone (heating ozone mixing water) is demonstrated.
In this embodiment, when the hot water ozone is generated, the water mixed with ozone is not heated, but the water is heated first, and the heated water is mixed with ozone. Therefore, as shown in FIG. 1, a heating device 11 and an ozone generator 12 are arranged in the front stage of the mixer 13. Since the heating device 11 is before ozone mixing, for example, when the present cleaning device is additionally equipped with the present embodiment, even if the existing heating device is not ozone resistant, it can be used as it is.

オゾン発生器12としては、各種のオゾン発生方式を採用することができる。例えば、無声放電管を発生器として用いる放電方式、水電解セルを発生器とする電気分解方式が好適であり、大容量のオゾン生成には、効率の面から無声放電方式が主に用いられる。   As the ozone generator 12, various ozone generation methods can be employed. For example, a discharge method using a silent discharge tube as a generator and an electrolysis method using a water electrolysis cell as a generator are suitable, and the silent discharge method is mainly used for generating large-capacity ozone from the viewpoint of efficiency.

混合器13では、オゾン発生器12によって製造されたオゾンを種々の気液接触操作によって加熱装置11により加熱された水と混合し、オゾンを水に溶解させる。そのために、製造したオゾンを如何に効率良く水に溶解させるか、という点がオゾン処理の経済性に大きな影響を与える。混合器13にて採用される気液接触装置としては、スタティック・ミキサを用いたもの、エゼクタを用いたもの、オゾン溶解ポンプを用いたもの、散気式接触槽を用いたものなどがある。   In the mixer 13, ozone produced by the ozone generator 12 is mixed with water heated by the heating device 11 by various gas-liquid contact operations, and ozone is dissolved in water. Therefore, how efficiently the produced ozone is dissolved in water greatly affects the economics of ozone treatment. Examples of the gas-liquid contact device employed in the mixer 13 include a device using a static mixer, a device using an ejector, a device using an ozone dissolution pump, and a device using a diffused contact tank.

スタティック・ミキサは、例えばパイプ中に様々な角度で捻った複数のエレメントを左右交互に配置した構造を有している。混合されるオゾンガスはスタティック・ミキサ入口で水に注入される。水とオゾンガスは、かかる構造を通過する間に、順次、エレメントにより混合されることで、オゾンが水に効率よく溶解される。エゼクタは、ノズルと、吸引部と、混合部とディフューザとから構成されている。ノズルは、高圧の液体を減圧させ、高速二相流体を得るために用いられ、吸引部からは低圧のオゾンガスが供給される。混合部では、この吸引部から吸引した気相と二相流体とを混合し、二相流体の運動エネルギを吸引流に与えている。ディフューザは流体を減速させることにより、運動エネルギを圧力のエネルギに変える。   The static mixer has, for example, a structure in which a plurality of elements twisted at various angles are alternately arranged on the left and right sides in a pipe. The ozone gas to be mixed is injected into water at the static mixer inlet. Water and ozone gas are sequentially mixed by the elements while passing through such a structure, so that ozone is efficiently dissolved in water. The ejector includes a nozzle, a suction unit, a mixing unit, and a diffuser. The nozzle is used to depressurize the high-pressure liquid to obtain a high-speed two-phase fluid, and low-pressure ozone gas is supplied from the suction part. In the mixing unit, the gas phase sucked from the suction unit and the two-phase fluid are mixed, and the kinetic energy of the two-phase fluid is given to the suction flow. The diffuser converts kinetic energy into pressure energy by decelerating the fluid.

オゾン溶解ポンプは、ポンプの吸込側配管又はケーシングにオゾンガスを注入し、インペラーの回転による高速撹拌によってオゾンを水に溶解する。散気式接触槽は、例えば向流式として、気泡塔の下方からオゾン発生器オゾンガスを注入し、この気泡塔の上方から水を注入し、気泡塔の下方からオゾンが吸収された水を放出する。これらの気液接触装置のうち、スタティック・ミキサとエゼクタは、コンパクト性に優れ、短時間で高オゾンの溶解効率を得ることができる点で特に好適である。   The ozone dissolution pump injects ozone gas into the suction side piping or casing of the pump and dissolves ozone in water by high-speed stirring by the rotation of the impeller. For example, as a counter-flow type, the aeration type contact tank injects ozone generator ozone gas from below the bubble column, injects water from above the bubble column, and discharges water from which ozone has been absorbed from below the bubble column. To do. Among these gas-liquid contact devices, the static mixer and the ejector are particularly suitable because they are excellent in compactness and can obtain high ozone dissolution efficiency in a short time.

このように、本実施の形態では、この熱水オゾン(加熱オゾン混合水)を生成するのに際して、オゾンが混合された水を加熱するのではなく、加熱装置11による水の加熱を先に行い、この加熱された水にオゾンを混合させている。これによって、加熱時のオゾンの自己分解を回避でき、また加熱時の気泡発生がないので、熱交換効率が良く安定した加熱が可能となる。   As described above, in this embodiment, when the hot water ozone (heated ozone mixed water) is generated, the water mixed with ozone is not heated, but the water is heated by the heating device 11 first. In this heated water, ozone is mixed. Thus, self-decomposition of ozone at the time of heating can be avoided, and since no bubbles are generated at the time of heating, stable heat can be obtained with high heat exchange efficiency.

次に、定置洗浄が施される被洗浄物について説明する。
図2は、被洗浄物である食品製造設備50に施される定置洗浄の経路の一例を示した図である。一般に、定置洗浄では、機器、タンク等を個別に洗浄するのではなく、それらを含む製造ラインを洗浄する。食品製造設備50の一例として、例えば缶入り緑茶などの飲料製造設備では、図2に示すように、抽出工程51、調合工程52、殺菌工程53、充填工程54を有しており、これらの各工程にて、洗浄装置10による定置洗浄が行われる。この定置洗浄は、各工程にて個別に、または複数の工程をまとめて、または全行程をまとめて等、任意に選択して実施することが可能である。
Next, an object to be cleaned that is subjected to stationary cleaning will be described.
FIG. 2 is a diagram illustrating an example of a stationary cleaning path applied to the food manufacturing facility 50 which is an object to be cleaned. In general, in the stationary cleaning, equipment, tanks and the like are not individually cleaned, but a production line including them is cleaned. As an example of the food production facility 50, for example, a beverage production facility such as canned green tea has an extraction step 51, a preparation step 52, a sterilization step 53, and a filling step 54, as shown in FIG. In the process, stationary cleaning by the cleaning device 10 is performed. This stationary cleaning can be performed by arbitrarily selecting each step, individually, by combining a plurality of steps, or by combining all steps.

抽出工程51では、例えばニーダー方式やティーバック方式などにより例えば緑茶などを抽出する抽出装置、例えば茶殻と抽出液とを分離するフィルタ、抽出液を冷却する冷却用熱交換器、微細な粒子を除去するための遠心分離装置などが存在する。調合工程52では、例えば、適度な濃度に調製する調合タンク、濁りや澱(おり)などを濾過するためのフィルタなどが設けられる。また、殺菌工程53では、殺菌のために飲料を蓄えるバランスタンク、UHT(超高温)殺菌を行うためのUHT殺菌機、殺菌された製品液を冷却する冷却用熱交換器などがある。更に、充填工程54では充填機による充填がなされる。このように、各工程には各種機器やタンク、またポンプや配管などが存在するが、定置洗浄では、個別の機器だけではなく、ポンプや配管なども含めて洗浄される。図2では、各工程にて、洗浄装置10からの熱水オゾンの供給と排水が行われることが示されている。但し、これらの工程を幾つかまとめて定置洗浄するように構成しても構わない。そして、本実施の形態では、前述のように、これらの各工程に設けられた配管等のシール材にシリコンゴムを使用している。   In the extraction step 51, for example, an extraction device that extracts, for example, green tea by a kneader method or a tea bag method, for example, a filter that separates the tea husk and the extract, a cooling heat exchanger that cools the extract, and removal of fine particles There are centrifuges and the like. In the blending step 52, for example, a blending tank that is prepared to an appropriate concentration, a filter for filtering turbidity, starch, and the like are provided. The sterilization step 53 includes a balance tank that stores beverages for sterilization, a UHT sterilizer for performing UHT (ultra high temperature) sterilization, a heat exchanger for cooling that cools the sterilized product liquid, and the like. Further, in the filling step 54, filling is performed by a filling machine. As described above, there are various devices, tanks, pumps, pipes, and the like in each process. However, in the stationary cleaning, not only individual devices but also pumps, pipes, and the like are cleaned. FIG. 2 shows that hot water ozone is supplied and drained from the cleaning device 10 in each step. However, some of these processes may be configured to be cleaned in place. In this embodiment, as described above, silicon rubber is used for the sealing material such as piping provided in each of these steps.

次に、食品製造設備50の配管などに用いられるシール材にシリコンゴムを用いた洗浄技術について詳述する。
食品製造設備50を用いて例えば清涼飲料水などを製造する工場では、製品1リットルを製造する際に、その5〜9倍の水が使用されている。なかでも定置洗浄に用いられる水の割合は大きく、その50%を超える場合もあり、洗浄時間も4時間程度にまでに達する場合もある。このように多量の水が必要となり、また洗浄時間が長くなる理由の1つとして、食品製造設備50の食品製造機器、食品製造タンク、およびこれらの接続配管に使用されているシール材(ガスケット、パッキン、O-リング等)に原料中の香気成分が吸着し、この香気成分が脱離し難いことが挙げられる。そこで発明者等は、シール材に用いられるゴムの種類と各種洗浄条件について研究を重ね、下記実施例から本願発明に到達した。
Next, a cleaning technique using silicon rubber as a sealing material used for piping of the food production facility 50 will be described in detail.
In factories that produce, for example, soft drinks using the food production facility 50, 5 to 9 times as much water is used to produce 1 liter of product. Among them, the proportion of water used for stationary cleaning is large, sometimes exceeding 50%, and the cleaning time may reach up to about 4 hours. As one of the reasons why a large amount of water is required and the washing time is long, the sealing material (gasket, used in the food production equipment of the food production facility 50, the food production tank, and their connecting pipes is used. The aromatic component in the raw material is adsorbed on the packing, O-ring, etc., and this aromatic component is difficult to desorb. Thus, the inventors have conducted research on the types of rubber used for the sealing material and various cleaning conditions, and have reached the present invention from the following examples.

次に、実施例により本発明を更に具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
実験では、シール材(ゴムパッキン)として、EPDMゴムと耐熱性シリコンゴムとを用い、それぞれリング状の外直径15mm、厚さ2mmのものを採用した。EPDMゴムは、飲料工場で用いられている一般的なものを用いた。
香気成分としてはリモネン(オレンジ臭の約9割を占める)を用いた。
シール材へ香気成分を吸着させるために、リモネン飽和水に各ゴムを24時間程度侵漬させ、ゴム状のリモネンの初期濃度が約4mg−リモネン/g−ゴムとなるように、EPDMゴムと耐熱性シリコンゴムとにリモネンを吸着させた。
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example, unless the summary is exceeded.
In the experiment, EPDM rubber and heat-resistant silicone rubber were used as the sealing material (rubber packing), and each ring-shaped one having an outer diameter of 15 mm and a thickness of 2 mm was employed. As the EPDM rubber, a general rubber used in a beverage factory was used.
Limonene (occupying about 90% of the orange odor) was used as the aroma component.
In order to adsorb the aromatic component to the sealing material, each rubber is immersed in limonene saturated water for about 24 hours, so that the initial concentration of the rubber-like limonene is about 4 mg-limonene / g-rubber and EPDM rubber and heat resistant Limonene was adsorbed on the conductive silicone rubber.

また、代表的な洗浄プロセスに合わせ、以下の洗浄溶媒を準備した。
・ 脱塩水(常温の水または70℃の熱水)
・ アルカリ剤、酸性剤を水で規定濃度にしたもの
・ 常温の水または70℃の熱水に、オゾンガス(流量:50mL/min、濃度:97ppm)を連続供給して飽和を維持させたもの
・ 過酸化水素を(120μL/L)添加した熱水にオゾンガスを連続供給してラジカルを発生させたもの
ここで、オゾンガスを連続供給する際、ラジカルの発生を抑制するために、t−ブタノールが約2.5mg/Lとなるよう添加した。
また、洗浄メカニズムの解明のため、オゾン含有ガス(約100mg−O/L)を50ml/minでゴムに連続接触させた実験も行った。
In addition, the following cleaning solvents were prepared in accordance with typical cleaning processes.
・ Demineralized water (normal temperature water or hot water at 70 ° C)
・ Alkaline agent and acid agent adjusted to specified concentration with water ・ Saturated by continuously supplying ozone gas (flow rate: 50 mL / min, concentration: 97 ppm) to normal temperature water or hot water at 70 ° C. What generated radicals by continuously supplying ozone gas to hot water to which hydrogen peroxide (120 μL / L) was added. Here, when ozone gas is continuously supplied, t-butanol is reduced by about It added so that it might become 2.5 mg / L.
In order to elucidate the cleaning mechanism, an experiment was also conducted in which an ozone-containing gas (about 100 mg-O 3 / L) was continuously brought into contact with rubber at 50 ml / min.

ある飲料製造工場では、(1)常温水による短時間の濯ぎ→(2)高温のアルカリ水→(3)常温水による濯ぎ→(4)高温の脱臭酸→(5)高温水による濯ぎ→(6)常温水による濯ぎ→(7)高温水による濯ぎ、といった洗浄プロセスによって洗浄が行われる。実験では、上記の各洗浄工程にて、各々の洗浄時間を予め定め、上記の各ゴムについて上記の洗浄溶媒を用いた洗浄を行った。   In a beverage factory, (1) Rinsing with normal temperature water for a short time → (2) High temperature alkaline water → (3) Rinsing with normal temperature water → (4) High temperature deodorizing acid → (5) Rinsing with high temperature water → ( 6) Rinsing with normal temperature water → (7) Rinsing with high temperature water is performed by a cleaning process. In the experiment, each cleaning time was determined in advance in each cleaning step, and each of the above rubbers was cleaned using the above cleaning solvent.

図3(a)、(b)は、既存の洗浄溶媒を用いた洗浄と、熱水オゾン(加熱オゾン混合水)を用いた洗浄とを比較説明するための図である。図3(a)はEPDMゴムを用いた場合の結果を示しており、図3(b)はシリコンゴムを用いた場合の結果を示している。それぞれ横軸が洗浄時間(分)、縦軸がゴム上の残留リモネン量(mg/g−ゴム)である。
図3(a)に示すEPDMゴムの場合に、オゾンが混合されていない既存法では、220分後に初期吸着量(4mg/g−ゴム)の65%(2.6mg/g−ゴム)のリモネンが残留していた。また、図3(a)に示すEPDMゴムにて熱水オゾンを用いた洗浄では、60分後に初期吸着量の約50%(約2mg/g−ゴム)のリモネンが残留していた。
一方、図3(b)に示すシリコンゴムの場合に、オゾンが混合されていない既存法では、220分後に初期吸着量の約25%(約1mg/g−ゴム)のリモネン残留が見られた。また、図3(b)に示すシリコンゴムにて熱水オゾンを用いた洗浄では、30分で100%を除去することができた。
FIGS. 3A and 3B are diagrams for comparing and explaining cleaning using an existing cleaning solvent and cleaning using hot water ozone (heated ozone mixed water). FIG. 3A shows the result when EPDM rubber is used, and FIG. 3B shows the result when silicon rubber is used. The horizontal axis represents the washing time (minutes), and the vertical axis represents the amount of residual limonene on the rubber (mg / g-rubber).
In the case of the EPDM rubber shown in FIG. 3 (a), in the existing method in which ozone is not mixed, limonene of 65% (2.6 mg / g-rubber) of the initial adsorption amount (4 mg / g-rubber) after 220 minutes. Remained. Further, in the cleaning using hot water ozone with the EPDM rubber shown in FIG. 3A, about 50% of the initial adsorption amount (about 2 mg / g-rubber) of limonene remained after 60 minutes.
On the other hand, in the case of the silicon rubber shown in FIG. 3 (b), in the existing method in which ozone is not mixed, about 25% of the initial adsorption amount (about 1 mg / g-rubber) remains in limonene after 220 minutes. . Further, in the cleaning using hot water ozone with silicon rubber shown in FIG. 3B, 100% could be removed in 30 minutes.

図4は、各ゴムに対する熱水オゾン洗浄の効果を示した図であり、熱水オゾン(70℃熱水)によるEPDMゴムとシリコンゴム上のリモネンの処理を比較表現している。横軸は熱水オゾン(70℃熱水)による洗浄時間(分)、縦軸はゴム上の残留リモネン量(mg/g−ゴム)である。この図4の比較から明らかなように、EPDMゴムとシリコンゴムとでは、熱水オゾンによる洗浄効果に大きな違いがある。熱水オゾンによる約30分の洗浄によって、シリコンゴムのリモネン量はほぼ全量が除去でき、洗浄効果が高いことが理解できるが、EPDMゴムについては、顕著な洗浄効果が得られないことが明らかとなった。   FIG. 4 is a diagram showing the effect of hot water ozone cleaning on each rubber, and compares the treatment of limonene on EPDM rubber and silicon rubber with hot water ozone (70 ° C. hot water). The horizontal axis represents the cleaning time (minutes) with hot water ozone (70 ° C. hot water), and the vertical axis represents the amount of residual limonene on the rubber (mg / g-rubber). As is clear from the comparison of FIG. 4, there is a great difference in the cleaning effect by hot water ozone between EPDM rubber and silicon rubber. It can be understood that by washing with hot water ozone for about 30 minutes, almost all the amount of limonene in the silicon rubber can be removed and the cleaning effect is high, but it is clear that the EPDM rubber does not have a remarkable cleaning effect. became.

図5は、各種洗浄法の洗浄開始20分までの反応速度定数を算出した結果を示す図である。縦軸は速度定数(1/min)であり、この値が高いと反応速度が速く、香気成分の除去が早くなる。この図5では、酸性洗浄剤、常温(20℃)オゾン、熱水(70℃)オゾン、t−ブタノールを添加した熱水オゾン、過酸化水素を加えた熱水オゾン(ラジカル生成)、オゾンガスを直接用いたガス洗浄の疑一次速度定数を比較している。図5から明らかなように、何れの洗浄方法においても、EPDMゴムに比べてシリコンゴムに吸着したリモネンは除去され易いことが理解できる。また、シリコンゴムからのリモネンの除去は、溶出によるものではなく、オゾンによる分解反応によることが分かった。更に、ラジカルスカベンジャー(ラジカルの連鎖反応をとめる物質)としてt−ブタノールを添加したオゾン水洗浄においても洗浄効果が低下していない。従って、オゾン水によるリモネンの分解反応は、ラジカルではなくオゾン自身によって起こることが明らかとなった。   FIG. 5 is a diagram showing the results of calculating reaction rate constants up to 20 minutes from the start of cleaning in various cleaning methods. The vertical axis represents a rate constant (1 / min). When this value is high, the reaction rate is fast and the removal of the aroma component is fast. In FIG. 5, acidic detergent, normal temperature (20 ° C.) ozone, hot water (70 ° C.) ozone, hot water ozone added with t-butanol, hot water ozone added with hydrogen peroxide (radical generation), ozone gas The first-order rate constants of direct gas cleaning are compared. As is apparent from FIG. 5, it can be understood that limonene adsorbed on silicon rubber is easier to remove than any EPDM rubber in any of the cleaning methods. It was also found that the removal of limonene from the silicon rubber was not due to elution, but due to a decomposition reaction by ozone. Furthermore, the cleaning effect is not lowered even in ozone water cleaning to which t-butanol is added as a radical scavenger (substance that stops radical chain reaction). Therefore, it became clear that the decomposition reaction of limonene by ozone water occurs not by radicals but by ozone itself.

尚、オゾンの溶解度は、一般に、常温(20℃)の水に比べて熱水(70℃)の方が低い。しかしながら、図5に示すリモネン除去の反応速度定数は、常温オゾン水よりも熱水オゾンの方が高くなっている。シリコンゴムに比べてEPDMの速度定数の値は小さいけれども、同様の傾向が見られている。   In general, the solubility of ozone is lower in hot water (70 ° C.) than in water at normal temperature (20 ° C.). However, the reaction rate constant of limonene removal shown in FIG. 5 is higher in hot water ozone than in room temperature ozone water. Although the value of the EPDM rate constant is smaller than that of silicon rubber, the same tendency is observed.

以上のような実施例の結果から、香気成分除去に対する高い洗浄効果を得るものとして、以下に示すような構成を採用することが可能である。
図6(a)〜(c)は、本実施の形態にて適用可能な構成例を示した図である。
まず図6(a)では、食品製造設備50の被洗浄物50aがシリコンゴムのシール材に限定されていない。この図6(a)では、加熱装置11により水を加熱して熱水を生成した後に、オゾン発生器12により生成したオゾンを、混合器13にて熱水と混合し、配管14を経由して被洗浄物50aに供給している。前述のように、常温オゾン水に比べて熱水オゾンの方がリモネン除去の反応速度定数が高いことから、シリコンゴムを使用しない場合であっても熱水オゾンにより香気成分を洗浄することの意味は大きい。
From the results of the examples as described above, it is possible to adopt a configuration as shown below to obtain a high cleaning effect for aroma component removal.
FIGS. 6A to 6C are diagrams showing configuration examples applicable in the present embodiment.
First, in FIG. 6A, the object to be cleaned 50a of the food production facility 50 is not limited to a silicon rubber sealing material. In FIG. 6A, after the water is heated by the heating device 11 and hot water is generated, the ozone generated by the ozone generator 12 is mixed with hot water by the mixer 13 and passed through the pipe 14. To the object to be cleaned 50a. As mentioned above, hot water ozone has a higher reaction rate constant for limonene removal than room temperature ozone water, meaning that even if silicon rubber is not used, the aromatic component is washed with hot water ozone. Is big.

図6(b)では、食品製造設備50の被洗浄物50bにシリコンゴムのシール材を用いている点に特徴がある。また、この図6(b)では、熱水オゾンではなく常温オゾン水を用いている。前述のように、シリコンゴムに付着した香気成分の洗浄は、常温オゾン水であっても高い反応速度定数が得られる(図5参照)。従って、熱水オゾンを用いない場合でも、オゾン水による香気成分の洗浄の効果は大きい。   FIG. 6B is characterized in that a silicon rubber sealing material is used for the object to be cleaned 50 b of the food production facility 50. Moreover, in this FIG.6 (b), normal temperature ozone water is used instead of hot water ozone. As described above, a high reaction rate constant can be obtained by washing aromatic components adhering to silicon rubber even with room temperature ozone water (see FIG. 5). Therefore, even when hot water ozone is not used, the effect of cleaning the aroma component with ozone water is great.

図6(c)は、本実施の形態において最も好ましい形態であり、熱水オゾンを用いてシリコンゴムのシール材を含む被洗浄物50bを洗浄している。前述のように、シリコンゴムに付着した香気成分は、熱水オゾンによって極めて高速に分解される。従って、シリコンゴムをシール材に用いた製造装置と熱水オゾン洗浄法を用いた定置洗浄の組み合わせにより、従来、例えば4時間程度かかっていた洗浄が例えば1時間以内で終了でき、かつ高効率でシール材に吸着したフレーバーなどの香気成分を除去することが可能である。更に、図6(a)と同様に、加熱装置11により水を加熱して熱水を生成した後に、オゾン発生器12により生成したオゾンを、混合器13にて熱水と混合し、配管14を経由して供給している。オゾンを混合したオゾン水を加熱するものとは異なることから、加熱時のオゾンの自己分解を回避でき、加熱時の気泡発生がないので、熱交換効率が良く安定した加熱を行うことが可能となる。   FIG. 6C is the most preferable embodiment in the present embodiment, and the object to be cleaned 50b including the silicon rubber sealant is cleaned using hot water ozone. As described above, the aromatic component adhering to the silicon rubber is decomposed at a very high speed by hot water ozone. Therefore, by combining the manufacturing apparatus using silicon rubber as the sealing material and the stationary cleaning using the hot water ozone cleaning method, the cleaning, which has conventionally taken about 4 hours, can be completed within 1 hour, for example, and with high efficiency. It is possible to remove aroma components such as flavor adsorbed on the sealing material. Further, similarly to FIG. 6A, after the water is heated by the heating device 11 to generate hot water, the ozone generated by the ozone generator 12 is mixed with the hot water by the mixer 13, and the pipe 14 Is supplied via. Since it is different from the one that heats ozone water mixed with ozone, self-decomposition of ozone at the time of heating can be avoided, and since there is no generation of bubbles at the time of heating, it is possible to perform stable heating with good heat exchange efficiency Become.

尚、上記実施の形態では、特に実施例の食品製造設備50として緑茶などの飲料製造設備を例に挙げて説明したが、本願発明はこれに限定されず、他の飲料(コーヒー、ジュースなど)や、例えばアイスクリーム、マヨネーズ、ソースなどの食品の製造設備についても同様に適用することができる。   In addition, in the said embodiment, although drink manufacturing facilities, such as green tea, were mentioned as an example as food manufacturing facility 50 of an Example especially, this invention is not limited to this, Other drinks (coffee, juice, etc.) For example, the present invention can also be applied to food production facilities such as ice cream, mayonnaise and sauce.

本実施の形態が適用される食品製造設備の洗浄システムを示す図である。It is a figure which shows the washing | cleaning system of the food manufacturing equipment to which this Embodiment is applied. 被洗浄物である食品製造設備に施される定置洗浄の経路の一例を示した図である。It is the figure which showed an example of the path | route of the stationary cleaning given to the foodstuff manufacturing equipment which is a to-be-cleaned object. (a)、(b)は、既存の洗浄溶媒を用いた洗浄と、熱水オゾンを用いた洗浄とを比較説明するための図である。(A), (b) is a figure for comparing and explaining the washing | cleaning using the existing washing | cleaning solvent, and the washing | cleaning using hot water ozone. 各ゴムに対する熱水オゾン洗浄の効果を示した図である。It is the figure which showed the effect of the hot water ozone washing | cleaning with respect to each rubber | gum. 各種洗浄法の洗浄開始20分までの反応速度定数を算出した結果を示す図である。It is a figure which shows the result of having calculated the reaction rate constant until 20 minutes of washing | cleaning start of various washing methods. (a)〜(c)は、本実施の形態にて適用可能な構成例を示した図である。(A)-(c) is the figure which showed the structural example applicable in this Embodiment.

符号の説明Explanation of symbols

10…洗浄装置、11…加熱装置、12…オゾン発生器、13…混合器、14…配管、50…食品製造設備 DESCRIPTION OF SYMBOLS 10 ... Cleaning apparatus, 11 ... Heating apparatus, 12 ... Ozone generator, 13 ... Mixer, 14 ... Piping, 50 ... Food production equipment

Claims (6)

食品製造設備の被洗浄物を洗浄する洗浄装置であって、
前記食品製造設備の被洗浄物を洗浄するためのオゾンを生成するオゾン発生器と、
オゾンを溶解させる水を加熱する加熱装置と、
前記オゾン発生器で発生させたオゾンと前記加熱装置で加熱した水とを混合して加熱オゾン混合水を調製する混合器と、
前記混合器で調製した加熱オゾン混合水を前記食品製造設備の被洗浄物に供給する配管と
を含む洗浄装置。
A cleaning device for cleaning an object to be cleaned in a food production facility,
An ozone generator for generating ozone for cleaning the object to be cleaned of the food production facility;
A heating device for heating water that dissolves ozone;
A mixer for preparing heated ozone mixed water by mixing ozone generated by the ozone generator and water heated by the heating device;
A cleaning apparatus including a pipe for supplying heated ozone mixed water prepared by the mixer to an object to be cleaned of the food production facility.
前記食品製造設備の被洗浄物が、シリコンゴム製のシール材を備えた食品製造機器、または食品製造タンク、または接続配管であることを特徴とする請求項1記載の洗浄装置。   The cleaning apparatus according to claim 1, wherein the object to be cleaned of the food manufacturing facility is a food manufacturing device, a food manufacturing tank, or a connecting pipe provided with a silicon rubber sealing material. 食品製造設備の被洗浄物を洗浄する洗浄装置であって、
前記食品製造設備における被洗浄物を洗浄するためのオゾンを生成するオゾン発生器と、
前記オゾン発生器で発生させたオゾンと水とを混合してオゾン混合水を調製する混合器と、
前記混合器で調製したオゾン混合水を前記食品製造設備の被洗浄物に供給する配管とを含み、
前記被洗浄物が、シリコンゴム製のシール材を備えた食品製造機器、または食品製造タンク、または接続配管であることを特徴とする洗浄装置。
A cleaning device for cleaning an object to be cleaned in a food production facility,
An ozone generator for generating ozone for cleaning an object to be cleaned in the food production facility;
A mixer for preparing ozone mixed water by mixing ozone and water generated by the ozone generator;
A pipe for supplying the ozone mixed water prepared in the mixer to the object to be cleaned of the food production facility,
A cleaning apparatus, wherein the object to be cleaned is a food manufacturing device, a food manufacturing tank, or a connection pipe provided with a sealant made of silicon rubber.
オゾン溶解用の水が、電気伝導率1mS/m(25℃)以下の脱塩水であることを特徴とする請求項1乃至3何れか1項記載の洗浄装置。   The cleaning apparatus according to any one of claims 1 to 3, wherein the ozone-dissolving water is demineralized water having an electric conductivity of 1 mS / m (25 ° C) or less. 酸性洗浄剤供給ユニット、アルカリ性洗浄剤供給ユニット、温水循環ユニットのうち、少なくとも1つを更に含むことを特徴とする請求項1乃至4何れか1項記載の洗浄装置。   The cleaning apparatus according to claim 1, further comprising at least one of an acidic cleaning agent supply unit, an alkaline cleaning agent supply unit, and a hot water circulation unit. 食品製造設備の被洗浄物を洗浄する洗浄方法であって、
前記食品製造設備における被洗浄物を洗浄するためのオゾンを生成し、
オゾンを溶解させる水を加熱し、
生成されたオゾンと加熱された水とを混合してオゾン混合水を調製し、
前記食品製造設備のシリコンゴム製のシール材を備えた食品製造機器、または食品製造タンク、または接続配管からなる被洗浄物を、調製されたオゾン混合水を用いて洗浄することを特徴とする洗浄方法。
A cleaning method for cleaning an object to be cleaned in a food production facility,
Generating ozone for cleaning the object to be cleaned in the food production facility;
Heating water to dissolve ozone,
Mix the generated ozone and heated water to prepare ozone mixed water,
Washing using a prepared ozone mixed water to clean a food manufacturing equipment, or a food manufacturing tank equipped with a silicon rubber sealant for the food manufacturing equipment, or a food manufacturing tank or connecting piping. Method.
JP2006064819A 2006-03-09 2006-03-09 Cleaning apparatus and method for cleaning an object to be cleaned in a food production facility Expired - Fee Related JP4919388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006064819A JP4919388B2 (en) 2006-03-09 2006-03-09 Cleaning apparatus and method for cleaning an object to be cleaned in a food production facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006064819A JP4919388B2 (en) 2006-03-09 2006-03-09 Cleaning apparatus and method for cleaning an object to be cleaned in a food production facility

Publications (2)

Publication Number Publication Date
JP2007236706A true JP2007236706A (en) 2007-09-20
JP4919388B2 JP4919388B2 (en) 2012-04-18

Family

ID=38582835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006064819A Expired - Fee Related JP4919388B2 (en) 2006-03-09 2006-03-09 Cleaning apparatus and method for cleaning an object to be cleaned in a food production facility

Country Status (1)

Country Link
JP (1) JP4919388B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125671A (en) * 2007-11-22 2009-06-11 Panasonic Corp Substrate cleaning device and cleaning method
JP2009136852A (en) * 2007-12-11 2009-06-25 Kao Corp Deodorizing and cleaning method for production apparatus for foods or beverages
CN102821879A (en) * 2010-08-30 2012-12-12 三菱重工食品包装机械株式会社 Instrument-cleaning method that uses soaking with nanobubble water
JP5936743B1 (en) * 2015-05-13 2016-06-22 株式会社日立製作所 Organic substance decomposition apparatus and organic substance decomposition method
WO2016182058A1 (en) * 2015-05-13 2016-11-17 株式会社日立製作所 Organic matter decomposition device and organic matter decomposition method
JP2016209849A (en) * 2015-05-13 2016-12-15 株式会社日立製作所 Organic material decomposition apparatus and organic material decomposition method
EP3120940A1 (en) * 2012-12-21 2017-01-25 Dai Nippon Printing Co., Ltd. Beverage filling method
JP2017221927A (en) * 2016-06-17 2017-12-21 株式会社日立製作所 Organic substance decomposition apparatus and organic substance decomposition method
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
WO2019212037A1 (en) * 2018-05-02 2019-11-07 国立大学法人東北大学 Production method for ozone water
CN110694994A (en) * 2019-09-20 2020-01-17 江苏新美星包装机械股份有限公司 UHT positive and negative belt cleaning device
US10640878B2 (en) 2015-11-12 2020-05-05 Delta Faucet Company Ozone generator for a faucet
US10767270B2 (en) 2015-07-13 2020-09-08 Delta Faucet Company Electrode for an ozone generator
WO2020235381A1 (en) * 2019-05-21 2020-11-26 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP2022084221A (en) * 2020-11-26 2022-06-07 百特▲環▼保科技(烟台)有限公司 Disinfection sterilization device of beverage machine
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6650780B2 (en) * 2016-02-23 2020-02-19 株式会社日立製作所 Cleaning system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115540A (en) * 1991-10-28 1993-05-14 Agency Of Ind Science & Technol Sterilizing device by ozone for infective waste and sterilizing treatment using this device
JPH0724064A (en) * 1993-07-16 1995-01-27 Sanyo Electric Works Ltd Organic function helping substitute apparatus
JPH08117708A (en) * 1994-10-24 1996-05-14 Hitachi Ltd Method and device for cleaning
JP2001104995A (en) * 1999-10-07 2001-04-17 Teeiku Wan Sogo Jimusho:Kk Electrolytic ozone forming method, electrolytic ozone forming apparatus and ozone water making apparatus
JP2002231677A (en) * 2001-01-31 2002-08-16 Kurita Water Ind Ltd Cleaning method of electronic material
JP2004500701A (en) * 1999-07-23 2004-01-08 セミトゥール・インコーポレイテッド Method and apparatus for processing a workpiece such as a semiconductor wafer
JP2005131453A (en) * 2003-10-28 2005-05-26 Osaka Sanitary Kinzoku Kogyo Kyodo Kumiai Method and apparatus for washing container, piping, or the like, using ozone

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115540A (en) * 1991-10-28 1993-05-14 Agency Of Ind Science & Technol Sterilizing device by ozone for infective waste and sterilizing treatment using this device
JPH0724064A (en) * 1993-07-16 1995-01-27 Sanyo Electric Works Ltd Organic function helping substitute apparatus
JPH08117708A (en) * 1994-10-24 1996-05-14 Hitachi Ltd Method and device for cleaning
JP2004500701A (en) * 1999-07-23 2004-01-08 セミトゥール・インコーポレイテッド Method and apparatus for processing a workpiece such as a semiconductor wafer
JP2001104995A (en) * 1999-10-07 2001-04-17 Teeiku Wan Sogo Jimusho:Kk Electrolytic ozone forming method, electrolytic ozone forming apparatus and ozone water making apparatus
JP2002231677A (en) * 2001-01-31 2002-08-16 Kurita Water Ind Ltd Cleaning method of electronic material
JP2005131453A (en) * 2003-10-28 2005-05-26 Osaka Sanitary Kinzoku Kogyo Kyodo Kumiai Method and apparatus for washing container, piping, or the like, using ozone

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009125671A (en) * 2007-11-22 2009-06-11 Panasonic Corp Substrate cleaning device and cleaning method
JP2009136852A (en) * 2007-12-11 2009-06-25 Kao Corp Deodorizing and cleaning method for production apparatus for foods or beverages
CN102821879A (en) * 2010-08-30 2012-12-12 三菱重工食品包装机械株式会社 Instrument-cleaning method that uses soaking with nanobubble water
US9919349B2 (en) 2010-08-30 2018-03-20 Mitsubishi Heavy Industries Machinery Systems, Ltd. Instrument-cleaning method that uses soaking with nanobubble water
US10947138B2 (en) 2011-12-06 2021-03-16 Delta Faucet Company Ozone distribution in a faucet
US9919939B2 (en) 2011-12-06 2018-03-20 Delta Faucet Company Ozone distribution in a faucet
US10442669B2 (en) 2012-12-21 2019-10-15 Dai Nippon Printing Co., Ltd. Drink filling method
EP3120940A1 (en) * 2012-12-21 2017-01-25 Dai Nippon Printing Co., Ltd. Beverage filling method
EP3120940B1 (en) 2012-12-21 2021-11-17 Dai Nippon Printing Co., Ltd. Beverage filling method
JP2016209849A (en) * 2015-05-13 2016-12-15 株式会社日立製作所 Organic material decomposition apparatus and organic material decomposition method
WO2016182057A1 (en) * 2015-05-13 2016-11-17 株式会社日立製作所 Organic matter decomposition device and organic matter decomposition method
WO2016182058A1 (en) * 2015-05-13 2016-11-17 株式会社日立製作所 Organic matter decomposition device and organic matter decomposition method
JP5936743B1 (en) * 2015-05-13 2016-06-22 株式会社日立製作所 Organic substance decomposition apparatus and organic substance decomposition method
US10767270B2 (en) 2015-07-13 2020-09-08 Delta Faucet Company Electrode for an ozone generator
US11634828B2 (en) 2015-11-12 2023-04-25 Delta Faucet Company Ozone generator for a faucet
US10640878B2 (en) 2015-11-12 2020-05-05 Delta Faucet Company Ozone generator for a faucet
US11220754B2 (en) 2015-11-12 2022-01-11 Delta Faucet Company Ozone generator for a faucet
US11458214B2 (en) 2015-12-21 2022-10-04 Delta Faucet Company Fluid delivery system including a disinfectant device
JP2017221927A (en) * 2016-06-17 2017-12-21 株式会社日立製作所 Organic substance decomposition apparatus and organic substance decomposition method
WO2017217005A1 (en) * 2016-06-17 2017-12-21 株式会社日立製作所 Organic matter-degrading apparatus and organic matter-degrading method
WO2019212046A1 (en) * 2018-05-02 2019-11-07 国立大学法人東北大学 Production method for heated ozone water, heated ozone water, and semiconductor wafer-cleaning liquid
CN112041971A (en) * 2018-05-02 2020-12-04 国立大学法人东北大学 Method for producing heated ozone water, and semiconductor wafer cleaning liquid
KR20210005025A (en) * 2018-05-02 2021-01-13 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Method for producing heated ozonated water, heated ozonated water and semiconductor wafer cleaning solution
JP6629494B1 (en) * 2018-05-02 2020-01-15 国立大学法人東北大学 Method for producing heated ozone water, heated ozone water and semiconductor wafer cleaning liquid
JP6635459B1 (en) * 2018-05-02 2020-01-22 国立大学法人東北大学 Ozone water production method
US11295947B2 (en) 2018-05-02 2022-04-05 Tohoku University Method for producing ozone water
WO2019212037A1 (en) * 2018-05-02 2019-11-07 国立大学法人東北大学 Production method for ozone water
US11817309B2 (en) 2018-05-02 2023-11-14 Tohoku University Method of producing heated ozone water, heated ozone water, and semiconductor wafer-cleaning liquid
KR102660335B1 (en) * 2018-05-02 2024-04-23 고쿠리츠다이가쿠호진 도호쿠다이가쿠 Method for producing heated ozonated water, heated ozonated water and semiconductor wafer cleaning liquid
WO2020235381A1 (en) * 2019-05-21 2020-11-26 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
CN110694994A (en) * 2019-09-20 2020-01-17 江苏新美星包装机械股份有限公司 UHT positive and negative belt cleaning device
JP2022084221A (en) * 2020-11-26 2022-06-07 百特▲環▼保科技(烟台)有限公司 Disinfection sterilization device of beverage machine
JP7121412B2 (en) 2020-11-26 2022-08-18 百特▲環▼保科技(烟台)有限公司 Beverage machine disinfection sterilization equipment

Also Published As

Publication number Publication date
JP4919388B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4919388B2 (en) Cleaning apparatus and method for cleaning an object to be cleaned in a food production facility
US10694887B2 (en) Cold plasma sanitation for a dispensing machine
CA2994243C (en) Clean-in-place method and system and composition for the same
KR101364903B1 (en) Process for producing gas-containing cleaning water, apparatus for producing the cleaning water and cleaning apparatus
EP2612714B1 (en) Instrument-cleaning method that uses soaking with nanobubble water
US20070251549A1 (en) Dishwasher Using Ozone
AU2006306652A1 (en) Methods for cleaning industrial equipment with pre-treatment
KR20100137451A (en) Beverage manufacture, processing, packaging and dispensing using electrochemically activated water
JP2011088979A (en) Cleaning liquid, cleaning method, and cleaning liquid production device
EP1409397A1 (en) Beverage line purifier
JP5936743B1 (en) Organic substance decomposition apparatus and organic substance decomposition method
JP2016185520A (en) Chemical cleaning method and chemical cleaning apparatus for reverse osmosis membrane device
WO2001038218A1 (en) Segmented process for cleaning-in-place
CN108495807A (en) The integrated beverage distribution head of wash module
JP2017200683A (en) Start-up method of ultra-pure water manufacturing apparatus
JP2006272098A (en) Production method and apparatus for washing water
JP6607828B2 (en) Organic substance decomposition apparatus and organic substance decomposition method
JP2009061379A (en) Functional liquid manufacturing apparatus
TW201114681A (en) System and method for producing supercritical ozone
KR101000404B1 (en) Apparatus and method for cleaning wafer
KR102058310B1 (en) Plasma Sterilizing-Laundry System
WO2016182058A1 (en) Organic matter decomposition device and organic matter decomposition method
JP6594030B2 (en) Organic substance decomposition apparatus and organic substance decomposition method
CN111836777A (en) Deodorization method
KR20100026063A (en) Apparatus for reducing dissolved oxygen and method for reducing dissolved oxygen

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120127

R150 Certificate of patent or registration of utility model

Ref document number: 4919388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees