JP2007262449A - Steel for rolling parts, and rolling parts - Google Patents
Steel for rolling parts, and rolling parts Download PDFInfo
- Publication number
- JP2007262449A JP2007262449A JP2006086008A JP2006086008A JP2007262449A JP 2007262449 A JP2007262449 A JP 2007262449A JP 2006086008 A JP2006086008 A JP 2006086008A JP 2006086008 A JP2006086008 A JP 2006086008A JP 2007262449 A JP2007262449 A JP 2007262449A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- retained austenite
- amount
- tempering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 75
- 239000010959 steel Substances 0.000 title claims abstract description 75
- 238000005096 rolling process Methods 0.000 title claims abstract description 47
- 229910001566 austenite Inorganic materials 0.000 claims abstract description 68
- 230000000717 retained effect Effects 0.000 claims abstract description 50
- 238000010791 quenching Methods 0.000 claims abstract description 28
- 230000000171 quenching effect Effects 0.000 claims abstract description 28
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 12
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 9
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 9
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 238000005496 tempering Methods 0.000 claims description 32
- 230000007423 decrease Effects 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- 229910052720 vanadium Inorganic materials 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 15
- 230000003247 decreasing effect Effects 0.000 abstract description 2
- 230000002087 whitening effect Effects 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 20
- 238000009661 fatigue test Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 10
- 206010040844 Skin exfoliation Diseases 0.000 description 7
- 229910000734 martensite Inorganic materials 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000000137 annealing Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000005256 carbonitriding Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000004299 exfoliation Methods 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000005255 carburizing Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2204/00—Metallic materials; Alloys
- F16C2204/60—Ferrous alloys, e.g. steel alloys
- F16C2204/70—Ferrous alloys, e.g. steel alloys with chromium as the next major constituent
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/58—Raceways; Race rings
- F16C33/62—Selection of substances
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
この出願の発明は、自動車エンジンの電装補機用のオルタネータ、電磁クラッチ、中間プーリ、カーエアコン用のコンプレッサ、水ポンプ、ベルト式CVT、デファレンシャルなどに使用される転動部品用鋼およびこの鋼材からなる転動部品に関し、特に耐白色組織変化に優れた転動部品用鋼およびこの鋼材からなる転動部品に関する。 The invention of this application includes a steel for rolling parts used for an alternator for an automotive engine electrical accessory, an electromagnetic clutch, an intermediate pulley, a compressor for a car air conditioner, a water pump, a belt type CVT, a differential, and the like, and this steel material. In particular, the present invention relates to a rolling part steel excellent in white structure resistance and a rolling part made of this steel material.
自動車エンジンの電装補機用のオルタネータ、電磁クラッチ、中間プーリ、カーエアコン用のコンプレッサ、水ポンプなどに使用される軸受は小型化に伴い高速回転化されている。このため、これらの軸受に白色組織変化(白層)を伴って早期剥離が発生する。この早期剥離は転動面に起こる微小なすべりによる潤滑油の分解により発生した水素が軸受材料中に侵入することにより発生するといわれている。 Bearings used in alternators for automobile engine electrical auxiliary equipment, electromagnetic clutches, intermediate pulleys, compressors for car air conditioners, water pumps, and the like have been rotated at higher speeds as the size is reduced. For this reason, early peeling occurs in these bearings with a white texture change (white layer). This early peeling is said to occur when hydrogen generated by the decomposition of the lubricating oil due to the minute slip occurring on the rolling surface enters the bearing material.
このような、白色組織変化を伴う短時間剥離に対する軸受などの転動部品用鋼の寿命向上策として、振動による繰り返し応力の負荷による炭素原子の応力誘起拡散に着目し、炭素の拡散抑制とマトリクス強度の向上を図るものが提案されている(特許文献1参照。)。しかし、この発明は、水素侵入下での疲労強度向上やその対策となる残留オーステナイトについては考慮されていない。 As a measure to improve the life of steel for rolling parts such as bearings against short-time delamination accompanied by white structure change, focusing on stress-induced diffusion of carbon atoms due to repeated stress loading due to vibration, carbon diffusion suppression and matrix A device for improving the strength has been proposed (see Patent Document 1). However, the present invention does not consider the improvement of fatigue strength under hydrogen intrusion and residual austenite as a countermeasure.
さらに、白層を伴う短時間剥離に対する寿命向上策として、Crによる転送面の酸化皮膜形成により水素の侵入防止を図るものが提案されている(特許文献2参照。)。しかし、この発明も、水素の存在する環境での疲労強度向上やその対策となる残留オーステナイトについては考慮されていない。 Furthermore, as a measure for improving the life against short-time peeling accompanied with a white layer, there has been proposed one that prevents entry of hydrogen by forming an oxide film on the transfer surface with Cr (see Patent Document 2). However, this invention also does not consider the improvement of fatigue strength in an environment where hydrogen is present and residual austenite as a countermeasure.
またさらに、白層を伴う短時間剥離に対する寿命向上策として、炭化物、炭窒化物による組織変化のピン留め効果と結晶粒界の微細化による粒界強度向上、組織変化伝播速度の遅延を図るものが提案されている(特許文献3参照。)。しかし、この出願の発明は、水素侵入下での疲労強度向上やその対策となる残留オーステナイトについては、やはり考慮されていない。 Furthermore, as a measure to improve the life against short-time exfoliation with white layer, the effect of pinning the structure change by carbides and carbonitrides, improving the grain boundary strength by refining grain boundaries, and delaying the structure change propagation speed. Has been proposed (see Patent Document 3). However, the invention of this application does not take into account the improvement of fatigue strength under hydrogen intrusion and retained austenite as a countermeasure.
さらに、残留オーステナイトが体積量で15〜45%と考慮した転がり軸受が提案されている(特許文献4参照。)。しかし、この出願の発明は、熱処理として浸炭窒化処理を行う必要があり、長時間の熱処理が必要である。しかし、このものも残留オーステナイトの安定性については考慮されていない。 Furthermore, a rolling bearing in which the retained austenite is considered to be 15 to 45% by volume has been proposed (see Patent Document 4). However, in the invention of this application, it is necessary to perform a carbonitriding process as a heat treatment, and a long-time heat treatment is required. However, this also does not consider the stability of retained austenite.
自動車のエンジン補機用のオルタネータ、電磁クラッチ、中間プーリ、カーエアコン用のコンプレッサ、水ポンプ、ベルト式CVT、デファレンシャルなどに使用する軸受などの部品においては、過酷な使用によって軸受用鋼中に白色組織変化を伴って早期剥離が発生する。そこで、本発明が解決しようとする課題は、この白色組織変化を防止して軸受などの部品の長寿命化を図った転動部品用鋼およびこの鋼材からなる転動部品を提供することである。 In parts such as alternators for automobile engine auxiliary equipment, electromagnetic clutches, intermediate pulleys, compressors for car air conditioners, water pumps, belt type CVTs, differentials, etc. Premature detachment occurs with tissue changes. Accordingly, the problem to be solved by the present invention is to provide a rolling part steel that prevents this white structure change and extends the life of parts such as bearings, and a rolling part made of this steel material. .
上記したように、自動車のエンジン電装補機用などに使用される軸受に白色組織変化を伴って発生する早期剥離は、転動面に起こる微小なすべりによる潤滑油の分解により発生した水素が軸受材料中に侵入することにより発生するといわれている。 As described above, the early separation that occurs with changes in the white structure of bearings used for automobile engine accessories, etc., is caused by hydrogen generated by the decomposition of lubricating oil due to minute slips that occur on the rolling surface. It is said that it is generated by entering the material.
そこで、発明者は、軸受材料について種々の試験をし、その試験片を調査したところ、長寿命の材料と短寿命の材料では、残留オーステナイト量に差があることを見出した。すなわち、この残留オーステナイトは、試験前に同じ量であったとしても、短寿命のものでは、転がり疲労を受けるうちに残留オーステナイトがマルテンサイトに変態し、その残留オーステナイト量が減少していた。使用中にマルテンサイト変態すると焼戻しを受けていない脆いマルテンサイトとなり、そこから容易に疲労亀裂が生成することが考えられる。従って、疲労を受けても残留オーステナイトが分解しないことが重要である。 Therefore, the inventor conducted various tests on the bearing material and investigated the test pieces, and found that there was a difference in the amount of retained austenite between the long-life material and the short-life material. That is, even if this retained austenite was the same amount before the test, the retained austenite transformed into martensite while undergoing rolling fatigue, and the amount of retained austenite was reduced. If martensite transformation occurs during use, it becomes brittle martensite that has not been tempered, and fatigue cracks can easily be generated therefrom. Therefore, it is important that the retained austenite does not decompose even when fatigued.
そこで、残留オーステナイトの安定性を評価する指標として300℃に昇温後の残留オーステナイトの減少量を採用して寿命を評価したところ、長寿命の材料では300℃に昇温後の残留オーステナイトの減少量が少ないことが分かった。つまり、転動部品用鋼の軸受材料中に水素が侵入する環境下の転がり疲労寿命に対しては、材料中の残留オーステナイト量がキーとなること、かつ、その残留オーステナイトが疲労環境下で分解しないこと、つまり、残留オーステナイトが安定であることが、水素侵入下で発生する白色組織変化を伴う早期剥離に対して重要であることを見出した。 Therefore, when the life was evaluated by using the amount of decrease in retained austenite after raising the temperature to 300 ° C. as an index for evaluating the stability of retained austenite, the decrease in retained austenite after raising the temperature to 300 ° C. was evaluated for long-life materials. I found that the amount was small. In other words, the amount of retained austenite in the material is the key to rolling fatigue life in an environment where hydrogen penetrates into the bearing material of rolling parts steel, and the retained austenite decomposes in a fatigue environment. In other words, it was found that the stability of retained austenite is important for early exfoliation accompanied by a change in white structure occurring under hydrogen intrusion.
さらに、残留オーステナイトを安定化する方法を考究したところ、材料中のCrおよびNの量を高めることが重要であることを見出し、本発明の手段を得た。 Furthermore, when a method for stabilizing retained austenite was studied, it was found that it was important to increase the amount of Cr and N in the material, and the means of the present invention was obtained.
さらに、本発明の転動部品用鋼は、長時間の熱処理が必要な浸炭や浸炭窒化処理を用いることなく、単純な焼入、焼戻し処理にて、白色組織変化を防止して軸受の長寿命化を図った転動部品用鋼を得られるため、大幅なコストアップをすることなく、寿命の向上を図ることができることを見出した。 Furthermore, the steel for rolling parts of the present invention has a long life of the bearing by preventing white structure change by simple quenching and tempering treatment without using carburizing or carbonitriding treatment that requires long-time heat treatment. It has been found that since the steel for rolling parts can be obtained, the life can be improved without significantly increasing the cost.
そこで、上記の課題を解決するための本発明の手段は、請求項1の発明では、質量%で、C:0.50〜1.1%、Si:0.1〜1.2%、Mn:0.2〜1.5%、Cr:3.0〜10.0%、N:0.02〜0.05%、P≦0.03%、S≦0.01%、Al:0.005〜0.05%、Ti≦0.005%、O≦0.0015%を含有し、残部Fe及び不可避不純物からなる鋼で、焼入れ温度900〜1080℃から焼入れして150〜230℃の焼戻し後の残留オーステナイト量が8〜30%であり、かつその後に300℃に保持した場合に残留オーステナイトの減少量が3%以下であることを特徴とする転動部品用鋼である。 Therefore, the means of the present invention for solving the above-mentioned problem is that, in the invention of claim 1, in mass%, C: 0.50 to 1.1%, Si: 0.1 to 1.2%, Mn : 0.2 to 1.5%, Cr: 3.0 to 10.0%, N: 0.02 to 0.05%, P ≦ 0.03%, S ≦ 0.01%, Al: 0. A steel containing 005 to 0.05%, Ti ≦ 0.005%, O ≦ 0.0015%, the balance being Fe and inevitable impurities, tempering from a quenching temperature of 900 to 1080 ° C. and tempering to 150 to 230 ° C. It is a steel for rolling parts characterized in that the amount of residual austenite after is 8 to 30% and the amount of decrease in residual austenite is 3% or less when held at 300 ° C. thereafter.
さらに、請求項2の発明では、質量%で、C:0.50〜1.1%、Si:0.1〜1.2%、Mn:0.2〜1.5%、Cr:3.0〜10.0%、N:0.02〜0.05%、P≦0.03%、S≦0.01%、Al:0.005〜0.05%、Ti≦0.005%、O≦0.0015%を含有し、さらにNi≦2.0%、Mo≦1.5%、V≦1.0%、Nb≦0.3%から選択した1種又は2種以上を含有し、残部Fe及び不可避不純物からなる鋼で、焼入れ温度900〜1080℃から焼入れして150〜230℃の焼戻し後の残留オーステナイト量が8〜30%であり、かつその後に300℃に保持した場合に残留オーステナイトの減少量が3%以下であることを特徴とする転動部品用鋼である。
Furthermore, in invention of
さらに、請求項3の発明では、質量%で、C:0.50〜1.1%、Si:0.1〜1.2%、Mn:0.2〜1.5%、Cr:3.0〜10.0%、N:0.02〜0.05%、P≦0.03%、S≦0.01%、Al:0.005〜0.05%、Ti≦0.005%、O≦0.0015%を含有し、残部Fe及び不可避不純物からなる鋼からなり、焼入れ温度900〜1080℃から焼入れして150〜230℃の焼戻し後の残留オーステナイト量が8〜30%であり、その後300℃に保持した場合の残留オーステナイトの減少量が3%以下であることを特徴とする転動部品である。 Furthermore, in invention of Claim 3, C: 0.50-1.1%, Si: 0.1-1.2%, Mn: 0.2-1.5%, Cr: 3. 0 to 10.0%, N: 0.02 to 0.05%, P ≦ 0.03%, S ≦ 0.01%, Al: 0.005 to 0.05%, Ti ≦ 0.005%, O ≦ 0.0015%, made of steel consisting of the balance Fe and inevitable impurities, the amount of retained austenite after tempering at a quenching temperature of 900-1080 ° C. and 150-230 ° C. is 8-30%, Thereafter, the amount of reduction in retained austenite when kept at 300 ° C. is 3% or less.
さらに、請求項4の発明では、質量%で、C:0.50〜1.1%、Si:0.1〜1.2%、Mn:0.2〜1.5%、Cr:3.0〜10.0%、N:0.02〜0.05%、P≦0.03%、S≦0.01%、Al:0.005〜0.05%、Ti≦0.005%、O≦0.0015%を含有し、さらにNi≦2.0%、Mo≦1.5%、V≦1.0%、Nb≦0.3%から選択した1種又は2種以上を含有し、残部Fe及び不可避不純物からなる鋼からなり、焼入れ温度900〜1080℃から焼入れして150〜230℃の焼戻し後の残留オーステナイト量が8〜30%であり、その後300℃に保持した場合の残留オーステナイトの減少量が3%以下であることを特徴とする転動部品である。 Furthermore, in invention of Claim 4, C: 0.50-1.1%, Si: 0.1-1.2%, Mn: 0.2-1.5%, Cr: 3. 0 to 10.0%, N: 0.02 to 0.05%, P ≦ 0.03%, S ≦ 0.01%, Al: 0.005 to 0.05%, Ti ≦ 0.005%, Contains O ≦ 0.0015%, and further contains one or more selected from Ni ≦ 2.0%, Mo ≦ 1.5%, V ≦ 1.0%, Nb ≦ 0.3%. The residual austenite is 8-30% after quenching from a quenching temperature of 900-1080 ° C. and tempering at 150-230 ° C., and then remaining at 300 ° C. The rolling part is characterized in that the amount of reduction of austenite is 3% or less.
上記手段の転動部品用鋼における成分限定理由を以下に説明する。なお、%は質量%である。 The reasons for limiting the components in the rolling part steel of the above means will be described below. In addition,% is the mass%.
C:0.50〜1.1%
Cは、焼入、焼戻しにて硬さを確保するために必要な元素で、このために0.50%以上を必要とする。一方、寿命低下の原因となる巨大炭化物を防止するために1.1%以下とする必要がある。そこで、Cは0.50〜1.1%とし、好ましくは0.60〜0.90%とする。
C: 0.50 to 1.1%
C is an element necessary for securing hardness by quenching and tempering, and for this purpose, 0.50% or more is required. On the other hand, it is necessary to make it 1.1% or less in order to prevent giant carbides that cause a reduction in life. Therefore, C is 0.50 to 1.1%, preferably 0.60 to 0.90%.
Si:0.1〜1.2%
Siは、焼入性向上,焼戻し軟化抵抗を増加するために必要な元素で、このためには0.1%以上を必要とする。一方、1.2%を超えても、効果は飽和し、かつ、加工性を低下させる。そこで、Siは0.1〜1.2%とし、好ましくは0.4〜0.9%とする。
Si: 0.1-1.2%
Si is an element necessary for improving hardenability and increasing temper softening resistance. For this purpose, 0.1% or more is required. On the other hand, even if it exceeds 1.2%, the effect is saturated and the workability is lowered. Therefore, Si is 0.1 to 1.2%, preferably 0.4 to 0.9%.
Mn:0.2〜1.5%
Mnは、焼入性を向上し、適度な残留オーステナイト量を得るために必要な元素で、このためには0.2%以上必要である。一方、1.5%を超えて多すぎると残留オーステナイトが過剰となる。そこで、Mnは0.2〜1.5%とする。
Mn: 0.2 to 1.5%
Mn is an element necessary for improving the hardenability and obtaining an appropriate amount of retained austenite, and for this purpose, 0.2% or more is necessary. On the other hand, if it exceeds 1.5% and the amount is too much, retained austenite becomes excessive. Therefore, Mn is set to 0.2 to 1.5%.
Cr:3.0〜10.0%
Crは、焼入性を向上するとともに、特に残留オーステナイトを安定化させる元素で、このためには3.0%以上を必要とする。一方、Crが多すぎると寿命低下の原因となる巨炭の発生を防止するため、Crを10.0%以下とする必要がある。そこで、Crは3.0〜10.0%とし、好ましくは4.0〜8.0%とする。
Cr: 3.0 to 10.0%
Cr is an element that improves hardenability and stabilizes retained austenite, and 3.0% or more is required for this purpose. On the other hand, when there is too much Cr, in order to prevent generation | occurrence | production of the huge coal which causes a life fall, it is necessary to make Cr 10.0% or less. Therefore, Cr is set to 3.0 to 10.0%, preferably 4.0 to 8.0%.
P:≦0.03%
Pは、不純物として不可避的に含有されるが、粒界を脆化させ耐衝撃性を下げるので0.03%以下とする。
P: ≦ 0.03%
P is inevitably contained as an impurity, but is made 0.03% or less because it makes the grain boundary brittle and lowers impact resistance.
S:≦0.01%
Sは、不純物として不可避的に含有されるが、硫化物により転動寿命を低下するので0.01%以下とする。
S: ≦ 0.01%
S is inevitably contained as an impurity, but is set to 0.01% or less because the rolling life is reduced by sulfide.
O≦0.0015%
Oは、不純物として不可避的に含有されるが、介在物を形成して寿命を低下させる元素である。そこで、Oは0.0015%以下とする。
O ≦ 0.0015%
O is inevitably contained as an impurity, but is an element that forms inclusions and reduces the lifetime. Therefore, O is made 0.0015% or less.
Ti≦0.005%
Tiは、不純物として不可避的に含有されるが、介在物を形成して寿命を低下させる元素である。そこで、Tiは0.005%以下とする。
Ti ≦ 0.005%
Ti is inevitably contained as an impurity, but is an element that forms inclusions and decreases the lifetime. Therefore, Ti is made 0.005% or less.
Al:0.005〜0.05%
Alは、脱酸及び結晶粒度調整のために必要な元素である。このためにはAlは0.005%以上必要である。しかし、過剰なAlは再酸化により大きな介在物をもたらし寿命を低下させるの。そこで、Alは0.05%以下とする。
Al: 0.005 to 0.05%
Al is an element necessary for deoxidation and crystal grain size adjustment. For this purpose, Al is required to be 0.005% or more. However, excess Al results in large inclusions due to reoxidation and shortens the lifetime. Therefore, Al is made 0.05% or less.
N:0.02〜0.05%
Nは、残留オーステナイトを安定化させる元素である。このためにはNは0.02%以上必要である。しかし、Nは過剰に添加すると鋼中に空孔をつくり強度を低下させる。そこで、Nは0.05%以下とする。
N: 0.02 to 0.05%
N is an element that stabilizes retained austenite. For this purpose, N must be 0.02% or more. However, when N is added excessively, voids are formed in the steel and the strength is lowered. Therefore, N is set to 0.05% or less.
さらに、選択元素の成分限定理由について説明する。 Furthermore, the reasons for limiting the components of the selected element will be described.
Ni:≦2.0%
Niは、焼入性を向上するとともに靭性を向上させる元素であるが、Niが2.0%を超えると、効果が飽和しコストアップとなる。そこで、Niは2.0%以下とする。
Ni: ≦ 2.0%
Ni is an element that improves hardenability and improves toughness. However, if Ni exceeds 2.0%, the effect is saturated and the cost is increased. Therefore, Ni is set to 2.0% or less.
Mo≦0.5%
Moは、焼入性を向上するとともに疲労強度を向上させる元素であるが、Moが0.5%を超えると、効果が飽和しコストアップとなる。そこで、Moは0.5%以下とする。
Mo ≦ 0.5%
Mo is an element that improves hardenability and improves fatigue strength. However, if Mo exceeds 0.5%, the effect is saturated and the cost is increased. Therefore, Mo is 0.5% or less.
V≦1.0%
Vは、焼入性を向上するとともに疲労強度を向上させる元素であるが、Vが1.0%を超えると、効果が飽和しコストアップとなる。そこで、Vは1.0%以下とする。
V ≦ 1.0%
V is an element that improves hardenability and improves fatigue strength. However, when V exceeds 1.0%, the effect is saturated and the cost is increased. Therefore, V is set to 1.0% or less.
Nb≦0.3%
Nbは、結晶粒を微細化し疲労強度を向上させる元素であるが、Nbが0.3%を超えると、効果が飽和しコストアップとなる。そこで、Nbは0.3%以下とする。
Nb ≦ 0.3%
Nb is an element that refines crystal grains and improves fatigue strength. However, if Nb exceeds 0.3%, the effect is saturated and the cost is increased. Therefore, Nb is set to 0.3% or less.
さらに、本発明の手段における上記の成分からなる鋼を、焼入れ温度900〜1080℃に30分保持した後焼入れし、150〜230℃の焼戻し後の残留オーステナイト量を8〜30%に限定する理由を説明すると、このように適度な量の残留オーステナイトの存在により介在物周りの応力集中は緩和されることとなり寿命が向上する。残留オーステナイト量が8%未満ではその効果がなく、30%を超えると多量の残留オーステナイトにより硬さが低下し、寿命が低下する。なお、JIS規格のSUJ2のような通常のズブ焼の鋼を用いた場合には使用中の分解により寿命が低下するため残留オーステナイトは15%以下にコントロールされるが、本発明の手段の鋼では残留オーステナイトが安定であるため、焼入れ温度900〜1080℃に30分保持して焼入れし、150〜230℃に焼戻しすることで焼入れ温度900〜1080℃に30分保持した後焼入れし、150〜230℃の焼戻することで残留オーステナイトを30%まで含有できる。 Further, the steel comprising the above-mentioned components in the means of the present invention is quenched after being held at a quenching temperature of 900 to 1080 ° C. for 30 minutes, and the amount of retained austenite after tempering at 150 to 230 ° C. is limited to 8 to 30%. As described above, the presence of an appropriate amount of retained austenite relieves stress concentration around the inclusions and improves the life. If the amount of retained austenite is less than 8%, the effect is not obtained, and if it exceeds 30%, the hardness is decreased by a large amount of retained austenite and the life is shortened. In addition, in the case of using a normal baked steel such as SUJ2 of JIS standard, the life is reduced by decomposition during use, so the residual austenite is controlled to 15% or less. However, in the steel of the means of the present invention, Since the retained austenite is stable, it is quenched by holding at a quenching temperature of 900 to 1080 ° C. for 30 minutes, and tempered to 150 to 230 ° C., and then kept at a quenching temperature of 900 to 1080 ° C. for 30 minutes, and then quenched. Residual austenite can be contained up to 30% by tempering at ° C.
本発明の手段の構成とすることにより、自動車エンジンの電装補機用などとして使用される転動部品用鋼からなる転動部品における鋼材の白色組織変化に伴う早期剥離が防止でき、部品の長寿命化が図れるなど、本発明は従来にない優れた効果を奏するものである。 By adopting the configuration of the means of the present invention, it is possible to prevent early peeling due to a change in the white structure of the steel material in a rolling part made of rolling part steel used for an electrical accessory of an automobile engine, etc. The present invention has an excellent effect that has not been achieved so far, such as a longer life.
本発明を実施するための最良の形態について説明する。先ず、表1のA〜Hの供試鋼は本発明の転動部品用鋼で、I〜Oは比較鋼である。この表1に示す成分元素を有する鋼を溶製して100kg鋼塊を製造した。次いでこの鋼塊から鍛伸によりφ65mmの丸棒とし、これらを常法により球状化焼鈍した。すなわち、球状化焼鈍は最高点温度800℃とし、合計14時間の球状化焼鈍を実施した。 The best mode for carrying out the present invention will be described. First, test steels A to H in Table 1 are steels for rolling parts of the present invention, and I to O are comparative steels. A steel having the component elements shown in Table 1 was melted to produce a 100 kg steel ingot. Next, the steel ingot was formed into a round bar of φ65 mm by forging and spheroidizing annealing was performed by a conventional method. That is, the spheroidizing annealing was performed at a maximum temperature of 800 ° C., and spheroidizing annealing was performed for a total of 14 hours.
なお、上記の比較鋼において、比較鋼IはCが本発明の下限値より少ない。比較鋼JはCrが本発明の下限値より少ない。比較鋼KはCrが本発明の上限値より多い。比較鋼LはNが本発明の下限値より少なく、かつ、Tiが本発明の上限値より多い。比較鋼MはCrが本発明の下限値より少ない。比較鋼NはNが本発明の上限値より多い。比較鋼OはCrが本発明の下限値より少なく、かつ、Nが本発明の下限値より少ないものである。 In the above comparative steel, the comparative steel I has C lower than the lower limit of the present invention. Comparative steel J has less Cr than the lower limit of the present invention. Comparative steel K has more Cr than the upper limit of the present invention. In the comparative steel L, N is less than the lower limit of the present invention, and Ti is greater than the upper limit of the present invention. Comparative steel M has less Cr than the lower limit of the present invention. Comparative steel N has more N than the upper limit of this invention. In the comparative steel O, Cr is less than the lower limit of the present invention, and N is less than the lower limit of the present invention.
これらの球状化焼鈍した供試鋼および比較鋼からそれぞれスラスト型転動疲労試験片を採取した。さらに、これらの採取した試験片を焼入れした。表2に示すように、焼入れはCr含有量の多寡により焼入れ温度840〜1100℃として30分保持し、その後50℃の油中に焼入れした。次いで、焼戻しを(a)として180℃×90minで実施した。これらの焼入、焼戻し後の硬さ、残留オーステナイト量を測定した後、さらに焼戻しを(b)として300℃×90minで実施し、残留オーステナイトの安定性を評価した。なお、残留オーステナイト量はオーステナイト相とマルテンサイト相からのX線回折線の積分強度から算出した。 Thrust-type rolling fatigue test specimens were collected from the spheroidized specimen steel and comparative steel, respectively. Further, these collected specimens were quenched. As shown in Table 2, quenching was carried out at a quenching temperature of 840 to 1100 ° C. for 30 minutes depending on the Cr content, and then quenched in oil at 50 ° C. Next, tempering was performed at 180 ° C. for 90 minutes as (a). After measuring the hardness after quenching and tempering and the amount of retained austenite, tempering was further performed at 300 ° C. for 90 minutes as (b), and the stability of retained austenite was evaluated. The amount of retained austenite was calculated from the integrated intensity of X-ray diffraction lines from the austenite phase and the martensite phase.
次いで、転動部品用鋼の疲労強度や寿命の向上の効果を知るために転動疲労試験を行った。この転動疲労試験はスラスト型転動疲労試験機を用い、面圧5290MPaで実施した。この場合、試験前に試験片に水素をチャージして白色組織変化に起因する剥離を再現した。この水素チャージの条件は5%NH4SCN溶液に48時間浸漬し、浸漬後に表面をラップ研磨して腐食生成物を除去し、水素チャージ1時間後からスラスト型転動疲労試験をスタートして行った。 Next, a rolling fatigue test was performed in order to know the effect of improving the fatigue strength and life of the steel for rolling parts. This rolling fatigue test was performed using a thrust type rolling fatigue tester at a surface pressure of 5290 MPa. In this case, the test piece was charged with hydrogen before the test to reproduce the peeling caused by the white texture change. The conditions for this hydrogen charge are immersed in a 5% NH 4 SCN solution for 48 hours, and after the immersion, the surface is lapped to remove corrosion products, and a thrust type rolling fatigue test is started after 1 hour of hydrogen charge. It was.
これらのスラスト型転動疲労試験片についての試験結果を残留オーステナイト量と共に表2に示す。さらに、本発明の転動部品用鋼と比較鋼のスラスト型転動疲労試験のL10寿命とオーステナイト減少量の関係をグラフとして図1に示す。 Table 2 shows the test results of these thrust type rolling fatigue test pieces together with the amount of retained austenite. Furthermore, Figure 1 shows the thrust-type rolling fatigue test of L 10 life and austenite amount of decrease in relation comparative steels and rolling part steel of the present invention as a graph.
表2に見られるように、本発明の供試鋼のA〜Hでは焼入れ・焼戻し後の%で示す残留オーステナイト量は、最も低いものが供試鋼Hの(a)180℃焼戻し後の8.9%および(b)300℃焼戻し後の8.2%で、最も高いものが供試鋼Fの(a)180℃焼戻し後の28.2%および(b)300℃焼戻し後の27.6%である。したがってA〜Hの供試鋼はいずれも本発明の目的の8〜30%のもので、本発明の範囲を満足するものである。さらに、使用中の残留オーステナイトの安定性(分解されてマルテンサイトとなることがない)を示す、残留オーステナイトの減少量の(a)−(b)は、最大のもので供試鋼Cの2.4%である。すなわち、供試鋼A〜Hは、残留オーステナイトの減少量の(a)−(b)がいずれも3%以下であり、本発明の範囲を満足するものである。その結果、これら供試鋼A〜Hの材料の寿命を示す転動疲労試験のL10寿命は、図1に見られるように、供試鋼Gの15.5×106サイクル以上である。 As can be seen in Table 2, in the test steels A to H of the present invention, the amount of retained austenite shown in% after quenching and tempering is the lowest (8) of the test steel H after tempering at 180 ° C. 9% and (b) 8.2% after tempering at 300 ° C., the highest being (a) 28.2% after tempering at 180 ° C. and (b) 27. 6%. Therefore, all of the test steels A to H are 8 to 30% of the object of the present invention and satisfy the scope of the present invention. Further, (a)-(b) of the amount of decrease in retained austenite showing the stability of retained austenite during use (which does not decompose into martensite) is the largest, 2 of the test steel C. 4%. That is, each of the test steels A to H has a decrease in retained austenite (a)-(b) of 3% or less, which satisfies the scope of the present invention. As a result, the L 10 life of the rolling fatigue test showing the life of the materials of the test steels A to H is 15.5 × 10 6 cycles or more of the test steel G as seen in FIG.
上記の発明鋼に対し、比較鋼のI、比較鋼K、比較鋼Nはオーステナイト減少量は3%以下を満足するが、スラスト型転動疲労試験のL10寿命は4.0×106サイクル以下と本発明の供試鋼に比して劣るものである。さらに比較鋼J、比較鋼L、比較鋼M、比較鋼Oはオーステナイト減少量は3%を超えており、しかも、スラスト型転動疲労試験のL10寿命は4.4×106サイクル以下と本発明の供試鋼に比して劣るものである。 To the above-described invention steel I of comparative steels, comparative steels K, comparative steel N austenitic reduction is to satisfy 3% or less, L 10 life of the thrust-type rolling fatigue test 4.0 × 10 6 cycles It is inferior to the following and the test steel of the present invention. Further comparative steels J, comparative steel L, comparative steels M, Comparative Steel O austenitic reduction is greater than 3%, addition, L 10 life of the thrust-type rolling fatigue test and 4.4 × 10 6 cycles or less It is inferior to the test steel of the present invention.
さらにA’の供試鋼は、組成はAの供試鋼と同じであるが、焼戻した後の残留オーステナイト量を変化させるため、1080℃から焼入れした後、先ず−80℃×60minのサブゼロ処理を行ったものである。次いで(a)の180℃×90minの焼戻しを行い、これらの焼入、焼戻し後の硬さ、残留オーステナイト量を測定した後、さらに(b)の300℃×90minの焼戻しを行ったものであり、サブゼロ処理の効果を確認するための比較鋼として示すものである。 Furthermore, the test steel of A ′ has the same composition as that of the test steel of A, but in order to change the amount of retained austenite after tempering, after quenching from 1080 ° C., first, subzero treatment of −80 ° C. × 60 min. It is what went. Next, after tempering at 180 ° C. for 90 minutes in (a) and measuring the quenching, the hardness after tempering and the amount of retained austenite, tempering at 300 ° C. for 90 minutes in (b) was further performed. It is shown as a comparative steel for confirming the effect of the sub-zero treatment.
このサブゼロ処理したA’の供試鋼は、(a)の180℃焼戻し後の残留オーステナイト量が6.8%であり、その後の(b)の300℃焼戻し後の残留オーステナイト量が6.5%であり、サブゼロ処理により残留オーステナイトの減少量は0.3%と少なく安定しているものの、残留オーステナイト量が8%未満であり本発明に比して劣っている。しかも、転動疲労試験のL10寿命は5.5×106と寿命も短く、サブゼロ処理による効果は得られなかった。 This subzero-treated A ′ test steel has a residual austenite amount of 6.8% after 180 ° C. tempering in (a), and a residual austenite amount after 300 ° C. tempering in (b) of 6.5%. Although the amount of decrease in retained austenite is as low as 0.3% and is stable by subzero treatment, the amount of retained austenite is less than 8%, which is inferior to the present invention. Moreover, the L 10 life of the rolling fatigue test was 5.5 × 10 6 and the life was short, and the effect of the subzero treatment was not obtained.
さらにA”の供試鋼は、組成はAの供試鋼と同じであるが、焼戻した後の残留オーステナイト量を変化させるため、1100℃から焼入れ処理を行ったものである。次いで(a)の180℃×90minの焼戻しを行い、これらの焼入、焼戻し後の硬さ、残留オーステナイト量を測定した後、さらに(b)の300℃×90minの焼戻しを行った。 Furthermore, the test steel of A ″ has the same composition as the test steel of A, but was subjected to a quenching treatment from 1100 ° C. in order to change the amount of retained austenite after tempering. After tempering at 180 ° C. for 90 minutes and measuring the quenching, hardness after tempering, and the amount of retained austenite, tempering at 300 ° C. for 90 minutes in (b) was further performed.
このA”の供試鋼は、(a)の180℃焼戻し後の残留オーステナイト量が40.2%であり、その後の(b)の300℃焼戻し後の残留オーステナイト量が38.9%であり、残留オーステナイトの減少量は1.3%と少なく安定しているものの、残留オーステナイト量が30%を超え過剰であり、そのため硬さが低下し、転動疲労試験のL10寿命は6.2×106と寿命が短くなっている。 In the test steel of A ″, the amount of retained austenite after tempering at 180 ° C. in (a) is 40.2%, and the amount of retained austenite after tempering at 300 ° C. in (b) is 38.9%. although reduction of the residual austenite is less stable and 1.3%, an excessive amount of retained austenite exceeds 30%, therefore the hardness is lowered, L 10 life of the rolling fatigue test was 6.2 The life is shortened to × 10 6 .
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006086008A JP4942374B2 (en) | 2006-03-27 | 2006-03-27 | Steel for rolling parts with excellent white structure change resistance and rolling parts with excellent white structure change resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006086008A JP4942374B2 (en) | 2006-03-27 | 2006-03-27 | Steel for rolling parts with excellent white structure change resistance and rolling parts with excellent white structure change resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007262449A true JP2007262449A (en) | 2007-10-11 |
JP4942374B2 JP4942374B2 (en) | 2012-05-30 |
Family
ID=38635714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006086008A Active JP4942374B2 (en) | 2006-03-27 | 2006-03-27 | Steel for rolling parts with excellent white structure change resistance and rolling parts with excellent white structure change resistance |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4942374B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1037185C2 (en) * | 2009-08-10 | 2011-02-14 | Bosch Gmbh Robert | Transverse element for a drive belt, drive belt and method for manufacturing such a transverse element. |
WO2012073488A1 (en) | 2010-11-29 | 2012-06-07 | Jfeスチール株式会社 | Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering |
WO2012073458A1 (en) | 2010-11-29 | 2012-06-07 | Jfeスチール株式会社 | Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering |
CN103014536A (en) * | 2013-01-06 | 2013-04-03 | 奉化市金燕钢球有限公司 | High-carbon high-chromium stainless bearing steel and preparation method thereof |
CN103045957A (en) * | 2013-01-06 | 2013-04-17 | 奉化市金燕钢球有限公司 | High-carbon-chromium stainless bearing steel |
CN106521364A (en) * | 2016-11-09 | 2017-03-22 | 安徽孺子牛轴承有限公司 | High-strength wear-resistant bearing steel and preparation method therefor |
CN106636927A (en) * | 2016-10-13 | 2017-05-10 | 南京创贝高速传动机械有限公司 | Production process of cooling water pump for high-speed gear box |
CN112391581A (en) * | 2020-11-16 | 2021-02-23 | 攀钢集团江油长城特殊钢有限公司 | Hot-work shield steel and preparation method thereof |
CN113046632A (en) * | 2021-02-25 | 2021-06-29 | 石钢京诚装备技术有限公司 | Low-aluminum low-titanium large 86CrMoV7 working roll steel and production method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279393A (en) * | 2000-03-30 | 2001-10-10 | Nippon Koshuha Steel Co Ltd | Bearing steel excellent in grindability |
-
2006
- 2006-03-27 JP JP2006086008A patent/JP4942374B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001279393A (en) * | 2000-03-30 | 2001-10-10 | Nippon Koshuha Steel Co Ltd | Bearing steel excellent in grindability |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1037185C2 (en) * | 2009-08-10 | 2011-02-14 | Bosch Gmbh Robert | Transverse element for a drive belt, drive belt and method for manufacturing such a transverse element. |
WO2011019270A1 (en) * | 2009-08-10 | 2011-02-17 | Robert Bosch Gmbh | Transverse element for a drive belt and drive belt |
WO2012073488A1 (en) | 2010-11-29 | 2012-06-07 | Jfeスチール株式会社 | Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering |
WO2012073458A1 (en) | 2010-11-29 | 2012-06-07 | Jfeスチール株式会社 | Bearing steel exhibiting excellent machinability after spheroidizing annealing and excellent resistance to hydrogen fatigue after quenching/tempering |
US8894779B2 (en) | 2010-11-29 | 2014-11-25 | Jfe Steel Corporation | Bearing steel being excellent both in post spheroidizing-annealing workability and in post quenching-tempering hydrogen fatigue resistance property |
US9034120B2 (en) | 2010-11-29 | 2015-05-19 | Jfe Steel Corporation | Bearing steel being excellent both in workability after spheroidizing-annealing and in hydrogen fatigue resistance property after quenching and tempering |
CN103014536A (en) * | 2013-01-06 | 2013-04-03 | 奉化市金燕钢球有限公司 | High-carbon high-chromium stainless bearing steel and preparation method thereof |
CN103045957A (en) * | 2013-01-06 | 2013-04-17 | 奉化市金燕钢球有限公司 | High-carbon-chromium stainless bearing steel |
CN106636927A (en) * | 2016-10-13 | 2017-05-10 | 南京创贝高速传动机械有限公司 | Production process of cooling water pump for high-speed gear box |
CN106521364A (en) * | 2016-11-09 | 2017-03-22 | 安徽孺子牛轴承有限公司 | High-strength wear-resistant bearing steel and preparation method therefor |
CN112391581A (en) * | 2020-11-16 | 2021-02-23 | 攀钢集团江油长城特殊钢有限公司 | Hot-work shield steel and preparation method thereof |
CN113046632A (en) * | 2021-02-25 | 2021-06-29 | 石钢京诚装备技术有限公司 | Low-aluminum low-titanium large 86CrMoV7 working roll steel and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4942374B2 (en) | 2012-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4942374B2 (en) | Steel for rolling parts with excellent white structure change resistance and rolling parts with excellent white structure change resistance | |
KR101413902B1 (en) | Case hardened steel and method for producing same | |
JP5958652B2 (en) | Soft nitrided induction hardened steel parts with excellent surface fatigue strength | |
JP5202043B2 (en) | Rolling parts and manufacturing method thereof | |
JP5617747B2 (en) | Nitriding machine parts manufacturing method | |
JP2008280583A (en) | Case-hardening steel excellent in surface fatigue strength due to hydrogen embrittlement | |
JP2009114484A (en) | Method for manufacturing high-strength carburized component | |
WO2013161623A1 (en) | Case hardening steel material | |
JP5343760B2 (en) | Tempered soft nitriding parts | |
JP2010255099A (en) | Method for manufacturing bearing-component excellent in rolling fatigue characteristics under foreign matter environment | |
JPWO2017043594A1 (en) | Nitrided steel parts and manufacturing method thereof | |
JP4954927B2 (en) | Carburized induction-hardened steel parts with excellent surface fatigue strength and low noise | |
JPH10306343A (en) | Steel for soft-nitriding, excellent in cold forgeability and pitting resistance | |
JP5499974B2 (en) | Non-tempered nitrided crankshaft | |
JP2005042188A (en) | Carbonitrided bearing steel with excellent rolling fatigue life under debris-contaminated environment | |
JP5708844B2 (en) | Non-tempered nitrided crankshaft | |
JP2012229482A (en) | Rolling bearing | |
TWI630278B (en) | Surface hardened steel | |
WO2014136348A1 (en) | Untempered soft-nitrided component | |
JP6639839B2 (en) | Bearing steel with excellent whitening resistance and exfoliation life | |
JP2006213981A (en) | Environment resistant bearing steel having excellent hydrogen embrittlement resistance | |
JP6109730B2 (en) | Steel material excellent in bending fatigue characteristics after carburizing, manufacturing method thereof and carburized parts | |
JP7436779B2 (en) | Steel for carburized gears, carburized gears, and method for manufacturing carburized gears | |
JP5821512B2 (en) | NITRIDED COMPONENT AND MANUFACTURING METHOD THEREOF | |
WO2017122612A1 (en) | Steel for carbonitriding and carbonitrided component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110301 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110423 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110727 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111024 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20111101 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111220 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120228 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120228 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4942374 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150309 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |