JP2007262441A - Steel for crude oil tank and its production method - Google Patents
Steel for crude oil tank and its production method Download PDFInfo
- Publication number
- JP2007262441A JP2007262441A JP2006085509A JP2006085509A JP2007262441A JP 2007262441 A JP2007262441 A JP 2007262441A JP 2006085509 A JP2006085509 A JP 2006085509A JP 2006085509 A JP2006085509 A JP 2006085509A JP 2007262441 A JP2007262441 A JP 2007262441A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- less
- crude oil
- oil tank
- corrosion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 74
- 239000010959 steel Substances 0.000 title claims abstract description 74
- 239000010779 crude oil Substances 0.000 title claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000001816 cooling Methods 0.000 claims abstract description 23
- 238000005096 rolling process Methods 0.000 claims abstract description 22
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 238000005098 hot rolling Methods 0.000 claims abstract description 8
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 230000001186 cumulative effect Effects 0.000 claims abstract description 6
- 239000012535 impurity Substances 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 23
- 239000002987 primer (paints) Substances 0.000 claims description 14
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 8
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 6
- 238000005496 tempering Methods 0.000 claims description 6
- 230000009466 transformation Effects 0.000 claims description 4
- 230000007797 corrosion Effects 0.000 abstract description 87
- 238000005260 corrosion Methods 0.000 abstract description 87
- 238000003466 welding Methods 0.000 abstract description 15
- 229910052710 silicon Inorganic materials 0.000 abstract description 4
- 229910052717 sulfur Inorganic materials 0.000 abstract description 4
- 229910052721 tungsten Inorganic materials 0.000 abstract description 4
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 3
- 229910052719 titanium Inorganic materials 0.000 abstract description 3
- 230000000694 effects Effects 0.000 description 20
- 239000010953 base metal Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 11
- 239000011701 zinc Substances 0.000 description 11
- 229910052718 tin Inorganic materials 0.000 description 10
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 9
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 5
- 229910001566 austenite Inorganic materials 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 229910052787 antimony Inorganic materials 0.000 description 4
- 229910052796 boron Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 239000011261 inert gas Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000002301 combined effect Effects 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005422 blasting Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910000734 martensite Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000003303 reheating Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- YTCZZXIRLARSET-VJRSQJMHSA-M beraprost sodium Chemical compound [Na+].O([C@H]1C[C@@H](O)[C@@H]([C@@H]21)/C=C/[C@@H](O)C(C)CC#CC)C1=C2C=CC=C1CCCC([O-])=O YTCZZXIRLARSET-VJRSQJMHSA-M 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- -1 chloride ions Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000013615 primer Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
本発明は,100kJ/cmを超える大入熱溶接熱影響部の靭性および耐腐食性に優れた引張り強さ490MPa級鋼およびその製造方法に関し,特に原油タンクに好滴なものに関する。 The present invention relates to a tensile strength 490 MPa class steel excellent in toughness and corrosion resistance of a high heat input weld heat-affected zone exceeding 100 kJ / cm, and a method for producing the same, and particularly relates to a material suitable for crude oil tank.
タンカーの原油タンク上部内面(上甲板裏面に同じ)では、原油タンク内に防爆用に封入されるイナートガス(Oに約5vol.%、COに約13vol.%、SOに約0.01vol.%、残部N2を代表組成とするボイラあるいはエンジンの排ガス)中の、O2、CO2、SO2や原油から揮発するH2S等の腐食性ガスにより、全面腐食を生じることが知られている。 On the inner surface of the tanker's crude oil tank (same as the back of the upper deck), inert gas (about 5 vol.% For O, about 13 vol.% For CO, about 0.01 vol.% For SO) It is known that corrosive gases such as O 2 , CO 2 , SO 2, and H 2 S volatilized from crude oil in the exhaust gas (boiler or engine exhaust gas having the remaining N 2 as a representative composition) cause overall corrosion. .
更に、腐食によって生成した鉄錆を触媒として、H2Sが酸化されて固体Sが鉄錆中に層状に生成し、これらの腐食生成物は容易に剥離し、原油タンク底に堆積するため、2.5年毎のドック検査では、多大な費用をかけて、タンク上部の補修および堆積物の回収が行われている。 Furthermore, using iron rust produced by corrosion as a catalyst, H 2 S is oxidized and solid S is formed in layers in the iron rust, and these corrosion products easily peel off and accumulate on the bottom of the crude oil tank. In the dock inspection every 2.5 years, the repair of the upper part of the tank and the collection of the deposit are performed at great expense.
一方、タンカーの原油タンク底板の場合、原油そのものの腐食抑制作用や原油タンク内面に生成される原油由来の保護性フィルム(以下「原油保護フィルム」と称す)の腐食抑制作用により、使用される鋼材に腐食は生じないと考えられていたが、最近、タンク底板にお椀型の局部腐食が発生することが明らかになった。 On the other hand, in the case of a tanker's crude oil tank bottom plate, the steel material used is due to the corrosion inhibition effect of the crude oil itself and the corrosion inhibition effect of the protective film derived from crude oil (hereinafter referred to as “crude oil protection film”) produced on the inner surface of the crude oil tank. Although it was thought that no corrosion occurred in the tank, recently it became clear that a bowl-shaped local corrosion occurred on the tank bottom plate.
局部腐食の原因として、(1)塩化ナトリウムを代表とする塩類が高濃度に溶解した凝集水の存在、(2)過剰な洗浄による原油保護フィルムの離脱、(3)原油中の硫化物の高濃度化、(4)原油タンク内に防爆用に封入されるイナートガス中の、O2、CO2、SO2の高濃度化、(5)微生物の関与、などが挙げらているものの、未だ明確な原因は判明していない。 The causes of local corrosion are as follows: (1) Presence of flocculated water in which salts such as sodium chloride are dissolved at high concentration, (2) Separation of crude oil protective film due to excessive washing, (3) High level of sulfide in crude oil Concentration, (4) Concentration of O 2 , CO 2 , SO 2 in inert gas enclosed in crude oil tank for explosion protection, (5) Participation of microorganisms, etc. are mentioned, but still clear The cause is unknown.
腐食を抑制する最も有効な方法は、鋼材表面に重塗装を施し、鋼材を腐食環境から遮断する方法であるが、原油タンクへの塗装はその塗布面積が膨大で、また、約10年に1度は塗り替えが必要となるため、検査および施工に多大な費用がかかり、重塗装の場合、塗膜損傷部分においては、原油タンク環境でかえって腐食が助長されることが指摘されている。 The most effective method for suppressing corrosion is to coat the steel surface with heavy coating to shield the steel from the corrosive environment, but the coating on the crude oil tank has a huge application area, and about 1 in about 10 years. It is pointed out that, since repainting is required, inspection and construction are very expensive, and in the case of heavy coating, corrosion is promoted in the crude oil tank environment in the damaged part of the coating film.
鋼材側からの対策としては、原油油槽環境で耐食性を有するいくつかの耐食鋼が提案されている。特許文献1記載の耐食鋼は、質量%で、C:0.01〜0.3%とし、適正量に調整したSi,Mn,P,Sに、更に、Ni:0.05〜3%、選択的にMo、Cu、Cr、W、Ca、Ti、Nb、V、Bを含有する組成を有し、全面腐食や局部腐食に対する抵抗性が向上する。
As countermeasures from the steel side, several corrosion resistant steels having corrosion resistance in a crude oil tank environment have been proposed. The corrosion-resistant steel described in
また、特許文献2記載の耐食鋼は、質量%で、C:0.00〜0.2%とし、適正量に調整したSi、Mn、P、SとCu:0.01〜1.5%、Al:0.001〜0.3%、N:0.001〜0.01%、更に、Mo:0.01〜0.2%またはW:0.01〜0.5%の少なくとも一方を含有し、優れた耐全面腐食性および耐局部腐食性を示し、固体Sを含む腐食生成物の生成を抑制できる。
しかしながら、前記原油タンク用耐食鋼を原油タンクに適用した場合、原油タンク上部の使用においては、耐全面腐食性を発揮するものの、原油タンク底板に使用された場合の局部腐食に対する抵抗性(以下「耐局部腐食性」と称す)は十分とは言い難い。 However, when the above-mentioned corrosion resistant steel for crude oil tanks is applied to crude oil tanks, it exhibits overall corrosion resistance when used in the upper part of crude oil tanks, but is resistant to local corrosion when used on the bottom plate of crude oil tanks (hereinafter “ “Local corrosion resistance” is not sufficient.
また、原油タンク底板の製造に適用される,溶接入熱が100kJ/cmを超えるフラックス−銅バッキング溶接(以下,FCB溶接ともいう)の溶接熱影響部の靭性は必ずしも十分な特性が得られるとは限らなかった。 In addition, the toughness of the weld heat-affected zone of flux-copper backing welding (hereinafter also referred to as FCB welding), which is applied to the manufacture of crude oil tank bottom plate and has a welding heat input exceeding 100 kJ / cm, is not necessarily sufficient. Was not limited.
そこで、本発明は,原油タンク底板で発生する局部腐食および原油タンク天板および側板で発生する全面腐食に対し優れた耐腐食性と溶接入熱が100kJ/cmを超えるような大入熱溶接の溶接熱影響部靭性に優れる、引張り強さ490MPa級原油タンク用鋼を提供することを目的とする。 Therefore, the present invention provides excellent corrosion resistance against local corrosion that occurs on the bottom plate of the crude oil tank and overall corrosion that occurs on the top plate and side plate of the crude oil tank, and high heat input welding in which the welding heat input exceeds 100 kJ / cm. An object of the present invention is to provide a steel for crude oil tanks having a tensile strength of 490 MPa that is excellent in weld heat-affected zone toughness.
本発明者らは,上記課題を達成するため,まず、原油タンク底板の局部腐食に関与する因子を抽出し、それらの因子を組合わせて、腐食試験を行い、原油タンク底板で生じる局部腐食の支配因子および腐食機構についての知見を得た。 In order to achieve the above-mentioned problem, the present inventors first extract factors involved in local corrosion of the bottom plate of the crude oil tank, combine these factors, conduct a corrosion test, and detect the local corrosion that occurs in the bottom plate of the crude oil tank. The knowledge about the controlling factors and the corrosion mechanism was obtained.
すなわち、局部腐食の発生におよぼす各種合金元素の影響について鋭意検討した結果、Wの添加は、原油タンク用鋼材として使用される環境において鋼板表面に形成される錆層を非常に緻密化し、耐局部腐食性および耐全面腐食性を向上させることを見出した。 That is, as a result of earnest examination about the influence of various alloy elements on the occurrence of local corrosion, the addition of W makes the rust layer formed on the steel sheet surface very dense in an environment used as a steel material for crude oil tanks, It has been found that the corrosion resistance and overall corrosion resistance are improved.
次に、母材強度および大入熱溶接熱影響部の靭性について検討し、上記特性を有する鋼において、炭素当量Ceqを0.25〜0.40%およびTi/Nを2.0〜5.0とし,脆化組織である島状マルテンサイトを低減するとともに,溶解温度の高いTiNを多量に分散させて,溶接熱影響部のオーステナイト粒の粗大化を抑制した場合,耐局部腐食性および耐全面腐食性を劣化させること無く,母材の強度特性は勿論,大入熱溶接熱影響部の靭性を向上させることが可能なことを見出した。 Next, the strength of the base metal and the toughness of the high heat input welding heat-affected zone are examined. In the steel having the above characteristics, the carbon equivalent Ceq is 0.25 to 0.40% and the Ti / N is 2.0 to 5. When the martensite, which is an embrittlement structure, is reduced to 0 and coarsening of the austenite grains in the weld heat affected zone is suppressed by dispersing a large amount of TiN, which has a high melting temperature, It has been found that the toughness of the heat-affected zone of the high heat input welding can be improved as well as the strength characteristics of the base metal without deteriorating the overall corrosivity.
本発明は,上記した知見に基づき,さらに検討を加えて完成されたもので、すなわち,本発明は、
1. mass%で,
C:0.03〜0.2%,
Si:0.05〜0.8%,
Mn:0.5〜2.5%,
P:0.03%以下,
S:0.005%以下,
Al:0.005〜0.06%,
W:0.001〜0.3%,
Ti:0.005〜0.03%,
N:0.002〜0.007%,
Ceq(=C+Mn/6+(Cr+Mo+V)/5+Ni/15、但し、C,Mn,Cr,Mo,Vは含有量(mass%):0.25〜0.40%,
2.0<Ti/N<5.0を満足し,残部Feおよび不可避的不純物からなる組成を有し,鋼表面にWを含む酸化物層が形成されていることを特徴とする原油タンク用鋼。
2.1に記載の鋼組成に更に,mass%で,
Ni:1.5%以下
Cr:1.0%以下
Mo:1.0%以下
V:0.2%以下
Nb:0.1%以下
B:0.005%以下
の1種または2種以上を含有する原油タンク用鋼。
3.1または2に記載の鋼組成に更に,mass%で,
Sn:0.005〜0.3%
Sb:0.005〜0.3%
の1種または2種以上を含有する原油タンク用鋼。
4.1乃至3の何れか一つに記載の鋼組成に更に,mass%で,
Ca:0.005%以下
REM:0.02%以下および
Mg:0.005%以下
の1種または2種以上を含有する原油タンク用鋼。
5.1乃至4の何れか一つに記載した組成の鋼素材を,1000〜1250℃に加熱後,Ar3〜Ar3+150℃の温度域における累積圧下率が25%以上で,かつ圧延仕上温度をAr3以上とする熱間圧延を行い,続いて60℃/s以下の冷却速度で冷却を行うことを特徴とする原油タンク用鋼の製造方法。
6.冷却後、更に,400℃以上,Ac1変態点以下で焼もどしを行うことを特徴とする5記載の原油タンク用鋼の製造方法。
7.1乃至4の何れか一つに記載の原油タンク用鋼の表面にZnを含むプライマー塗装を施した原油タンク用鋼。
8.7に記載の原油タンク用鋼を用いた原油タンク。
The present invention has been completed on the basis of the above-described findings and further studies, that is, the present invention
1. mass%,
C: 0.03-0.2%,
Si: 0.05 to 0.8%,
Mn: 0.5 to 2.5%,
P: 0.03% or less,
S: 0.005% or less,
Al: 0.005 to 0.06%,
W: 0.001 to 0.3%,
Ti: 0.005 to 0.03%,
N: 0.002 to 0.007%,
Ceq (= C + Mn / 6 + (Cr + Mo + V) / 5 + Ni / 15, provided that C, Mn, Cr, Mo, V are contained (mass%): 0.25 to 0.40%,
For crude oil tanks satisfying 2.0 <Ti / N <5.0, having a composition comprising the balance Fe and inevitable impurities, and having an oxide layer containing W formed on the steel surface steel.
In addition to the steel composition described in 2.1, in mass%,
Ni: 1.5% or less Cr: 1.0% or less Mo: 1.0% or less V: 0.2% or less Nb: 0.1% or less B: One or more of 0.005% or less Contains steel for crude oil tanks.
In addition to the steel composition described in 3.1 or 2, in mass%,
Sn: 0.005-0.3%
Sb: 0.005 to 0.3%
A crude oil tank steel containing one or more of the following.
In addition to the steel composition according to any one of 4.1 to 3, further in mass%,
Steel for crude oil tanks containing one or more of Ca: 0.005% or less REM: 0.02% or less and Mg: 0.005% or less.
After heating the steel material having the composition described in any one of 5.1 to 4 to 1000 to 1250 ° C., the cumulative rolling reduction in the temperature range of Ar 3 to Ar 3 + 150 ° C. is 25% or more, and the rolling finish A method for producing steel for a crude oil tank, characterized by performing hot rolling at a temperature of Ar 3 or higher and subsequently cooling at a cooling rate of 60 ° C./s or lower.
6). 6. The method for producing steel for a crude oil tank according to 5, wherein tempering is further performed at 400 ° C. or more and Ac 1 transformation point or less after cooling.
The steel for crude oil tanks which applied the primer coating containing Zn to the surface of the steel for crude oil tanks as described in any one of 7.1 thru | or 4.
A crude oil tank using the steel for a crude oil tank described in 8.7.
本発明によれば、原油の輸送または原油の貯蔵タンク用鋼板において優れた耐全面腐食性および耐局部腐食性を有する鋼材を、安価に製造でき、かつ優れた大入熱溶接部靭性を有することから,製造工程の簡略化や安全性の向上を達成することができ,産業上格段の効果を奏する。 According to the present invention, a steel material having excellent overall corrosion resistance and local corrosion resistance in a steel plate for transportation of crude oil or a storage tank for crude oil can be produced at low cost and has excellent high heat input weld toughness. As a result, the manufacturing process can be simplified and the safety can be improved, resulting in a remarkable industrial effect.
以下,成分組成、製造条件について説明する。成分に関する(%)表示はmass%を意味するものとする。
[成分組成]
C:0.03〜0.2%
Cは構造用鋼として必要な強度を得るのに有用な元素であるが,0.03%に満たないとその効果に乏しく,一方,0.2%を超えると溶接部の靭性,耐溶接割れ性を劣化させるので,0.03〜0.2%の範囲に限定する.なお,好ましくは,0.03〜0.16%である.
Si:0.05〜0.8%
Siは,脱酸材として作用し,製鋼上,少なくとも0.05%必要である.また、Siは、酸性環境で防食皮膜を形成して耐食性の向上に寄与する。一方,0.8%を超えると母材の靭性が劣化するとともに大入熱溶接熱影響部において島状マルテンサイトが生成し,靭性が顕著に劣化するため,0.05〜0.8%の範囲に限定する。なお,好ましくは,0.2〜0.6%である。
Hereinafter, the component composition and production conditions will be described. The (%) indication regarding the component shall mean mass%.
[Ingredient composition]
C: 0.03-0.2%
C is an element useful for obtaining the strength required for structural steel. However, if less than 0.03%, the effect is poor. On the other hand, if over 0.2%, the toughness of welds and weld crack resistance are poor. Since it degrades the property, it is limited to the range of 0.03 to 0.2%. In addition, Preferably, it is 0.03 to 0.16%.
Si: 0.05 to 0.8%
Si acts as a deoxidizer and requires at least 0.05% for steelmaking. Moreover, Si contributes to the improvement of corrosion resistance by forming a corrosion protection film in an acidic environment. On the other hand, if it exceeds 0.8%, the toughness of the base metal deteriorates and island martensite is generated in the heat-affected zone of the high heat input welding, and the toughness is significantly deteriorated. Limited to range. In addition, Preferably, it is 0.2 to 0.6%.
Mn:0.5〜2.5%
Mnは,鋼の強度を増加させるために添加する。引張強度490MPa以上を確保するために,0.5%以上が必要で、一方,2.5%を超えると,母材および溶接熱影響部が著しく劣化するので,0.5〜2.5%の範囲に限定する。なお,好ましくは,0.6〜1.6%である。
Mn: 0.5 to 2.5%
Mn is added to increase the strength of the steel. In order to secure a tensile strength of 490 MPa or more, 0.5% or more is necessary. On the other hand, if it exceeds 2.5%, the base metal and the weld heat affected zone deteriorate significantly, so 0.5 to 2.5% Limited to the range. In addition, Preferably, it is 0.6 to 1.6%.
P:0.03%以下
Pは,含有量が0.03%を超えると溶接部の靭性を劣化させるので,0.03%以下に抑制する。なお,過度のP低減は精錬コストを高騰させ経済的に不利となるため,0.005%以上とすることが望ましい。
P: 0.03% or less P, if the content exceeds 0.03%, deteriorates the toughness of the welded portion, so is suppressed to 0.03% or less. In addition, excessive P reduction raises the refining cost and is economically disadvantageous, so 0.005% or more is desirable.
S:0.005%以下
Sは母材および溶接部の靭性を劣化させ,また,非金属介在物のMnSを形成して局部腐食の起点になって耐局部腐食性を低下させる有害な元素であり、できるだけ低減することが望ましい。0.005%を超えて含有されると,この傾向が顕著となるため,0.005%以下とする。
S: 0.005% or less S is a harmful element that degrades the toughness of the base metal and the welded part, and forms MnS of non-metallic inclusions to cause local corrosion and reduce local corrosion resistance. Yes, it is desirable to reduce as much as possible. If the content exceeds 0.005%, this tendency becomes remarkable, so the content is made 0.005% or less.
Al:0.005〜0.06%
Alは,脱酸剤として作用し,製鋼上0.005%以上を必要とするが,0.06%を超えると,母材の靭性が低下し,同時に溶接時に溶接金属部に混入して,靭性を劣化させるため、0.005〜0.06%の範囲に限定した。なお,好ましくは,0.005〜0.05%である。
Al: 0.005-0.06%
Al acts as a deoxidizer and requires 0.005% or more in steelmaking. However, if it exceeds 0.06%, the toughness of the base material decreases, and at the same time, it is mixed into the weld metal during welding. In order to deteriorate the toughness, the content is limited to 0.005 to 0.06%. In addition, Preferably, it is 0.005 to 0.05%.
W:0.001〜0.3%
Wを添加すると、腐食環境で形成されるWO4 2−イオンが塩化物イオン等の陰イオンに対するバリア効果を発揮するとともに、不溶性のFeWO4を形成して腐食の進行は抑制される。さらに、鋼板表面に形成される錆層は、Wを含むことにより非常に緻密化される。
W: 0.001 to 0.3%
When W is added, WO 4 2− ions formed in a corrosive environment exhibit a barrier effect against anions such as chloride ions, and insoluble FeWO 4 is formed to suppress the progress of corrosion. Furthermore, the rust layer formed on the steel plate surface is very densified by containing W.
Wの添加は、化学的および物理的な作用によって、H2SおよびCl−の存在する腐食環境における全面腐食の進行および局部腐食の進行を抑制するので、耐局部腐食性が向上するとともに耐全面腐食性にも優れた原油タンク用鋼材が得られる。 The addition of W suppresses the progress of the general corrosion and the local corrosion in the corrosive environment where H 2 S and Cl − are present due to the chemical and physical action. A steel material for crude oil tanks with excellent corrosion properties can be obtained.
また、プライマー併用時には、Wを含むことで緻密化した錆層中に、プライマー中のZnを取り込み、Feを中心としたWやZnの複合酸化物を形成することにより、長期間、鋼板表面にZnを存続させることができる。 In addition, when using the primer together, Zn in the primer is taken into the rust layer densified by containing W, and a composite oxide of W or Zn centering on Fe is formed, so that the surface of the steel plate is extended for a long time. Zn can survive.
上述した作用効果は、0.001%よりも少ないと十分な効果が得られず、0.3%を超えるとその効果が飽和するとともに,母材および溶接部靭性が低下することから、0.001〜0.3%の範囲に限定した。 If the effect described above is less than 0.001%, a sufficient effect cannot be obtained, and if it exceeds 0.3%, the effect is saturated and the base metal and weld toughness are lowered. It limited to the range of 001-0.3%.
Ti:0.005〜0.03%
Tiは,Nとの親和力が強く凝固時にTiNとして析出し,溶接熱影響部でのオーステナイト粒の粗大化抑制,あるいはフェライト変態核として溶接熱影響部の高靭化に寄与するため,0.005%以上とする。一方、0.03%を超えると,TiN粒子が粗大化し,上記した効果が期待できなくなるため,0.005〜0.03%とする。なお,好ましくは,0.007〜0.020%である。
Ti: 0.005 to 0.03%
Since Ti has a strong affinity for N and precipitates as TiN during solidification, it contributes to suppressing the austenite grain coarsening in the weld heat affected zone or to increasing the weld heat affected zone as a ferrite transformation nucleus. % Or more. On the other hand, if it exceeds 0.03%, the TiN particles become coarse and the above-mentioned effect cannot be expected, so the content is made 0.005 to 0.03%. In addition, Preferably, it is 0.007 to 0.020%.
N:0.002〜0.007%
NはTiと結合してTiNとして析出して,HAZでのオーステナイト粒の粗大化を抑制し,あるいはフェライト変態核としてHAZの高靭化に寄与する。このような効果を有するTiNの必要量を確保するために,0.002%以上とする必要がある。一方,0.007%を超えると,溶接時にTiNが溶解する温度まで加熱される領域では,固溶N量が増加し,靭性が著しく低下するため,0.002〜0.007%に限定する。
N: 0.002 to 0.007%
N binds to Ti and precipitates as TiN to suppress the coarsening of austenite grains in the HAZ or contribute to the toughening of the HAZ as a ferrite transformation nucleus. In order to secure the necessary amount of TiN having such an effect, it is necessary to make it 0.002% or more. On the other hand, if it exceeds 0.007%, in the region heated to the temperature at which TiN dissolves during welding, the amount of solute N increases and the toughness decreases remarkably, so it is limited to 0.002 to 0.007%. .
Ceq(=C+Mn/6+(Cr+Mo+V)/5+Ni/15、但しC,Mn,Cr,Mo,V,Niは含有量(mass%))
Ceqが0.25%未満では,圧延,加速冷却時の焼入れ性が不足し,引張強さ490MPa以上を確保できなくなる。一方,Ceqが0.40%を超えると,母材靭性およびHAZ靭性が低下するため,0.25〜0.40%の範囲に限定した。
Ceq (= C + Mn / 6 + (Cr + Mo + V) / 5 + Ni / 15, where C, Mn, Cr, Mo, V, Ni are contents (mass%))
If Ceq is less than 0.25%, the hardenability at the time of rolling and accelerated cooling is insufficient, and a tensile strength of 490 MPa or more cannot be secured. On the other hand, when Ceq exceeds 0.40%, the base metal toughness and the HAZ toughness are lowered, so the content is limited to the range of 0.25 to 0.40%.
Ti/N(但し、Ti,Nは含有量(mass%)
Ti/Nが2.0以下では,溶接熱影響部靭性の向上に必要なTiN量を確保できない.一方、Ti/Nが5.0以上では,TiC粒子の生成およびTiNの粗大化のため母材靭性および溶接熱影響部が劣化するため,Ti/Nは2.0超え〜5.0未満の範囲に限定した。
Ti / N (However, Ti and N content (mass%)
If Ti / N is 2.0 or less, the amount of TiN necessary to improve the weld heat affected zone toughness cannot be secured. On the other hand, when Ti / N is 5.0 or more, since the base metal toughness and the weld heat affected zone deteriorate due to the generation of TiC particles and the coarsening of TiN, Ti / N is more than 2.0 to less than 5.0. Limited to range.
以上が本発明の基本成分系であるが、所望する特性に応じ,Ni:1.5%以下,および/または,Cr:1%以下,Mo:1%以下,V:0.2%以下,Nb:0.1%以下,B:0.005%以下のうちから選ばれた1種または2種以上,および/または,Sn:0.005〜0.3%,Sb:0.005〜0.3%のうちから選ばれた1種または2種以上,および/または,Ca:0.005%以下,REM:0.02%以下,Mg:0.005%以下のうちから選ばれた1種または2種以上を含有することができる。 The above is the basic component system of the present invention. Depending on the desired characteristics, Ni: 1.5% or less, and / or Cr: 1% or less, Mo: 1% or less, V: 0.2% or less, One or more selected from Nb: 0.1% or less, B: 0.005% or less, and / or Sn: 0.005-0.3%, Sb: 0.005-0 1 or more selected from 3% and / or Ca: 0.005% or less, REM: 0.02% or less, Mg: 1 selected from 0.005% or less It can contain seeds or two or more.
Ni:1.5%以下
Niは,高靭性を保ちつつ強度を増加させることが可能な元素であり,HAZ靭性への影響も小さいため,高強度化と高HAZ靭性両立のために有用な元素である。しかし、1.5%を超えると,効果が飽和し、経済的に不利になるため,添加する場合は1.5%以下とする。なお,好ましくは0.1〜1%である。
Ni: 1.5% or less Ni is an element that can increase strength while maintaining high toughness, and has little influence on HAZ toughness. Therefore, Ni is a useful element for achieving both high strength and high HAZ toughness. It is. However, if it exceeds 1.5%, the effect will be saturated and it will be economically disadvantageous. In addition, Preferably it is 0.1 to 1%.
Cr:1%以下,Mo:1%以下,Nb:0.1%以下,V:0.2%以下,B:0.005%以下のうちから選ばれた1種または2種以上
Cr,Mo,Nb,V,Bは,いずれも鋼の強度向上に寄与する元素であり,1種または2種以上を選択して添加する。
One or more selected from Cr: 1% or less, Mo: 1% or less, Nb: 0.1% or less, V: 0.2% or less, B: 0.005% or less Cr, Mo , Nb, V, and B are all elements that contribute to improving the strength of the steel, and one or more elements are selected and added.
Crは,0.05%以上とすることが好ましいが,1%を超えると,溶接熱影響部の靭性を劣化させるため,添加する場合は、1%以下に限定することが望ましい.
Moは,Wと共に添加して耐全面腐食性および耐局部腐食性を向上させ、更にWとSnあるいはSbとの複合効果による緻密な錆層の形成を助けて耐食性を強化する作用があり、本特性を向上させる場合、添加する。しかしながら,1%を超えると,母材靭性および溶接熱影響部靭性に悪影響を及ぼすため,Moは添加する場合は、1%以下とすることが望ましい。
The Cr content is preferably 0.05% or more, but if it exceeds 1%, the toughness of the weld heat-affected zone is deteriorated, so when added, it is desirable to limit it to 1% or less.
Mo is added together with W to improve the general corrosion resistance and local corrosion resistance, and further helps to form a dense rust layer by the combined effect of W and Sn or Sb, thereby strengthening the corrosion resistance. Add to improve properties. However, if it exceeds 1%, the base material toughness and the weld heat-affected zone toughness are adversely affected. Therefore, when Mo is added, the content is preferably made 1% or less.
Nbは,0.005%以上とすることが好ましいが,0.1%を超えると,母材靭性および溶接熱影響部靭性を劣化させるため,添加する場合は、0.1%以下とすることが望ましい。 Nb is preferably 0.005% or more, but if it exceeds 0.1%, the base metal toughness and the weld heat affected zone toughness are deteriorated. Is desirable.
Vは,0.01%以上含有することが好ましいが,0.2%を超えると,溶接熱影響部靭性を劣化させるため,添加する場合は0.2%以下とすることが望ましい.
Bは,焼入れ性の向上を介して,鋼の強度を増加させる作用を有する。一方,0.005%を超える含有は焼入れ性を著しく増加させ,母材の靭性,延性の劣化をもたらすため,添加する場合は0.005%以下とする。なお,好ましくは,0.0003〜0.002%である。
V is preferably contained in an amount of 0.01% or more. However, if it exceeds 0.2%, the weld heat affected zone toughness is deteriorated.
B has the effect of increasing the strength of the steel through improving hardenability. On the other hand, if the content exceeds 0.005%, the hardenability is remarkably increased and the toughness and ductility of the base metal are deteriorated. In addition, Preferably, it is 0.0003 to 0.002%.
Sn:0.005〜0.3%,Sb:0.005〜0.3%のうちから選ばれた1種または2種以上
SnおよびSbは,いずれも耐全面腐食性および耐局部腐食性向上に寄与する元素であり,所望する特性に応じて添加する。
One or more selected from Sn: 0.005-0.3%, Sb: 0.005-0.3% Sn and Sb are both improved in overall corrosion resistance and local corrosion resistance It is an element that contributes to the above and is added according to the desired characteristics.
Snは、Wとの複合効果により緻密な錆層を形成して酸性環境における腐食を抑制する作用があり、本特性を向上させる場合、添加する。しかし、0.005%以下の添加では効果がなく、0.3%以上の添加では熱間加工性,母材およびHAZ靭性の劣化を招くので、添加する場合は、0.005〜0.3%とする。 Sn has the effect of suppressing the corrosion in an acidic environment by forming a dense rust layer by the combined effect with W, and is added when improving this property. However, addition of 0.005% or less has no effect, and addition of 0.3% or more leads to deterioration of hot workability, base material and HAZ toughness. %.
Sbは、Snと同様にWとの複合効果により緻密な錆層を形成して酸性環境における腐食を抑制する作用があり、本特性を向上させる場合、添加する。しかし、0.005%以下の添加では効果がなく、0.3%以上の添加では効果の飽和とともに母材および溶接熱影響部靭性の劣化を招くので、添加する場合は、0.005〜0.3%に限定する。 Sb, like Sn, has a function of suppressing the corrosion in an acidic environment by forming a dense rust layer by the combined effect with W, and is added when this property is improved. However, addition of 0.005% or less has no effect, and addition of 0.3% or more causes saturation of the effect and deterioration of the base metal and weld heat affected zone toughness. Limited to 3%.
Ca:0.005%以下,REM:0.02%以下およびMg:0.005%以下のうちから選ばれた1種または2種以上
Ca,REMおよびMgは,いずれも靭性向上に寄与する元素であり,所望する特性にに応じ添加する。
One or more selected from Ca: 0.005% or less, REM: 0.02% or less, and Mg: 0.005% or less Ca, REM, and Mg are all elements that contribute to toughness improvement Add according to the desired properties.
Caは,結晶粒の微細化を介して靭性を向上させる有用な元素であり,0.001%以上とすることが好ましいが,0.005%を超えても効果が飽和するため,添加する場合は0.005%を上限とする。 Ca is a useful element that improves toughness through refinement of crystal grains, and is preferably 0.001% or more, but the effect is saturated even if it exceeds 0.005%. Has an upper limit of 0.005%.
REMは,0.002%以上とすることが好ましいが,0.02%を超えると効果が飽和するため,添加する場合は0.02%を上限とする。 The REM content is preferably 0.002% or more, but the effect is saturated when it exceeds 0.02%. Therefore, when it is added, the upper limit is 0.02%.
Mgは,結晶粒の微細化を介して靭性を向上させる有用な元素であり,0.001%以上とすることが好ましいが,0.005%を超えても効果が飽和するため,添加する場合は0.005%を上限とする。 Mg is a useful element that improves toughness through refinement of crystal grains, and is preferably 0.001% or more, but the effect is saturated even if it exceeds 0.005%. Has an upper limit of 0.005%.
[製造条件]
説明において、温度に関する「℃」表示は,板厚の1/2における温度を意味するものとする。
[Production conditions]
In the description, the “° C.” display relating to the temperature means a temperature at half the plate thickness.
鋼素材加熱温度:1000℃〜1250℃
上述した組成の鋳片または鋼片の鋼素材を転炉,電気炉,真空溶解炉等,通常公知の方法による溶鋼から作成し、1000℃〜1250℃に再加熱する。再加熱温度が1000℃未満では,熱間圧延での変形抵抗が高く,1パス当たりの圧下量が大きく取れなくなることから,圧延パス数が増加し,圧延能率の低下を招くとともに,鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合が生じる。一方,再加熱温度が1250℃を超えると,加熱時のスケールによって表面疵が生じやすく,圧延後の手入れ負荷が増大するため,1000〜1250℃の範囲とする。
Steel material heating temperature: 1000 ° C-1250 ° C
A steel material of a slab or steel slab having the composition described above is prepared from molten steel by a generally known method such as a converter, electric furnace, vacuum melting furnace, etc., and reheated to 1000 ° C to 1250 ° C. If the reheating temperature is less than 1000 ° C, the deformation resistance in hot rolling is high, and the amount of rolling reduction per pass cannot be increased. Therefore, the number of rolling passes increases and the rolling efficiency decreases, and the steel material ( In some cases, the casting defect in the slab cannot be crimped. On the other hand, if the reheating temperature exceeds 1250 ° C, surface flaws are likely to occur due to the scale during heating, and the care load after rolling increases, so the range is 1000 to 1250 ° C.
熱間圧延:Ar3〜Ar3+150℃の温度域における累積圧下率を25%以上,かつ圧延仕上温度Ar3以上
Ar3〜Ar3+150℃の温度域における累積圧下率が25%未満であると,再加熱オーステナイト粒の再結晶による細粒化が促進されず,また、未再結晶オーステナイトへの歪の導入が不十分となるために,冷却時に変態するフェライト粒が微細化されず,母材靭性が低下する。
Hot rolling: The cumulative rolling reduction in the temperature range of Ar 3 to Ar 3 + 150 ° C. is 25% or more, and the rolling finishing temperature Ar 3 or more, the cumulative rolling reduction in the temperature range of Ar 3 to Ar 3 + 150 ° C. is less than 25%. In addition, the recrystallization of the reheated austenite grains is not promoted by recrystallization, and the introduction of strain into the unrecrystallized austenite is insufficient. The toughness of the material decreases.
このため,Ar3〜Ar3+150℃の温度域における累積圧下率を25%以上とする。なお,板厚が70mmを超える極厚鋼板の場合には,ザク圧着のために1パスあたりの圧下率が15%以上となる圧延パスを少なくとも1パス以上確保することが望ましい。 For this reason, the cumulative rolling reduction in the temperature range of Ar 3 to Ar 3 + 150 ° C. is set to 25% or more. In the case of an extremely thick steel plate having a plate thickness exceeding 70 mm, it is desirable to secure at least one rolling pass with a reduction rate of 15% or more per pass for the zaku pressure bonding.
圧延終了温度がAr3未満の場合,変形抵抗が高くなるため,圧延荷重が増大し,圧延機への負担が大きくなる。また,厚肉材をAr3未満の圧延温度まで低下させるためには,圧延途中で待機する必要があり,生産性を大きく阻害する。このため,圧延終了温度をAr3以上とした。 When the rolling end temperature is less than Ar 3 , the deformation resistance increases, so the rolling load increases and the burden on the rolling mill increases. Moreover, in order to reduce the thick material to a rolling temperature lower than Ar 3 , it is necessary to wait in the middle of rolling, which greatly hinders productivity. Therefore, the rolling end temperature is set to Ar 3 or higher.
圧延終了後,60℃/s以下の冷却速度で冷却する。60℃/s以下の冷却速度を得るための冷却方法には空冷、加速冷却を含み、所望する機械的特性に応じて,適宜選定する。冷却速度が60℃/sを超えると,鋼板位置による温度制御が困難となり,材質ばらつきが生じる。冷却速度は板厚方向の各位置における冷却速度を平均した平均冷却速度とする。 After the end of rolling, cooling is performed at a cooling rate of 60 ° C./s or less. Cooling methods for obtaining a cooling rate of 60 ° C./s or less include air cooling and accelerated cooling, and are appropriately selected according to desired mechanical characteristics. If the cooling rate exceeds 60 ° C./s, it becomes difficult to control the temperature depending on the position of the steel sheet, resulting in material variations. The cooling rate is an average cooling rate obtained by averaging the cooling rates at the respective positions in the thickness direction.
尚、Ar3は以下の式で求めることが可能である。
Ar3=868−396C+25Si−68Mn−36Ni−25Cr−30Mo
(但し,C,Si,Mn,Ni,Cr,Moは含有量(mass%))
本発明では,鋼板を室温まで冷却した後,再加熱,焼戻し処理を施してもよい。焼戻し処理は,加熱温度を400℃以上Ac1以下で行い,靭性が向上する。Ac1を超えると強度低下を招く。
Ar 3 can be obtained by the following equation.
Ar 3 = 868-396C + 25Si-68Mn -36Ni-25Cr-30Mo
(However, C, Si, Mn, Ni, Cr, Mo content (mass%))
In the present invention, the steel sheet may be cooled to room temperature and then reheated and tempered. The tempering treatment is performed at a heating temperature of 400 ° C. or higher and Ac 1 or lower to improve toughness. If Ac 1 is exceeded, strength will be reduced.
上記した組成の鋼素材を用いて,上記した条件の熱間圧延,冷却および焼戻しを施すことにより,鋼板表面にWを含む酸化物層が形成され耐腐食性に優れるとともに,溶接熱影響部の靭性に優れた原油タンク用鋼板を容易に製造することができる.
さらに,本発明鋼は、塗装寿命を延長する効果を有しており、タンカーの原油タンク用鋼材として使用する場合、Znを含むプライマーを塗布することにより耐局部腐食性および耐全面腐食性を大きく向上させることができる。
By using the steel material having the above composition, hot rolling, cooling, and tempering under the above-described conditions, an oxide layer containing W is formed on the surface of the steel sheet, and the corrosion resistance is improved. Steel plates for crude oil tanks with excellent toughness can be easily manufactured.
Furthermore, the steel of the present invention has the effect of extending the coating life, and when used as a steel material for crude oil tanks of tankers, the application of a primer containing Zn increases the local corrosion resistance and overall corrosion resistance. Can be improved.
一般に鋼板表面はショットブラスト仕上げ後にプライマー塗装されるため、表面全体を覆うためには一定以上の塗膜厚さが必要である。Znを含むプライマーの塗布量を厚さ15μm以上にすると耐局部腐食性および耐全面腐食性が格段に向上するので好ましい。 In general, since the surface of a steel plate is coated with a primer after shot blasting, a coating thickness of a certain level or more is required to cover the entire surface. The coating amount of the primer containing Zn is preferably 15 μm or more because the local corrosion resistance and the overall corrosion resistance are remarkably improved.
耐局部腐食性および耐全面腐食性の観点からは塗布量の上限は設けないが、プライマーが厚くなると、切断性、溶接性および経済性が悪くなるため、上限としては厚さ100μmまでの範囲が好ましい。 From the standpoint of local corrosion resistance and overall corrosion resistance, there is no upper limit on the coating amount. However, as the primer becomes thicker, the cutting property, weldability and economy are worsened, so the upper limit is in the range up to 100 μm. preferable.
以上のように、本発明によれば、プライマーあるいは塗装を併用する場合においても,オイルタンクの油倉、原油を輸送するためのタンクまたは原油を貯蔵するためのタンクを構成する各種容器用鋼板として、広く安価に利用することができる。 As described above, according to the present invention, even when a primer or paint is used in combination, as a steel plate for various containers constituting an oil tank depot, a tank for transporting crude oil, or a tank for storing crude oil. Can be used widely and cheaply.
転炉−取鍋精錬−連続鋳造法で,表1に示す組成に調製された鋼素材を,種々条件の熱間圧延−加速冷却または空冷,さらには焼もどしにより厚鋼板とした。表2に熱間圧延−加速冷却または空冷,さらには焼もどし条件と得られた鋼板の板厚を示す。 Steel materials prepared in the composition shown in Table 1 by the converter-ladder refining-continuous casting method were made into thick steel plates by hot rolling under various conditions-accelerated cooling or air cooling, and further tempering. Table 2 shows hot rolling-accelerated cooling or air cooling, and further tempering conditions and the thickness of the obtained steel sheet.
得られた各厚鋼板について,板厚1/2位置からJIS4号引張試験片を採取した。なお,一部の厚鋼板については,JIS1A号全厚引張試験片を採取した。JIS Z 2241の既定に準拠して引張試験を実施し,引張特性を調査した。
About each obtained thick steel plate, the JIS4 tension test piece was extract | collected from plate |
また,得られた各厚鋼板の板厚1/4位置から,JIS Z 2202の規定に準拠してJIS4号Vノッチ衝撃試験片を採取し,JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し,−20℃における吸収エネルギー(vE−20)を求め,母材靭性を評価した.
また,得られた各厚鋼板から,継手用試験板(板厚×幅400×長さ1000(mm))を採取し、2枚を突き合わせて、FCB溶接により,溶接継手を作製した。開先形状はY開先とし、溶接入熱は100kJ/cm以上で溶接した。
In addition, JIS No. 4 V-notch impact test specimens were collected from the position of 1/4 of the thickness of each steel plate obtained in accordance with JIS Z 2202, and Charpy impact test was conducted in accordance with JIS Z 2242. The absorbed energy (vE- 20 ) at -20 ° C was calculated and the base metal toughness was evaluated.
In addition, a joint test plate (plate thickness × width 400 × length 1000 (mm)) was collected from each of the obtained thick steel plates, the two pieces were butted together, and a welded joint was produced by FCB welding. The groove shape was a Y groove, and welding was performed at a heat input of 100 kJ / cm or more.
得られた溶接継手の板厚1/4位置から,切欠き位置をボンド部とするJIS4号Vノッチ衝撃試験片を採取し,JIS Z 2242の規定に準拠して,試験温度0℃でのシャルピー衝撃試験を行って,継手ボンド部の0℃における吸収エネルギー(vE0)を求め,継手靭性を評価した。 A JIS No. 4 V-notch impact test piece with the notch position as the bond part was collected from the position of the obtained welded joint with a thickness of 1/4, and Charpy at a test temperature of 0 ° C. in accordance with the provisions of JIS Z 2242. An impact test was conducted to determine the absorbed energy (vE 0 ) at 0 ° C. of the joint bond part, and the joint toughness was evaluated.
さらに,得られた各厚鋼板から,腐食試験板(板厚×50×50(mm))を採取し、その表面に、ショットブラストを実施した後、1.無機系ジンクプライマーを塗布しないものと、2.無機系ジンクプライマー(膜厚:20μm)を塗布したものを作成し、其々に実際のタンカーから採取した原油成分を含むスラッジを均一に塗布し、腐食試験片とした。 Further, from each of the obtained thick steel plates, a corrosion test plate (plate thickness × 50 × 50 (mm)) was sampled and subjected to shot blasting on the surface. 1. An inorganic zinc primer is not applied; What coated the inorganic type zinc primer (film thickness: 20 micrometers) was created, and the sludge containing the crude oil component extract | collected from the actual tanker was apply | coated uniformly, respectively, and it was set as the corrosion test piece.
腐食試験は、これらの試験片を腐食試験装置の試験液6中に1ヶ月間浸漬して行った。図1に腐食試験装置の構成図を示す。腐食試験装置は、腐食試験槽2、恒温槽3の二重型の装置であって、腐食試験槽2には実際の原油タンク底板で生じる局部腐食と同様の局部腐食を発生させることが可能な試験液が注入されている(以下「試験液6」と称す)。
The corrosion test was performed by immersing these test pieces in the
試験液6は、ASTMD1141に規定される人工海水を試験母液とし、該試験母液に5%O2+10%H2Sの分圧比に調整した混合ガスを導入したものを使用した。混合ガスのバランス調整用の不活性ガスとして、N2ガスを用いた。
As the
該不活性ガスによって調整された前記混合ガスを「導入ガス4」と称す。試験液6の温度は、恒温槽3に入れた水7の温度を調整することにより50℃に保持した。導入ガス4が連続して供給されるため、その気泡8により試験液6は常に撹拌されている。試験後、試験片表面に生成した錆を除去し、腐食形態を目視で観察するとともにディップメーターで局部腐食深さを測定した。
The mixed gas adjusted by the inert gas is referred to as “introducing
表3に、母材の機械的特性を示す。発明例はいずれも,引張強さ490MPa以上,−20℃の吸収エネルギーvE−20が100J以上の高強度かつ高靭性の母材特性を有する。 Table 3 shows the mechanical properties of the base material. Each of the inventive examples has a high strength and high toughness base material characteristic of a tensile strength of 490 MPa or more and an absorbed energy vE- 20 of −20 ° C. of 100 J or more.
表4に,大入熱溶接継手特性および腐食試験結果を示す。発明例はいずれも,溶接入熱:100kJ/cmを超える大入熱溶接を施した場合であっても,ボンド部での0℃の吸収エネルギーvE0が100J以上と優れた溶接熱影響部靭性が得られることが確認された。 Table 4 shows the characteristics of the high heat input welded joint and the corrosion test results. In all the inventive examples, welding heat input: Even when high heat input welding exceeding 100 kJ / cm is applied, the weld heat-affected zone toughness having an absorbed energy vE 0 of 0 ° C. at the bond portion of 100 J or more is excellent. It was confirmed that
耐局部腐食性は,局部腐食の発生状況を「局部腐食なし:◎」、局部腐食が発生するが、「局部腐食深さ0.2mm未満:○」、「局部腐食深さ0.2mm以上0.6mm未満:○´」、「局部腐食深さ0.6mm以上1mm未満:△」、「局部腐食深さ1mm以上:×」として評価した。
For local corrosion resistance, the occurrence of local corrosion is “no local corrosion: ◎”, and local corrosion occurs, but “local corrosion depth is less than 0.2 mm: ○”, “local corrosion depth is 0.2 mm or more 0” Less than .6 mm: ○ '"," local corrosion depth 0.6 mm or more and less than 1 mm: Δ ", and"
発明例はいずれも,ジンクプライマーの塗布の有無によらず耐局部腐食性評価が◎または○と良好で、ジンクプライマーを塗布したものは、耐局部腐食性評価が◎で格段に向上する。本発明鋼は、無塗装状態で局部腐食が発生する場合であっても、その深さは最大で0.5mm未満に抑えられ、良好な耐局部腐食性を有するとともに、無機系ジンクプライマーの塗布により特に良好な耐局部腐食性を有することが確認された。 In all of the inventive examples, the local corrosion resistance evaluation is good as ◎ or ○ regardless of whether or not the zinc primer is applied, and the local corrosion resistance evaluation is markedly improved when the zinc primer is applied. The steel of the present invention has a maximum depth of less than 0.5 mm even when local corrosion occurs in the unpainted state, has good local corrosion resistance, and is coated with an inorganic zinc primer. As a result, it was confirmed that the film has particularly good local corrosion resistance.
一方,本発明の範囲を外れる比較例は,母材強度,母材靭性,溶接熱影響部靭性,あるいは耐局部腐食性のうち,いずれか,あるいは複数の特性が目標値を満足していない。 On the other hand, in a comparative example that is out of the scope of the present invention, one or more of the base material strength, base material toughness, weld heat affected zone toughness, or local corrosion resistance does not satisfy the target value.
1 試験片
2 腐食試験槽
3 恒温槽
4 導入ガス
5 排出ガス
6 試験液
7 水
8 気泡
1
Claims (8)
C:0.03〜0.2%,
Si:0.05〜0.8%,
Mn:0.5〜2.5%,
P:0.03%以下,
S:0.005%以下,
Al:0.005〜0.06%,
W:0.001〜0.3%,
Ti:0.005〜0.03%,
N:0.002〜0.007%,
Ceq(=C+Mn/6+(Cr+Mo+V)/5+Ni/15、但し、C,Mn,Cr,Mo,Vは含有量(mass%):0.25〜0.40%,
2.0<Ti/N<5.0を満足し,残部Feおよび不可避的不純物からなる組成を有し,鋼表面にWを含む酸化物層が形成されていることを特徴とする原油タンク用鋼。 mass%,
C: 0.03-0.2%,
Si: 0.05 to 0.8%,
Mn: 0.5 to 2.5%,
P: 0.03% or less,
S: 0.005% or less,
Al: 0.005 to 0.06%,
W: 0.001 to 0.3%,
Ti: 0.005 to 0.03%,
N: 0.002 to 0.007%,
Ceq (= C + Mn / 6 + (Cr + Mo + V) / 5 + Ni / 15, provided that C, Mn, Cr, Mo, V are contained (mass%): 0.25 to 0.40%,
For crude oil tanks satisfying 2.0 <Ti / N <5.0, having a composition comprising the balance Fe and inevitable impurities, and having an oxide layer containing W formed on the steel surface steel.
Ni:1.5%以下
Cr:1.0%以下
Mo:1.0%以下
V:0.2%以下
Nb:0.1%以下
B:0.005%以下
の1種または2種以上を含有する原油タンク用鋼。 The steel composition according to claim 1, further in mass%,
Ni: 1.5% or less Cr: 1.0% or less Mo: 1.0% or less V: 0.2% or less Nb: 0.1% or less B: One or more of 0.005% or less Contains steel for crude oil tanks.
Sn:0.005〜0.3%
Sb:0.005〜0.3%
の1種または2種以上を含有する原油タンク用鋼。 The steel composition according to claim 1 or 2, further in mass%,
Sn: 0.005-0.3%
Sb: 0.005 to 0.3%
A crude oil tank steel containing one or more of the following.
Ca:0.005%以下
REM:0.02%以下および
Mg:0.005%以下
の1種または2種以上を含有する原油タンク用鋼。 The steel composition according to any one of claims 1 to 3, further in mass%,
Steel for crude oil tanks containing one or more of Ca: 0.005% or less REM: 0.02% or less and Mg: 0.005% or less.
A crude oil tank using the steel for a crude oil tank according to claim 7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006085509A JP4687531B2 (en) | 2006-03-27 | 2006-03-27 | Steel for crude oil tank and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006085509A JP4687531B2 (en) | 2006-03-27 | 2006-03-27 | Steel for crude oil tank and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007262441A true JP2007262441A (en) | 2007-10-11 |
JP4687531B2 JP4687531B2 (en) | 2011-05-25 |
Family
ID=38635708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006085509A Active JP4687531B2 (en) | 2006-03-27 | 2006-03-27 | Steel for crude oil tank and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4687531B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007291494A (en) * | 2006-03-30 | 2007-11-08 | Jfe Steel Kk | Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank |
JP2010007109A (en) * | 2008-06-25 | 2010-01-14 | Sumitomo Metal Ind Ltd | Method for producing steel excellent in corrosion resistance and toughness in z-direction |
JP2010185108A (en) * | 2009-02-12 | 2010-08-26 | Jfe Steel Corp | Corrosion-resistant steel material for ship, and method of manufacturing the same |
WO2012005327A1 (en) * | 2010-07-09 | 2012-01-12 | 住友金属工業株式会社 | Corrosion-resistant steel material for cargo oil tank |
JP2012214871A (en) * | 2011-03-29 | 2012-11-08 | Jfe Steel Corp | Steel material with rust layer excellent in corrosion resistance |
JP2013147726A (en) * | 2012-01-23 | 2013-08-01 | Jfe Steel Corp | Corrosion resistant steel material for oil tank |
JP2013151745A (en) * | 2011-12-26 | 2013-08-08 | Jfe Steel Corp | Corrosion resistant steel for hold of coal carrier or coal/ore carrier |
JP2014001450A (en) * | 2012-05-23 | 2014-01-09 | Jfe Steel Corp | Steel for ship excellent in corrosion resistance and base metal toughness |
JP2017190522A (en) * | 2016-04-11 | 2017-10-19 | Jfeスチール株式会社 | Steel material |
CN108374121A (en) * | 2018-03-21 | 2018-08-07 | 包头钢铁(集团)有限责任公司 | One kind C110 containing rare earth steel level oil bushings and its production method |
CN114686763A (en) * | 2022-03-30 | 2022-07-01 | 鞍钢股份有限公司 | 550 MPa-grade wear-resistant corrosion-resistant steel and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04350120A (en) * | 1991-05-29 | 1992-12-04 | Kobe Steel Ltd | Production of high strength refractory steel plate for construction use |
JP2005187934A (en) * | 2003-12-01 | 2005-07-14 | Sumitomo Metal Ind Ltd | Steel having excellent fatigue characteristics, and its production method |
JP2005281842A (en) * | 2004-03-31 | 2005-10-13 | Jfe Steel Kk | Production method of low temperature service low yield ratio steel material having excellent weld zone toughness |
JP2005290479A (en) * | 2004-03-31 | 2005-10-20 | Jfe Steel Kk | Steel material for bottom plate of crude oil tank |
JP2006002211A (en) * | 2004-06-17 | 2006-01-05 | Nippon Steel Corp | Steel plate with little welding distortion and its production method |
JP2007046148A (en) * | 2005-07-15 | 2007-02-22 | Jfe Steel Kk | Corrosion resistant steel for shipbuilding |
-
2006
- 2006-03-27 JP JP2006085509A patent/JP4687531B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04350120A (en) * | 1991-05-29 | 1992-12-04 | Kobe Steel Ltd | Production of high strength refractory steel plate for construction use |
JP2005187934A (en) * | 2003-12-01 | 2005-07-14 | Sumitomo Metal Ind Ltd | Steel having excellent fatigue characteristics, and its production method |
JP2005281842A (en) * | 2004-03-31 | 2005-10-13 | Jfe Steel Kk | Production method of low temperature service low yield ratio steel material having excellent weld zone toughness |
JP2005290479A (en) * | 2004-03-31 | 2005-10-20 | Jfe Steel Kk | Steel material for bottom plate of crude oil tank |
JP2006002211A (en) * | 2004-06-17 | 2006-01-05 | Nippon Steel Corp | Steel plate with little welding distortion and its production method |
JP2007046148A (en) * | 2005-07-15 | 2007-02-22 | Jfe Steel Kk | Corrosion resistant steel for shipbuilding |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4525686B2 (en) * | 2006-03-30 | 2010-08-18 | Jfeスチール株式会社 | Corrosion resistant steel for crude oil tank and crude oil tank |
JP2007291494A (en) * | 2006-03-30 | 2007-11-08 | Jfe Steel Kk | Corrosion-resistant steel material for crude oil storage tank, and crude oil storage tank |
JP2010007109A (en) * | 2008-06-25 | 2010-01-14 | Sumitomo Metal Ind Ltd | Method for producing steel excellent in corrosion resistance and toughness in z-direction |
JP2010185108A (en) * | 2009-02-12 | 2010-08-26 | Jfe Steel Corp | Corrosion-resistant steel material for ship, and method of manufacturing the same |
WO2012005327A1 (en) * | 2010-07-09 | 2012-01-12 | 住友金属工業株式会社 | Corrosion-resistant steel material for cargo oil tank |
JP4941620B2 (en) * | 2010-07-09 | 2012-05-30 | 住友金属工業株式会社 | Corrosion resistant steel for cargo oil tanks |
CN102686760A (en) * | 2010-07-09 | 2012-09-19 | 住友金属工业株式会社 | Corrosion-resistant steel material for cargo oil tank |
JP2012214871A (en) * | 2011-03-29 | 2012-11-08 | Jfe Steel Corp | Steel material with rust layer excellent in corrosion resistance |
JP2013151745A (en) * | 2011-12-26 | 2013-08-08 | Jfe Steel Corp | Corrosion resistant steel for hold of coal carrier or coal/ore carrier |
JP2013147726A (en) * | 2012-01-23 | 2013-08-01 | Jfe Steel Corp | Corrosion resistant steel material for oil tank |
JP2014001450A (en) * | 2012-05-23 | 2014-01-09 | Jfe Steel Corp | Steel for ship excellent in corrosion resistance and base metal toughness |
JP2017190522A (en) * | 2016-04-11 | 2017-10-19 | Jfeスチール株式会社 | Steel material |
CN108374121A (en) * | 2018-03-21 | 2018-08-07 | 包头钢铁(集团)有限责任公司 | One kind C110 containing rare earth steel level oil bushings and its production method |
CN108374121B (en) * | 2018-03-21 | 2020-11-24 | 包头钢铁(集团)有限责任公司 | Rare earth-containing C110 steel-grade petroleum casing pipe and production method thereof |
CN114686763A (en) * | 2022-03-30 | 2022-07-01 | 鞍钢股份有限公司 | 550 MPa-grade wear-resistant corrosion-resistant steel and manufacturing method thereof |
CN114686763B (en) * | 2022-03-30 | 2023-01-13 | 鞍钢股份有限公司 | 550 MPa-grade wear-resistant corrosion-resistant steel |
Also Published As
Publication number | Publication date |
---|---|
JP4687531B2 (en) | 2011-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4687531B2 (en) | Steel for crude oil tank and method for producing the same | |
JP4898543B2 (en) | Steel sheet with excellent pit resistance and method for producing the same | |
US10745774B2 (en) | Ferrite-martensite dual-phase stainless steel and method of manufacturing the same | |
JP5119595B2 (en) | Corrosion resistant steel for shipbuilding | |
JP5979063B2 (en) | Method for producing marine steel with excellent corrosion resistance and base metal toughness | |
JP5861335B2 (en) | Welded joint with excellent corrosion resistance | |
WO2008084838A1 (en) | Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness | |
JP2009046750A (en) | Corrosion-resistant steel material for ship and manufacturing method therefor | |
JP5320919B2 (en) | Hot rolled shape steel for crude oil tank and method for producing the same | |
CN113227409B (en) | Welded structure and method for manufacturing same | |
JP5375246B2 (en) | Corrosion-resistant steel for crude oil tank and its manufacturing method | |
JP5453835B2 (en) | Corrosion resistant steel for ships | |
JP2010185108A (en) | Corrosion-resistant steel material for ship, and method of manufacturing the same | |
JP4968395B2 (en) | Welded joints and crude oil tanks with excellent corrosion resistance | |
JP2010043342A (en) | Weld joint for crude oil tank excellent in corrosion resistance and ductile fracture resistance | |
JP5526667B2 (en) | Hot rolled section steel for ship ballast tank with excellent corrosion resistance and method for producing the same | |
JP4577158B2 (en) | Corrosion resistant steel for crude oil tanks | |
JP5958102B2 (en) | Corrosion-resistant steel for ship ballast tank with excellent corrosion resistance and method for producing the same | |
JP6260755B1 (en) | Steel for ship ballast tank and ship | |
JP2010229526A (en) | Highly-corrosion-resistant painted steel material | |
JP2010150631A (en) | Shape steel for vessel having excellent corrosion resistance, and method for producing the same | |
JP6079074B2 (en) | Painted corrosion resistant steel for above-ground oil tanks | |
JP2011094184A (en) | Highly corrosion resistant painted steel | |
JP2011153382A (en) | Corrosion resistant steel for shipbuilding | |
JP2011162849A (en) | Zinc primer-coated corrosion resistant steel material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081021 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110118 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110131 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4687531 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140225 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |