JP2005290479A - Steel material for bottom plate of crude oil tank - Google Patents
Steel material for bottom plate of crude oil tank Download PDFInfo
- Publication number
- JP2005290479A JP2005290479A JP2004107235A JP2004107235A JP2005290479A JP 2005290479 A JP2005290479 A JP 2005290479A JP 2004107235 A JP2004107235 A JP 2004107235A JP 2004107235 A JP2004107235 A JP 2004107235A JP 2005290479 A JP2005290479 A JP 2005290479A
- Authority
- JP
- Japan
- Prior art keywords
- crude oil
- bottom plate
- steel
- oil tank
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 61
- 239000010959 steel Substances 0.000 title claims abstract description 61
- 239000010779 crude oil Substances 0.000 title claims abstract description 54
- 239000000463 material Substances 0.000 title claims abstract description 29
- 239000000126 substance Substances 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 239000000203 mixture Substances 0.000 claims abstract description 6
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 5
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 238000003860 storage Methods 0.000 claims abstract description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 14
- 229910052725 zinc Inorganic materials 0.000 claims description 14
- 239000011701 zinc Substances 0.000 claims description 14
- 229910052787 antimony Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052721 tungsten Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 230000007797 corrosion Effects 0.000 abstract description 71
- 238000005260 corrosion Methods 0.000 abstract description 71
- 239000011248 coating agent Substances 0.000 abstract description 8
- 238000000576 coating method Methods 0.000 abstract description 8
- 229910052804 chromium Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 20
- 239000007789 gas Substances 0.000 description 13
- 239000007788 liquid Substances 0.000 description 8
- 229920006395 saturated elastomer Polymers 0.000 description 6
- 239000012085 test solution Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000009467 reduction Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Abstract
Description
本発明は、オイルタンカーの油倉、原油を輸送するためタンクまたは原油を貯蔵するためのタンク(以下、まとめて「原油タンク」と総称する)の底板(以下「原油タンク底板」と総称する)に好適な原油タンク底板用鋼材、特にプライマー塗布状態で使用した場合に、原油タンク底板で発生する局部腐食を低減することができる「原油タンク底板用鋼材」に関する。なお、本発明でいう原油タンク底板用鋼材とは、厚鋼板、薄鋼板、形鋼を含むものである。 The present invention relates to an oil tanker depot, a tank for transporting crude oil, or a bottom plate for storing crude oil (hereinafter collectively referred to as “crude oil tank”) (hereinafter collectively referred to as “crude oil tank bottom plate”). In particular, the present invention relates to a “steel material for a crude oil tank bottom plate” that can reduce local corrosion occurring in the bottom plate of a crude oil tank when used in a primer-coated state. In addition, the steel material for crude oil tank bottom plates as referred to in the present invention includes thick steel plates, thin steel plates, and shaped steels.
従来、原油そのものの腐食抑制作用や原油タンクの内面に生成される保護的なフィルム(以下「原油保護フィルム」と称す)の腐食抑制作用により、原油タンクの底板に使用される鋼材に腐食は生じないと考えられていた。ところが、最近、タンク底板において鋼材にお椀型の局部腐食が発生することが明らかになった。かかる局部腐食の原因として、
(1)過剰な洗浄による原油保護フィルムの離脱、(2)原油中の硫化物の高濃度化、
(3)原油タンク内に防爆用に封入されるイナートガス(O2約5vol%、CO2約13vol%、SO2約0.01vol%、残部N2を代表組成とするエンジンの排ガス)中の、O2、CO2、SO2の高濃度化、(4)微生物の関与などの項目が挙げられているが、いずれも推定の域を出ず、未だ明確な原因は判明していない。
Conventionally, corrosion has occurred in the steel used for the bottom plate of crude oil tanks due to the corrosion inhibition action of crude oil itself and the protective action of a protective film (hereinafter referred to as “crude oil protection film”) produced on the inner surface of the crude oil tank. It was thought not. Recently, however, it has become clear that saddle-shaped local corrosion occurs in steel on the tank bottom plate. As a cause of such local corrosion,
(1) Removal of crude oil protective film due to excessive washing, (2) High concentration of sulfide in crude oil,
(3) In an inert gas (engine exhaust gas whose representative composition is approximately 2 vol. Of O 2 , approximately 13 vol% of CO 2 , approximately 0.01 vol% of SO 2 , and the balance of N 2 ) enclosed in a crude oil tank for explosion protection, Items such as high concentrations of O 2 , CO 2 , and SO 2 and (4) microbe involvement are listed, but none of them are inferred, and no clear cause has yet been found.
腐食を抑制する最も有効な方法は、鋼材表面に重塗装を施し、鋼材を腐食環境から遮断する方法であるが、原油タンクヘの塗装はその塗布面積が膨大であり、また約10年に1度は塗り替えが必要となるため、多大な初期費用および補修費用がかかること、また、重塗装では塗膜損傷部分でかえって腐食が助長されるという問題があった。 The most effective way to suppress corrosion is to coat the steel surface with heavy coating to shield the steel from the corrosive environment, but the coating on the crude oil tank has an enormous area of application, and once every 10 years. Since repainting is necessary, there is a problem that a large initial cost and repair cost are required, and in heavy coating, corrosion is promoted on the damaged part of the coating film.
一方、鋼材側からの対策としては、船舶外板、バラストタンク、カーゴオイルタンク、鉱炭船カーゴホールド等の使用環境で耐食性を有する造船用耐食鋼が提案されている。該造船用耐食鋼は、重量%で、C:0.01〜0.25%と、Si、Mn、P、Sを適正量に調整した上で、さらにCu:0.01〜2.00%、Al:0.005〜0.10%、Mg:0.0002〜0.0150%を含有するものであって、鋼材の耐食性および耐局部腐食性が向上するとしている(例えば、特許文献1参照)。
しかしながら、前記造船用耐食鋼は原油タンク底板に使用された場合、局部腐食に対する抵抗性(以下「耐局部腐食性」と称す)が、安定して十分に発揮されないという問題があった。このため、原油タンク底板に使用される場合であっても、耐局部腐食性が更に向上した鋼材の開発が要望されている。 However, when the corrosion-resistant steel for shipbuilding is used for a crude oil tank bottom plate, there is a problem that resistance to local corrosion (hereinafter referred to as “local corrosion resistance”) is not stably and sufficiently exhibited. For this reason, there is a demand for the development of a steel material that is further improved in local corrosion resistance even when used in a crude oil tank bottom plate.
本発明は上記課題を解決するためのものであり、プライマー塗布状態で使用した場合、優れた耐局部腐食性を有する、原油タンク底板用鋼材を提供することを目的とする。 An object of the present invention is to provide a steel material for a bottom plate of a crude oil tank that has excellent local corrosion resistance when used in a primer-coated state.
本発明者等は、前記課題を達成するため、まず、原油タンク底板の局部腐食に関与する因子の抽出を行い、それらの因子の組み合わせによる実験室レベルの腐食試験を行った。その結果、実際の原油タンク底板で生じるものと同じ形態の局部腐食の再現に成功し、原油タンク底板で生じる局部腐食の支配因子および腐食機構を明確にした。
すなわち、実際の原油タンク底板で発生するお椀型の局部腐食は、液中に含まれるO2およびH2Sが特に局部腐食の支配因子として働くことが明らかになった。
In order to achieve the above object, the present inventors first extracted factors involved in local corrosion of the bottom plate of the crude oil tank, and conducted a laboratory level corrosion test using a combination of these factors. As a result, we succeeded in reproducing local corrosion of the same form as that generated in the actual crude oil tank bottom plate, and clarified the controlling factors and corrosion mechanism of local corrosion occurring in the crude oil tank bottom plate.
That is, it became clear that the bowl-shaped local corrosion generated in the actual bottom plate of the crude oil tank has O 2 and H 2 S contained in the liquid particularly acting as a controlling factor of the local corrosion.
具体的には、酸素(O2)とH2S(硫化水素)とが共存し、且つ、O2分圧およびH2S分圧の両方が低い環境下(O2分圧2〜8%のO2ガスと、H2S分圧5〜20%のH2Sガスとを含む水溶液中)で生じることが明らかになった。つまり、低O2分圧および低H2S分圧の環境下で、まず鋼材表面に強固な腐食生成皮膜が形成され、この腐食生成皮膜がクロール(Cl)の存在下で部分的に破壊されて、局部腐食が発生するのである。 Specifically, oxygen (O 2 ) and H 2 S (hydrogen sulfide) coexist, and both the O 2 partial pressure and the H 2 S partial pressure are low (O 2 partial pressure 2 to 8%) and O 2 gas, it was revealed that occurs in an aqueous solution) containing the H 2 S partial pressure 5-20% of H 2 S gas. That is, in a low O 2 partial pressure and low H 2 S partial pressure environment, a strong corrosion-generated film is first formed on the steel surface, and this corrosion-generated film is partially destroyed in the presence of crawl (Cl). As a result, local corrosion occurs.
一方、O2とH2Sとが共存し、試験液中の両者の含有量が高い場合は大きな全面腐食が発生するものの、局部腐食は発生しない。
また、O2またはH2Sの一方のみ含む試験液、たとえば、O2を含みH2Sを含まない試験液(O2分圧約21%のガスのみを含んだ水溶液)、もしくはO2を含まないでH2Sを含んだ試験液(H2S分圧100%のガスのみを含んだ水溶液)中では、局部腐食は発生しない。
On the other hand, when O 2 and H 2 S coexist and both contents in the test solution are high, large overall corrosion occurs but local corrosion does not occur.
Also, the test solution containing one of O 2 or H 2 S only, for example, test solution containing no H 2 S comprises O 2 (O 2 min pressure of about 21% aqueous solution containing only the gas), or free of O 2 among laden test solution (H 2 aqueous solution containing only the S partial pressure of 100% gas) H 2 S and no local corrosion is not generated.
そこで、本発明者等は、前記低O2分圧および低H2S分圧の環境下で局部腐食の発生に及ぼす各種合金元素の影響を、鋭意実験を重ねて調べ、その結果、プライマー塗布状態で使用した場合、主にCu、NiおよびMoの含有量を適正化することにより、耐局部腐食性に優れた原油タンク底板用鋼材が得られることを見出した。 Therefore, the present inventors have investigated the influence of various alloy elements on the occurrence of local corrosion under the low O 2 partial pressure and low H 2 S partial pressure environments, and as a result, applied primer. When used in a state, it was found that a steel material for a crude oil tank bottom plate excellent in local corrosion resistance can be obtained mainly by optimizing the contents of Cu, Ni and Mo.
本発明は、前記知見に基づき、さらに検討を加えて完成されたものである。すなわち、
(1)本発明の原油タンク底板用鋼材は、プライマー塗布状態で使用する原油タンク底板用鋼材において、mass%で、C:0.001〜0.16%、Si:0.01〜1.5%、Mn:0.1〜2.5%、P:0.05%以下、S:0.01%以下、Cu:0.15〜1.4%を含み、残部がFeおよび不可避的不純物からなる組成を有し、
下記の式(1)で表されるPcmの値が0.24以下であることを特徴とする、原油の輸送タンクまたは原油の貯蔵タンクの底板に用いられる、母材および溶接部に優れた耐局部腐食性を有する原油タンク底板用鋼材。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・式(1)
ただし、元素記号はそれぞれの元素のmass%を示す。
The present invention has been completed based on the above findings and further studies. That is,
(1) The steel material for a crude oil tank bottom plate of the present invention is a steel material for a crude oil tank bottom plate used in a primer application state in mass%, C: 0.001 to 0.16%, Si: 0.01 to 1.5. %, Mn: 0.1 to 2.5%, P: 0.05% or less, S: 0.01% or less, Cu: 0.15 to 1.4%, the balance from Fe and inevitable impurities Having the composition
The Pcm value represented by the following formula (1) is 0.24 or less, and is excellent in resistance to a base material and a welded portion used for a bottom plate of a crude oil transport tank or a crude oil storage tank. Steel for bottom plate of crude oil tank that has local corrosivity.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B Formula (1)
However, an element symbol shows mass% of each element.
(2)また、前記化学成分に加えて、mass%で、Ni:0.01〜0.7%、Mo:0.001〜0.5%のうちのいずれか1種または2種を含むことを特徴とする原油タンク底板用鋼材。 (2) Moreover, in addition to the chemical component, it may contain at least one of Ni: 0.01 to 0.7% and Mo: 0.001 to 0.5% in mass%. Steel material for crude oil tank bottom plate.
(3)また、更に前記(1)または(2)の化学成分に加えて、さらに、mass%で、Al:0.005〜0.5%、Sn:0.005〜0.3%、Sb:0.005〜0.3%、Nb:0.005〜0.1%、V:0.005〜0.1%、Ti:0.005〜0.1%、W:0.001〜0.5%、B:0.01%以下のうち、いずれか1種または2種以上を含むことを特徴とする原油タンク底板用鋼材。 (3) Further, in addition to the chemical component of (1) or (2), further, in mass%, Al: 0.005 to 0.5%, Sn: 0.005 to 0.3%, Sb : 0.005-0.3%, Nb: 0.005-0.1%, V: 0.005-0.1%, Ti: 0.005-0.1%, W: 0.001-0 .5%, B: Steel material for crude oil tank bottom plate characterized by containing one or more of 0.01% or less.
(4)また、前記化学成分(1)、(2)乃至(3)の何れかの鋼材に、さらに、塗布するジンクプライマーの厚さが15μ以上であることを特徴とする原油タンク底板用鋼材。 (4) Further, the steel material for a crude oil tank bottom plate, wherein the thickness of the zinc primer applied to the steel material of any one of the chemical components (1), (2) to (3) is 15 μm or more .
本発明の原油タンク底板用鋼材の化学組成限定理由について説明する。なお、以下、mass%は、単に%と記す。 The reason for limiting the chemical composition of the steel plate for crude oil tank bottom plate of the present invention will be described. Hereinafter, mass% is simply referred to as%.
[C:0.001〜0.16%]
Cは、鋼材の強度を増加させる元素であり、本発明では所望の強度を得るために、0.001%以上の含有を必要とする。一方、0.16%を超える含有は、溶接性および溶接熱影響部の靭性を劣化させる。このため、Cは0.001〜0.16%の範囲に限定した。なお、強度、靭性の観点から好ましくは0.01〜0.15%である。
[C: 0.001 to 0.16%]
C is an element that increases the strength of the steel material. In the present invention, it is necessary to contain 0.001% or more in order to obtain a desired strength. On the other hand, the content exceeding 0.16% deteriorates the weldability and the toughness of the weld heat affected zone. For this reason, C was limited to 0.001 to 0.16% of range. From the viewpoint of strength and toughness, it is preferably 0.01 to 0.15%.
[Si:0.01〜1.5%]
Siは、脱酸剤として作用するとともに、強度を増加させる元素であり、本発明では0.01%以上の含有を必要とするが、1.5%を超える含有は、鋼の靭性を劣化させる。このため、Siは0.01〜1.5%の範囲に限定した.
[Si: 0.01 to 1.5%]
Si is an element that acts as a deoxidizer and increases the strength. In the present invention, it is necessary to contain 0.01% or more, but the content exceeding 1.5% deteriorates the toughness of steel. . For this reason, Si was limited to the range of 0.01 to 1.5%.
[Mn:0.1〜2.5%]
Mnは、鋼材の強度を増加させる元素であり、本発明では所望の強度を得るために、0.1%以上の含有を必要とする。一方、2.5%を超えるような含有は、鋼の靭性および溶接性を低下させる。このため、Mnは0.1〜2.5%の範囲に限定した。なお、好ましくは0.5〜1.5%、より好ましくは0.8〜1.2%である。
[Mn: 0.1 to 2.5%]
Mn is an element that increases the strength of the steel material, and in the present invention, it is necessary to contain 0.1% or more in order to obtain a desired strength. On the other hand, the content exceeding 2.5% lowers the toughness and weldability of steel. For this reason, Mn was limited to the range of 0.1 to 2.5%. In addition, Preferably it is 0.5 to 1.5%, More preferably, it is 0.8 to 1.2%.
[P:0.05%以下]
Pは、粒界に偏析して鋼の靭性を低下させる有害な元素であり、できるだけ低減するのが好ましいが、0.05%を超えて含有すると靭性が顆著に低下する。このため、Pは0.05%以下に限定した。なお、0.005%未満の低減は製造コストの増大を招くので、Pは0.005〜0.05%とするのが好ましい。
[P: 0.05% or less]
P is a harmful element that segregates at the grain boundaries and lowers the toughness of the steel, and is preferably reduced as much as possible, but if it exceeds 0.05%, the toughness significantly decreases. For this reason, P was limited to 0.05% or less. In addition, since the reduction of less than 0.005% causes an increase in manufacturing cost, P is preferably 0.005 to 0.05%.
[S:0.01%以下]
Sは、非金属介在物のMnSを形成して局部腐食の起点になって耐局部腐食性を低下させる有害な元素であり、できるだけ低減するのが好ましいが、0.01%を越える含有は耐局部腐食性の顕著な低下を招く。このため、Sは0.01%以下に限定した。なお、0.003%未満の低減は製造コストの増大を招くので、Sは0.003〜0.01%とするのが好ましい。
[S: 0.01% or less]
S is a harmful element which forms MnS of non-metallic inclusions and becomes a starting point of local corrosion and lowers the local corrosion resistance, and is preferably reduced as much as possible. This causes a significant decrease in local corrosivity. For this reason, S was limited to 0.01% or less. In addition, since reduction of less than 0.003% causes increase in manufacturing cost, S is preferably 0.003 to 0.01%.
[Cu:0.15〜1.4%]
Cuは局部腐食の成長を抑制するとともに、プライマー併用時に局部腐食の発生を抑制する作用があり、必要に応じて含有することができる。しかし、0.15%よりも少ないと効果がなく、1.4%を越えると効果が飽和するので、Cuは0.15〜1.4%の範囲に限定した。
[Cu: 0.15-1.4%]
Cu suppresses the growth of local corrosion and has the effect of suppressing the occurrence of local corrosion when used in combination with a primer, and can be contained as necessary. However, if it is less than 0.15%, there is no effect, and if it exceeds 1.4%, the effect is saturated, so Cu is limited to the range of 0.15 to 1.4%.
[Ni:0.01〜0.7%]
Niは、低温靭性を向上させるとともに、プライマー併用時に鋼材表面に形成される腐食生成物を緻密化して保護性を強化する作用があり、必要に応じて添加することができる。0.01%以上含まれると酸性環境における腐食量低減効果が期待できるが、0.7%を超えるとその効果が飽和するとともにコスト上昇となるため、Niは0.01〜0.7%の範囲に限定した。
[Ni: 0.01 to 0.7%]
Ni improves the low-temperature toughness and has the effect of densifying the corrosion products formed on the surface of the steel material when used in combination with the primer to strengthen the protection, and can be added as necessary. If 0.01% or more is included, the effect of reducing the amount of corrosion in an acidic environment can be expected, but if it exceeds 0.7%, the effect is saturated and the cost increases, so Ni is 0.01 to 0.7%. Limited to range.
[Mo:0.001〜0.5%]
Moは、CuおよびNiと共に添加して耐局部腐食性を向上させるとともに、プライマー併用時に鋼材表面に形成される腐食生成物を緻密化して保護性を強化する作用があり、必要に応じて添加することができる。0.001%以上含まれると酸性環境における腐食量低減効果が期待できるが、0.5%を超えるとその効果が飽和するため、
Moは0.001〜0.5%の範囲に限定した。
[Mo: 0.001 to 0.5%]
Mo is added together with Cu and Ni to improve local corrosion resistance, and has the effect of densifying the corrosion products formed on the surface of the steel material when the primer is used together to strengthen the protection, and is added as necessary. be able to. If 0.001% or more is included, the corrosion amount reduction effect in an acidic environment can be expected, but if it exceeds 0.5%, the effect is saturated.
Mo was limited to the range of 0.001 to 0.5%.
[Al:0.005〜0.5%]
Alは、脱酸剤として作用する元素であり、本発明では0.005%以上の含有を必要とする.一方、0.5%を超えて含有すると、鋼の靭性が低下する.このため、Alは0.005〜0.5%の範囲に限定した.なお、好ましくは、0.01〜0.05%である。
[Al: 0.005 to 0.5%]
Al is an element that acts as a deoxidizing agent, and in the present invention, it is necessary to contain 0.005% or more. On the other hand, if the content exceeds 0.5%, the toughness of the steel decreases. For this reason, Al was limited to the range of 0.005 to 0.5%. In addition, Preferably, it is 0.01 to 0.05%.
[Sn:0.005〜0.3%]
Snの添加は、耐食性の向上に有効である.しかし、0.005%以下の添加では効果がなく、0.3%以上の添加では効果が飽和するので、Snは、0.005〜0.3%に限定した。
[Sn: 0.005-0.3%]
The addition of Sn is effective for improving the corrosion resistance. However, the addition of 0.005% or less has no effect, and the addition of 0.3% or more saturates the effect, so Sn was limited to 0.005 to 0.3%.
[Sb:0.005〜0.3%]
Sbの添加は、耐食性の向上に有効である.しかし、0.005%以下の添加では効果がなく、0.3%以上の添加では加工性が劣化するため、Sbは、0.005〜0.3%に限定した。
[Sb: 0.005 to 0.3%]
The addition of Sb is effective for improving the corrosion resistance. However, when 0.005% or less is added, there is no effect, and when 0.3% or more is added, workability deteriorates, so Sb is limited to 0.005 to 0.3%.
[Nb:0.005〜0.1%]
Nbは、必要に応じて、強度向上を目的に添加する元素であるが、0.005%以下では強度向上への効果がなく、0.1%以上では靭性が劣化するため、Nbは、0.005〜0.1%に限定した。
[Nb: 0.005 to 0.1%]
Nb is an element added for the purpose of improving the strength as required. However, Nb is 0% because 0.005% or less has no effect on improving strength, and 0.1% or more deteriorates toughness. Limited to 0.005 to 0.1%.
[V:0.005〜0.1%]
Vは、必要に応じて、強度向上を目的に添加する元素であるが、0.005%以下では強度向上への効果がなく、0.1%以上では靭性が劣化するため、Vは、0.005〜0.1%に限定した。
[V: 0.005 to 0.1%]
V is an element added for the purpose of improving the strength as necessary. However, if 0.005% or less, there is no effect on improving the strength, and if 0.1% or more, the toughness deteriorates. Limited to 0.005 to 0.1%.
[Ti:0.005〜0.1%]
Tiは、必要に応じて、強度および靭性の向上を目的に添加する元素であるが、0.005%以下では効果がなく、0.1%以上では効果が飽和するため、Tiは、0.005〜0.1%に限定した。
[Ti: 0.005 to 0.1%]
Ti is an element added for the purpose of improving strength and toughness as necessary. However, Ti is not effective at 0.005% or less, and the effect is saturated at 0.1% or more. It was limited to 005 to 0.1%.
[W:0.001〜0.5%]
Wは、耐局部腐食性を向上させる作用があり、必要に応じて添加することができる.0.001%以上含まれると酸性環境における腐食量低減効果が期待できるが、0.5%を超えるとその効果が飽和するため、Wは0.001〜0.5%の範囲に限定した。
[W: 0.001 to 0.5%]
W has the effect of improving local corrosion resistance, and can be added as necessary. If 0.001% or more is included, the effect of reducing the corrosion amount in an acidic environment can be expected, but if it exceeds 0.5%, the effect is saturated, so W is limited to a range of 0.001 to 0.5%.
[B:0.01%以下]
Bは、必要に応じて、強度向上を目的に添加する元素であるが、0.01%以上では靭性が劣化するため、Bは、0.01%以下に限定した.
本発明の鋼材では、上記した成分以外の残部はFeおよび不可避的不純物である。なお、不可避的不純物としては、Cr:0.05%以下、N:0.007%以下、0:0.008%以下が許容できる。
[B: 0.01% or less]
B is an element added for the purpose of improving the strength as necessary. However, since the toughness deteriorates at 0.01% or more, B is limited to 0.01% or less.
In the steel material of the present invention, the balance other than the above components is Fe and inevitable impurities. Inevitable impurities include Cr: 0.05% or less, N: 0.007% or less, and 0: 0.008% or less.
[Pcm値:0.24以下]
以上の各元素に対する制限を設けたうえで、
Pcm=C+Si/30+Mn/20+Cr/20+Cu/20+Ni/60+Mo/15+V/10+5B・・・式(1)
で表されるPcm値について、0.24以下と規定する。これは溶接割れ感受性を示す特性値であり、この値が0.24を超えると溶接時の低温割れ発生率が著しく高くなるため、0.24以下に保持することが必要である。
[Pcm value: 0.24 or less]
With restrictions on each of the above elements,
Pcm = C + Si / 30 + Mn / 20 + Cr / 20 + Cu / 20 + Ni / 60 + Mo / 15 + V / 10 + 5B Formula (1)
Is defined as 0.24 or less. This is a characteristic value indicating the sensitivity to weld cracking. If this value exceeds 0.24, the rate of occurrence of low-temperature cracking during welding becomes extremely high, so it is necessary to keep it below 0.24.
本発明における化学成分の内、上記の化学成分以外の残部が実質的にFeである。ここで、「残部が実質的にFeである」とは、本発明の作用効果を無くさない限り、不可避的不純物をはじめ、他の微量元素を含有するものが本発明の範囲に含まれ得ることを意味する。たとえば、不可避的不純物として、Cr:0.05%以下、N:0.007%以下、0:0.008%以下が許容できる。 Of the chemical components in the present invention, the balance other than the chemical components is substantially Fe. Here, “the balance is substantially Fe” means that, as long as the effects of the present invention are not lost, those containing inevitable impurities and other trace elements can be included in the scope of the present invention. Means. For example, Cr: 0.05% or less, N: 0.007% or less, and 0: 0.008% or less are acceptable as inevitable impurities.
上記の化学成分の鋼は、通常の鋼と同様の方法で製造できる。例えば、鋼の溶製では、転炉等で主要5元素C,Si,Mn,P,Sを発明の範囲に調節するとともに、必要に応じてその他の合金元素を添加する。 The steel having the above chemical components can be produced in the same manner as ordinary steel. For example, in steel melting, the main five elements C, Si, Mn, P, and S are adjusted to the scope of the invention by a converter or the like, and other alloy elements are added as necessary.
その後、連続鋳造等により得られた鋳片をそのままあるいは冷却後、圧延を行う。圧延条件については、耐食鋼としては特に条件を問わないが、機械的特性の観点からは適切な圧下比を確保する必要がある。
圧延の際、熱間圧延後の冷却速度を制御すると、引張強さ490N/mm2級以上の高強度鋼材とすることができる。例えば、熱間圧延の仕上げ温度を750℃以上とし、その後2℃/sec以上の冷却速度で600℃以下まで冷却する。仕上げ温度が750℃未満では変形抵抗が大きくなり形状不良が発生しやすくなるため好ましくない。冷却速度が2℃/sec未満もしくは冷却停止温度が600℃を超える場合には、490N/mm2級以上の引張強さが得られない。
Thereafter, the slab obtained by continuous casting or the like is rolled as it is or after cooling. The rolling conditions are not particularly limited as the corrosion resistant steel, but it is necessary to ensure an appropriate reduction ratio from the viewpoint of mechanical properties.
By controlling the cooling rate after hot rolling during rolling, a high-strength steel material having a tensile strength of 490 N / mm 2 or higher can be obtained. For example, the hot rolling finishing temperature is set to 750 ° C. or higher, and then cooled to 600 ° C. or lower at a cooling rate of 2 ° C./sec or higher. If the finishing temperature is less than 750 ° C., deformation resistance increases and shape defects tend to occur. If the cooling rate is less than 2 ° C / sec or the cooling stop temperature exceeds 600 ° C, a tensile strength of 490 N / mm class 2 or higher cannot be obtained.
ジンクプライマーを塗布することにより耐孔食性が向上する。塗布量を15μm以上にすると耐孔食性が格段に向上するので好ましい。耐孔食性の点からは上限は設けないが、ジンクプライマーが厚くなると効果が飽和するとともに、切断性や経済性が悪くなるため上限は100μmの範囲が好ましい。 Pitting corrosion resistance is improved by applying a zinc primer. A coating amount of 15 μm or more is preferable because the pitting corrosion resistance is remarkably improved. From the viewpoint of pitting corrosion resistance, an upper limit is not provided, but when the zinc primer is thick, the effect is saturated, and the cutting property and economical efficiency are deteriorated, so the upper limit is preferably in the range of 100 μm.
[腐食試験]
図1は、本発明の実施形態に係る原油タンク底板用鋼材の耐局部腐食性を確認するために用いた腐食試験装置の構成図である。図1において、腐食試験装置は、腐食試験槽2、恒温槽3の二重型の装置であって、腐食試験槽2には実際の原油タンク底板で生じる局部腐食と同様の局部腐食を発生することが可能な試験液が注入されている(以下「試験液6」と称す)。
[Corrosion test]
FIG. 1 is a configuration diagram of a corrosion test apparatus used for confirming local corrosion resistance of a steel material for a bottom plate of a crude oil tank according to an embodiment of the present invention. In FIG. 1, the corrosion test apparatus is a double type apparatus of a corrosion test tank 2 and a
試験液6は、ASTMDl141に規定される人工海水を試験母液とし、該試験母液に5%O2+10%H2Sの分圧比に調整した混合ガスを導入したものを使用した。混合ガスのバランス調整用の不活性ガスとして、N2ガスを用いた。該不活性ガスによって調整された前記混合ガスを導入ガス4と称す。
また、試験液6の温度は、恒温槽3に入れた水7の温度を調整することにより50℃に保持した。
As the
Moreover, the temperature of the
表1に示す化学成分を有する溶鋼1〜47を転炉で溶製し、連続鋳造法により厚さ200mmのスラブとした。これらスラブを、1200℃に加熱し、仕上げ圧延終了温度800℃の熱間圧延を施し、15mm厚の鋼板とした。溶鋼1〜47に対応した鋼板を、それぞれ鋼板1〜47と称す。
そして、鋼板1〜47(それぞれの化学成分を有する)から試験片1〜47(15mm厚×50mm幅×50mm長さ)を切り出した。切り出した試験片1〜47について溶接性の評価を行った。その結果を表1に合わせて示す。鋼板の成分が、Pcm値0.24以下のものは溶接時に割れが生じずに溶接性が良好である。
Then,
また、溶接性の評価に用いた試験片No.1〜47から本発明の化学成分およびPcmの式を満足する(0.24以下)試験片である鋼板No.2、7、16、21、23、28、34、37、39および43の試験片表面に対し、無機系ジンクプライマーを塗布しないものと、無機系ジンクプライマーの厚さを3種類に変更して塗布したものを作成した。
そして、これらの試験片を腐食試験装置の試験液6中に1ヶ月間浸漬する腐食試験を行った。このとき、導入ガス4が連続して供給されるから、試験液6は静止していない。そして、試験後、試験片表面に生成した錆を除去し、腐食形態を目視で観察するとともにディップメーターで局部腐食深さを測定した。それらの結果を表2に示す。
In addition, the test piece No. used for the evaluation of weldability was used. 1 to 47, steel plate No. 1 which is a test piece satisfying the chemical composition of the present invention and the Pcm formula (0.24 or less). Change the thickness of the inorganic zinc primer to 3 types without applying the inorganic zinc primer and the surface of the test pieces of 2, 7, 16, 21, 23, 28, 34, 37, 39 and 43. A coated one was created.
And the corrosion test which immerses these test pieces in the
表2において、局部腐食の発生状況を孔食発生なしを◎、孔食が発生するが、孔食深さが0.5mm未満のものを○、孔食深さが1mm以上を×として、評価した。
すなわち、本発明の原油タンク底板用鋼材で無機系ジンクプライマーを塗布したものは耐孔食性評価が○以上で良好である。また、15μ以上塗布をしたものは耐孔食性評価が◎で格段向上する。それに比較して、無機系ジンクプライマーを塗布していないものは×で耐孔食性に劣る。よって、本発明鋼は、無機系ジンクプライマーの塗布により良好な耐局部腐食性を具備することが確認されている。
一方、さらに、比較鋼である鋼板成分(試験片の化学成分に同じ)としてCuを含まれない鋼板No.37、39および43は無機系ジンクプライマーを塗布しているにもかかわらず、×で耐孔食性が劣ることから、無機系ジンクプライマーの塗布による耐局部腐食性が認められていない。
In Table 2, the occurrence of local corrosion was evaluated as ◎ when no pitting occurred, pitting occurred, ○ when the pitting depth was less than 0.5 mm, and x when the pitting depth was 1 mm or more. did.
That is, the steel plate for crude oil tank bottom plate according to the present invention to which an inorganic zinc primer is applied has a good pitting corrosion resistance evaluation of ◯ or more. In addition, when the coating is 15 μm or more, the pitting corrosion resistance evaluation is marked by “◎” and is markedly improved. Compared with it, the thing which has not apply | coated the inorganic type zinc primer is inferior to pitting corrosion resistance by x. Therefore, it has been confirmed that the steel of the present invention has good local corrosion resistance by applying an inorganic zinc primer.
On the other hand, steel plate No. which does not contain Cu as a steel plate component (same as the chemical component of the test piece) as a comparative steel is also provided. Although No. 37, 39 and 43 are coated with an inorganic zinc primer, the pitting corrosion resistance is inferior with x, and therefore local corrosion resistance due to coating of the inorganic zinc primer is not recognized.
以上から、本発明の原油タンク底板用鋼材に無機系ジンクプライマーを塗布したものには優れた耐局部腐食性が認められ、局部腐食が発生する場合であってもその深さは最高0.5mm以下に抑えれていることがわかる。一方、無機系ジンクプラ-マーを塗布しないものは、1mm以上の深さの局部腐食発生が見られる。よって、本発明の原油タンク底板用鋼材は、無機系ジンクプライマーとの併用によって耐局部腐食性が向上していると言える。 From the above, excellent local corrosion resistance is recognized in the steel plate for crude oil tank bottom plate of the present invention coated with inorganic zinc primer, and even when local corrosion occurs, the depth is 0.5 mm at the maximum. It turns out that it is suppressed to the following. On the other hand, when the inorganic zinc polymer is not applied, local corrosion at a depth of 1 mm or more is observed. Therefore, it can be said that the local corrosion resistance of the steel for crude oil tank bottom plate of the present invention is improved by the combined use with the inorganic zinc primer.
以上のように本発明によれば、オイルタンカーの油倉、原油を輸送するためタンクまたは原油を貯蔵するためのタンク等を構成する各種容器の底板(プライマーを併用している)として、広く安価に利用することができる。 As described above, according to the present invention, it is widely inexpensive as an oil tanker depot, a tank for transporting crude oil or a tank for storing crude oil, etc. Can be used.
1:試験片
2:腐食試験槽
3:恒温槽
4:導入ガス
5:排出ガス
6:試験液
7:水
1: Test piece 2: Corrosion test tank 3: Constant temperature bath 4: Introduced gas 5: Exhaust gas 6: Test liquid 7: Water
Claims (4)
下記の式(1)で表されるPcmの値が0.24以下であることを特徴とする、原油の輸送タンクまたは原油の貯蔵タンクの底板に用いられる、母材および溶接部に優れた耐局部腐食性を有する原油タンク底板用鋼材。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・式(1)
ただし、元素記号はそれぞれの元素のmass%を示す。 In the steel material for the bottom plate of the crude oil tank used in the primer application state, as chemical components, mass%, C: 0.001 to 0.16%, Si: 0.01 to 1.5%, Mn: 0.1 to 2 0.5%, P: 0.05% or less, S: 0.01% or less, Cu: 0.15 to 1.4%, the balance is composed of Fe and inevitable impurities,
The Pcm value represented by the following formula (1) is 0.24 or less, and is excellent in resistance to a base material and a welded portion used for a bottom plate of a crude oil transport tank or a crude oil storage tank. Steel for bottom plate of crude oil tank that has local corrosivity.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B Formula (1)
However, an element symbol shows mass% of each element.
下記の式(1)で表されるPcmの値が0.24以下であることを特徴とする、原油の輸送タンクまたは原油の貯蔵タンクの底板に用いられる、母材および溶接部に優れた耐局部腐食性を有する原油タンク底板用鋼材。
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B ・・・式(1)
ただし、元素記号はそれぞれの元素のmass%を示す。 In addition to the chemical component according to claim 1, in mass%, Ni: 0.01 to 0.7%, Mo: any one or two of 0.001 to 0.5%, The balance has a composition consisting of Fe and inevitable impurities,
The Pcm value represented by the following formula (1) is 0.24 or less, and is excellent in resistance to a base material and a welded portion used for a bottom plate of a crude oil transport tank or a crude oil storage tank. Steel for bottom plate of crude oil tank that has local corrosivity.
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B Formula (1)
However, an element symbol shows mass% of each element.
Furthermore, the steel primer for crude oil tank bottom plates in any one of Claims 1 thru | or 3 characterized by the thickness of the zinc primer to apply | coat 15 micrometers or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004107235A JP4506244B2 (en) | 2004-03-31 | 2004-03-31 | Steel for bottom plate of crude oil tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004107235A JP4506244B2 (en) | 2004-03-31 | 2004-03-31 | Steel for bottom plate of crude oil tank |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005290479A true JP2005290479A (en) | 2005-10-20 |
JP2005290479A5 JP2005290479A5 (en) | 2007-05-17 |
JP4506244B2 JP4506244B2 (en) | 2010-07-21 |
Family
ID=35323746
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004107235A Expired - Lifetime JP4506244B2 (en) | 2004-03-31 | 2004-03-31 | Steel for bottom plate of crude oil tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4506244B2 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007262555A (en) * | 2006-03-30 | 2007-10-11 | Sumitomo Metal Ind Ltd | Corrosion resistant steel for hold of coal/ore carrying vessel |
JP2007262441A (en) * | 2006-03-27 | 2007-10-11 | Jfe Steel Kk | Steel for crude oil tank and its production method |
JP2009046749A (en) * | 2007-08-22 | 2009-03-05 | Jfe Steel Kk | High-strength corrosion-resistant steel material for ship and manufacturing method therefor |
JP2013001932A (en) * | 2011-06-15 | 2013-01-07 | Jfe Steel Corp | Corrosion-resistant steel for hold of coal carrier or coal/ore carrier |
JP2013028853A (en) * | 2011-07-29 | 2013-02-07 | Kobe Steel Ltd | Corrosion-resistant steel material for bulk-carrier and hold of bulk-carrier |
JP2013151741A (en) * | 2011-12-26 | 2013-08-08 | Jfe Steel Corp | Corrosion resistant steel for hold of coal carrier or coal/ore carrier |
JP2014111806A (en) * | 2012-12-05 | 2014-06-19 | Jfe Steel Corp | Steel material having excellent alcohol corrosion resistance |
WO2015087531A1 (en) * | 2013-12-12 | 2015-06-18 | Jfeスチール株式会社 | Steel for crude oil tank and crude oil tank |
WO2015087532A1 (en) * | 2013-12-12 | 2015-06-18 | Jfeスチール株式会社 | Steel for crude oil tank and crude oil tank |
JP2015113506A (en) * | 2013-12-12 | 2015-06-22 | Jfeスチール株式会社 | Steel material for crude oil tank excellent in corrosion resistance and crude oil tank |
JP2016027198A (en) * | 2014-06-26 | 2016-02-18 | Jfeスチール株式会社 | Corrosion resistant steel for coal ship and ship hold for coal and ore |
JP2017190522A (en) * | 2016-04-11 | 2017-10-19 | Jfeスチール株式会社 | Steel material |
CN107653423A (en) * | 2017-08-31 | 2018-02-02 | 武汉钢铁有限公司 | The water of resistance to coal erosion corrosion steel plate and its manufacture method for jimmy |
JP2018040031A (en) * | 2016-09-06 | 2018-03-15 | Jfeスチール株式会社 | Steel material for structure excellent in coating durability and structure |
JP2022511465A (en) * | 2018-11-30 | 2022-01-31 | ポスコ | Steel sheet having corrosion resistance in a combined condensation environment of sulfuric acid and sulfuric acid / hydrochloric acid and its manufacturing method |
CN114686763A (en) * | 2022-03-30 | 2022-07-01 | 鞍钢股份有限公司 | 550 MPa-grade wear-resistant corrosion-resistant steel and manufacturing method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56102974A (en) * | 1980-01-22 | 1981-08-17 | Nippon Steel Corp | Method of coating anticorrosive primer for steel article |
JPH10306341A (en) * | 1997-03-06 | 1998-11-17 | Nippon Steel Corp | Steel for high heat input welding excellent in electric corrosion protection characteristic and steel structure thereof |
JP2001214236A (en) * | 2000-01-31 | 2001-08-07 | Nippon Steel Corp | Corrosion resistant steel for crude oil and heavy oil storage speed |
JP2002012940A (en) * | 2000-04-25 | 2002-01-15 | Nkk Corp | Corrosion resistive steel for tank loading oil and its production method |
JP2003105487A (en) * | 2001-09-28 | 2003-04-09 | Nkk Corp | Corrosion resistant steel sheet for tank having excellent corrosion resistance in weld zone, and welding method therefor |
JP2004204344A (en) * | 2002-06-19 | 2004-07-22 | Nippon Steel Corp | Steel for crude oil tank, its production method, crude oil tank and its corrosion prevention method |
-
2004
- 2004-03-31 JP JP2004107235A patent/JP4506244B2/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56102974A (en) * | 1980-01-22 | 1981-08-17 | Nippon Steel Corp | Method of coating anticorrosive primer for steel article |
JPH10306341A (en) * | 1997-03-06 | 1998-11-17 | Nippon Steel Corp | Steel for high heat input welding excellent in electric corrosion protection characteristic and steel structure thereof |
JP2001214236A (en) * | 2000-01-31 | 2001-08-07 | Nippon Steel Corp | Corrosion resistant steel for crude oil and heavy oil storage speed |
JP2002012940A (en) * | 2000-04-25 | 2002-01-15 | Nkk Corp | Corrosion resistive steel for tank loading oil and its production method |
JP2003105487A (en) * | 2001-09-28 | 2003-04-09 | Nkk Corp | Corrosion resistant steel sheet for tank having excellent corrosion resistance in weld zone, and welding method therefor |
JP2004204344A (en) * | 2002-06-19 | 2004-07-22 | Nippon Steel Corp | Steel for crude oil tank, its production method, crude oil tank and its corrosion prevention method |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007262441A (en) * | 2006-03-27 | 2007-10-11 | Jfe Steel Kk | Steel for crude oil tank and its production method |
JP4687531B2 (en) * | 2006-03-27 | 2011-05-25 | Jfeスチール株式会社 | Steel for crude oil tank and method for producing the same |
JP2007262555A (en) * | 2006-03-30 | 2007-10-11 | Sumitomo Metal Ind Ltd | Corrosion resistant steel for hold of coal/ore carrying vessel |
JP4518036B2 (en) * | 2006-03-30 | 2010-08-04 | 住友金属工業株式会社 | Corrosion resistant steel for holding coal and ore carrier |
JP2009046749A (en) * | 2007-08-22 | 2009-03-05 | Jfe Steel Kk | High-strength corrosion-resistant steel material for ship and manufacturing method therefor |
JP2013001932A (en) * | 2011-06-15 | 2013-01-07 | Jfe Steel Corp | Corrosion-resistant steel for hold of coal carrier or coal/ore carrier |
JP2013028853A (en) * | 2011-07-29 | 2013-02-07 | Kobe Steel Ltd | Corrosion-resistant steel material for bulk-carrier and hold of bulk-carrier |
JP2013151741A (en) * | 2011-12-26 | 2013-08-08 | Jfe Steel Corp | Corrosion resistant steel for hold of coal carrier or coal/ore carrier |
JP2014111806A (en) * | 2012-12-05 | 2014-06-19 | Jfe Steel Corp | Steel material having excellent alcohol corrosion resistance |
JP2015113506A (en) * | 2013-12-12 | 2015-06-22 | Jfeスチール株式会社 | Steel material for crude oil tank excellent in corrosion resistance and crude oil tank |
KR101786409B1 (en) * | 2013-12-12 | 2017-10-16 | 제이에프이 스틸 가부시키가이샤 | Steel for crude oil tank and crude oil tank |
JP2015113507A (en) * | 2013-12-12 | 2015-06-22 | Jfeスチール株式会社 | Steel material for crude oil tank excellent in corrosion resistance and crude oil tank |
WO2015087531A1 (en) * | 2013-12-12 | 2015-06-18 | Jfeスチール株式会社 | Steel for crude oil tank and crude oil tank |
KR101786413B1 (en) * | 2013-12-12 | 2017-10-17 | 제이에프이 스틸 가부시키가이샤 | Steel for crude oil tank and crude oil tank |
CN105745347A (en) * | 2013-12-12 | 2016-07-06 | 杰富意钢铁株式会社 | Steel for crude oil tank and crude oil tank |
CN105793454A (en) * | 2013-12-12 | 2016-07-20 | 杰富意钢铁株式会社 | Steel for crude oil tank and crude oil tank |
TWI563100B (en) * | 2013-12-12 | 2016-12-21 | Jfe Steel Corp | |
JPWO2015087531A1 (en) * | 2013-12-12 | 2017-03-16 | Jfeスチール株式会社 | Steel for crude oil tank and crude oil tank |
WO2015087532A1 (en) * | 2013-12-12 | 2015-06-18 | Jfeスチール株式会社 | Steel for crude oil tank and crude oil tank |
JP2016027198A (en) * | 2014-06-26 | 2016-02-18 | Jfeスチール株式会社 | Corrosion resistant steel for coal ship and ship hold for coal and ore |
JP2017190522A (en) * | 2016-04-11 | 2017-10-19 | Jfeスチール株式会社 | Steel material |
JP2018040031A (en) * | 2016-09-06 | 2018-03-15 | Jfeスチール株式会社 | Steel material for structure excellent in coating durability and structure |
CN107653423A (en) * | 2017-08-31 | 2018-02-02 | 武汉钢铁有限公司 | The water of resistance to coal erosion corrosion steel plate and its manufacture method for jimmy |
JP2022511465A (en) * | 2018-11-30 | 2022-01-31 | ポスコ | Steel sheet having corrosion resistance in a combined condensation environment of sulfuric acid and sulfuric acid / hydrochloric acid and its manufacturing method |
JP7333399B2 (en) | 2018-11-30 | 2023-08-24 | ポスコ カンパニー リミテッド | Steel sheet having corrosion resistance in sulfuric acid and sulfuric acid/hydrochloric acid complex condensed environment and method for manufacturing the same |
CN114686763A (en) * | 2022-03-30 | 2022-07-01 | 鞍钢股份有限公司 | 550 MPa-grade wear-resistant corrosion-resistant steel and manufacturing method thereof |
CN114686763B (en) * | 2022-03-30 | 2023-01-13 | 鞍钢股份有限公司 | 550 MPa-grade wear-resistant corrosion-resistant steel |
Also Published As
Publication number | Publication date |
---|---|
JP4506244B2 (en) | 2010-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4502075B1 (en) | Corrosion resistant steel for crude oil tankers | |
JP4898543B2 (en) | Steel sheet with excellent pit resistance and method for producing the same | |
JP4640529B2 (en) | Corrosion resistant steel material for crude oil tank, method for producing the same, and crude oil tank | |
JP4506244B2 (en) | Steel for bottom plate of crude oil tank | |
DK2009125T3 (en) | Corrosion resistant steel material for crude oil storage tank and crude oil storage tank | |
JP5861335B2 (en) | Welded joint with excellent corrosion resistance | |
JP4687531B2 (en) | Steel for crude oil tank and method for producing the same | |
JP4525686B2 (en) | Corrosion resistant steel for crude oil tank and crude oil tank | |
JP2007046148A (en) | Corrosion resistant steel for shipbuilding | |
JP2007270196A (en) | Steel material for cargo oil tank | |
JP5481980B2 (en) | Marine steel with excellent film swell resistance | |
JP5796409B2 (en) | Corrosion resistant steel for ship ballast tank | |
JP4577158B2 (en) | Corrosion resistant steel for crude oil tanks | |
JP2010196079A (en) | Corrosion-resistant steel material for ship | |
JP4868917B2 (en) | Steel material for crude oil tank bottom plate with excellent corrosion resistance | |
JP2010043342A (en) | Weld joint for crude oil tank excellent in corrosion resistance and ductile fracture resistance | |
JP5216199B2 (en) | Marine welded joints and welded structures with excellent crevice corrosion resistance | |
JP4243863B2 (en) | Welded joint for crude oil tank and crude oil tank | |
JP6260755B1 (en) | Steel for ship ballast tank and ship | |
JP6601258B2 (en) | Corrosion-resistant steel for ballast tanks | |
JP2017014554A (en) | Corrosion resistant steel material for ballast tank | |
JP4444924B2 (en) | High tensile steel for marine vessels with excellent corrosion resistance and base metal toughness | |
JP2014201755A (en) | Steel material for crude oil tank with excellent corrosion resistance, and crude oil tank | |
JP2007197757A (en) | High tensile strength marine steel having excellent corrosion resistance and base metal toughness | |
JPWO2014087628A1 (en) | Steel material excellent in alcohol pitting resistance and alcohol SCC resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070328 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070328 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100318 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100406 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100419 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130514 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4506244 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140514 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |