[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007259531A - Dynamo-electric machine - Google Patents

Dynamo-electric machine Download PDF

Info

Publication number
JP2007259531A
JP2007259531A JP2006077629A JP2006077629A JP2007259531A JP 2007259531 A JP2007259531 A JP 2007259531A JP 2006077629 A JP2006077629 A JP 2006077629A JP 2006077629 A JP2006077629 A JP 2006077629A JP 2007259531 A JP2007259531 A JP 2007259531A
Authority
JP
Japan
Prior art keywords
rotor
holding member
guide groove
rotating
movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006077629A
Other languages
Japanese (ja)
Other versions
JP4807119B2 (en
JP2007259531A5 (en
Inventor
Takeshi Nonaka
剛 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2006077629A priority Critical patent/JP4807119B2/en
Publication of JP2007259531A publication Critical patent/JP2007259531A/en
Publication of JP2007259531A5 publication Critical patent/JP2007259531A5/ja
Application granted granted Critical
Publication of JP4807119B2 publication Critical patent/JP4807119B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamo-electric machine which has a rotor of built-in magnet structure without abnormal vibration, being operating with high efficiency even in a high revolution range, by reducing the magnetic flux of a field without increase of the axial size of the rotor. <P>SOLUTION: The dynamo-electric machine is provided with a third rotor 3 which can relatively rotate adjacently between the first rotor core 1 and the second rotor core 2 fixed to the load side and the anti-load side in the axial direction of a rotating shaft 4, via air gaps from a plurality of stator magnetic poles 17. Furthermore, it is provided with a mechanism which has guide grooves 6a, 7a, and 8a inclined in its circumferential direction, centrifugal plumbs 5 which are inserted in each guide groove and shift within the guide grooves, receiving centrifugal force by the rotation of the rotor, and torsion springs 9 whose one end each is set in each guide groove 8a provided in the retaining member of the third rotor core 3 and whose other end each is set in the groove provided in the rotating shaft 4 and also energizes it in a direction opposite to the rotational direction, witin a plurality of retaining members 6, 7 and 8 which are fixed to the internal perimeters of the rotor cores 1, 2 and 3. The guide grooves and the centrifugal plumbs are as many as the magnetic poles of the rotor cores. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、界磁磁束を回転子の回転速度に応じて変化させる埋め込み磁石構造の回転子を有する回転電機に関する。   The present invention relates to a rotating electrical machine having a rotor with an embedded magnet structure that changes a field magnetic flux in accordance with the rotational speed of the rotor.

従来の、埋め込み磁石構造の回転子を有する回転電機は、一般的に界磁用磁石が回転子に固定されている。このような回転電機の誘起電圧は、界磁磁束と回転子の回転速度に比例するため、回転速度に対する誘起電圧の関係は図8の直線abで示したような特性となる。そのため、仮に電源の電圧が電圧cで制限される電動機を例とすれば、この電動機の最高回転速度は回転速度dで制限される狭い運転域となる。
そこで、界磁磁束を回転子の回転速度に応じて変化させる埋め込み磁石構造の回転子を有する回転電機が提案されている(例えば、特許文献1参照)。
図13は第1従来技術を示す埋め込み磁石構造の回転子を有する回転電機の分解斜視図であって、(A)は低回転、(B) は高回転の場合である。
図13における回転電機は、図示しない複数の固定子磁極に回転磁界を発生するための巻線を有する固定子と、複数の固定子磁極に対して回転すると共に、回転軸100に固定された界磁用磁石103、104を有する複数の回転子101、102と、該複数の回転子の合成した磁極の位相を第1回転子101の磁極に対して第2回転子102の回転に伴い変化させる機構を備え、該機構は第2回転子102に設けた長溝105と、ガバナ固定板106に設けた長穴108と、先端がガバナ107と弾性部材110で接続され、その弾性力で引き合うように長穴108および長溝105に沿って動く可動側軸109より構成されている。具体的には、第1回転子101に設置された第1界磁用磁石103と、第2回転子102に設置された第2界磁用磁石104は、回転速度の低い時には図13(A)に示されているように同じ極性の磁極が軸方向に揃い、回転速度の高い時には図13(B)に示されているように、該機構を用いて異なる極性の磁極が軸方向に揃う構造となっている。この技術によれば、回転子の回転速度が高い時に界磁用磁石の磁束が相殺することで誘起電圧を下げ、その分高速運転領域を広げることが可能となる。
一方、上述した埋め込み磁石構造の回転子に対して、表面磁石構造の回転子を有し、界磁磁束を回転子の回転速度に応じて変化させる回転電機も提案されている(例えば、特許文献2参照)。
図14は第2従来技術を示す表面磁石構造の回転子を有する回転電機の正面図である。
図14において、回転軸120に取り付けた可動回転子121の回転子鉄心122の表面には界磁用磁石123が固定され、また、
1142846194317_0
に示すように一対の螺旋状の回動用案内溝124が設けられている。溝124は180度対称に配置され、
1142846194317_1
では径方向外側に向かうにつれて反時計方向に曲がっている。溝124にはそれぞれ、ウエイト125が軸方向に挿入されており、ウエイト125が溝の中を自在に滑動乃至回動することができる。このような構成で、ウェイト120とつるまきバネ126を用いて、界磁磁束を回転子の回転速度に応じて変化させる。
特開平11−46471号公報(第9頁、図3) 特開2004−242461号公報(第9頁、図3)
In a conventional rotating electric machine having a rotor having an embedded magnet structure, a field magnet is generally fixed to the rotor. Since the induced voltage of such a rotating electrical machine is proportional to the field magnetic flux and the rotational speed of the rotor, the relationship between the induced voltage and the rotational speed has a characteristic as shown by the straight line ab in FIG. Therefore, if an electric motor whose power source voltage is limited by the voltage c is taken as an example, the maximum rotational speed of the electric motor is a narrow operating range limited by the rotational speed d.
Therefore, a rotating electrical machine having a rotor with an embedded magnet structure that changes the field magnetic flux in accordance with the rotational speed of the rotor has been proposed (see, for example, Patent Document 1).
FIG. 13 is an exploded perspective view of a rotating electrical machine having a rotor with an embedded magnet structure showing the first prior art, where (A) shows a low rotation and (B) shows a high rotation.
The rotating electrical machine in FIG. 13 has a stator having a winding for generating a rotating magnetic field in a plurality of stator magnetic poles (not shown), and a field that rotates with respect to the plurality of stator magnetic poles and is fixed to the rotating shaft 100. The phases of the plurality of rotors 101 and 102 having the magnets 103 and 104 and the combined magnetic poles of the plurality of rotors are changed with the rotation of the second rotor 102 with respect to the magnetic poles of the first rotor 101. The mechanism includes a long groove 105 provided in the second rotor 102, a long hole 108 provided in the governor fixing plate 106, and a tip connected by a governor 107 and an elastic member 110 so that they are attracted by their elastic force. The movable side shaft 109 moves along the long hole 108 and the long groove 105. Specifically, the first field magnet 103 installed on the first rotor 101 and the second field magnet 104 installed on the second rotor 102 are shown in FIG. As shown in FIG. 13B, magnetic poles of the same polarity are aligned in the axial direction. When the rotational speed is high, magnetic poles of different polarities are aligned in the axial direction using the mechanism as shown in FIG. It has a structure. According to this technique, when the rotational speed of the rotor is high, the magnetic flux of the field magnet cancels out, so that the induced voltage can be lowered and the high-speed operation region can be expanded accordingly.
On the other hand, a rotating electrical machine that has a rotor with a surface magnet structure and changes the field magnetic flux in accordance with the rotation speed of the rotor is proposed in addition to the rotor with the embedded magnet structure described above (for example, Patent Documents). 2).
FIG. 14 is a front view of a rotating electric machine having a rotor having a surface magnet structure showing the second prior art.
In FIG. 14, a field magnet 123 is fixed to the surface of the rotor core 122 of the movable rotor 121 attached to the rotating shaft 120,
1142846194317_0
As shown, a pair of spiral guide grooves 124 for rotation are provided. The grooves 124 are arranged 180 degrees symmetrically,
1142846194317_1
Then, it turns counterclockwise as it goes outward in the radial direction. A weight 125 is inserted into each groove 124 in the axial direction, and the weight 125 can freely slide or rotate in the groove. With such a configuration, the field magnetic flux is changed according to the rotational speed of the rotor using the weight 120 and the helical spring 126.
Japanese Patent Laid-Open No. 11-46471 (page 9, FIG. 3) Japanese Patent Laying-Open No. 2004-242461 (page 9, FIG. 3)

ところが、従来技術は以下の問題があった。
第1従来技術の埋め込み磁石構造の回転子を有する回転電機では、図13の分解斜視図では分かりにくいが、界磁磁束を回転子の回転速度に応じて変化させる機構を回転子鉄心の内側に挿入して組み立てた場合、該機構は完全には回転子鉄心の軸方向の長さには収まらず、回転子鉄心から突出して設けられる構成になるため、回転子全体の軸方向長さが増大し、回転電機の小型化に不利であった。
第2従来技術の表面磁石構造の回転子を有する回転電機では、回転子の回転速度が高い時に界磁用磁石による磁束が回転子鉄心内で短絡しないため、固定子の巻線に鎖交する磁束を相殺し高速運転領域を広げることは可能になるが、固定子に発生する鉄損の低減が不十分である。そのため回転子の回転速度が高くなるほど鉄損の増加で効率は低下し、また回転電機が高温となり定格出力は低下するという問題があった。
また、第1および第2従来技術では、一般的に界磁磁束を回転子の回転速度に応じて変化させる機構を設けたことで、機構固有の周波数による共振現象、いわゆる異常振動が発生し易いという問題もあった。
本発明はこのような問題点に鑑みてなされたものであり、回転子の軸方向サイズの増大なしに、界磁磁束を減じて高回転運転領域でも高効率で作動し、異常振動のない埋め込み磁石構造の回転子を有する回転電機を提供することを目的とする。
However, the prior art has the following problems.
In the rotary electric machine having the rotor of the embedded magnet structure of the first prior art, it is difficult to understand in the exploded perspective view of FIG. 13, but a mechanism for changing the field magnetic flux according to the rotation speed of the rotor is provided inside the rotor core. When assembled by insertion, the mechanism does not completely fit in the axial length of the rotor core, and is configured to protrude from the rotor core, increasing the axial length of the entire rotor. However, it was disadvantageous for downsizing of the rotating electrical machine.
In the rotating electric machine having the rotor of the surface magnet structure of the second prior art, the magnetic flux by the field magnet is not short-circuited in the rotor core when the rotational speed of the rotor is high. Although it becomes possible to cancel the magnetic flux and widen the high-speed operation range, the reduction of iron loss generated in the stator is insufficient. For this reason, there is a problem that as the rotational speed of the rotor increases, the efficiency decreases due to an increase in iron loss, and the rotating electrical machine becomes hot and the rated output decreases.
In the first and second prior arts, a mechanism for changing the field magnetic flux in accordance with the rotational speed of the rotor is generally provided, so that a resonance phenomenon due to a frequency unique to the mechanism, so-called abnormal vibration is likely to occur. There was also a problem.
The present invention has been made in view of such a problem, and without increasing the axial size of the rotor, the magnetic field magnetic flux is reduced to operate with high efficiency even in a high rotation operation region, and there is no abnormal vibration. It aims at providing the rotary electric machine which has a rotor of a magnet structure.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の発明は、
回転軸に固定された固定回転子と、該固定回転子に軸方向に隣接して前記固定回転子に対して相対回動可能に装着された可動回転子と、を備え、
前記各々の回転子を構成する回転子鉄心の内部に設けられ、かつ、径方向内側に凸で略V字形状の磁石挿入穴に界磁用磁石を有する埋め込み磁石形モータにおいて、
前記各々の回転子鉄心の内周には複数の保持部材がそれぞれ固定されており、
前記保持部材の内部には、円周方向に傾斜した複数の案内溝と、該案内溝内に挿設されると共に前記可動回転子の回動により遠心力を受けて該案内溝内を移動する遠心錘と、一端が前記可動回転子の保持部材に設けた案内溝の内側に係止され、かつ、他端が前記回転軸に設けた溝内に係止されると共に、回動方向に反する方向に付勢するスプリングとを有する機構が設けられており、
前記案内溝と前記遠心錘は、前記回転子鉄心の磁極の数と同数としたことを特徴としている。
また、請求項2記載の発明は、請求項1記載の回転電機において、
回転軸の軸方向に隣接して少なくとも2つ装着された互いに相対回動可能な可動回転子を備え、
前記各々の回転子を構成する回転子鉄心の内部に設けられ、かつ、径方向内側に凸で略V字形状の磁石挿入穴に界磁用磁石を有する埋め込み磁石形モータにおいて、
前記各々の回転子鉄心の内周には複数の保持部材がそれぞれ固定されており、
前記保持部材の内部には、円周方向に傾斜した複数の案内溝と、該案内溝内に挿設されると共に前記可動回転子の回動により遠心力を受けて該案内溝内を移動する遠心錘と、一端が前記可動回転子の保持部材に設けた案内溝の内側に係止され、かつ、他端が前記回転軸に設けた溝内に係止されると共に、回動方向に反する方向に付勢するスプリングとを有する機構が設けられており、
前記案内溝と前記遠心錘は、前記回転子鉄心の磁極の数と同数としたことを特徴としている。
また、請求項3記載の発明は、請求項1記載の回転電機において、
前記回転電機が電動機の場合であって、前記可動回転子の保持部材に設けた案内溝の円周方向の向きを、前記固定回転子の保持部材に設けた案内溝の円周方向の向きと逆にし、前記可動回転子の遠心力の作用による回動方向が該電動機の回転子の回転方向と逆になるようにしたことを特徴としている。
また、請求項4記載の発明は、請求項1記載の回転電機において、
前記回転電機が発電機の場合であって、前記可動回転子の保持部材に設けた案内溝の円周方向の向きを、前記固定回転子の保持部材に設けた案内溝の円周方向の向きと逆にし、前記可動回転子の遠心力の作用による回動方向が該発電機の回転子の回転方向となるようにしたことを特徴としている。
また、請求項5記載の発明は、請求項1または2に記載の回転電機において、
前記機構を構成する前記案内溝内の遠心錘とスプリングが配置される取付け部にグリースを充填してあり、
前記可動回転子の保持部材に対する前記固定回転子に設けた保持部材の隣接部に嵌合部を設け、該嵌合部に前記グリースの漏れを防止するためのシール部材を設けたことを特徴としている。
In order to solve the above problems, the present invention is configured as follows.
The invention described in claim 1
A fixed rotor fixed to the rotating shaft, and a movable rotor mounted adjacent to the fixed rotor in the axial direction so as to be rotatable relative to the fixed rotor,
In an embedded magnet type motor that is provided inside a rotor core that constitutes each of the rotors and that has a field magnet in a substantially V-shaped magnet insertion hole that is convex radially inward,
A plurality of holding members are fixed to the inner periphery of each of the rotor cores,
Inside the holding member, a plurality of guide grooves inclined in the circumferential direction, and inserted in the guide grooves, and moved in the guide grooves by receiving centrifugal force due to the rotation of the movable rotor. The centrifugal weight and one end are locked inside the guide groove provided in the holding member of the movable rotor, and the other end is locked in the groove provided in the rotating shaft and are opposite to the rotation direction. And a mechanism having a spring biasing in the direction,
The number of the guide grooves and the centrifugal weights is the same as the number of magnetic poles of the rotor core.
The invention according to claim 2 is the rotating electrical machine according to claim 1,
Comprising at least two movable rotors which are mounted adjacent to each other in the axial direction of the rotary shaft and which are rotatable relative to each other;
In an embedded magnet type motor that is provided inside a rotor core that constitutes each of the rotors and that has a field magnet in a substantially V-shaped magnet insertion hole that is convex radially inward,
A plurality of holding members are fixed to the inner periphery of each of the rotor cores,
Inside the holding member, a plurality of guide grooves inclined in the circumferential direction, and inserted in the guide grooves, and moved in the guide grooves by receiving centrifugal force due to the rotation of the movable rotor. The centrifugal weight and one end are locked inside the guide groove provided in the holding member of the movable rotor, and the other end is locked in the groove provided in the rotating shaft and are opposite to the rotation direction. And a mechanism having a spring biasing in the direction,
The number of the guide grooves and the centrifugal weights is the same as the number of magnetic poles of the rotor core.
The invention as set forth in claim 3 is the rotating electrical machine according to claim 1,
In the case where the rotating electrical machine is an electric motor, the circumferential direction of the guide groove provided on the holding member of the movable rotor is the circumferential direction of the guide groove provided on the holding member of the fixed rotor. Conversely, the rotating direction of the movable rotor due to the centrifugal force is opposite to the rotating direction of the rotor of the electric motor.
According to a fourth aspect of the present invention, in the rotating electrical machine according to the first aspect,
In the case where the rotating electrical machine is a generator, the circumferential direction of the guide groove provided in the holding member of the movable rotor is the circumferential direction of the guide groove provided in the holding member of the fixed rotor. On the contrary, the rotating direction of the movable rotor due to the centrifugal force is the rotating direction of the rotor of the generator.
Further, the invention according to claim 5 is the rotary electric machine according to claim 1 or 2,
The mounting portion where the centrifugal weight and the spring in the guide groove constituting the mechanism are arranged is filled with grease,
A fitting portion is provided in an adjacent portion of the holding member provided in the fixed rotor with respect to the holding member of the movable rotor, and a seal member for preventing leakage of the grease is provided in the fitting portion. Yes.

請求項1に記載の発明によると、回転軸の軸方向に固定された固定回転子に隣接して相対的に回動可能な可動回転子の内側に、可動回転子を相対回動させる機構を有するため、回転子の軸方向サイズの増大なしに、固定子の巻線に鎖交する界磁磁束を大きく変化することができる。
また、回転子は、遠心錘が作用する回動方向の力と、回動方向に反する方向に付勢するスプリングの力との釣り合いで、回転子の回転速度に応じた適切な界磁磁束を得ることができる。
また、各々の保持部材内部に案内溝を有するため、各々の案内溝の形状を回動方向に短く設計でき、回転子の限られたスペース内に回転電機を設計できる。
また、回転子鉄心の磁極の数と同数の遠心錘を有するため、必要な相対回動角度を得るとともに、遠心錘の質量を最小限に設計でき、回転子の限られたスペース内に回転電機を設計できる。
請求項2に記載の発明によると、回転軸の軸方向に隣接して少なくとも2つ装着された互いに相対回動可能な可動回転子を相対回動させる機構を有するため、回転子の軸方向サイズの増大なしに、固定子の巻線に鎖交する界磁磁束を大きく変化することができる。
また、回転子は、遠心錘が作用する回動方向の力と、回動方向に反する方向に付勢するスプリングの力との釣り合いで、回転子の回転速度に応じた適切な界磁磁束を得ることができる。
また、各々の保持部材内部に案内溝を有するため、各々の案内溝の形状を回動方向に短く設計でき、回転子の限られたスペース内に回転電機を設計できる。
また、回転子鉄心の磁極の数と同数の遠心錘を有するため、必要な相対回動角度を得るとともに、遠心錘の質量を最小限に設計でき、回転子の限られたスペース内に回転電機を設計できる。
また、請求項3に記載の発明によると、可動回転子の保持部材に設けた案内溝の周方向の向きは、固定回転子の保持部材に設けた案内溝の周方向の向きと逆にし、可動回転子の遠心力の作用による回動方向が電動機の回転子の回転方向と逆になるようにしたため、負荷トルクの増大に応じて、界磁磁束を増大することができ、回転子の回転速度と負荷トルクに対して、適切な界磁磁束を得ることができる。
また、請求項4に記載の発明によると、可動回転子の保持部材に設けた案内溝の周方向の向きは、固定回転子の保持部材に設けた案内溝の周方向の向きと逆にし、可動回転子の遠心力の作用による回動方向が発電機の回転子の回転方向となるようにしたため、負荷トルクの増大に応じて、界磁磁束を増大することができ、回転子の回転速度と負荷トルクに対して、適切な界磁磁束を得ることができる。
また、請求項5に記載の発明によると、遠心錘と前記スプリングの取付け部にグリースを充填するとともに、相対回動する保持部材の隣接部に嵌合部を有し、該嵌合部にグリースのシール部材を設けるため、グリースが保持部材内部に確保され、遠心錘と案内溝の摺動部の耐久性を得られるとともに、グリースのダンパ効果と嵌合部に設けられたシール部材の摩擦抵抗により、異常振動を抑制できる。
According to the first aspect of the present invention, the mechanism for relatively rotating the movable rotor inside the movable rotor that is relatively rotatable adjacent to the fixed rotor fixed in the axial direction of the rotation shaft. Therefore, the field magnetic flux linked to the stator winding can be greatly changed without increasing the axial size of the rotor.
Also, the rotor balances the rotational force acting on the centrifugal weight with the spring force biased in the direction opposite to the rotational direction, and generates an appropriate field magnetic flux according to the rotational speed of the rotor. Obtainable.
In addition, since each holding member has a guide groove, the shape of each guide groove can be designed to be short in the direction of rotation, and the rotating electrical machine can be designed in a limited space of the rotor.
In addition, since there are as many centrifugal weights as the number of magnetic poles of the rotor core, the required relative rotation angle can be obtained and the mass of the centrifugal weight can be designed to a minimum, and the rotating electrical machine can be installed in a limited space of the rotor. Can design.
According to the second aspect of the present invention, since there is a mechanism for relatively rotating the movable rotors that are mounted to be adjacent to each other in the axial direction of the rotation shaft and that can rotate relative to each other, the size of the rotor in the axial direction is increased. The field magnetic flux interlinking with the stator windings can be changed greatly without increasing.
Also, the rotor balances the rotational force acting on the centrifugal weight with the spring force biased in the direction opposite to the rotational direction, and generates an appropriate field magnetic flux according to the rotational speed of the rotor. Obtainable.
In addition, since each holding member has a guide groove, the shape of each guide groove can be designed to be short in the direction of rotation, and the rotating electrical machine can be designed in a limited space of the rotor.
In addition, since there are as many centrifugal weights as the number of magnetic poles of the rotor core, the required relative rotation angle can be obtained and the mass of the centrifugal weight can be designed to a minimum, and the rotating electrical machine can be installed in a limited space of the rotor. Can design.
According to the invention described in claim 3, the circumferential direction of the guide groove provided in the holding member of the movable rotor is opposite to the circumferential direction of the guide groove provided in the holding member of the fixed rotor, Since the rotating direction of the movable rotor due to the centrifugal force is opposite to the rotating direction of the rotor of the electric motor, the field magnetic flux can be increased as the load torque increases, and the rotation of the rotor An appropriate field magnetic flux can be obtained with respect to speed and load torque.
According to the invention described in claim 4, the circumferential direction of the guide groove provided in the holding member of the movable rotor is opposite to the circumferential direction of the guide groove provided in the holding member of the fixed rotor, Since the rotating direction of the movable rotor due to the centrifugal force is the rotating direction of the generator rotor, the field magnetic flux can be increased as the load torque increases, and the rotational speed of the rotor is increased. Thus, an appropriate field magnetic flux can be obtained with respect to the load torque.
According to the invention described in claim 5, the mounting portion of the centrifugal weight and the spring is filled with grease, and the fitting portion is provided adjacent to the relatively rotating holding member, and the fitting portion has the grease. Since the seal member is provided, the grease is secured inside the holding member, the durability of the sliding portion of the centrifugal weight and the guide groove can be obtained, the damper effect of the grease and the friction resistance of the seal member provided in the fitting portion Thus, abnormal vibration can be suppressed.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1実施例を示す回転電機の軸方向断面図、図2は本発明の第3回転子鉄心の保持部材の内部の様子を示した軸方向断面図、図3は回転子の構成部品の分解斜視図である。なお、本実施例は電動機について説明する。
図において、Rは回転子、Sは固定子、1、2は回転軸の負荷側と反負荷側にそれぞれ固定された固定回転子を構成する第1、第2回転子鉄心、3は可動回転子を構成する第3回転子鉄心、4は回転軸、5は遠心錘、6は負荷側保持部材、6aは負荷側保持部材の案内溝、6bは負荷側保持部材のつば部、6cは保持部材の嵌合部、7は反負荷側保持部材、7aは反負荷側保持部材の案内溝、7bは反負荷側保持部材のつば部、7cは保持部材の嵌合部、8は回動側保持部材、8aは回動側保持部材の案内溝、8dは回動側保持部材のトーションスプリング取付け穴、9はトーションスプリング、10は回転位置検出部、11は負荷側界磁用磁石、12は反負荷側界磁用磁石、13は回動側界磁用磁石、14はOリング、15は負荷側軸受、16は反負荷側軸受である。
FIG. 1 is an axial sectional view of a rotating electrical machine showing a first embodiment of the present invention, FIG. 2 is an axial sectional view showing the inside of a holding member of a third rotor core of the present invention, and FIG. It is a disassembled perspective view of the component of a child. In addition, a present Example demonstrates an electric motor.
In the figure, R is a rotor, S is a stator, 1 and 2 are first and second rotor cores constituting a fixed rotor fixed to the load side and the anti-load side of the rotary shaft, and 3 is a movable rotation. 3rd rotor iron core which comprises a child, 4 is a rotating shaft, 5 is a centrifugal weight, 6 is a load side holding member, 6a is a guide groove of a load side holding member, 6b is a collar part of a load side holding member, 6c is holding A fitting portion of the member, 7 is an anti-load side holding member, 7a is a guide groove of the anti-load side holding member, 7b is a collar portion of the anti-load side holding member, 7c is a fitting portion of the holding member, and 8 is a rotation side. A holding member, 8a is a guide groove of the rotating side holding member, 8d is a torsion spring mounting hole of the rotating side holding member, 9 is a torsion spring, 10 is a rotational position detector, 11 is a load side field magnet, and 12 is Anti-load-side field magnet, 13 is a rotation-side field magnet, 14 is an O-ring, 15 is a load-side bearing, 6 is a counter-load-side bearing.

固定子Sは、図1、図2に示すように、複数の固定子磁極17と、固定子磁極17に巻装された回転磁界を発生するための巻線18とで構成されている。
回転子Rは、図1〜図3に示すように、基本的に複数の固定子磁極17と空隙を介して設けられると共に、回転軸4の軸方向の負荷側と反負荷側に固定された第1回転子鉄心1および第2回転子鉄心2と、第1回転子鉄心1および第2回転子鉄心2の間に隣接して設けられると共に、第1および第2回転子鉄心1、2に対して相対的に回動可能な第3回転子鉄心3と、より構成されている。この各回転子鉄心1、2、3の内部には、径方向内側に設けた凸で略V字形状の磁石挿入穴に円周方向に沿って順次異なる磁極を有する界磁用磁石11、12、13がそれぞれ埋設されており、また、該回転子鉄心1、2、3の内周には複数の保持部材6、7、8がそれぞれ固定されている。
保持部材6、7、8の内部には、図1に示すように、円周方向に傾斜した案内溝6a、7a、8a、と、案内溝6a、7a、8a内に挿設されると共に回転子の回動により遠心力を受けて該案内溝内を移動する遠心錘5と、一端が第3回転子鉄心3の保持部材に設けた案内溝8aの内側に係止され、かつ、他端が回転軸4に設けた溝内に係止されると共に、回動方向に反する方向に付勢するトーションスプリング9とを有する機構が設けられている。
As shown in FIGS. 1 and 2, the stator S includes a plurality of stator magnetic poles 17 and windings 18 for generating a rotating magnetic field wound around the stator magnetic poles 17.
As shown in FIGS. 1 to 3, the rotor R is basically provided via a plurality of stator magnetic poles 17 and gaps, and is fixed to the axial load side and the anti-load side of the rotary shaft 4. The first rotor core 1 and the second rotor core 2 are provided adjacent to the first rotor core 1 and the second rotor core 2, and the first and second rotor cores 1 and 2 are provided in the first and second rotor cores 1 and 2. The third rotor core 3 is configured to be relatively rotatable with respect to the third rotor core 3. In each of the rotor cores 1, 2, 3, field magnets 11, 12 having different magnetic poles sequentially in the circumferential direction in a convex and substantially V-shaped magnet insertion hole provided radially inward. 13 are embedded, and a plurality of holding members 6, 7, 8 are fixed to the inner periphery of the rotor cores 1, 2, 3 respectively.
As shown in FIG. 1, guide members 6a, 7a, 8a inclined in the circumferential direction and guide grooves 6a, 7a, 8a are inserted into the holding members 6, 7, 8 and rotated. The centrifugal weight 5 that receives the centrifugal force by the rotation of the child and moves in the guide groove, and one end locked inside the guide groove 8a provided in the holding member of the third rotor core 3, and the other end Is held in a groove provided on the rotary shaft 4 and a mechanism having a torsion spring 9 that biases in a direction opposite to the rotational direction is provided.

回転子を相対的に回動させる機構に設けた案内溝と遠心錘5について説明する。
各保持部材に設けた案内溝は、回転子鉄心の磁極の数と同数としている。まず、回動側保持部材8に設けた案内溝8aの円周方向の向きは、負荷側保持部材の案内溝6aと反負荷側保持部材の案内溝7aの円周方向の向きと逆になるようにし、可動回転子の遠心力の作用による回動方向が電動機の回転子の回転方向と逆になるようにしている。
次に、遠心錘5については、図3に示すように、案内溝と同様に、各回転子鉄心1、2、3の磁極数(8個)と同数としている。そのため必要な相対回動角度を得るとともに、必要な回動力を得るための遠心錘の質量を分散でき、最小限に設計することを容易にしている。また、遠心錘5は、軸径が均一な棒形状であるため、必要な質量に対し最小限のサイズに設計でき、回転子の限られたスペース内に、必要な回動力を有する機構を設けることを容易にしている。また、形状が単純であるため安価なコストで製作でき、ニードル軸受けのニードルピン等高精度で耐磨耗性の高い既存部品を流用し、開発コストを省くことができるようになっている。
The guide groove and the centrifugal weight 5 provided in the mechanism that relatively rotates the rotor will be described.
The number of guide grooves provided in each holding member is the same as the number of magnetic poles of the rotor core. First, the circumferential direction of the guide groove 8a provided in the rotating side holding member 8 is opposite to the circumferential direction of the guide groove 6a of the load side holding member and the guide groove 7a of the anti-load side holding member. Thus, the rotating direction of the movable rotor due to the centrifugal force is opposite to the rotating direction of the rotor of the electric motor.
Next, as shown in FIG. 3, the number of the centrifugal weights 5 is the same as the number of magnetic poles (eight pieces) of each of the rotor cores 1, 2, and 3, similarly to the guide groove. Therefore, the necessary relative rotation angle can be obtained, and the mass of the centrifugal weight for obtaining the required turning force can be dispersed, which makes it easy to design to the minimum. Further, since the centrifugal weight 5 has a rod shape with a uniform shaft diameter, it can be designed to a minimum size with respect to a required mass, and a mechanism having a required turning force is provided in a limited space of the rotor. Making it easy. In addition, since the shape is simple, it can be manufactured at low cost, and existing parts with high accuracy and high wear resistance such as needle pins of needle bearings can be used to reduce development costs.

また、案内溝に設けられた遠心錘5とトーションスプリング9の取付け部にはグリースを充填しており、回転軸と各保持部材間に挿設されるトーションスプリングの潤滑を良好にしている。   Further, grease is filled in the attachment portion of the centrifugal weight 5 and the torsion spring 9 provided in the guide groove, so that the torsion spring inserted between the rotating shaft and each holding member is lubricated well.

この回転子を組み立てる際には、まず、外周に第2回転子鉄心2を備えた反負荷側保持部材7を回転軸4に圧入固定し、反負荷側保持部材のつば部7bと反対側の回転軸4との間にある隙間にトーションスプリング9を挿設する。次に、外周に第3回転子鉄心3を備えた回動側保持部材8を反負荷側保持部材7、トーションスプリング9に隣接するように回転軸4に挿入する。そして、外周に第1回転子鉄心1を備えた負荷側保持部材6を回動側保持部材8、トーションスプリング9に隣接するように回転軸4に挿入する。   When assembling the rotor, first, the anti-load side holding member 7 provided with the second rotor core 2 on the outer periphery is press-fitted and fixed to the rotating shaft 4, and the side opposite to the flange portion 7b of the anti-load side holding member is fixed. A torsion spring 9 is inserted into a gap between the rotary shaft 4 and the rotary shaft 4. Next, the rotating side holding member 8 having the third rotor core 3 on the outer periphery is inserted into the rotating shaft 4 so as to be adjacent to the anti-load side holding member 7 and the torsion spring 9. And the load side holding member 6 provided with the 1st rotor core 1 on the outer periphery is inserted in the rotating shaft 4 so that the rotation side holding member 8 and the torsion spring 9 may be adjoined.

このような各回転子鉄心の保持部材に設けた遠心錘5は、回転速度が低い時にトーションスプリング9の付勢により回転軸側に位置するが、回転子の回転速度が大きくなると、遠心錘5に作用する遠心力がトーションスプリング9の付勢力を上回り、遠心錘5は回転子の外周に向かって移動し、回転子鉄心を相対回動させる。つまり、該機構は、回転子の回転速度の変化に伴い、3個の回転子鉄心を相対回動させるものとなっている。   The centrifugal weight 5 provided on the holding member of each of the rotor cores is positioned on the rotating shaft side by the urging of the torsion spring 9 when the rotational speed is low, but when the rotational speed of the rotor increases, the centrifugal weight 5 The centrifugal force acting on the torsion spring 9 exceeds the urging force of the torsion spring 9, and the centrifugal weight 5 moves toward the outer periphery of the rotor to relatively rotate the rotor core. That is, the mechanism rotates the three rotor cores relative to each other as the rotational speed of the rotor changes.

図9は、駆動トルクが遠心錘に作用する力の説明図である。
図において、8aは可動側保持部材の案内溝を示し、7aは反負荷側保持部材の案内溝を示し、5は遠心錘を示している。
図は、ある回転速度における遠心錘の、遠心錘に作用する図示しない遠心力とトーションスプリング9の付勢力による釣り合い状態に、負荷トルクが生じた様子を示す。負荷トルクの反作用として、可動側保持部材には回転子の回転方向に駆動トルクが生じる。駆動トルクは可動側保持部材の案内溝8aより遠心錘を径方向の内側に押し戻す力として作用し、その結果、可動側保持部材は遠心力の作用による回動方向と逆になるように回動する。そのため、負荷トルクの増大に応じて界磁磁束は増大する。この作用は、回転子の回転速度と負荷トルクに対し適切な界磁磁束を得ること可能にする。一般的に、電動機をベクトル制御を用いて高回転で駆動する場合、低負荷時には最大効率制御を行い、高負荷時には最大出力制御を行うことが多い。負荷トルクの増大に応じて界磁磁束を増大させることは、最大効率制御でのより高効率化と最大出力制御でのより大きな最大出力化を成し得る。
FIG. 9 is an explanatory diagram of the force that the driving torque acts on the centrifugal weight.
In the figure, 8a indicates a guide groove of the movable side holding member, 7a indicates a guide groove of the anti-load side holding member, and 5 indicates a centrifugal weight.
The figure shows a state in which a load torque is generated in a balanced state by a centrifugal force (not shown) acting on the centrifugal weight and a biasing force of the torsion spring 9 at a certain rotational speed. As a reaction of the load torque, a driving torque is generated in the rotating direction of the rotor on the movable side holding member. The driving torque acts as a force that pushes the centrifugal weight back inward in the radial direction from the guide groove 8a of the movable side holding member, and as a result, the movable side holding member rotates so as to be opposite to the rotation direction due to the action of the centrifugal force. To do. Therefore, the field magnetic flux increases as the load torque increases. This action makes it possible to obtain an appropriate field magnetic flux with respect to the rotational speed and load torque of the rotor. In general, when an electric motor is driven at a high speed using vector control, the maximum efficiency control is often performed at a low load, and the maximum output control is often performed at a high load. Increasing the field magnetic flux in response to an increase in load torque can achieve higher efficiency in maximum efficiency control and greater maximum output in maximum output control.

図示しないが、保持部材の一方が回転子の回転軸に対し相対回動する発電機である場合、可動回転子の保持部材に設けた案内溝の円周方向の向きを、固定回転子の保持部材に設けた案内溝の円周方向の向きと逆にし、可動回転子の遠心力の作用による回動方向が発電機の回転子の回転方向となるようにしている。負荷トルクと駆動トルクの関係が電動機の場合と逆になり、電動機の場合と同様、負荷トルクの増大に応じて界磁磁束は増大する。この作用は、回転子の回転速度と負荷トルクに対し適切な界磁磁束を得ること可能にする。   Although not shown, when one of the holding members is a generator that rotates relative to the rotating shaft of the rotor, the circumferential direction of the guide groove provided in the holding member of the movable rotor is set to hold the fixed rotor. The direction of rotation of the movable rotor due to the centrifugal force of the movable rotor is set to be the direction of rotation of the rotor of the generator, opposite to the circumferential direction of the guide groove provided on the member. The relationship between the load torque and the drive torque is reversed from that in the case of the electric motor, and the field magnetic flux increases as the load torque increases as in the case of the electric motor. This action makes it possible to obtain an appropriate field magnetic flux with respect to the rotational speed and load torque of the rotor.

図1において、遠心錘5とトーションスプリング9の取付け部にグリースを充填するとともに、第3回転子鉄心3の保持部材に対する第1回転子鉄心1および第2回転子鉄心2に設けた保持部材の隣接部に嵌合部6c、7cを有し、該嵌合部にグリースの漏れを防止するためのシール部材であるOリング14を設けている。
そのため、グリースが保持部材内部に確保され、前記遠心錘と前記案内溝の摺動部の耐久性を得られるとともに、グリースのダンパ効果と前記嵌合部に設けられたOリングの摩擦抵抗により、界磁磁束を回転子の回転速度に応じて変化させる機構を設けたことによる異常振動を抑制できる。
また、図において、保持部材6と反負荷側の保持部材7は、負荷側保持部材のつば部6bと反負荷側保持部材のつば部7bで、負荷側軸受15と反負荷側軸受16の軸方向の位置を固定する機能も持つ。
In FIG. 1, grease is filled in the attachment portion of the centrifugal weight 5 and the torsion spring 9, and the holding members provided in the first rotor core 1 and the second rotor core 2 with respect to the holding member of the third rotor core 3. The adjacent portions have the fitting portions 6c and 7c, and the fitting portion is provided with an O-ring 14 which is a seal member for preventing leakage of grease.
Therefore, grease is secured inside the holding member, the durability of the sliding portion of the centrifugal weight and the guide groove can be obtained, and due to the damper effect of grease and the frictional resistance of the O-ring provided in the fitting portion, Abnormal vibration due to the provision of a mechanism for changing the field magnetic flux in accordance with the rotational speed of the rotor can be suppressed.
In the figure, the holding member 6 and the anti-load-side holding member 7 are a flange portion 6b of the load-side holding member and a flange portion 7b of the anti-load-side holding member, which are shafts of the load-side bearing 15 and the anti-load-side bearing 16. It also has a function to fix the position of the direction.

図4は、低回転時の回転子の状態を説明する図であって、(a)は回転子の斜視図、(b) は(a)の正面図で案内溝、遠心錘の部位を模式的に示したものである。
回転子の回転速度が低い時には、前記複数の回転子鉄心1、2、3の同じ磁極が軸方向に揃うことで、界磁磁束は最大の状態である。
4A and 4B are diagrams for explaining the state of the rotor at the time of low rotation, where FIG. 4A is a perspective view of the rotor, and FIG. 4B is a front view of FIG. It is shown as an example.
When the rotation speed of the rotor is low, the same magnetic poles of the plurality of rotor cores 1, 2, and 3 are aligned in the axial direction, so that the field magnetic flux is in the maximum state.

図5は、回転上昇時の回転子の状態を説明する図であって、(a)は回転子の斜視図、(b) は(a)の正面図で案内溝、遠心錘の部位を模式的に示したものである。
回転速度が増大すると、遠心錘5に働く遠心力が増加し、回動側回転子鉄心3が固定された第1および第2回転子鉄心1、2に対し相対回動する。
5A and 5B are diagrams for explaining the state of the rotor when the rotation is increased, in which FIG. 5A is a perspective view of the rotor, and FIG. 5B is a front view of FIG. It is shown as an example.
When the rotation speed increases, the centrifugal force acting on the centrifugal weight 5 increases, and the relative rotation with respect to the first and second rotor cores 1 and 2 to which the rotation-side rotor core 3 is fixed.

図6は、高回転時の回転子の状態を説明する図であって、(a)は回転子の斜視図、(b) は(a)の正面図で案内溝、遠心錘の部位を模式的に示したものである。
回転子の回転速度が高い時には、前記複数の回転子鉄心1、2、3の異なる磁極が軸方向に揃うことで、界磁用磁石による磁束が回転子鉄心内で短絡し、界磁磁束が減ずる。
その結果、固定子に発生する鉄損の低減を十分行うことができ、高回転運転領域でも高効率で作動する回転電機を提供することができる。
FIGS. 6A and 6B are diagrams for explaining the state of the rotor during high rotation, where FIG. 6A is a perspective view of the rotor, and FIG. 6B is a front view of FIG. It is shown as an example.
When the rotational speed of the rotor is high, the different magnetic poles of the plurality of rotor cores 1, 2, and 3 are aligned in the axial direction, whereby the magnetic flux generated by the field magnet is short-circuited in the rotor core, and the field magnetic flux is reduced. Decrease.
As a result, the iron loss generated in the stator can be sufficiently reduced, and a rotating electrical machine that operates with high efficiency even in a high rotation operation region can be provided.

図7は、前記複数の回転子鉄心の相対回動電気角に対する合成起磁力説明図、(a)は低回転時、(b) は高回転時の場合である。
比較的低回転時には、同じ磁極が軸方向におおよそ揃うことで、おのおのの回転子鉄心の界磁用磁石の起磁力に対し、合成された起磁力比は大きい。比較的高回転時には、異なる磁極が軸方向におおよそ揃うことで、合成された起磁力比は小さい。この合成起磁力の変化に対応して、界磁磁束は変化する。
FIGS. 7A and 7B are explanatory diagrams of the combined magnetomotive force with respect to the relative rotational electrical angle of the plurality of rotor cores. FIG. 7A shows a case of low rotation and FIG.
When the rotation is relatively low, the same magnetic poles are approximately aligned in the axial direction, so that the combined magnetomotive force ratio is large with respect to the magnetomotive force of the field magnet of each rotor core. When the rotation is relatively high, different magnetic poles are roughly aligned in the axial direction, so that the synthesized magnetomotive force ratio is small. Corresponding to the change of the synthetic magnetomotive force, the field magnetic flux changes.

図10は、本発明の第2の実施例を示す回転電機の回転子の説明図であって、(a)はその斜視図、(b) は(a)の正面図で案内溝、遠心錘の部位を模式的に示したものである。
図は、高回転時の回転子を示し、回転子の構成部品とその働きは第1実施例と同様である。この第2実施例で示した電動機では、第1実施例と異なる点は、回転子鉄心の案内溝7a、8a、図示しない6aの形状を第1実施例よりも若干小さくなるように変更すると共に、相対回動角の最大値を制限し、3個の回転子鉄心の異なる磁極が軸方向に完全に揃うまで回転できないようにすることで、界磁磁束の最小値を規制した点である。これは、電圧飽和を利用し、電動機の最大回転数を制限する場合に有効である。
また、図示しないが、低回転時の界磁磁束が最大の状態おいて、回転子鉄心1、2、3の同じ磁極を軸方向に完全に揃わせないこともある。これは、低回転時のコギングトルク対策として、回転子鉄心の磁極を適正量ずらした状態を相対回動角0とする場合である。
10A and 10B are explanatory views of a rotor of a rotating electrical machine showing a second embodiment of the present invention, in which FIG. 10A is a perspective view thereof, and FIG. 10B is a front view of FIG. This part is schematically shown.
The figure shows the rotor during high rotation, and the components of the rotor and their functions are the same as in the first embodiment. In the electric motor shown in the second embodiment, the difference from the first embodiment is that the shapes of the guide grooves 7a and 8a of the rotor core and 6a (not shown) are changed to be slightly smaller than those of the first embodiment. The maximum value of the relative rotation angle is limited, and the minimum value of the field magnetic flux is restricted by preventing the three magnetic poles of the three rotor cores from rotating until they are completely aligned in the axial direction. This is effective when voltage saturation is used to limit the maximum rotational speed of the electric motor.
Although not shown, the same magnetic poles of the rotor cores 1, 2, and 3 may not be perfectly aligned in the axial direction when the field magnetic flux at the time of low rotation is maximized. This is a case where the relative rotation angle is 0 when the magnetic pole of the rotor core is shifted by an appropriate amount as a countermeasure against cogging torque during low rotation.

図11は、本発明の第3の実施例を示す回転電機の回転子の説明図である。
図11において、21は第1回動回転子鉄心、22は第2回動回転子鉄心、23は第3回動回転子鉄心、24は回転軸、25は遠心錘、26は負荷側プレート、26aは負荷側プレートの遠心錘案内溝、27は反負荷側プレート、27aは反負荷側プレートの遠心錘案内溝、28は中央の回動保持部材、28aは中央の回動保持部材の斜面溝、29は負荷側の回動保持部材、29aは負荷側の回動保持部材の斜面溝、30は反負荷側の回動保持部材、30aは反負荷側の回動保持部材の斜面溝、31はトーションスプリング、32はOリングである。
第1の実施例および第2の実施例では、回転子が回転軸に固定された固定回転子と、該固定回転子に軸方向に隣接して該固定回転子に対して相対回動可能に装着された可動回転子と、を備える構造としたのに対して、第3の実施例では、回転子が回転軸の軸方向に隣接して少なくとも2つ装着された互いに相対回動可能な可動回転子を備える構造とした点である(本実施例では可動回転子は3つ)。すなわち、第1回動回転子鉄心21、第2回動回転子鉄心22、第3回動回転子鉄心23何れも可動回転子を構成する。
負荷側プレート26と反負荷側プレート27は、回転子の回転軸24に圧入固定し、相対回動する3個の保持部材28、29、30が回転子の回転軸に対し相対回動する。相対回動する3個の保持部材28、29、30は、遠心錘25により相対回動の位置を規制する。遠心錘25の端部は、前記負荷側プレート26と反負荷側プレート27の遠心錘案内溝26a、27aに装着し、回転子鉄心のトルクを回転軸に伝達する。
図11は、前記遠心錘25を装着する案内溝及び遠心錘案内溝の形状説明図である。図に示すように、相対回動する3個の保持部材に設けられた遠心錘に作用する遠心力を回動方向の力に変換する案内溝28a、29a、30aに対し、前記遠心錘案内溝26a、27aは、遠心錘が径方向にのみ移動できる形状となっている。本実施例は、前記相対回動に対して、回転子の磁極が回動方向に移動しないことが望まれる場合、有効である。
FIG. 11 is an explanatory view of a rotor of a rotating electrical machine showing a third embodiment of the present invention.
In FIG. 11, 21 is a first rotating rotor core, 22 is a second rotating rotor core, 23 is a third rotating rotor core, 24 is a rotating shaft, 25 is a centrifugal weight, 26 is a load side plate, 26a is a centrifugal weight guide groove of the load side plate, 27 is an anti-load side plate, 27a is a centrifugal weight guide groove of the anti-load side plate, 28 is a central rotation holding member, and 28a is an inclined groove of the central rotation holding member. , 29 is a load-side rotation holding member, 29a is a slope groove of the load-side rotation holding member, 30 is an anti-load-side rotation holding member, 30a is an anti-load-side rotation holding member, 31 Is a torsion spring, and 32 is an O-ring.
In the first embodiment and the second embodiment, a fixed rotor in which a rotor is fixed to a rotating shaft, and adjacent to the fixed rotor in the axial direction so as to be rotatable relative to the fixed rotor. In the third embodiment, at least two rotors that are mounted adjacent to each other in the axial direction of the rotating shaft are movable relative to each other. This is a point provided with a rotor (in this embodiment, there are three movable rotors). That is, each of the first rotating rotor core 21, the second rotating rotor core 22, and the third rotating rotor core 23 constitutes a movable rotor.
The load side plate 26 and the anti-load side plate 27 are press-fitted and fixed to the rotating shaft 24 of the rotor, and the three holding members 28, 29, and 30 that rotate relatively rotate relative to the rotating shaft of the rotor. The three holding members 28, 29, and 30 that rotate relative to each other regulate the position of relative rotation by the centrifugal weight 25. The ends of the centrifugal weight 25 are attached to the centrifugal weight guide grooves 26a and 27a of the load side plate 26 and the anti-load side plate 27, and transmit the torque of the rotor core to the rotating shaft.
FIG. 11 is an explanatory view of the shape of the guide groove and the centrifugal weight guide groove in which the centrifugal weight 25 is mounted. As shown in the figure, the centrifugal weight guide groove is different from the guide grooves 28a, 29a, 30a that convert the centrifugal force acting on the centrifugal weight provided on the three holding members that rotate relatively to the force in the rotational direction. 26a and 27a have a shape in which the centrifugal weight can move only in the radial direction. This embodiment is effective when it is desired that the magnetic pole of the rotor does not move in the rotation direction with respect to the relative rotation.

本発明を産業用電動機に利用することによって、従来と同じサイズのまま、従来よりも高回転まで高効率で駆動することができるようになり、作業性が向上する。
また、本発明を風力や車両用発電機として利用することによって、回転速度に依存せず常に所望の電圧を高効率で発電することができる。
By using the present invention for an industrial electric motor, it becomes possible to drive with higher efficiency up to a higher rotation than the conventional one while maintaining the same size as the conventional one, thereby improving workability.
Further, by using the present invention as a wind power generator or a vehicular generator, a desired voltage can always be generated with high efficiency without depending on the rotation speed.

本発明の第1実施例を示す回転電機の軸方向断面図、An axial sectional view of the rotating electrical machine showing the first embodiment of the present invention, 本発明の第3回転子鉄心の保持部材の内部の様子を示した軸方向断面図、An axial sectional view showing the inside of the holding member of the third rotor core of the present invention, 回転子の構成部品の分解斜視図である。It is a disassembled perspective view of the component of a rotor. 低回転時の回転子の状態を説明する図であって、(a)は回転子の斜視図、(b)は(a)の正面図で案内溝、遠心錘の部位を模式的に示したものIt is a figure explaining the state of the rotor at the time of low rotation, Comprising: (a) is a perspective view of a rotor, (b) is a front view of (a), and showed the site | part of a guide groove and a centrifugal weight typically. thing 回転上昇時の回転子の状態を説明する図であって、(a)は回転子の斜視図、(b) は(a)の正面図で案内溝、遠心錘の部位を模式的に示したものIt is a figure explaining the state of the rotor at the time of rotation rise, Comprising: (a) is a perspective view of a rotor, (b) is a front view of (a), and showed the site | part of a guide groove and a centrifugal weight typically. thing 高回転時の回転子の状態を説明する図であって、(a)は回転子の斜視図、(b) は(a)の正面図で案内溝、遠心錘の部位を模式的に示したものIt is a figure explaining the state of the rotor at the time of high rotation, Comprising: (a) is a perspective view of a rotor, (b) is a front view of (a), and showed the site | part of the guide groove and the centrifugal weight typically. thing 回転子鉄心の相対回動電気角に対する合成起磁力説明図であって、(a)は低回転時、(b) は高回転時の場合It is a synthetic magnetomotive force explanatory diagram with respect to the relative rotational electrical angle of the rotor core, (a) at low rotation, (b) at high rotation 回転速度に対する誘起電圧の関係を示すグラフGraph showing the relationship of induced voltage to rotational speed 駆動トルクが遠心錘に作用する力の説明図Explanatory drawing of force that driving torque acts on centrifugal weight 本発明の第2実施例を示す回転電機の回転子であって、(a)はその斜視図、(b) は(a)の正面図で案内溝、遠心錘の部位を模式的に示したものFIG. 2 is a rotor of a rotating electrical machine showing a second embodiment of the present invention, in which (a) is a perspective view thereof, and (b) is a front view of (a) schematically showing a portion of a guide groove and a centrifugal weight. thing 本発明の第3実施例を示す回転電機の回転子の軸方向断面図Axial sectional view of a rotor of a rotating electrical machine showing a third embodiment of the present invention. 案内溝及び遠心錘案内溝の形状説明図Illustration of guide groove and centrifugal weight guide groove 第1従来技術を示す埋め込み磁石構造の回転子を有する回転電機の分解斜視図でであって、(A)は低回転、(B) は高回転の場合である。It is a disassembled perspective view of the rotary electric machine which has a rotor of the embedded magnet structure which shows a 1st prior art, Comprising: (A) is a low rotation, (B) is a case of high rotation. 第2従来技術を示す表面磁石構造の回転子を有する回転電機の正面図である。It is a front view of the rotary electric machine which has a rotor of the surface magnet structure which shows a 2nd prior art.

符号の説明Explanation of symbols

R 回転子
S 固定子
1 第1回転子鉄心(負荷側)
2 第2回転子鉄心(反負荷側)
3 第3回転子鉄心(回動側)
4 回転軸
5 遠心錘
6 負荷側保持部材
6a 負荷側保持部材の案内溝
6b 負荷側保持部材のつば部
6c 保持部材の嵌合部
7 反負荷側保持部材
7a 反負荷側保持部材の案内溝
7b 反負荷側保持部材のつば部
7c 保持部材の嵌合部
8 回動側保持部材
8a 回動側保持部材の案内溝
8d 回動側保持部材のトーションスプリング取付け穴
9 トーションスプリング
10 回転位置検出部
11 負荷側界磁用磁石
12 反負荷側界磁用磁石
13 回動側界磁用磁石
14 Oリング
15 負荷側軸受
16 反負荷側軸受
17 固定子磁極
18 巻線
21 負荷側の回動回転子鉄心
22 反負荷側の回動回転子鉄心
23 中央の回動回転子鉄心
24 回転軸
25 遠心錘
26 負荷側プレート
26a 負荷側プレートの遠心錘案内溝
27 反負荷側プレート
27a 反負荷側プレートの遠心錘案内溝
28 中央の回動保持部材
28a 中央の回動保持部材の案内溝
29 負荷側の回動保持部材
29a 負荷側の回動保持部材の案内溝
30 反負荷側の回動保持部材
30a 反負荷側の回動保持部材の案内溝
31 トーションスプリング
32 Oリング
R Rotor S Stator 1 First rotor core (load side)
2 Second rotor core (on the opposite side)
3 Third rotor core (turning side)
4 Rotating shaft 5 Centrifugal weight 6 Load side holding member 6a Load side holding member guide groove 6b Load side holding member collar 6c Holding member fitting portion 7 Anti-load side holding member 7a Anti-load side holding member guide groove 7b Collar portion 7c of anti-load-side holding member Fitting portion 8 of holding member Rotating-side holding member 8a Guide groove 8d of rotating-side holding member Torsion spring mounting hole 9 of rotating-side holding member Torsion spring 10 Rotation position detector 11 Load-side field magnet 12 Anti-load-side field magnet 13 Rotating-side field magnet 14 O-ring 15 Load-side bearing 16 Anti-load-side bearing 17 Stator magnetic pole 18 Winding 21 Load-side rotating rotor core 22 Anti-load-side rotating rotor core 23 Center-rotating rotor core 24 Rotating shaft 25 Centrifugal weight 26 Load-side plate 26a Centrifugal weight guide groove 27 of load-side plate Anti-load-side plate 27a Anti-load-side play Centrifugal weight guide groove 28 Center rotation holding member 28a Center rotation holding member guide groove 29 Load side rotation holding member 29a Load side rotation holding member guide groove 30 Anti-load side rotation holding member 30a Guide groove 31 of the rotation holding member on the non-load side Torsion spring 32 O-ring

Claims (5)

回転軸に固定された固定回転子と、該固定回転子に軸方向に隣接して前記固定回転子に対して相対回動可能に装着された可動回転子と、を備え、
前記各々の回転子を構成する回転子鉄心の内部に設けられ、かつ、径方向内側に凸で略V字形状の磁石挿入穴に界磁用磁石を有する埋め込み磁石形モータにおいて、
前記各々の回転子鉄心の内周には複数の保持部材がそれぞれ固定されており、
前記保持部材の内部には、円周方向に傾斜した複数の案内溝と、該案内溝内に挿設されると共に前記可動回転子の回動により遠心力を受けて該案内溝内を移動する遠心錘と、一端が前記可動回転子の保持部材に設けた案内溝の内側に係止され、かつ、他端が前記回転軸に設けた溝内に係止されると共に、回動方向に反する方向に付勢するスプリングとを有する機構が設けられており、
前記案内溝と前記遠心錘は、前記回転子鉄心の磁極の数と同数としたことを特徴とする回転電機。
A fixed rotor fixed to the rotating shaft, and a movable rotor mounted adjacent to the fixed rotor in the axial direction so as to be rotatable relative to the fixed rotor,
In an embedded magnet type motor that is provided inside a rotor core that constitutes each of the rotors and that has a field magnet in a substantially V-shaped magnet insertion hole that is convex radially inward,
A plurality of holding members are fixed to the inner periphery of each of the rotor cores,
Inside the holding member, a plurality of guide grooves inclined in the circumferential direction, and inserted in the guide grooves, and moved in the guide grooves by receiving centrifugal force due to the rotation of the movable rotor. The centrifugal weight and one end are locked inside the guide groove provided in the holding member of the movable rotor, and the other end is locked in the groove provided in the rotating shaft and are opposite to the rotation direction. And a mechanism having a spring biasing in the direction,
The rotating electrical machine according to claim 1, wherein the number of the guide grooves and the centrifugal weights is the same as the number of magnetic poles of the rotor core.
回転軸の軸方向に隣接して少なくとも2つ装着された互いに相対回動可能な可動回転子を備え、
前記各々の回転子を構成する回転子鉄心の内部に設けられ、かつ、径方向内側に凸で略V字形状の磁石挿入穴に界磁用磁石を有する埋め込み磁石形モータにおいて、
前記各々の回転子鉄心の内周には複数の保持部材がそれぞれ固定されており、
前記保持部材の内部には、円周方向に傾斜した複数の案内溝と、該案内溝内に挿設されると共に前記可動回転子の回動により遠心力を受けて該案内溝内を移動する遠心錘と、一端が前記可動回転子の保持部材に設けた案内溝の内側に係止され、かつ、他端が前記回転軸に設けた溝内に係止されると共に、回動方向に反する方向に付勢するスプリングとを有する機構が設けられており、
前記案内溝と前記遠心錘は、前記回転子鉄心の磁極の数と同数としたことを特徴とする回転電機。
Comprising at least two movable rotors which are mounted adjacent to each other in the axial direction of the rotary shaft and which are rotatable relative to each other;
In an embedded magnet type motor that is provided inside a rotor core that constitutes each of the rotors and that has a field magnet in a substantially V-shaped magnet insertion hole that is convex radially inward,
A plurality of holding members are fixed to the inner periphery of each of the rotor cores,
Inside the holding member, a plurality of guide grooves inclined in the circumferential direction, and inserted in the guide grooves, and moved in the guide grooves by receiving centrifugal force due to the rotation of the movable rotor. The centrifugal weight and one end are locked inside the guide groove provided in the holding member of the movable rotor, and the other end is locked in the groove provided in the rotating shaft and are opposite to the rotation direction. And a mechanism having a spring biasing in the direction,
The rotating electrical machine according to claim 1, wherein the number of the guide grooves and the centrifugal weights is the same as the number of magnetic poles of the rotor core.
前記回転電機が電動機の場合であって、前記可動回転子の保持部材に設けた案内溝の円周方向の向きを、前記固定回転子の保持部材に設けた案内溝の円周方向の向きと逆にし、前記可動回転子の遠心力の作用による回動方向が該電動機の回転子の回転方向と逆になるようにしたことを特徴とする請求項1記載の回転電機。   In the case where the rotating electrical machine is an electric motor, the circumferential direction of the guide groove provided on the holding member of the movable rotor is the circumferential direction of the guide groove provided on the holding member of the fixed rotor. 2. The rotating electrical machine according to claim 1, wherein the rotating direction of the movable rotor due to the centrifugal force is opposite to the rotating direction of the rotor of the electric motor. 前記回転電機が発電機の場合であって、前記可動回転子の保持部材に設けた案内溝の円周方向の向きを、前記固定回転子の保持部材に設けた案内溝の円周方向の向きと逆にし、前記可動回転子の遠心力の作用による回動方向が該発電機の回転子の回転方向となるようにしたことを特徴とする請求項1記載の回転電機。   In the case where the rotating electrical machine is a generator, the circumferential direction of the guide groove provided in the holding member of the movable rotor is the circumferential direction of the guide groove provided in the holding member of the fixed rotor. 2. The rotating electrical machine according to claim 1, wherein the rotating direction of the movable rotor due to the centrifugal force is the rotating direction of the rotor of the generator. 前記機構を構成する前記案内溝内の遠心錘とスプリングが配置される取付け部にグリースを充填してあり、
前記可動回転子の保持部材に対する前記固定回転子に設けた保持部材の隣接部に嵌合部を設け、該嵌合部に前記グリースの漏れを防止するためのシール部材を設けたことを特徴とする請求項1または2に記載の回転電機。
The mounting portion where the centrifugal weight and the spring in the guide groove constituting the mechanism are arranged is filled with grease,
A fitting portion is provided in an adjacent portion of the holding member provided in the fixed rotor with respect to the holding member of the movable rotor, and a sealing member for preventing leakage of the grease is provided in the fitting portion. The rotating electrical machine according to claim 1 or 2.
JP2006077629A 2006-03-20 2006-03-20 Rotating electric machine Expired - Fee Related JP4807119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006077629A JP4807119B2 (en) 2006-03-20 2006-03-20 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077629A JP4807119B2 (en) 2006-03-20 2006-03-20 Rotating electric machine

Publications (3)

Publication Number Publication Date
JP2007259531A true JP2007259531A (en) 2007-10-04
JP2007259531A5 JP2007259531A5 (en) 2009-04-02
JP4807119B2 JP4807119B2 (en) 2011-11-02

Family

ID=38633194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077629A Expired - Fee Related JP4807119B2 (en) 2006-03-20 2006-03-20 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP4807119B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074975A (en) * 2008-09-19 2010-04-02 Yaskawa Electric Corp Hydraulic field-control rotary electric machine
JP2010154699A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Magnetic flux variable type rotating electrical machine
JP2010213488A (en) * 2009-03-11 2010-09-24 Yaskawa Electric Corp Permanent magnet type rotary electric machine
DE102012205849B4 (en) * 2011-04-14 2020-03-19 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Electric motor assembly with movable rotor segments to reduce counter electromotive force
CN119628310A (en) * 2025-02-17 2025-03-14 杭州赛微电机有限公司 A motor shaft quick-detachable motor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023106507A1 (en) * 2023-03-15 2024-09-19 Schaeffler Technologies AG & Co. KG Rotor, electric machine and kit-of-parts

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169743A (en) * 1997-08-08 1999-03-09 Hitachi Metals Ltd Magnet type brushless motor
JP2001069609A (en) * 1999-09-01 2001-03-16 Hitachi Ltd Hybrid vehicles and rotating electric machines
JP2004222350A (en) * 2003-01-09 2004-08-05 Nippon Steel Corp Permanent magnet type rotating electric machine
JP2004242461A (en) * 2003-02-07 2004-08-26 Denso Corp Rotor of variable magnetic flux magnet
JP2006006026A (en) * 2004-06-17 2006-01-05 Yaskawa Electric Corp Rotor and rotating electric machine equipped therewith

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1169743A (en) * 1997-08-08 1999-03-09 Hitachi Metals Ltd Magnet type brushless motor
JP2001069609A (en) * 1999-09-01 2001-03-16 Hitachi Ltd Hybrid vehicles and rotating electric machines
JP2004222350A (en) * 2003-01-09 2004-08-05 Nippon Steel Corp Permanent magnet type rotating electric machine
JP2004242461A (en) * 2003-02-07 2004-08-26 Denso Corp Rotor of variable magnetic flux magnet
JP2006006026A (en) * 2004-06-17 2006-01-05 Yaskawa Electric Corp Rotor and rotating electric machine equipped therewith

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010074975A (en) * 2008-09-19 2010-04-02 Yaskawa Electric Corp Hydraulic field-control rotary electric machine
JP2010154699A (en) * 2008-12-26 2010-07-08 Hitachi Ltd Magnetic flux variable type rotating electrical machine
JP2010213488A (en) * 2009-03-11 2010-09-24 Yaskawa Electric Corp Permanent magnet type rotary electric machine
DE102012205849B4 (en) * 2011-04-14 2020-03-19 GM Global Technology Operations, LLC (n.d. Ges. d. Staates Delaware) Electric motor assembly with movable rotor segments to reduce counter electromotive force
CN119628310A (en) * 2025-02-17 2025-03-14 杭州赛微电机有限公司 A motor shaft quick-detachable motor

Also Published As

Publication number Publication date
JP4807119B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
US12034350B2 (en) Electrical machine with electric motor and magnetic gear
EP2133982A2 (en) An electrical machine with integrated magnetic gears
US9627933B2 (en) Brushless motor
JP4807119B2 (en) Rotating electric machine
JPWO2015029256A1 (en) Synchronous motor
JP5865174B2 (en) Brushless motor
US10355568B2 (en) Flux control of permanent magnet electric machine
JP2007259531A5 (en)
JP6164506B2 (en) Rotating electric machine
JP2007318860A5 (en)
EP1612912A1 (en) Permanent magnet electric machine
JP2007318860A (en) Rotating electric machine
DK3017529T3 (en) Reducing bearing forces in an electric machine
JP4604565B2 (en) Rotor and rotating electric machine equipped with the same
JPWO2018123830A1 (en) Electric rotating machine
TWI513149B (en) Permanent magnet generator with magnetic gear
JP2012080615A (en) Variable flux motor
JP2012080616A (en) Variable flux motor
JP6804699B1 (en) Stator and rotary machine using it
JP4801824B2 (en) Magnetic machine
JP4862344B2 (en) Rotating electric machine
JP4704883B2 (en) Permanent magnet rotating electrical machine and cylindrical linear motor
JP2008193823A (en) Rotor structure
JP2012244704A (en) Outer-rotor motor
JP5219932B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110801

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees