[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4604565B2 - Rotor and rotating electric machine equipped with the same - Google Patents

Rotor and rotating electric machine equipped with the same Download PDF

Info

Publication number
JP4604565B2
JP4604565B2 JP2004179392A JP2004179392A JP4604565B2 JP 4604565 B2 JP4604565 B2 JP 4604565B2 JP 2004179392 A JP2004179392 A JP 2004179392A JP 2004179392 A JP2004179392 A JP 2004179392A JP 4604565 B2 JP4604565 B2 JP 4604565B2
Authority
JP
Japan
Prior art keywords
field magnet
rotor
field
yoke
magnet movable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004179392A
Other languages
Japanese (ja)
Other versions
JP2006006026A (en
Inventor
剛 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2004179392A priority Critical patent/JP4604565B2/en
Publication of JP2006006026A publication Critical patent/JP2006006026A/en
Application granted granted Critical
Publication of JP4604565B2 publication Critical patent/JP4604565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は、界磁用磁石が設置された回転子と、これを備えた回転電機に関する。   The present invention relates to a rotor in which a field magnet is installed, and a rotating electrical machine including the rotor.

従来の界磁用磁石が設置された回転子を有する回転電機は、一般的に界磁用磁石が回転子に固定されている。このような回転電機の誘起電圧は、界磁磁束と回転子の回転数に比例するため、回転数に対する誘起電圧の関係は図7の直線abで示したような特性となる。そのため、仮に電源の電圧が電圧cで制限される電動機を例とすれば、この電動機の最高回転数は回転数dで制限される狭い運転域となる。
そこで、界磁磁束を回転子の回転数に応じて変化させる電動機が提案された。(例えば、特許文献1参照)。
特開平10−155262号公報(第8頁、図1)
In a rotating electric machine having a rotor on which a conventional field magnet is installed, the field magnet is generally fixed to the rotor. Since the induced voltage of such a rotating electrical machine is proportional to the field magnetic flux and the rotational speed of the rotor, the relationship of the induced voltage with respect to the rotational speed has characteristics as shown by the straight line ab in FIG. Therefore, if an electric motor whose power supply voltage is limited by the voltage c is taken as an example, the maximum rotational speed of the electric motor is a narrow operating range limited by the rotational speed d.
Therefore, an electric motor that changes the field magnetic flux in accordance with the rotational speed of the rotor has been proposed. (For example, refer to Patent Document 1).
JP-A-10-155262 (page 8, FIG. 1)

図8は特許文献1中の図1に示されているものである。
図8において、回転子2に設置された第1の界磁用磁石31と第2の界磁用磁石32は、該回転数の低い時には(A)に示されているように同じ極性の磁極が並び、回転数の高い時には(B)に示されているように同じ極性の磁極がずれる構造となっている。
この技術によれば回転子の回転数が高い時に界磁用磁石の磁束が相殺することで誘起電圧を下げ、その分高速運転領域を広げることが可能となる。
FIG. 8 is shown in FIG.
In FIG. 8, the first field magnet 31 and the second field magnet 32 installed on the rotor 2 are magnetic poles having the same polarity as shown in FIG. When the rotation speed is high, the magnetic poles having the same polarity are displaced as shown in FIG.
According to this technique, when the rotational speed of the rotor is high, the magnetic flux of the field magnet cancels out, so that the induced voltage can be lowered and the high-speed operation range can be expanded accordingly.

ところが、特許文献1に示した従来の界磁磁束を回転子の回転数に応じて変化させる電動機では、界磁用磁石の磁束を減じることなく固定子の巻線に鎖交する磁束を相殺させたため、高速運転領域を広げることは可能になるが、特に固定子に発生する鉄損の低減がなされていない。そのため回転子の回転数が高くなるほど鉄損の増加で効率は低下し、また電動機が高温となり定格出力は低下する。
本発明はこのような問題点に鑑みてなされたものであり、界磁磁束を回転子の回転数に応じて変化させるとともに、界磁用磁石の磁束を減じて高回転運転領域でも高効率で作動する回転電機を提供することを目的とする。
However, in the electric motor that changes the conventional field magnetic flux shown in Patent Document 1 in accordance with the rotational speed of the rotor, the interlinkage magnetic flux in the stator winding is canceled without reducing the magnetic flux of the field magnet. Therefore, it is possible to widen the high-speed operation range, but in particular, iron loss generated in the stator has not been reduced. Therefore, the higher the rotor speed, the lower the efficiency due to an increase in iron loss, the higher the motor temperature, and the lower the rated output.
The present invention has been made in view of such a problem. The field magnetic flux is changed according to the number of rotations of the rotor, and the magnetic flux of the field magnet is reduced to achieve high efficiency even in a high rotation operation region. It aims at providing the rotary electric machine which operate | moves.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1記載の発明は、巻線を有する中空の固定子と、該固定子の中空部に配置され界磁用磁石が設置された回転子と、を備えてなる回転電機において、前記回転子は、回転方向に順次異なった極性の磁極が並んでいる第1界磁用磁石可動部および第2界磁用磁石可動部と、前記界磁用磁石の内側の磁路を構成し、シャフトに固定された回転子鉄心の継鉄部と、を備え、前記界磁用磁石可動部が前記継鉄部に対して、前記回転子の回転数に応じて自動的に回転方向の位置を変える遠心機構を、前記界磁用磁石可動部の内側に設け、前記回転子の回転数に応じて前記第1界磁用磁石可動部および前記第2界磁用磁石可動部がそれぞれ前記継鉄部に対して回転方向の位置を変えることで、固定子の巻線に鎖交する界磁磁束が変化することを特徴としている。
請求項2記載の発明は、請求項1記載の回転電機において、前記回転子に遠心錘を設け、かつ前記回転子の回転数の増減に伴い前記遠心錘に作用する遠心力の半径方向の力を、前記界磁用磁石が前記継鉄部に対して位置を変える回転方向の力に変換する斜面を前記第1界磁用磁石可動部および第2界磁用磁石可動部に設けたことを特徴としている。
請求項3記載の発明は、請求項1または2記載の回転電機において、前記継鉄部は、界磁用磁石の内側の磁路を構成する回転方向に厚みの異なる形状となっており、前記回転子の回転数の低い時は前記継鉄部の厚みの厚い部分が隣合う界磁用磁石の間に位置して磁束が通り易くなっており、前記回転子の回転数が高い時には、前記第1界磁用磁石可動部および第2界磁用磁石可動部が前記継鉄部に対して相反する回転方向に位置を変え、揃っていた第1界磁用磁石可動部および第2界磁用磁石可動部の磁極をずらし、同時に前記磁束を通りにくくすることにより、巻線に鎖交する界磁磁束を減ずることを特徴としている。
In order to solve the above problem, the present invention is configured as follows.
According to a first aspect of the present invention , there is provided a rotary electric machine comprising: a hollow stator having windings; and a rotor disposed in a hollow portion of the stator and provided with a field magnet. Comprises a first field magnet movable part and a second field magnet movable part in which magnetic poles of different polarities are sequentially arranged in the rotation direction, and a magnetic path inside the field magnet, A stationary rotor core yoke, and the field magnet movable portion automatically changes the position of the rotation direction with respect to the yoke portion in accordance with the number of rotations of the rotor. A mechanism is provided inside the field magnet movable part, and the first field magnet movable part and the second field magnet movable part are respectively connected to the yoke part according to the number of rotations of the rotor. by changing the position in the rotational direction for a feature in that magnetic flux field interlinked to the stator windings is changed To have.
According to a second aspect of the present invention, in the rotating electric machine according to the first aspect , a centrifugal weight is provided on the rotor, and a radial force of a centrifugal force acting on the centrifugal weight as the number of rotations of the rotor increases or decreases. Are provided on the first field magnet movable portion and the second field magnet movable portion to convert the field magnet into a rotational force that changes the position of the field magnet with respect to the yoke portion. It is a feature.
According to a third aspect of the present invention, in the rotating electrical machine according to the first or second aspect , the yoke portion has a shape with a different thickness in a rotational direction constituting a magnetic path inside the field magnet, When the rotational speed of the rotor is low, the thick portion of the yoke portion is located between adjacent field magnets so that magnetic flux can easily pass therethrough, and when the rotational speed of the rotor is high, The first field magnet movable part and the second field magnet movable part change their positions in the rotational direction opposite to the yoke part, and the first field magnet movable part and the second field magnet are aligned. The magnetic field flux interlinked with the windings is reduced by shifting the magnetic poles of the movable part for the magnet and making it difficult to pass the magnetic flux at the same time .

請求項1記載の回転子によると、回転子の回転数に応じて界磁用磁石可動部が回転子鉄心に対して回転方向の相対位置を変えることで、固定子の巻線に鎖交する界磁磁束が簡単に変化するようになり、高回転運転領域でも高効率で作動する回転子を得ることができる。
請求項2記載の回転電機の発明によると、2つの界磁用磁石が回転子の継鉄部に対して回転方向の位置を変えるため広範囲な相対的作動角が容易に得られ、固定子の巻線に鎖交する界磁磁束を0から100%まで制御することができ、電動機においては電源の電圧に制限を受けることなく回転子を高回転まで駆動することができる。また、発電機においては回転子の回転数に拘わらず、誘起電圧を所望の値に調整することができる。
また、請求項3記載の発明によると、第1と第2の界磁用磁石可動部の2つの斜面で遠心錘の位置を規制しているため、遠心錘を支持する機構を別に設ける必要がなく、構造が簡単で更に遠心錘に作用する遠心力を全て界磁用磁石が継鉄部に対して位置を変える回転方向の力に変換することができ、遠心錘の質量を最小限に設計することができる。
また、請求項4記載の発明によると、回転子の回転数の高い時は隣合う界磁用磁石の間に継鉄部の薄い部分が位置して磁束が通りにくくなるため、界磁用磁石の磁束が減じて鉄損を低減でき、高回転運転領域でも高効率で作動する回転電機を提供することができる。
また、請求項5記載の発明によると、前記回転子の回転数が高い時には、第1と第2の界磁用磁石可動部が継鉄部に対して相反する回転方向に位置を変え、揃っていた第1と第2の界磁用磁石可動部の磁極をずらし、同時に請求項3記載の磁束を通りにくくすることにより、巻線に鎖交する界磁磁束を減じるため、電動機においては電源の電圧に制限を受けることなく回転子を高回転まで高効率で駆動することができる。また、発電機においては回転子の回転数に拘わらず、高効率で誘起電圧を所望の値に調整することができる。
また、請求項6記載の発明によると、回転子の外部に前記機構を設ける必要がないので、従来の界磁用磁石が回転子に固定された回転電機と同等のサイズのまま、高回転まで高効率で作動する回転電機を提供することができる。
また、請求項7記載の発明によると、回転子の回転数に応じて界磁用磁石可動部が回転子鉄心に対して回転方向の相対位置を変え、回転子の回転数の低い時は継鉄部の厚みの厚い部分が隣合う界磁用磁石の間に位置して磁束が通り易くなるのに対して、回転子の回転数の高い時は隣合う界磁用磁石の間に継鉄部の薄い部分が位置して磁束が通りにくくなるので、固定子の巻線に鎖交する界磁磁束が簡単に変化でき、高回転運転領域でも高効率で作動できるようになる。
According to the rotor according to claim 1, the field magnet movable part interlinks with the winding of the stator by changing the relative position in the rotation direction with respect to the rotor core according to the number of rotations of the rotor. The field magnetic flux easily changes, and a rotor that operates with high efficiency even in a high rotation operation region can be obtained.
According to the invention of the rotating electric machine according to claim 2, since the two field magnets change the position in the rotational direction with respect to the yoke portion of the rotor, a wide range of relative operating angles can be easily obtained. The field magnetic flux interlinking with the windings can be controlled from 0 to 100%, and in the electric motor, the rotor can be driven to a high speed without being limited by the voltage of the power source. In the generator, the induced voltage can be adjusted to a desired value regardless of the number of rotations of the rotor.
According to the invention described in claim 3, since the position of the centrifugal weight is regulated by the two inclined surfaces of the first and second field magnet moving parts, it is necessary to provide a separate mechanism for supporting the centrifugal weight. In addition, the structure is simple and the centrifugal force acting on the centrifugal weight can be converted into a rotational force that changes the position of the field magnet with respect to the yoke part, and the mass of the centrifugal weight is designed to the minimum. can do.
According to a fourth aspect of the present invention, when the rotational speed of the rotor is high, a thin portion of the yoke portion is located between adjacent field magnets so that the magnetic flux is difficult to pass. Therefore, it is possible to provide a rotating electrical machine that can reduce iron loss and operate with high efficiency even in a high rotation operation region.
According to a fifth aspect of the present invention, when the rotational speed of the rotor is high, the first and second field magnet movable parts change their positions in the rotational direction opposite to the yoke part and are aligned. In order to reduce the field magnetic flux interlinked with the windings by shifting the magnetic poles of the first and second field magnet moving parts, and simultaneously making the magnetic flux according to claim 3 difficult to pass, Therefore, the rotor can be driven with high efficiency up to high rotation without being limited by the voltage. In addition, in the generator, the induced voltage can be adjusted to a desired value with high efficiency regardless of the rotational speed of the rotor.
According to the sixth aspect of the present invention, since it is not necessary to provide the mechanism outside the rotor, the conventional field magnet is kept at the same size as the rotating electrical machine fixed to the rotor, and the rotation speed can be increased. A rotating electrical machine that operates at high efficiency can be provided.
According to the seventh aspect of the invention, the field magnet movable portion changes the relative position in the rotational direction with respect to the rotor core in accordance with the rotational speed of the rotor, and when the rotational speed of the rotor is low, The thicker part of the iron part is located between adjacent field magnets, making it easier for the magnetic flux to pass, whereas when the rotor rotation speed is high, the yoke is between the adjacent field magnets. Since the thin part is located and the magnetic flux does not easily pass, the field magnetic flux interlinked with the stator winding can be easily changed, and the operation can be performed with high efficiency even in the high rotation operation region.

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の回転電機の回転子の外観図である。
図において、第1の界磁用磁石可動部1と、第2の界磁用磁石可動部2は、シャフト4に固定された回転子鉄心の継鉄部3aに対し、回転自在に取り付けられている。図1は回転子の回転数が低い時の状態を表しているので、第1の界磁用磁石可動部と第2の界磁用磁石可動部の界磁用磁石は、同じ極性の磁極が並んだ状態を示している。また、回転子鉄心の継鉄部3aの厚みの厚い部分が隣合う界磁用磁石の間に位置して磁束が通り易い状態となっている。
図示されていない遠心錘は、遠心錘のピン5を介して戻しバネ6の荷重で内周に引き付けられている。
図2は、本発明の回転電機の遠心錘のある部位での径方向断面図である。また、 図3は本発明の電動機の軸方向断面図である。図4は図1で示した回転子の部品構成図である。
図4において、第1の界磁磁石可動部1と第2の界磁用磁石可動部2は、リベット9、プレート10、リングプレート11、積層鉄心12と、図2及び3に示す積層鉄心12に埋設された界磁磁石8より構成され、図3に示すシャフト4に軸方向のみ固定される。
プレート10には、遠心錘7に作用する遠心力等の半径方向の力を、前記界磁用磁石が継鉄部に対して位置を変える回転方向の力に変換する斜面が設置されており、第1と第2の界磁用磁石可動部の2つの斜面で遠心錘の位置を規制する。
図3に示すように第1と第2の界磁磁石可動部を構成するリベットは、リングプレートを介して界磁磁石を埋設した積層鉄心をプレートに固定するために用いられている。
回転子鉄心の継鉄部3aは、界磁用磁石の内側の磁路を構成する回転方向に厚みの異なる形状となっており、回転子の回転数の低い時は前記継鉄部の厚みの厚い部分が隣合う界磁用磁石の間に位置して磁束が通り易くなっている。
回転子の回転数の高い時は第1界磁用磁石可動部と第2界磁用磁石可動部が回転方向の位置を変え、隣合う界磁用磁石の間に継鉄部の薄い部分が位置して磁束が通りにくくなる。界磁用磁石可動部の積層鉄心12の内周と固定子鉄心3の外周等、摺動部には潤滑性皮膜材等を用いて摩擦抵抗を低減する。
図2及び図3に示す遠心錘のピン5は、遠心錘7を貫通し軸の両端に戻しバネ6が取り付けられる。遠心錘のピンは図4に示す固定子鉄心の溝3bによって、回転方向のみ固定され、径方向には遠心錘に働く遠心力と戻しバネの荷重により決定されるので、遠心錘の質量と戻しバネの荷重特性、斜面の角度等を調整することにより、各々の回転数に対して、遠心錘が外側へ移動して行くタイミングを調整できる。これにより図7において、直線beの特性を、直線beの傾きと遠心錘の動きだす回転数dの変更のみならず、所望の曲線的特性も実現できることとなる。
FIG. 1 is an external view of a rotor of a rotating electrical machine according to the present invention.
In the figure, a first field magnet movable portion 1 and a second field magnet movable portion 2 are rotatably attached to a yoke portion 3 a of a rotor core fixed to a shaft 4. Yes. Since FIG. 1 shows the state when the rotational speed of the rotor is low, the field magnets of the first field magnet moving part and the second field magnet moving part have magnetic poles of the same polarity. It shows the state of being lined up. Moreover, the thick part of the yoke part 3a of the rotor core is located between adjacent field magnets, so that the magnetic flux can easily pass therethrough.
A centrifugal weight (not shown) is attracted to the inner periphery by a load of a return spring 6 through a pin 5 of the centrifugal weight.
FIG. 2 is a radial cross-sectional view at a portion where the centrifugal weight of the rotating electrical machine of the present invention is present. FIG. 3 is an axial sectional view of the electric motor of the present invention. FIG. 4 is a component configuration diagram of the rotor shown in FIG.
In FIG. 4, the first field magnet movable part 1 and the second field magnet movable part 2 include a rivet 9, a plate 10, a ring plate 11, a laminated iron core 12, and a laminated iron core 12 shown in FIGS. 3 is fixed to the shaft 4 shown in FIG. 3 only in the axial direction.
The plate 10 is provided with a slope that converts a radial force such as a centrifugal force acting on the centrifugal weight 7 into a rotational force that changes the position of the field magnet with respect to the yoke portion. The position of the centrifugal weight is regulated by the two slopes of the first and second field magnet moving parts.
As shown in FIG. 3, the rivets constituting the first and second field magnet moving parts are used to fix a laminated iron core in which field magnets are embedded via a ring plate to the plate.
The yoke portion 3a of the rotor core has a shape with a different thickness in the rotation direction constituting the magnetic path inside the field magnet, and when the rotation speed of the rotor is low, the thickness of the yoke portion is reduced. The thick part is located between adjacent field magnets, so that the magnetic flux easily passes.
When the number of rotations of the rotor is high, the first field magnet moving part and the second field magnet moving part change the position in the rotation direction, and a thin portion of the yoke part is located between adjacent field magnets. It becomes difficult to pass magnetic flux. The sliding resistance such as the inner circumference of the laminated core 12 and the outer circumference of the stator core 3 of the field magnet movable part is reduced by using a lubricating film material or the like.
The centrifugal weight pin 5 shown in FIGS. 2 and 3 passes through the centrifugal weight 7 and has return springs 6 attached to both ends of the shaft. The pin of the centrifugal weight is fixed only in the rotational direction by the groove 3b of the stator core shown in FIG. 4, and is determined by the centrifugal force acting on the centrifugal weight and the load of the return spring in the radial direction. By adjusting the load characteristics of the spring, the angle of the slope, etc., the timing at which the centrifugal weight moves outward can be adjusted for each rotational speed. Accordingly, in FIG. 7, the characteristic of the straight line be can be realized not only by changing the inclination of the straight line be and the rotation speed d of the centrifugal weight, but also by a desired curvilinear characteristic.

図5は、界磁磁石可動部の動作説明図である。
図において、(a)、(c)は回転子の回転数が低い時の初期状態を示すものであり、(b)、(d)は回転数が高い時の状態の1例を示すものである。また、(a)、(b)は、固定子鉄心の径鉄部に対する第1及び第2の界磁磁石可動部の位置関係を示すものであり、(c)、(d)は、界磁磁石の内周の継鉄部との位置関係による磁束の増減を示すものである。
(a)、(c)に対し、(b)、(d)の状態では、第1と第2の界磁用磁石可動部が継鉄部に対して相反する回転方向に位置を変え、揃っていた第1と第2の界磁用磁石可動部の磁極をずらし、同時に磁束を通りにくくすることにより、巻線に鎖交する界磁磁束を減ずる。そのため電動機の誘起電圧を下げるとともに鉄損も低減できるので、回転子を高回転まで高効率で駆動することができるようになる。
なお、この実施例では、同一構造の第1界磁用磁石可動部と第2の界磁用磁石可動部とを互いに背中合わせにして並置させているが、本発明はこれに限定されるものではなく、例えば同一構造の第1界磁用磁石可動部と第2の界磁用磁石可動部とを互いに向かい合わせに突き合わせて並置させてもよいし、第1界磁用磁石可動部と第2の界磁用磁石可動部に互いに異なる向きの斜面を設けて、両者を同じ向きに並置させてもよい。
FIG. 5 is an explanatory diagram of the operation of the field magnet movable portion.
In the figure, (a) and (c) show the initial state when the rotational speed of the rotor is low, and (b) and (d) show an example of the state when the rotational speed is high. is there. (A) and (b) show the positional relationship of the first and second field magnet movable parts with respect to the diameter iron part of the stator core, and (c) and (d) are the field magnets. The increase / decrease of the magnetic flux by the positional relationship with the yoke part of the inner periphery of a magnet is shown.
In contrast to (a) and (c), in the states of (b) and (d), the first and second field magnet moving parts change their positions in the rotational direction opposite to the yoke part and are aligned. By shifting the magnetic poles of the first and second field magnet moving parts that have been used and making the magnetic flux difficult to pass at the same time, the field magnetic flux linked to the windings is reduced. Therefore, the induced voltage of the electric motor can be lowered and the iron loss can be reduced, so that the rotor can be driven with high efficiency up to high rotation.
In this embodiment, the first field magnet movable part and the second field magnet movable part having the same structure are juxtaposed back to back, but the present invention is not limited to this. Instead, for example, the first field magnet movable part and the second field magnet movable part having the same structure may be arranged to face each other face to face, or the first field magnet movable part and the second field magnet movable part The field magnet movable part may be provided with slopes in different directions, and both may be juxtaposed in the same direction.

コギングトルク低減の方策として、回転数が低い時の初期状態を示す(a)において、初期状態から第1と第2の界磁磁石可動部を適量ずらす場合もある。このことは、第1と第2の界磁磁石可動部に働く磁気的斥力を遠心錘に働く遠心力の補助として利用できる効果もある。
また、図において斜面10aの角度は、径方向に対して外側ほど大きな角度となっているが、これは回転数の2乗に比例した遠心錘の遠心力に対して、このようにしないと遠心力と戻しバネの荷重との釣り合い点が無くなり、ある回転数で2つの界磁磁石可動部が一気に動作してしまうためである。
図6は、高回転時の界磁磁石可動部の状態例を示している。この図例では界磁磁石の固定子鉄心に対する相対移動が磁極ピッチ分の角度行われた結果、前記磁束を通りにくくするとともに、巻線に鎖交する界磁磁束が完全に相殺される状態となり、本実施例によれば固定子の巻線に鎖交する界磁磁束を0から100%まで制御することができる。そのため、電動機においては電源の電圧に制限を受けることなく回転子を高回転まで駆動することができる。
また、発電機においては回転子の回転数に拘わらず、誘起電圧を所望の値に調整することができる。
As a measure for reducing the cogging torque, there is a case where the first and second field magnet movable parts are shifted by an appropriate amount from the initial state in (a) showing the initial state when the rotational speed is low. This also has the effect that the magnetic repulsive force acting on the first and second field magnet movable parts can be used as an auxiliary to the centrifugal force acting on the centrifugal weight.
In the figure, the angle of the inclined surface 10a is larger toward the outer side in the radial direction, but this is against the centrifugal force of the centrifugal weight that is proportional to the square of the rotational speed. This is because there is no balance point between the force and the load of the return spring, and the two field magnet movable parts operate at a certain speed at a certain rotational speed.
FIG. 6 shows an example of the state of the field magnet movable part during high rotation. In this example, the relative movement of the field magnet with respect to the stator core is performed at an angle corresponding to the magnetic pole pitch, so that the magnetic flux does not easily pass through and the field magnetic flux interlinked with the winding is completely cancelled. According to this embodiment, the field magnetic flux interlinking with the stator winding can be controlled from 0 to 100%. Therefore, in the electric motor, the rotor can be driven to a high speed without being restricted by the voltage of the power source.
In the generator, the induced voltage can be adjusted to a desired value regardless of the number of rotations of the rotor.

本発明が特許文献1記載の発明と異なる点は、第1界磁磁石可動部と第2界磁磁石可動部を回転子鉄心の継鉄部に対して相反する回転方向に位置を変えるため、誘起電圧を下げるとともに鉄損も低減できるので、回転子を高回転まで高効率で駆動することができるようになる。
本発明を産業用サーボモータに利用することによって、従来と同じサイズのまま、従来よりも高回転まで高効率で駆動することができるようになり、作業性が向上する。また、車両用電動機として、トルク定数を5倍以上制御できることを利用することによって、変速機構が不要となる。
また、本発明を風力や車両用発電機として利用することによって、回転数に依存せず常に所望の一定の電圧を発電することができるので、ライン電圧やバッテリー電圧に対し、昇降圧装置が不要となる。
The difference between the present invention and the invention described in Patent Document 1 is that the first field magnet movable part and the second field magnet movable part are repositioned in the rotational direction opposite to the yoke part of the rotor core. Since the induced voltage can be lowered and the iron loss can be reduced, the rotor can be driven with high efficiency up to high rotation.
By using the present invention for an industrial servomotor, it becomes possible to drive with higher efficiency up to a higher rotation than the conventional one while maintaining the same size as the conventional one, thereby improving workability. Moreover, a transmission mechanism becomes unnecessary by utilizing that the torque constant can be controlled five times or more as an electric motor for a vehicle.
In addition, by using the present invention as a wind power generator or a vehicle generator, it is possible to always generate a desired constant voltage regardless of the number of revolutions, so that a step-up / step-down device is not required for line voltage and battery voltage. It becomes.

本発明の第1実施例を示す回転電機の回転子の斜視図である。It is a perspective view of the rotor of the rotary electric machine which shows 1st Example of this invention. 本発明の第1実施例を示す回転電機の軸に対して直角な面で切った断面図である。It is sectional drawing cut | disconnected by the surface orthogonal to the axis | shaft of the rotary electric machine which shows 1st Example of this invention. 本発明の第1実施例を示す回転電機の軸を通る垂直面で切った断面図である。It is sectional drawing cut | disconnected by the vertical surface which passes along the axis | shaft of the rotary electric machine which shows 1st Example of this invention. 本発明に係る回転子の分解斜視図である。It is a disassembled perspective view of the rotor which concerns on this invention. 本発明に係る界磁磁石可動部の動作を説明する図である。It is a figure explaining operation | movement of the field magnet movable part which concerns on this invention. 高回転時の本発明に係る界磁磁石可動部の状態例を示す図である。It is a figure which shows the example of a state of the field magnet movable part which concerns on this invention at the time of high rotation. 誘起電圧の回転数特性図である。It is a rotation speed characteristic diagram of an induced voltage. 特許文献1中の図1の引用図である。FIG. 2 is a citation diagram of FIG. 1 in Patent Document 1.

符号の説明Explanation of symbols

A 回転子
B 固定子
C 回転電機
1 第1の界磁用磁石可動部
2 第2の界磁用磁石可動部
3 回転子鉄心
3a 回転子鉄心の継鉄部
3b 回転子鉄心の溝
4 シャフト
5 遠心錘のピン
6 戻しバネ
7 遠心錘
8 界磁用磁石
9 リベット
10 プレート
10a 斜面
11 リングプレート
12 積層鉄心
A Rotor B Stator C Rotating electrical machine 1 First field magnet moving part 2 Second field magnet moving part 3 Rotor core 3a Rotor core yoke part 3b Rotor core groove 4 Shaft 5 Centrifugal weight pin 6 Return spring 7 Centrifugal weight 8 Field magnet 9 Rivet 10 Plate 10a Slope 11 Ring plate 12 Multilayer iron core

Claims (3)

巻線を有する中空の固定子と、該固定子の中空部に配置され界磁用磁石が設置された回転子と、を備えてなる回転電機において、
前記回転子は、回転方向に順次異なった極性の磁極が並んでいる第1界磁用磁石可動部および第2界磁用磁石可動部と、前記界磁用磁石の内側の磁路を構成し、シャフトに固定された回転子鉄心の継鉄部と、を備え、
前記界磁用磁石可動部が前記継鉄部に対して、前記回転子の回転数に応じて自動的に回転方向の位置を変える遠心機構を、前記界磁用磁石可動部の内側に設け
前記回転子の回転数に応じて前記第1界磁用磁石可動部および前記第2界磁用磁石可動部がそれぞれ前記継鉄部に対して回転方向の位置を変えることで、固定子の巻線に鎖交する界磁磁束が変化することを特徴とする回転電機
In a rotating electrical machine comprising: a hollow stator having windings; and a rotor disposed in a hollow portion of the stator and provided with a field magnet.
The rotor constitutes a first field magnet movable portion and a second field magnet movable portion in which magnetic poles of different polarities are sequentially arranged in the rotation direction, and a magnetic path inside the field magnet. A rotor core yoke fixed to the shaft, and
A centrifugal mechanism that automatically changes the position of the rotation direction in accordance with the number of rotations of the rotor with respect to the yoke portion is provided inside the field magnet movable portion with respect to the yoke portion .
The first field magnet moving part and the second field magnet moving part change the position in the rotation direction with respect to the yoke part according to the number of rotations of the rotor. A rotating electric machine characterized in that a field magnetic flux linked to a wire changes .
前記回転子に遠心錘を設け、かつ前記回転子の回転数の増減に伴い前記遠心錘に作用する遠心力の半径方向の力を、前記界磁用磁石が前記継鉄部に対して位置を変える回転方向の力に変換する斜面を前記第1界磁用磁石可動部および第2界磁用磁石可動部に設けたことを特徴とする請求項1記載の回転電機。 A centrifugal weight is provided on the rotor, and a radial force of the centrifugal force acting on the centrifugal weight as the number of rotations of the rotor increases or decreases, the field magnet is positioned relative to the yoke portion. 2. The rotating electrical machine according to claim 1 , wherein slopes for converting the force in the rotating direction to be changed are provided in the first field magnet movable portion and the second field magnet movable portion . 前記継鉄部は、界磁用磁石の内側の磁路を構成する回転方向に厚みの異なる形状となっており、前記回転子の回転数の低い時は前記継鉄部の厚みの厚い部分が隣合う界磁用磁石の間に位置して磁束が通り易くなっており
前記回転子の回転数が高い時には、前記第1界磁用磁石可動部および第2界磁用磁石可動部が前記継鉄部に対して相反する回転方向に位置を変え、揃っていた第1界磁用磁石可動部および第2界磁用磁石可動部の磁極をずらし、同時に前記磁束を通りにくくすることにより、巻線に鎖交する界磁磁束を減ずることを特徴とする請求項1または2記載の回転電機。
The yoke part has a shape with a different thickness in the rotation direction constituting the magnetic path inside the field magnet, and when the number of rotations of the rotor is low, the thick part of the yoke part is It is located between adjacent field magnets, making it easier for magnetic flux to pass through .
When the number of rotations of the rotor is high, the first field magnet movable part and the second field magnet movable part change positions in the opposite direction of rotation with respect to the yoke part and are aligned. shifting the poles of the field magnet movable portion and the second field magnet movable portion, at the same time by hardly passes the magnetic flux, claim 1, characterized in that to reduce the magnetic flux field interlinked in windings or 2. The rotating electrical machine according to 2.
JP2004179392A 2004-06-17 2004-06-17 Rotor and rotating electric machine equipped with the same Expired - Fee Related JP4604565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179392A JP4604565B2 (en) 2004-06-17 2004-06-17 Rotor and rotating electric machine equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179392A JP4604565B2 (en) 2004-06-17 2004-06-17 Rotor and rotating electric machine equipped with the same

Publications (2)

Publication Number Publication Date
JP2006006026A JP2006006026A (en) 2006-01-05
JP4604565B2 true JP4604565B2 (en) 2011-01-05

Family

ID=35773950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179392A Expired - Fee Related JP4604565B2 (en) 2004-06-17 2004-06-17 Rotor and rotating electric machine equipped with the same

Country Status (1)

Country Link
JP (1) JP4604565B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205594B2 (en) * 2006-03-16 2013-06-05 日産自動車株式会社 Rotating electric machine
JP4807119B2 (en) * 2006-03-20 2011-11-02 株式会社安川電機 Rotating electric machine
CN103580411A (en) * 2012-08-10 2014-02-12 杨荷 Permanent-magnet brushless self-adaptive variable-speed drive motor
KR101560972B1 (en) * 2014-04-22 2015-10-26 주식회사 만도 Motor
CN104319965B (en) * 2014-10-31 2017-09-05 上海吉亿电机有限公司 The stator module and permanent magnetic servo-motor of a kind of permanent magnetic servo-motor
CN109428413B (en) * 2017-08-22 2020-11-06 西门子公司 Magnetic steel fixing device, oblique-pole rotor and assembling method thereof
KR102284530B1 (en) * 2019-11-26 2021-08-02 (주)지우이노베이션 Motor
JP7299293B2 (en) * 2021-11-11 2023-06-27 西芝電機株式会社 Rotor of rotary electric machine
DE102023106507A1 (en) * 2023-03-15 2024-09-19 Schaeffler Technologies AG & Co. KG Rotor, electric machine and kit-of-parts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072978A (en) * 2002-08-09 2004-03-04 Equos Research Co Ltd Electric motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10155262A (en) * 1996-09-30 1998-06-09 Hitachi Metals Ltd Magnet type brushless motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004072978A (en) * 2002-08-09 2004-03-04 Equos Research Co Ltd Electric motor

Also Published As

Publication number Publication date
JP2006006026A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
US8816554B2 (en) Motor
US5821710A (en) Brushless motor having permanent magnets
JP5796906B2 (en) Motor that can be reconfigured from induction to synchronous
EP1916758A2 (en) Dual rotor electromagnetic machine
EP0813287B1 (en) Switched reluctance motors
EP2325979B1 (en) Electrical rotating machine
CA2654462A1 (en) Poly-phasic multi-coil generator
WO2002019499A1 (en) Electric motor
US20100253178A1 (en) Permanent-magnet synchronous motor
US20070216252A1 (en) Motor/generator
JP4604565B2 (en) Rotor and rotating electric machine equipped with the same
JP4369384B2 (en) Rotating electric machine
JP4807119B2 (en) Rotating electric machine
EP3017529B1 (en) Reducing bearing forces in an electrical machine
JP2007318860A5 (en)
JP2007318860A (en) Rotating electric machine
JPH1146471A (en) Magnet excited brushless motor
JP2007259531A5 (en)
JP2005073444A (en) Permanent magnet rotary electric machine
JP4848649B2 (en) Rotating electric machine
JP4862344B2 (en) Rotating electric machine
JP2012080616A (en) Variable flux motor
GB2317997A (en) Relatively adjustaable rotor in a brushless machine
JPH1169743A (en) Magnet type brushless motor
JP4584228B2 (en) Stepping motor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100614

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141015

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees