JP2007136509A - Build-up welding material for continuous casting roll, and roll - Google Patents
Build-up welding material for continuous casting roll, and roll Download PDFInfo
- Publication number
- JP2007136509A JP2007136509A JP2005333537A JP2005333537A JP2007136509A JP 2007136509 A JP2007136509 A JP 2007136509A JP 2005333537 A JP2005333537 A JP 2005333537A JP 2005333537 A JP2005333537 A JP 2005333537A JP 2007136509 A JP2007136509 A JP 2007136509A
- Authority
- JP
- Japan
- Prior art keywords
- continuous casting
- less
- welding material
- phase
- roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000009749 continuous casting Methods 0.000 title claims abstract description 38
- 239000000463 material Substances 0.000 title claims abstract description 30
- 238000003466 welding Methods 0.000 title claims abstract description 25
- 239000012535 impurity Substances 0.000 claims abstract description 6
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 abstract description 9
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 8
- 229910052804 chromium Inorganic materials 0.000 abstract description 7
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 15
- 230000000694 effects Effects 0.000 description 13
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 238000005336 cracking Methods 0.000 description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 9
- 239000010410 layer Substances 0.000 description 8
- 238000005266 casting Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 230000008646 thermal stress Effects 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 5
- 230000035882 stress Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 229910000765 intermetallic Inorganic materials 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910000601 superalloy Inorganic materials 0.000 description 4
- 239000002344 surface layer Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 238000004227 thermal cracking Methods 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000011162 core material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Continuous Casting (AREA)
Abstract
Description
本発明は、高温で高耐力、高延性、低熱膨張特性を有し、かつ耐熱亀裂性に優れた連続鋳造ロール肉盛用溶接材料およびロールに関するものである。 The present invention relates to a continuous casting roll overlay welding material and roll that have high yield strength, high ductility, and low thermal expansion characteristics at high temperatures and are excellent in heat crack resistance.
従来、600℃程度の高温下で使用される連続鋳造ロールは、急加熱と急冷却が繰り返される過酷な使用環境にあり、そのため熱亀裂や高温酸化といった損傷を受ける。このような過酷な使用環境下での維持、交換による製造コストアップが課題となっている。
このような課題に対して、例えば特開2001−340991号公報(特許文献1)に開示されているように、C:0.07%以下、Si:1%以下、Mn:1%以下、P:0.003%以下、S:0.03%以下、Ni:3〜5%、Cr:15.5〜17.5%、Cu:3〜5%、Mo:1.5%以下、Nb:0.3〜0.6%、残部Feおよび不可避的不純物からなる肉盛層を溶接により形成する連続鋳造用ロールが提案されている。
Conventionally, a continuous casting roll used at a high temperature of about 600 ° C. is in a harsh usage environment in which rapid heating and rapid cooling are repeated, and thus suffers damage such as thermal cracking and high-temperature oxidation. Maintenance in such a harsh use environment and an increase in manufacturing cost due to replacement have been an issue.
To solve such a problem, for example, as disclosed in JP-A-2001-340991 (Patent Document 1), C: 0.07% or less, Si: 1% or less, Mn: 1% or less, P : 0.003% or less, S: 0.03% or less, Ni: 3 to 5%, Cr: 15.5 to 17.5%, Cu: 3 to 5%, Mo: 1.5% or less, Nb: There has been proposed a continuous casting roll in which a built-up layer composed of 0.3 to 0.6%, the balance Fe and inevitable impurities is formed by welding.
また、特開平10−156500号公報(特許文献2)に開示されているように、C:0.03〜0.3%、Si:0.03〜1.5%、Mn:0.1〜3.0%、Ni:0.5〜10%、Cr:10〜20%、N:0.05〜0.5%、残部Feおよび不可避的不純物よりなる溶着金属層をロール表層に形成してなることを特徴とする耐熱亀裂性連続鋳造用肉盛ロールが提案されている。これらは、いずれもFe基ステンレス鋼である。 Further, as disclosed in JP-A-10-156500 (Patent Document 2), C: 0.03-0.3%, Si: 0.03-1.5%, Mn: 0.1 A weld metal layer composed of 3.0%, Ni: 0.5 to 10%, Cr: 10 to 20%, N: 0.05 to 0.5%, the balance Fe and inevitable impurities is formed on the roll surface layer. A build-up roll for heat-resistant cracking continuous casting characterized in that has been proposed. These are all Fe-based stainless steels.
また、特開2002−239697号公報(特許文献3)に開示されているように、Cr:17〜22%、Co:10〜14%、Mo:4〜8%、W:0.8〜1.5%、Al+Ti:3〜5.5%、Si:0.05%以下、Mn:0.2%以下、C:0.05%以下、残部Niおよび不可避的不純物からなるNi基合金系粉末を粉体プラズマアーク肉盛溶接方法により厚さ2mm以上肉盛溶接した連続鋳造用肉盛ロールなる、Ni基オーステナイト系合金を表面に肉盛した連続鋳造用肉盛ロールが提案されている。しかしながら、近年、鋳造技術の高速化や高温化などにより、ますます連鋳ロールにかかる負荷は増大する傾向にあり、さらに耐熱亀裂性に優れた材料が求められている。 Further, as disclosed in JP 2002-239697 A (Patent Document 3), Cr: 17 to 22%, Co: 10 to 14%, Mo: 4 to 8%, W: 0.8 to 1 0.5%, Al + Ti: 3 to 5.5%, Si: 0.05% or less, Mn: 0.2% or less, C: 0.05% or less, Ni-based alloy powder composed of the balance Ni and inevitable impurities An overlaying roll for continuous casting in which a Ni-based austenitic alloy is deposited on the surface, which is a buildup roll for continuous casting in which a thickness of 2 mm or more is welded by a powder plasma arc overlay welding method, has been proposed. In recent years, however, the load applied to continuous casting rolls has been increasing due to higher speeds and higher temperatures in casting technology, and materials with excellent thermal crack resistance have been demanded.
このような使用環境にある連続鋳造ロールにおける耐熱亀裂性の改善には、高温耐力、高温延性に優れ、かつ低熱膨張特性を有していることが重要であることが知られている。上述した、Fe基ステンレスは一般的にNi基超合金と比較し高温耐力が低く、一方、Ni基超合金は熱膨張係数が比較的高く、これらの材料では耐熱亀裂性が充分でない場合がある。 It is known that it is important to have high-temperature proof stress, high-temperature ductility, and low thermal expansion characteristics in order to improve the thermal cracking resistance of a continuous casting roll in such a use environment. As described above, Fe-based stainless steel generally has a lower high-temperature yield strength than Ni-based superalloys, whereas Ni-based superalloys have a relatively high thermal expansion coefficient, and these materials may not have sufficient thermal crack resistance. .
一方、Ni基超合金については各種市販されているが、これらは主にガスタービンおよびその周辺用材料として開発されており、1000℃近い温度域での使用を前提に開発されているものが多く、連続鋳造ロールの使用温度である600℃前後での使用を前提に開発されたものでないことが多い。また、これら合金は一般的に凝固偏析や異相生成を解消するため、1100℃近い温度で固溶化処理された後、700℃程度の温度で時効処理し使用されることが多い。しかしながら、連続鋳造用として肉盛りされたクラッドロールにおいては、界面割れやロール素材(芯材)の強度低下等の問題があり固溶化処理が困難である。従って、固溶化処理を省略した工程においても良好な特性を有することが重要となる。 On the other hand, various Ni-base superalloys are commercially available, but these are mainly developed as gas turbines and their peripheral materials, and many are developed on the assumption that they are used in a temperature range near 1000 ° C. In many cases, it has not been developed on the premise that the continuous casting roll is used at around 600 ° C. In general, these alloys are often used after being solution-treated at a temperature close to 1100 ° C. and then aging at a temperature of about 700 ° C. in order to eliminate solidification segregation and heterogeneous phase formation. However, clad rolls built for continuous casting have problems such as interfacial cracking and strength reduction of the roll material (core material), which makes it difficult to perform a solution treatment. Therefore, it is important to have good characteristics even in the process in which the solution treatment is omitted.
上記のような要素を考慮し鋭意開発を進め、使用温度が600℃前後で、固溶化処理を省略した工程においても脆性相の生成を抑制し、高耐力、高延性を発揮でき、かつ低熱膨張特性を有するNi基超合金として、発明者らは、特開2005−144488号公報(特許文献4)に開示されているように、C:0.1%以下、Cr:10〜15%、Mo:8〜15%、Co:15%以下、W:5%以下、Al:1〜5%、Ti:1〜5%、残部Niよりなることを特徴とした連続鋳造肉盛用溶接材料を提案した。 Taking the above factors into consideration, we have made extensive developments, and at the operating temperature of around 600 ° C, we can suppress the formation of the brittle phase even in the process of omitting the solution treatment, exhibit high yield strength and high ductility, and have low thermal expansion. As Ni-base superalloy having characteristics, the inventors have disclosed C: 0.1% or less, Cr: 10-15%, Mo, as disclosed in JP-A-2005-144488 (Patent Document 4). : 8-15%, Co: 15% or less, W: 5% or less, Al: 1-5%, Ti: 1-5%, remaining Ni Ni did.
この特許文献4は、連続鋳造ロールとして優れた耐熱亀裂性を示すが、さらに厳しい使用環境においては、基地成分の耐熱亀裂性が高いためにロール表面に発生する耐熱亀の数が少なく、そのために、その後、加わる熱応力が数少ない熱亀裂部に集中してしまい、結果的に熱亀裂の本数は少ないものの、深い亀裂となってしまうことがある。このような深い亀裂は肉盛層の剥離などに繋がるため、早期の補修が必要になってしまうと言う問題がある。 This Patent Document 4 shows excellent heat cracking resistance as a continuous casting roll, but in a more severe use environment, the base component has high heat cracking resistance, so the number of heat resistant turtles generated on the roll surface is small. Thereafter, the applied thermal stress concentrates on the few thermal cracks, and as a result, although the number of thermal cracks is small, there may be deep cracks. Since such a deep crack leads to peeling of the overlay layer, there is a problem that early repair is required.
上述したような問題を解消するために、発明者らは、さらに鋭意開発を進めた結果、連続鋳造ロール肉盛用材料として深い亀裂を発生させないための、極めて重要な次に述べる知見を見出した。上述のように、連続鋳造ロールにおける耐熱亀裂性の改善には、高温耐力、高温延性に優れ、かつ低熱膨張特性を有していることが重要であることが知られているが、さらに、連続鋳造ロール肉盛用のNi基合金において、所定量のTiとNを含むことによって、耐熱亀裂性を大幅に改善することができることを見出した。 In order to solve the above-mentioned problems, the inventors have made further developments, and as a result, have found the following extremely important findings for preventing the occurrence of deep cracks as a material for overlaying continuous casting rolls. . As described above, it is known that it is important to improve heat cracking resistance in a continuous casting roll that it has excellent high temperature proof stress, high temperature ductility, and low thermal expansion characteristics. It has been found that the heat cracking resistance can be greatly improved by including a predetermined amount of Ti and N in the Ni-based alloy for overlaying a casting roll.
すなわち、所定量のTiとNを含むことにより、肉盛層中にTiNを分散させ、このTiNが応力集中源となり連続鋳造ロール使用中に発生する熱亀裂の起点となることで、熱亀裂を微細に分散したものとすることができ、結果として熱応力が微細亀裂によって緩和されることで、連続鋳造ロール破損の原因となる表面層の大割れや剥離を抑制できることを見出した。 That is, by containing a predetermined amount of Ti and N, TiN is dispersed in the built-up layer, and this TiN becomes a stress concentration source and becomes a starting point of thermal cracks that occur during the use of continuous casting rolls. It has been found that finely dispersed particles can be obtained, and as a result, the thermal stress is alleviated by fine cracks, whereby large cracks and peeling of the surface layer causing damage to the continuous casting roll can be suppressed.
特許文献2には、Nを0.05〜0.5%添加した溶接材料が提案されているが、この例は本発明材料であるNi基合金より、マトリックス中にNを多く固溶できるFe基合金であるため、窒化物の存在形態が異なる。Fe基合金におけるN添加の主な効果は、マトリックス中に固溶することによる組織のオーステナイト化である。さらに、一部Fe3 N、Fe4 N、CrNなどを形成し、耐摩耗性の改善や結晶粒粗大化防止の効果も見られる。しかしながら、本発明のようなN固溶限の小さいNi基合金において、Tiとの同時添加によるTiN分散によって、熱亀裂の微細化を狙ったものとはN添加の効果が異なっている。 Patent Document 2 proposes a welding material in which 0.05 to 0.5% of N is added. In this example, Fe is a solid solution of N in the matrix as compared with the Ni-based alloy which is the material of the present invention. Since it is a base alloy, the form of nitride is different. The main effect of N addition in the Fe-based alloy is austenitization of the structure due to solid solution in the matrix. Furthermore, Fe 3 N, Fe 4 N, CrN, etc. are partially formed, and the effects of improving wear resistance and preventing crystal grain coarsening are also seen. However, in the Ni-base alloy having a small N solid solubility limit as in the present invention, the effect of N addition is different from that aimed at miniaturization of thermal cracks due to TiN dispersion by simultaneous addition with Ti.
上述したように、本発明は、所定量のTiとNを含むことにより、肉盛層中にTiNを分散させ、このTiNが応力集中源となり連続鋳造ロール使用中に発生する熱亀裂の起点となることで、熱亀裂を微細に分散したものとすることができ、結果として熱応力が微細亀裂によって緩和されることで、連続鋳造ロール破損の原因となる表面層の大割れや剥離を抑制できる連続鋳造用ロール肉盛用溶接材料を提供することにある。
その発明の要旨とするところは、
(1)質量%で、C:0.1%以下、Cr:10〜15%、Mo:8〜15%、W:5%以下、Co:15%以下、Al:1〜5%、Ti:1〜5%、N:0.01〜0.1%
を含み、残部Niおよび不可避的不純物よりなり、かつ、Cr%/33+Mo%/25+W%/31≦1を満たすことを特徴とする連続鋳造ロール肉盛用溶接材料。
As described above, the present invention includes a predetermined amount of Ti and N to disperse TiN in the build-up layer, and this TiN becomes a stress concentration source and the origin of thermal cracks that occur during use of the continuous casting roll. As a result, thermal cracks can be finely dispersed, and as a result, thermal stress is alleviated by fine cracks, so that large cracks and peeling of the surface layer that cause damage to the continuous casting roll can be suppressed. It is to provide a welding material for roll overlay for continuous casting.
The gist of the invention is that
(1) By mass%, C: 0.1% or less, Cr: 10-15%, Mo: 8-15%, W: 5% or less, Co: 15% or less, Al: 1-5%, Ti: 1-5%, N: 0.01-0.1%
A continuous casting roll overlay welding material characterized by comprising the balance Ni and unavoidable impurities and satisfying Cr% / 33 + Mo% / 25 + W% / 31 ≦ 1.
(2)質量%で、Si:0.5%以下、Mn:0.5%以下の1種または2種としたことを特徴とする前記(1)記載の連続鋳造ロール肉盛用溶接材料。
(3)質量%で、S:0.005%以下にすることを特徴とする前記(1)または(2)記載の連続鋳造ロール肉盛用溶接材料。
(4)質量%で、Nb:3%以下、Ta:6%以下の1種または2種としたことを特徴とする前記(1)〜(3)のいずれかに記載の連続鋳造ロール肉盛用溶接材料。
(2) The welding material for overlaying a continuous casting roll according to the above (1), characterized in that it is 1% or 2% by mass of Si: 0.5% or less and Mn: 0.5% or less.
(3) The welding material for continuous casting roll build-up according to the above (1) or (2), wherein S is 0.005% or less by mass%.
(4) Continuous casting roll build-up according to any one of the above (1) to (3), characterized in that one or two of Nb: 3% or less and Ta: 6% or less are used. Welding materials.
(5)20≦γ´相量≦35%、LM絶対値≦0.015Å、Nv、Nv´≦2.30を満たす前記(1)〜(4)のいずれかに記載の連続鋳造ロール肉盛用溶接材料。
ただし、γ´:Ni3 Alを主とした強化相
LM絶対値:γ−γ´相の格子定数ミスマッチ(Lattice Mismatch) Nv:γ相の平均電子空孔数
Nv´:γ´相の平均電子空孔数
(6)前記(1)〜(5)のいずれかに記載の連続鋳造ロール肉盛用溶接材料を用いてなることを特徴とする連続鋳造ロールにある。
(5) Continuous casting roll build-up according to any one of (1) to (4) that satisfies 20 ≦ γ ′ phase amount ≦ 35%, LM absolute value ≦ 0.015%, Nv, Nv ′ ≦ 2.30 Welding materials.
However, γ ′: strengthened phase mainly composed of Ni 3 Al LM absolute value: lattice constant mismatch of γ-γ ′ phase (Lattice Mismatch) Nv: average electron vacancy number of γ phase Nv ′: average electron of γ ′ phase Number of pores (6) A continuous casting roll comprising the welding material for overlaying a continuous casting roll according to any one of (1) to (5).
以上述べたように、本発明により、耐熱亀裂性に優れた鋳造ロール肉盛用溶接材料およびロールを提供することができる。 As described above, according to the present invention, it is possible to provide a casting roll overlay welding material and a roll excellent in heat crack resistance.
以下、本発明に係る合金成分の限定理由について述べる。
C:0.1%以下
Cは、結晶粒界にTi、Cr、Mo、W等と炭化物を形成し粒界強化する。しかし、0.1%を超えると粒内のTi、Cr、Mo、W濃度が低下し、耐力、耐酸化性に悪影響を及ぼすことから、上限を0.1%とした。
The reasons for limiting the alloy components according to the present invention will be described below.
C: 0.1% or less C forms carbides with Ti, Cr, Mo, W, etc. at grain boundaries and strengthens the grain boundaries. However, if the content exceeds 0.1%, the Ti, Cr, Mo, and W concentrations in the grains decrease and adversely affect the yield strength and oxidation resistance, so the upper limit was made 0.1%.
Cr:10〜15%
Crは、高温における耐酸化性を確保するため、10%以上必要である。しかし、15%を超えると脆性な金属間化合物が析出し延性が低下する。従って、その範囲を10〜15%とした。
Cr: 10-15%
Cr needs to be 10% or more in order to ensure oxidation resistance at high temperatures. However, if it exceeds 15%, a brittle intermetallic compound is precipitated and ductility is lowered. Therefore, the range was made 10 to 15%.
Mo:8〜15%
Moは、γ相中に固溶し、高温耐力を向上する効果、熱膨張係数を低くする効果がある。また、モールドパウダーに含まれるフッ素に対する耐食性を高める効果がある元素である。しかし、8%未満では、その効果が十分でない。また、15%を超えると脆性な金属間化合物が析出し延性が低下する。従って、その範囲を8〜15%とした。
Mo: 8-15%
Mo is dissolved in the γ phase and has the effect of improving the high temperature yield strength and the effect of reducing the thermal expansion coefficient. Moreover, it is an element which has an effect which improves the corrosion resistance with respect to the fluorine contained in mold powder. However, if it is less than 8%, the effect is not sufficient. On the other hand, if it exceeds 15%, a brittle intermetallic compound is precipitated and ductility is lowered. Therefore, the range is 8-15%.
W:5%以下
Wは、γ相中に固溶し、高温耐力を向上する効果、熱膨張係数を低くする効果がある元素である。しかし、5%を超えると脆性な金属間化合物が析出し延性が低下することから、その上限を5%とした。
Co:15%以下
Coは、延性を改善する効果がある元素である。しかし、15%を超えるとコストアップとなることから、その上限を15%とした。
W: 5% or less W is an element that is dissolved in the γ phase and has the effect of improving the high-temperature yield strength and the effect of reducing the thermal expansion coefficient. However, if it exceeds 5%, a brittle intermetallic compound precipitates and the ductility decreases, so the upper limit was made 5%.
Co: 15% or less Co is an element having an effect of improving ductility. However, if it exceeds 15%, the cost increases, so the upper limit was made 15%.
Al:1〜5%
Alは、γ´相を形成し、高温耐力を向上する元素である。しかし、1%未満ではその効果はなく、また、5%を超えると延性が低下することから、その範囲を1〜5%とした。 Ti:1〜5%
Tiは、TiNを生成し熱応力集中源となり、熱亀裂を微細化する。また、γ´相中のAlと置換しγ´相を強化する。しかし、1%未満ではその効果が十分でなく、また、5%を超えると延性が低下することから、その範囲を1〜5%とした。
Al: 1 to 5%
Al is an element that forms a γ ′ phase and improves high-temperature yield strength. However, if it is less than 1%, the effect is not obtained, and if it exceeds 5%, the ductility is lowered, so the range was made 1 to 5%. Ti: 1 to 5%
Ti generates TiN and becomes a thermal stress concentration source, and refines thermal cracks. Further, it replaces Al in the γ ′ phase and strengthens the γ ′ phase. However, if it is less than 1%, the effect is not sufficient, and if it exceeds 5%, the ductility decreases, so the range was made 1 to 5%.
N:0.01〜0.1%
Nは、TiNを生成し、熱応力集中源となり、熱亀裂を微細化する。しかし、0.01%未満ではその効果が十分でなく、また、0.1%を超えると溶接時にブローホールが発生しやすくなることから、その範囲を0.01〜0.1%とした。
N: 0.01 to 0.1%
N generates TiN, becomes a thermal stress concentration source, and refines thermal cracks. However, if it is less than 0.01%, the effect is not sufficient, and if it exceeds 0.1%, blowholes are likely to occur during welding, so the range was made 0.01 to 0.1%.
Cr%/33+Mo%/25+W%/31≦1
Cr%/33+Mo%/25+W%/31が1を超えると脆性な金属間化合物が生成し、延性が低下する。従って、その上限を1とした。
Si:0.5%以下、Mn:0.5%以下
Si、Mnは、肉盛時の湯流れ性をよくするが、0.5%を超えると酸化物等の介在物が析出し衝撃値等の機械特性を低下させる。従って、その上限をそれぞれ0.5%とした。
Cr% / 33 + Mo% / 25 + W% / 31 ≦ 1
When Cr% / 33 + Mo% / 25 + W% / 31 exceeds 1, brittle intermetallic compounds are produced, and ductility is lowered. Therefore, the upper limit is set to 1.
Si: 0.5% or less, Mn: 0.5% or less Si and Mn improve the hot-water flow when building up, but if over 0.5%, inclusions such as oxide precipitate and impact value Deteriorate mechanical properties. Accordingly, the upper limit is set to 0.5%.
S:0.005%以下
Sは、0.005%以下に抑えることで、肉盛時の高温割れを抑制することができる。従って、その上限を0.005%とした。好ましくは0.003%以下に抑える。
Nb:3%以下、Ta:6%以下
Nb、Taは、γ´相中に固溶し耐力を向上するが、しかし、それぞれ3%、6%を超えると延性が低下することから、その上限をそれぞれ3%、6%とした。
S: 0.005% or less S can be suppressed to 0.005% or less to suppress high-temperature cracking during build-up. Therefore, the upper limit was made 0.005%. Preferably, it is suppressed to 0.003% or less.
Nb: 3% or less, Ta: 6% or less Nb and Ta are dissolved in the γ ′ phase to improve the yield strength. However, when the content exceeds 3% and 6%, respectively, the ductility is lowered. Were 3% and 6%, respectively.
20%≦γ´相量≦35%、LM絶対値≦0.015Å、Nv、Nv´≦2.30
γ´相量が20%未満では耐力が低く、また、35%を超えると延性が低下くなり、肉盛割れが発生しやすくなることから、その範囲を20〜35%とした。好ましくは、23%≦γ´相量≦30%とする。
また、LM絶対値が0.015Åを超えるとγ´相が凝集して析出し、延性が低下する。さらに、Nv、Nv´が2.30を超えると脆性相が析出し、延性が低下することから、それぞれ、上限を0.015Å、2.30とした。さらに、好ましくは0.010Å、2.28とする。
20% ≦ γ ′ phase amount ≦ 35%, LM absolute value ≦ 0.015%, Nv, Nv ′ ≦ 2.30
When the amount of γ ′ phase is less than 20%, the yield strength is low, and when it exceeds 35%, the ductility is reduced and build-up cracking is liable to occur, so the range is set to 20 to 35%. Preferably, 23% ≦ γ ′ phase amount ≦ 30%.
On the other hand, if the LM absolute value exceeds 0.015%, the γ ′ phase aggregates and precipitates, and the ductility decreases. Furthermore, when Nv and Nv ′ exceed 2.30, a brittle phase is precipitated and ductility is lowered. Therefore, the upper limit was set to 0.015% and 2.30, respectively. Furthermore, it is preferably 0.010 mm and 2.28.
なお、上述したLM絶対値は、γ−γ´相の格子定数ミスマッチ(Lattice Mismatch)を表し、また、Nv、Nv´はそれぞれγおよびγ´の平均電子空孔数であって、Nv=ΣCxNx、およびNv´=ΣC´xNxによって表される。ここで、CxおよびC´xは、それぞれγおよびγ´相を構成するX元素の濃度であり、Nxは、X元素の固有電子空孔数である。 Note that the LM absolute value described above represents a lattice constant mismatch of the γ-γ ′ phase, and Nv and Nv ′ are the average electron vacancy numbers of γ and γ ′, respectively, and Nv = ΣCxNx , And Nv ′ = ΣC ′ × Nx. Here, Cx and C′x are the concentrations of the X element constituting the γ and γ ′ phases, respectively, and Nx is the number of intrinsic electron vacancies of the X element.
この平均電子空孔数とは、Ni基合金において、γマトリックス中にγ´が均一に析出したγとγ´相合金と限定した場合に、γとγ´組成は合金元素含有量がγおよびγ´の固溶度を超えない範囲内に限定される。この限界を超えると、仮に当初はγおよびγ´相だけであっても、長時間使用中にγおよびγ´相の他にσ相などの相を析出したり、あるいはγ´相がη相またはδ相に変態して性質を劣化させる。この限界を規定する量の一つがこの平均電子空孔数である。NvおよびNv´が2.26以下であれば、σ相は全く生成せず、2.41を超えると常にσ相が生成し、この中間ではσ相が生成する場合としない場合の両方がある。従って、平均電子空孔数は、γあるいはγ´とσ相の境界を限定する量とみることが出来る。 The average number of electron vacancies in a Ni-based alloy is limited to γ and γ ′ phase alloys in which γ ′ is uniformly precipitated in the γ matrix. It is limited within a range not exceeding the solid solubility of γ ′. If this limit is exceeded, even if initially only the γ and γ ′ phases are present, a phase such as the σ phase is precipitated in addition to the γ and γ ′ phases during long-term use, or the γ ′ phase is changed to the η phase. Or it transforms into a δ phase to deteriorate the properties. One of the quantities defining this limit is the average number of electron vacancies. If Nv and Nv ′ are 2.26 or less, the σ phase is not generated at all, and if it exceeds 2.41, the σ phase is always generated, and there are cases where the σ phase is generated or not in the middle. . Therefore, the average number of electron vacancies can be regarded as an amount that limits the boundary between γ or γ ′ and the σ phase.
LM絶対値等の計算としては、γあるいはγ´の組成が決定されれば、γあるいはγ´の格子定数も必然的に決定され、従って、LMも決定される。γ粒度は鍛造材の場合、主として熱処理条件によって影響され、鋳造材の場合は鋳込温度、鋳型予熱温度あるいは鋳型における接種剤の有無などの鋳造条件によって影響される。γ´粒度は一般には熱処理条件によって影響されが、鋳造のまま使用する場合は鋳造条件によって影響される。 In calculating the LM absolute value or the like, if the composition of γ or γ ′ is determined, the lattice constant of γ or γ ′ is inevitably determined, and therefore LM is also determined. In the case of a forged material, the γ grain size is mainly affected by heat treatment conditions, and in the case of a cast material, it is affected by casting conditions such as the casting temperature, the mold preheating temperature, or the presence or absence of an inoculum in the mold. The γ ′ particle size is generally affected by heat treatment conditions, but when used as cast, it is affected by casting conditions.
以下、本発明について実施例によって具体的に説明する。
25kgの母材をAr雰囲気中にて誘導溶解し、径5mmのノズルから1600℃にて出湯し、N2 およびAr(比較例)ガスでアトマイズし、表1に示す成分組成の粉末を作製し、−250/63μmに分級し実験に供試した。この粉末を低合金ロール(径120mm×長さ1322mm)上にSUS329を下盛溶接(1層)した上に粉体肉盛プラズマ溶接(2層)した。さらに、この肉盛ロールに600℃−4時間の熱処理を行った。
Hereinafter, the present invention will be specifically described with reference to examples.
25 kg of base material is induction-melted in an Ar atmosphere, discharged from a nozzle with a diameter of 5 mm at 1600 ° C., atomized with N 2 and Ar (comparative example) gas, and a powder having the component composition shown in Table 1 is produced. , And classified into -250/63 μm and used for the experiment. SUS329 was overlay welded (1 layer) on a low alloy roll (diameter 120 mm × length 1322 mm), and powder overlay plasma welding (2 layers) was performed on this powder. Further, this buildup roll was subjected to heat treatment at 600 ° C. for 4 hours.
評価項目として、ヒートクラック試験による耐熱亀裂性の評価は、上記肉盛ロールを1.44rpmで回転させ、上方からガスバーナーで加熱し、下方より冷却水を吹き付け、400℃加熱と200℃冷却の熱サイクルを5000回与えた。その後、ロール表面部の断面(150mm×40を4断面)をミクロ観察し、最大亀裂の深さで評価した。その結果を表1に示す。 As an evaluation item, the evaluation of heat cracking resistance by a heat crack test is performed by rotating the build-up roll at 1.44 rpm, heating with a gas burner from above, spraying cooling water from below, and heating at 400 ° C. and cooling at 200 ° C. Thermal cycles were given 5000 times. Then, the cross section of the roll surface portion (4 sections of 150 mm × 40) was micro-observed and evaluated by the maximum crack depth. The results are shown in Table 1.
表1に示すように、No.1〜10は本発明例であり、No.11〜26は比較例である。比較例No.11はCr含有量、W含有量が高く、LM絶対値(Å)が大きく、Nv値が大きい。さらに、Cr%/33+Mo%/25+W%/31の値が高いために、最大亀裂深さが可なり大きい。比較例No.12はCr含有量、Mo含有量が高く、LM絶対値(Å)が大きく、Nv値が大きい。さらに、Cr%/33+Mo%/25+W%/31の値が高いために、No.11と同様に、最大亀裂深さが可なり大きい。比較例No.13はγ´量が小さく、LM絶対値が大きいために、最大亀裂深さが大きい。比較例No.14はγ´量が小さいために、最大亀裂深さが大きい。 As shown in Table 1, no. 1 to 10 are examples of the present invention. 11 to 26 are comparative examples. Comparative Example No. 11 has a high Cr content and W content, a large LM absolute value (Å), and a large Nv value. Furthermore, since the value of Cr% / 33 + Mo% / 25 + W% / 31 is high, the maximum crack depth is considerably large. Comparative Example No. 12 has a high Cr content and a high Mo content, a large LM absolute value (値), and a large Nv value. Furthermore, since the value of Cr% / 33 + Mo% / 25 + W% / 31 is high, no. Similar to 11, the maximum crack depth is quite large. Comparative Example No. No. 13 has a small amount of γ 'and a large LM absolute value, so that the maximum crack depth is large. Comparative Example No. No. 14 has a large maximum crack depth because the amount of γ ′ is small.
比較例No.15はAl含有量が高く、γ´量が大きく、LM絶対値も大きく、さらにNv´値も大きいために、最大亀裂深さが大きい。最大亀裂深さが可なり大きい。比較例No.16はC含有量、Ti含有量が高く、γ´量が大きいために、最大亀裂深さが大きい。比較例No.17はN含有量が高く、LM絶対値も大きいために、最大亀裂深さが大きい。比較例No.18はN含有量が低く、Nv´値が大きいために、最大亀裂深さが大きい。 Comparative Example No. No. 15 has a high Al content, a large amount of γ ′, a large LM absolute value, and a large Nv ′ value, so that the maximum crack depth is large. Maximum crack depth is quite large. Comparative Example No. No. 16 has a high C content, a high Ti content, and a large amount of γ ', so that the maximum crack depth is large. Comparative Example No. Since No. 17 has a high N content and a large LM absolute value, the maximum crack depth is large. Comparative Example No. No. 18 has a low N content and a large Nv ′ value, so that the maximum crack depth is large.
比較例No.19はSi含有量、Mn含有量およびS含有量がそれぞれ高いために、最大亀裂深さが大きい。比較例No.20はNb含有量、比較例No.21はTa含有量が高いために、最大亀裂深さが大きい。比較例No.22〜26はいずれもN含有量が少ないために最大亀裂深さが大きいことが分かる。これに対し、本発明例No.1〜10はいずれも本発明条件を満たしていることから、最大亀裂深さについては、比較例に比べて極めて浅いことが分かる。 Comparative Example No. Since No. 19 has high Si content, Mn content, and S content, the maximum crack depth is large. Comparative Example No. 20 is the Nb content, Comparative Example No. Since No. 21 has a high Ta content, the maximum crack depth is large. Comparative Example No. It can be seen that 22 to 26 have a large maximum crack depth because the N content is small. On the other hand, the present invention example No. Since all 1-10 satisfy | fills this invention condition, it turns out that it is very shallow compared with a comparative example about the maximum crack depth.
上述したように、所定量のTiとNを含むことにより、肉盛層中にTiNを分散させ、このTiNが応力集中源となる連続鋳造ロール使用中に発生する熱亀裂を微細に分散せしめ、その結果、熱応力が微細亀裂によって緩和され、連続鋳造ロール破損の原因となる表面層の大割れや剥離を抑制できる耐熱亀裂性に優れた連続鋳造用ロール肉盛用溶接材料およびそれによって製造されたロールを提供することができた。
特許出願人 山陽特殊製鋼株式会社 他1名
代理人 弁理士 椎 名 彊
As described above, by containing a predetermined amount of Ti and N, TiN is dispersed in the build-up layer, and thermal cracks generated during use of a continuous casting roll in which this TiN becomes a stress concentration source are finely dispersed. As a result, the thermal stress is relieved by fine cracks, and a continuous casting roll overlay welding material with excellent heat cracking resistance that can suppress large cracks and peeling of the surface layer, which cause damage to the continuous casting roll, and manufactured by the same. Was able to provide a roll.
Patent applicant Sanyo Special Steel Co., Ltd. and 1 other
Attorney: Attorney Shiina
Claims (6)
C:0.1%以下、
Cr:10〜15%、
Mo:8〜15%、
W:5%以下、
Co:15%以下、
Al:1〜5%、
Ti:1〜5%、
N:0.01〜0.1%
を含み、残部Niおよび不可避的不純物よりなり、かつ、Cr%/33+Mo%/25+W%/31≦1を満たすことを特徴とする連続鋳造ロール肉盛用溶接材料。 % By mass
C: 0.1% or less,
Cr: 10 to 15%,
Mo: 8-15%,
W: 5% or less,
Co: 15% or less,
Al: 1 to 5%,
Ti: 1 to 5%,
N: 0.01 to 0.1%
A continuous casting roll overlay welding material characterized by comprising Ni, the balance Ni and inevitable impurities, and satisfying Cr% / 33 + Mo% / 25 + W% / 31 ≦ 1.
Si:0.5%以下、
Mn:0.5%以下
の1種または2種としたことを特徴とする請求項1記載の連続鋳造ロール肉盛用溶接材料。 % By mass
Si: 0.5% or less,
The welding material for overlaying continuous casting rolls according to claim 1, wherein Mn is one or two of 0.5% or less.
Nb:3%以下、
Ta:6%以下
の1種または2種としたことを特徴とする請求項1〜3のいずれかに記載の連続鋳造ロール肉盛用溶接材料。 % By mass
Nb: 3% or less,
The welding material for overlaying continuous casting rolls according to any one of claims 1 to 3, wherein Ta: 6% or less is used.
ただし、γ´:Ni3 Alを主とした強化相
LM絶対値:γ−γ´相の格子定数ミスマッチ(Lattice Mismatch) Nv:γ相の平均電子空孔数
Nv´:γ´相の平均電子空孔数 The continuous casting roll overlay welding material according to any one of claims 1 to 4, wherein 20 ≦ γ ′ phase amount ≦ 35%, LM absolute value ≦ 0.015%, Nv, Nv ′ ≦ 2.30 are satisfied.
However, γ ′: strengthened phase mainly composed of Ni 3 Al LM absolute value: lattice constant mismatch of γ-γ ′ phase (Lattice Mismatch) Nv: average electron vacancy number of γ phase Nv ′: average electron of γ ′ phase Number of holes
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005333537A JP4823652B2 (en) | 2005-11-18 | 2005-11-18 | Welding material and roll for continuous casting roll overlay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005333537A JP4823652B2 (en) | 2005-11-18 | 2005-11-18 | Welding material and roll for continuous casting roll overlay |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007136509A true JP2007136509A (en) | 2007-06-07 |
JP4823652B2 JP4823652B2 (en) | 2011-11-24 |
Family
ID=38199986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005333537A Active JP4823652B2 (en) | 2005-11-18 | 2005-11-18 | Welding material and roll for continuous casting roll overlay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4823652B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010047137A1 (en) * | 2008-10-20 | 2010-04-29 | 日鉄ハード株式会社 | Roll for use in continuous casting |
WO2014126086A1 (en) * | 2013-02-13 | 2014-08-21 | 日立金属株式会社 | Metal powder, tool for hot working and method for manufacturing tool for hot working |
WO2015019603A1 (en) * | 2013-08-07 | 2015-02-12 | 日鉄住金ハード株式会社 | Buildup welding material, straightening roll, guide roll, transporting roll, and anvil |
KR20200080506A (en) | 2018-12-27 | 2020-07-07 | 주식회사 에이프로젠케이아이씨 | Special steel alloys for continuous casting equipment and rolls of continuous casting equipment comprising the same |
CN116083771A (en) * | 2022-12-28 | 2023-05-09 | 东方电气集团东方汽轮机有限公司 | Preparation and application methods of high-performance boron-free precast slab |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004082201A (en) * | 2002-08-22 | 2004-03-18 | Nippon Steel Hardfacing Co Ltd | Build-up welding material for segment of mandrel for hot rolled steel strip coiler having excellent heat crack resistance and build-up welding method for the same and build-up welded segment |
JP2005144488A (en) * | 2003-11-14 | 2005-06-09 | Sanyo Special Steel Co Ltd | Build-up welding material for continuous casting roll and roll using it |
-
2005
- 2005-11-18 JP JP2005333537A patent/JP4823652B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004082201A (en) * | 2002-08-22 | 2004-03-18 | Nippon Steel Hardfacing Co Ltd | Build-up welding material for segment of mandrel for hot rolled steel strip coiler having excellent heat crack resistance and build-up welding method for the same and build-up welded segment |
JP2005144488A (en) * | 2003-11-14 | 2005-06-09 | Sanyo Special Steel Co Ltd | Build-up welding material for continuous casting roll and roll using it |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010047137A1 (en) * | 2008-10-20 | 2010-04-29 | 日鉄ハード株式会社 | Roll for use in continuous casting |
JP5400789B2 (en) * | 2008-10-20 | 2014-01-29 | 日鉄住金ハード株式会社 | Continuous casting roll |
WO2014126086A1 (en) * | 2013-02-13 | 2014-08-21 | 日立金属株式会社 | Metal powder, tool for hot working and method for manufacturing tool for hot working |
JP5601607B1 (en) * | 2013-02-13 | 2014-10-08 | 日立金属株式会社 | Metal powder, hot working tool, and method of manufacturing hot working tool |
WO2015019603A1 (en) * | 2013-08-07 | 2015-02-12 | 日鉄住金ハード株式会社 | Buildup welding material, straightening roll, guide roll, transporting roll, and anvil |
WO2015019518A1 (en) * | 2013-08-07 | 2015-02-12 | 日鉄住金ハード株式会社 | Welding material for building-up, straightening roll, guide roll, conveyance roll and anvil |
KR20150119181A (en) * | 2013-08-07 | 2015-10-23 | 닛테츠스미킨하드 가부시키가이샤 | Buildup Welding Material, Straightening Roll, Guide Roll, Transporting Roll, and Anvil |
JP5859175B2 (en) * | 2013-08-07 | 2016-02-10 | 日鉄住金ハード株式会社 | Welding material for overlaying, straightening roll, guide roll, transport roll and anvil |
KR101642901B1 (en) * | 2013-08-07 | 2016-07-26 | 닛테츠스미킨하드 가부시키가이샤 | Buildup Welding Material, Straightening Roll, Guide Roll, Transporting Roll, and Anvil |
JPWO2015019603A1 (en) * | 2013-08-07 | 2017-03-02 | 日鉄住金ハード株式会社 | Welding material for overlaying, straightening roll, guide roll, transport roll and anvil |
KR20200080506A (en) | 2018-12-27 | 2020-07-07 | 주식회사 에이프로젠케이아이씨 | Special steel alloys for continuous casting equipment and rolls of continuous casting equipment comprising the same |
CN116083771A (en) * | 2022-12-28 | 2023-05-09 | 东方电气集团东方汽轮机有限公司 | Preparation and application methods of high-performance boron-free precast slab |
Also Published As
Publication number | Publication date |
---|---|
JP4823652B2 (en) | 2011-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100196989B1 (en) | Wear-resistant copper-based alloy | |
JP5478601B2 (en) | Ni-based forged alloy and gas turbine using the same | |
KR101192618B1 (en) | Welding material for ni-based alloy | |
JP6499546B2 (en) | Ni-based superalloy powder for additive manufacturing | |
EP1867740B1 (en) | Low thermal expansion Ni-base superalloy | |
JP5977998B2 (en) | Ni-base alloy weld metal, strip electrode, and welding method | |
JP2008069455A (en) | Cobalt-chromium-iron-nickel alloy strengthened by nitride | |
JP2007301635A (en) | Welding wire for nickel-based heat-resistant alloy | |
EP2813590B1 (en) | Ni based forged alloy, and turbine disc, turbine spacer and gas turbine each using the same | |
JP5486092B2 (en) | High toughness cobalt base alloy and engine valve | |
WO2014126086A1 (en) | Metal powder, tool for hot working and method for manufacturing tool for hot working | |
JP2008274314A (en) | Gas turbine blade and manufacturing method thereof | |
JP4463763B2 (en) | Abrasion and corrosion resistant cobalt alloys | |
JP6160942B1 (en) | Low thermal expansion super heat resistant alloy and manufacturing method thereof | |
JP2022119890A (en) | PRECIPITATION HARDENING TYPE Ni ALLOY AND METHOD FOR PRODUCING THE SAME | |
JP2010280950A (en) | Heat resistant steel for exhaust valve and method for producing the same | |
JP4972972B2 (en) | Ni-based alloy | |
JP4823652B2 (en) | Welding material and roll for continuous casting roll overlay | |
WO2013027841A1 (en) | Heat-resisting steel for exhaust valves | |
JP6257454B2 (en) | Overlay weld metal and machine structure | |
WO2017168972A1 (en) | Chromium-based two-phase alloy and product using said two-phase alloy | |
JP4439881B2 (en) | Welding material and roll for continuous casting roll overlay | |
JP4679942B2 (en) | Ni-based overlaying powder for molds used hot and hot molds | |
JP7168331B2 (en) | copper base alloy | |
JPWO2020179207A1 (en) | Manufacturing method of cobalt-based alloy powder, cobalt-based alloy sintered body and cobalt-based alloy sintered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110516 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110906 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110907 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4823652 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140916 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |