JP2010280950A - Heat resistant steel for exhaust valve and method for producing the same - Google Patents
Heat resistant steel for exhaust valve and method for producing the same Download PDFInfo
- Publication number
- JP2010280950A JP2010280950A JP2009135020A JP2009135020A JP2010280950A JP 2010280950 A JP2010280950 A JP 2010280950A JP 2009135020 A JP2009135020 A JP 2009135020A JP 2009135020 A JP2009135020 A JP 2009135020A JP 2010280950 A JP2010280950 A JP 2010280950A
- Authority
- JP
- Japan
- Prior art keywords
- resistant steel
- exhaust valves
- heat
- mass
- heat resistant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、自動車エンジン等の排気バルブに使用される排気バルブ用耐熱鋼及びその製造方法に関し、特に、高窒素高Crオーステナイト鋼からなる排気バルブ用耐熱鋼及びその製造方法に関する。 The present invention relates to a heat resistant steel for an exhaust valve used for an exhaust valve of an automobile engine or the like and a method for manufacturing the same, and more particularly to a heat resistant steel for an exhaust valve made of high nitrogen high Cr austenitic steel and a method for manufacturing the same.
自動車エンジン等の排気バルブ用の合金には、NCF751などのNi基合金が使用されてきた。かかるNi基合金はNiによる高い耐高温腐食性を呈し、またNi系金属間化合物からなる微細なγ’相粒子を母相中に析出させることで、高い高温機械強度をも達成し得る。 Ni-based alloys such as NCF751 have been used as alloys for exhaust valves of automobile engines and the like. Such a Ni-based alloy exhibits high high-temperature corrosion resistance due to Ni, and high high-temperature mechanical strength can be achieved by precipitating fine γ ′ phase particles made of Ni-based intermetallic compounds in the matrix.
ところで、近年、環境問題への配慮などからガソリンの無鉛化が進み、排気バルブにおいては硫化物系ガスなどの高温ガスに対する腐食の問題が大幅に軽減された。これに伴って、高価なNiの量を低減しつつ高温機械強度を確保した排気バルブ用合金鋼が数多く開発されてきた。例えば、特許文献1では、Ni量を30〜35%まで低減させたオーステナイト系耐熱鋼からなる排気バルブ用耐熱鋼が開示されている。しかしながら、Ni量を更に低減させようとすると、Ni系金属間化合物からなるγ’相粒子の析出量が著しく減少して、排気バルブ用耐熱鋼としての十分な高温機械強度を達成することはできないとされる。 By the way, in recent years, lead-free gasoline has progressed due to considerations for environmental problems, and the problem of corrosion of hot gases such as sulfide-based gases has been greatly reduced in exhaust valves. Along with this, many alloy steels for exhaust valves have been developed that ensure high-temperature mechanical strength while reducing the amount of expensive Ni. For example, Patent Document 1 discloses a heat-resistant steel for exhaust valves made of austenitic heat-resistant steel in which the amount of Ni is reduced to 30 to 35%. However, if the amount of Ni is further reduced, the amount of precipitation of γ ′ phase particles composed of Ni-based intermetallic compounds is significantly reduced, and sufficient high-temperature mechanical strength as a heat-resistant steel for exhaust valves cannot be achieved. It is said.
一方、比較的低い温度で燃焼する低出力エンジンで使用される排気バルブでは、高温機械強度に対する要求が低く、Ni量をより低減できて、Ni系金属間化合物からなる粒子の代わりに炭化物及び/又は炭窒化物粒子を析出させた、より安価なオーステナイト系耐熱鋼が使用され得る。例えば、特許文献2では、SUH35(21−4N)相当の重量%で、Niを数%程度に抑えて、約20%のCrと0.4%前後のNとを含み、炭化物及び/又は炭窒化物粒子を微細に析出させた高窒素高Crオーステナイト系耐熱鋼からなる排気バルブ用耐熱鋼が開示されている。 On the other hand, in an exhaust valve used in a low-power engine that burns at a relatively low temperature, the demand for high-temperature mechanical strength is low, the amount of Ni can be further reduced, and instead of particles made of Ni-based intermetallic compounds, carbides and / or Alternatively, a cheaper austenitic heat resistant steel on which carbonitride particles are precipitated can be used. For example, Patent Document 2 includes approximately 20% Cr and approximately 0.4% N with a weight percent equivalent to SUH35 (21-4N), suppressing Ni to a few percent, and includes carbides and / or charcoal. A heat resistant steel for exhaust valves made of high nitrogen high Cr austenitic heat resistant steel in which nitride particles are finely precipitated is disclosed.
上記したようなオーステナイト系耐熱鋼においても、炭化物及び/又は炭窒化物の析出量を増加させると、より高い高温機械強度を得られる。一方でこのような高い高温機械強度を有するオーステナイト系耐熱鋼では、排気バルブの製造工程での鍛造加工のような熱間加工工程で割れが発生し易く、加工が困難になる場合も多い。 Even in the austenitic heat resistant steel as described above, when the precipitation amount of carbide and / or carbonitride is increased, higher mechanical strength can be obtained. On the other hand, austenitic heat-resistant steel having such a high high-temperature mechanical strength is likely to be cracked in a hot working process such as a forging process in an exhaust valve manufacturing process, and is often difficult to process.
本発明は、かかる状況に鑑みてなされたものであって、その目的とするところは、高い高温機械強度を有しつつ、良好な熱間加工性をも有する、高窒素高Crオーステナイト鋼からなる排気バルブ用耐熱鋼及びその製造方法の提供にある。 The present invention has been made in view of such a situation, and the object thereof is a high nitrogen high Cr austenitic steel having high high temperature mechanical strength and good hot workability. The object is to provide heat-resistant steel for exhaust valves and a method for producing the same.
本発明による排気バルブ用耐熱鋼は、必須添加元素と任意に含まれ得る任意添加元素とを添加元素とする質量%で、0.50〜0.90%のC及び15.0〜25.0%のCrを含み、微細炭化物及び/又は微細炭窒化物を少なくとも結晶粒内に分散析出させた高窒素高Crオーステナイト鋼からなる排気バルブ用耐熱鋼であって、前記必須添加元素をC、Cr、N、Mn、Ni及びPとして、前記任意添加元素をNb、Ti、Si、W、Mo、V、Co、B、Zr、Mg、Ca及びCuとして、前記必須添加元素において、質量%で、Nを0.40〜0.60%の範囲内で0.90≦C+N≦1.3となるように含み、更に、Mnを6.0〜13.0%の範囲内、Niを4.0〜8.0%の範囲内、Pを0.03〜0.30%の範囲内で含み、前記任意添加元素において、質量%で、Nb及び/又はTiを少なくともそれぞれ1.0%を越えない範囲で、且つ、0.05≦Nb+Ti≦1.0を満たすように添加し、Siを1.6%以内、Wを8.0%以内、Moを6.0%以内、Vを1.0%以内、Coを5.0%以内、Bを0.03%以内、Zrを0.1%以内、Mgを0.01%以内、Caを0.01%以内、及び、Cuを5.0%以内で任意に含むことを特徴とする。 The heat-resisting steel for exhaust valves according to the present invention is 0.5% to 0.90% C and 15.0 to 25.0 in terms of mass% including an essential additive element and an optional additive element that can be optionally contained. % Heat resistant steel for exhaust valves made of high nitrogen high Cr austenitic steel in which fine carbides and / or fine carbonitrides are dispersed and precipitated at least in crystal grains, the essential additive elements being C, Cr , N, Mn, Ni and P, the optional additional elements as Nb, Ti, Si, W, Mo, V, Co, B, Zr, Mg, Ca and Cu. N is included so that 0.90 ≦ C + N ≦ 1.3 within a range of 0.40 to 0.60%, Mn is within a range of 6.0 to 13.0%, and Ni is 4.0. In the range of ~ 8.0%, P in the range of 0.03 to 0.30% In the optional additive element, Nb and / or Ti are added in mass% so as not to exceed at least 1.0%, respectively, and 0.05 ≦ Nb + Ti ≦ 1.0, and Si is 1 Within 6%, W within 8.0%, Mo within 6.0%, V within 1.0%, Co within 5.0%, B within 0.03%, Zr within 0.1% %, Mg within 0.01%, Ca within 0.01%, and Cu within 5.0%.
かかる発明によれば、所定範囲内の組成の必須添加元素により、素地の強化を図るとともに、結晶粒界に析出する粗大な一次炭化物及び/又は炭窒化物の析出量を減じ、微細な二次炭化物及び/又は炭窒化物を主として結晶粒内に分散析出させ得るのである。故に、排気バルブの製造工程での鍛造加工のような熱間加工工程で割れを防止できるとともに、従来の炭化物及び/又は炭窒化物粒子を微細に析出させた高窒素高Crオーステナイト系耐熱鋼と比較しても高い高温機械強度を得られるのである。なお、上記した合金には組織及び機械的強度に大なる影響を与えない範囲の不可避的不純物が含まれ得る。 According to this invention, the essential additive element having a composition within a predetermined range enhances the substrate, reduces the amount of coarse primary carbides and / or carbonitrides precipitated at the grain boundaries, and makes fine secondary particles. Carbide and / or carbonitride can be mainly dispersed and precipitated in the crystal grains. Therefore, it is possible to prevent cracking in a hot working process such as forging in the manufacturing process of an exhaust valve, and a high nitrogen high Cr austenitic heat resistant steel in which conventional carbide and / or carbonitride particles are finely precipitated. Even when compared, high mechanical strength can be obtained. The above-described alloy may contain inevitable impurities in a range that does not significantly affect the structure and mechanical strength.
上記発明において、Siを質量%で、0.5%以上添加したことを特徴としてもよい。すなわち、任意添加元素であるSiを前記した添加量の上限以下で少なくとも所定量以上添加することで、熱間加工性を損なうことなく、排気バルブ用耐熱鋼として必要とされる高温機械強度と耐酸化性を高めることができる。 In the above invention, Si may be added in an amount of 0.5% or more by mass%. That is, by adding at least a predetermined amount of Si, which is an optional additive element, below the upper limit of the above-described addition amount, high temperature mechanical strength and acid resistance required as heat resistant steel for exhaust valves without impairing hot workability It is possible to increase the chemical properties.
上記発明において、W及びMoをそれぞれ質量%で、0.01%以上及び0.01%以上で、且つ、3.0≦Mo+1/2W≦6.0を満たすように添加したことを特徴としてもよい。かかる発明によれば、熱間加工性を損なうことなく、排気バルブ用耐熱鋼として必要とされる高温機械強度をより高めることができる。 In the above invention, W and Mo may be added in a mass% of 0.01% or more and 0.01% or more, respectively, so as to satisfy 3.0 ≦ Mo + 1 / 2W ≦ 6.0. Good. According to this invention, the high temperature mechanical strength required as a heat resistant steel for exhaust valves can be further increased without impairing hot workability.
上記発明において、Vを質量%で、0.05≦Nb+V+Ti≦1.0を満たすように添加したことを特徴としてもよい。かかる発明によれば、結晶粒の粗大化を防止できて、熱間加工性を損なうことなく、排気バルブ用耐熱鋼として必要とされる高温機械強度をより高めることができる。 In the above invention, V may be added in mass% so as to satisfy 0.05 ≦ Nb + V + Ti ≦ 1.0. According to this invention, the coarsening of crystal grains can be prevented, and the high-temperature mechanical strength required as a heat-resistant steel for exhaust valves can be further increased without impairing hot workability.
上記発明において、Coを質量%で、0.01%以上添加したことを特徴としてもよい。かかる発明によれば、熱間加工性を損なうことなく、主に素地を強化し、排気バルブ用耐熱鋼として必要とされる高温機械強度をより高めることができる。 In the above invention, 0.01% or more of Co may be added in mass%. According to this invention, it is possible to mainly reinforce the base without impairing hot workability, and to further increase the high-temperature mechanical strength required as a heat-resistant steel for exhaust valves.
上記発明において、Bを質量%で、0.001%以上添加したことを特徴としてもよい。かかる発明によれば、熱間加工性を損なうことなく、主に粒界を強化して、排気バルブ用耐熱鋼として必要とされる高温機械強度をより高めることができる。 In the above invention, B may be added in 0.001% or more by mass%. According to this invention, it is possible to enhance the high-temperature mechanical strength required as a heat-resistant steel for exhaust valves, mainly by strengthening the grain boundaries without impairing hot workability.
上記発明において、Zrを質量%で、0.001%以上添加したことを特徴としてもよい。かかる発明によれば、熱間加工性を損なうことなく、主に粒界を強化して、排気バルブ用耐熱鋼として必要とされる高温機械強度をより高めることができる。 In the above invention, 0.001% or more of Zr may be added in mass%. According to this invention, it is possible to enhance the high-temperature mechanical strength required as a heat-resistant steel for exhaust valves, mainly by strengthening the grain boundaries without impairing hot workability.
上記発明において、Mgを質量%で、0.001%以上添加したことを特徴としてもよい。かかる発明によれば、溶製時に脱酸及び脱硫をより確実にできて、排気バルブ用耐熱鋼として必要とされる高温機械強度を損なうことなく、熱間加工性をより高めることができる。 In the above invention, 0.001% or more of Mg may be added in mass%. According to this invention, deoxidation and desulfurization can be performed more reliably at the time of melting, and hot workability can be further enhanced without impairing the high-temperature mechanical strength required as a heat-resistant steel for exhaust valves.
上記発明において、Caを質量%で、0.001%以上添加したことを特徴としてもよい。かかる発明によれば、溶製時に脱酸及び脱硫をより確実にできて、排気バルブ用耐熱鋼として必要とされる高温機械強度を損なうことなく、熱間加工性をより高めることができる。 In the above invention, Ca may be added in 0.001% or more by mass%. According to this invention, deoxidation and desulfurization can be performed more reliably at the time of melting, and hot workability can be further enhanced without impairing the high-temperature mechanical strength required as a heat-resistant steel for exhaust valves.
上記発明において、Cuを質量%で、0.1%以上添加したことを特徴としてもよい。かかる発明によれば、高温機械強度を損なうことなく、排気バルブ用耐熱鋼として必要とされる冷間加工性を高めることができる。 In the above invention, Cu may be added at 0.1% or more by mass%. According to this invention, the cold workability required as a heat-resistant steel for exhaust valves can be enhanced without impairing the high-temperature mechanical strength.
上記した排気バルブ用耐熱鋼を用いた排気バルブの製造方法であって、鍛造工程と、1000〜1200℃の温度範囲で保持した後に油冷する固溶化熱処理工程と、700〜800℃の温度範囲で時効処理する工程とを含むことを特徴としてもよい。かかる発明によれば、結晶粒界に析出する粗大な一次炭化物及び/又は炭窒化物の析出量を減じることが出来るから、鍛造工程での割れを防止できる。また、微細な二次炭化物及び又は/炭窒化物を主として結晶粒内に分散析出させ得るから、従来の炭化物及び/又は炭窒化物粒子を微細に析出させた高窒素高Crオーステナイト系耐熱鋼と比較しても高い高温機械強度を得られる。 An exhaust valve manufacturing method using the above heat-resistant steel for exhaust valves, which includes a forging step, a solution heat treatment step in which oil cooling is performed after holding in a temperature range of 1000 to 1200 ° C, and a temperature range of 700 to 800 ° C. And an aging treatment step. According to this invention, it is possible to reduce the amount of coarse primary carbide and / or carbonitride precipitated in the crystal grain boundaries, so that cracking in the forging process can be prevented. Further, since fine secondary carbides and / or carbonitrides can be mainly dispersed and precipitated in crystal grains, conventional high nitrogen high Cr austenitic heat-resisting steel finely precipitated carbides and / or carbonitride particles and Even if compared, high mechanical strength can be obtained.
本願発明者においては、特定の固溶強化元素を特定範囲の添加量で添加して素地の固溶強化を図るとともに、特定の元素を特定範囲の添加量で添加して、従来の排気バルブ用耐熱鋼である炭化物及び/又は炭窒化物を析出させた高窒素高Crオーステナイト系耐熱鋼と比較して、結晶粒界に析出する一次炭化物及び/又は炭窒化物の量を所定量まで減じ、結晶粒内に微細な二次炭化物及び/又は炭窒化物を多く析出させ得ることを見いだして本発明に至った。すなわち、相互に影響を与え得る前者の固溶強化元素と後者の元素とのバランスをはかり、特徴的な組織を得られるようにしたことで、排気バルブとしての用途に対応した高い高温機械強度を有しつつも、製造工程における良好な熱間加工性をも与え得る排気バルブ用耐熱鋼を提供できるのである。 In the present inventor, a specific solid solution strengthening element is added in an addition amount within a specific range to enhance the solid solution of the substrate, and a specific element is added in an addition amount within a specific range, so that the conventional exhaust valve can be used. Compared to high nitrogen high Cr austenitic heat resistant steel precipitated with carbide and / or carbonitride which is heat resistant steel, the amount of primary carbide and / or carbonitride precipitated at grain boundaries is reduced to a predetermined amount, The inventors have found that a large amount of fine secondary carbides and / or carbonitrides can be precipitated in the crystal grains, and have reached the present invention. In other words, by balancing the former solid solution strengthening elements that can affect each other and the latter elements and obtaining a characteristic structure, high high-temperature mechanical strength corresponding to the use as an exhaust valve can be achieved. While having it, it is possible to provide a heat-resistant steel for exhaust valves that can provide good hot workability in the manufacturing process.
以下に、その詳細について説明する。 The details will be described below.
図1に示す各組成の合金について、高周波誘導炉にて50kgのインゴットをそれぞれ溶製した。かかるインゴットを1180℃で16時間保持し均質化熱処理した後に、φ18の丸棒に鍛造加工した。この丸棒を1050℃(一部においては、1150℃とした。詳細は後述する。)で30分間保持した後に、油冷し固溶化熱処理した。更に、丸棒を750℃で4時間保持した後に空冷して時効処理した。時効処理後の丸棒は、以下の各試験に対応した試験片形状に機械加工された。 About each alloy shown in FIG. 1, 50 kg ingots were melted in a high frequency induction furnace. The ingot was held at 1180 ° C. for 16 hours and subjected to homogenization heat treatment, and then forged into a φ18 round bar. The round bar was held at 1050 ° C. (in part, 1150 ° C., details will be described later) for 30 minutes, then cooled with oil and subjected to a solution heat treatment. Further, the round bar was kept at 750 ° C. for 4 hours and then air-cooled and aged. The round bar after the aging treatment was machined into a test piece shape corresponding to each of the following tests.
まず、室温(常温)における硬さ測定では、ロックウェル硬度計により、ロックウェル硬さCスケール(HRC)を求めた。また、800℃の高温における硬さ測定では、ビッカース硬度計により、測定荷重5kgでビッカース硬さ(Hv)を求めた。 First, in the hardness measurement at room temperature (ordinary temperature), the Rockwell hardness C scale (HRC) was obtained with a Rockwell hardness meter. Moreover, in the hardness measurement in high temperature of 800 degreeC, the Vickers hardness (Hv) was calculated | required with the measurement load of 5 kg with the Vickers hardness meter.
次に、引張強度測定では、平行部において径8mm、長さ90mmの丸棒試験片を用いて、室温及び800℃にてそれぞれ引張試験を行って、引張強度を求めた。 Next, in the tensile strength measurement, a tensile test was performed by performing a tensile test at room temperature and 800 ° C. using a round bar test piece having a diameter of 8 mm and a length of 90 mm in the parallel part.
以上の試験結果については、図2に示した。 The above test results are shown in FIG.
図1のNo.1〜12に示す、本発明による第1の実施例である排気バルブ用耐熱鋼の一連の合金組成は、0.4mass%のNを含む高窒素高Crオーステナイト鋼である21−4N(JIS SUH35)をもとに、0.50〜0.90%のC及び15.0〜25.0%のCrを含む高窒素高Crオーステナイト鋼において、C、Cr、N、Nb及びTiなどの炭化物及び/又は炭窒化物の生成に関わる元素、WやMoなどの固溶強化を与え得る元素、オーステナイト安定化元素であるMnやNiなどの組織を安定化させる元素などの組成量をモディファイしている。特に、結晶粒内に析出し得る二次炭化物の析出形態をPが大きく変化させ得ることを見いだし、その組成量を調整している。 No. 1 in FIG. 1 to 12, a series of alloy compositions of the heat-resistant steel for exhaust valves according to the first embodiment of the present invention is 21-4N (JIS SUH35), which is a high nitrogen high Cr austenitic steel containing 0.4 mass% N. ) In a high nitrogen high Cr austenitic steel containing 0.50-0.90% C and 15.0-25.0% Cr, carbides such as C, Cr, N, Nb and Ti and Modifying the composition amount of elements involved in the formation of carbonitrides, elements that can provide solid solution strengthening such as W and Mo, and elements that stabilize the structure such as Mn and Ni that are austenite stabilizing elements . In particular, it has been found that P can greatly change the precipitation form of secondary carbides that can be precipitated in crystal grains, and the composition amount is adjusted.
図3に示すように、従来の21−4N(JIS SUH35)のような高窒素高Crオーステナイト鋼では、多くの粗大化した炭化物、特にCr23C6のような炭化物が結晶粒界に沿って析出し、鍛造工程のような熱間加工時の粒界割れの原因となっていた。また、粒内には筋状に連なったストリンガー状のMC型炭化物が析出し、高温変形時において転移の堆積を生じさせることから、応力集中源となって降伏現象を引き起こし、高温機械強度の向上の妨げとなっていた。 As shown in FIG. 3, in the conventional high nitrogen high Cr austenitic steel such as 21-4N (JIS SUH35), many coarse carbides, particularly carbides such as Cr 23 C 6 , exist along the grain boundaries. It was precipitated and caused intergranular cracking during hot working such as a forging process. In addition, stringer-like MC-type carbides are formed in the grains, causing precipitation of dislocations during high-temperature deformation, resulting in a stress concentration source and causing a yield phenomenon, improving high-temperature mechanical strength. It was an obstacle.
一方、図4に示すように、本発明の排気バルブ用耐熱鋼では、結晶粒界に沿った炭化物及び/又は炭窒化物の量及び大きさを抑制することができ得て、排気バルブ用耐熱鋼としての熱間加工時の粒界割れを低減できる。また、粒内に細かい粒状の炭化物、特に、MがCr、Nb及び/又はTiからなるMC型炭化物及び/又はMX型炭窒化物を数μm以下でしかも微細に分散析出させ得て、排気バルブ用耐熱鋼としての高温機械強度を高められ得るのである。 On the other hand, as shown in FIG. 4, the heat resistant steel for exhaust valves of the present invention can suppress the amount and size of carbides and / or carbonitrides along the grain boundaries, and is heat resistant for exhaust valves. Intergranular cracking during hot working as steel can be reduced. Further, fine granular carbides in the grains, in particular, MC type carbides and / or MX type carbonitrides in which M is made of Cr, Nb and / or Ti can be dispersed and deposited finely within a few μm, and an exhaust valve Therefore, the high-temperature mechanical strength as a heat-resistant steel can be increased.
例えば、図2に示すように、本発明による第1の実施例である排気バルブ用耐熱鋼の一連の合金組成を有する鋼では、少なくともインゴットからφ18の丸棒に鍛造加工しても鍛造割れを発生させることはなかった。つまり、良好な熱間加工性を与えるのである。また、800℃での高温硬さ試験では、いずれも190HV以上の値が得られ、更に、800℃での高温引張試験では370MPa以上の値が得られている。つまり、高い高温機械強度を有するのである。なお、従来鋼との比較については後述する。 For example, as shown in FIG. 2, in the steel having a series of alloy compositions of the heat-resistant steel for exhaust valves that is the first embodiment according to the present invention, forging cracks are caused even if forging is performed from at least an ingot to a φ18 round bar. It was never generated. That is, it provides good hot workability. Moreover, in the high temperature hardness test at 800 ° C., a value of 190 HV or more is obtained in all cases, and in the high temperature tensile test at 800 ° C., a value of 370 MPa or more is obtained. That is, it has high high temperature mechanical strength. The comparison with the conventional steel will be described later.
更に、図1のNo.13〜15に示す、本発明による第2の実施例である排気バルブ用耐熱鋼の一連の合金組成は、上記した第1の実施例である排気バルブ用耐熱鋼の一連の合金組成にVを添加した組成を有する。なお、VCからなるMC型炭化物は、その固溶に必要な温度が高いため、固溶化熱処理の温度を第1の実施例よりも100℃高い1150℃とした。 Further, in FIG. The series of alloy compositions of the heat-resistant steel for exhaust valves according to the second embodiment of the present invention shown in 13 to 15 is V in the series of alloy compositions of the heat-resistant steel for exhaust valves according to the first embodiment described above. It has an added composition. In addition, since the MC type carbide composed of VC has a high temperature required for its solid solution, the temperature of the solution heat treatment was set to 1150 ° C., which is 100 ° C. higher than that of the first example.
この場合であっても、図4に示すように、結晶粒界に沿った炭化物及び/又は炭窒化物を抑制できて、更に粒内に細かい粒状の炭化物、特に、MがCr、V、Nb及び/又はTiからなるMC型炭化物及び/又はMX型炭窒化物を微細に分散析出させ得て、高温機械強度を高め得る。つまり、図2に示すように、少なくともインゴットからφ18の丸棒に鍛造加工しても鍛造割れを発生させることはなかった。つまり、良好な熱間加工性を与えるのである。また、800℃での高温硬さ試験では、いずれも190HV以上の値が得られ、更に、800℃での高温引張試験では370MPa以上の値が得られている。つまり、高い高温機械強度を有するのである。なお、Vの添加量のより少ないNo.15に比べて、より添加量の多いNo.13及び14で硬さ及び引張強度ともに高い値が得られた。 Even in this case, as shown in FIG. 4, carbides and / or carbonitrides along the grain boundaries can be suppressed, and fine granular carbides in the grains, in particular, M is Cr, V, Nb. In addition, MC type carbide and / or MX type carbonitride composed of Ti and / or Ti can be finely dispersed and precipitated to increase the high-temperature mechanical strength. That is, as shown in FIG. 2, forging cracks did not occur even when forging at least a φ18 round bar from the ingot. That is, it provides good hot workability. Moreover, in the high temperature hardness test at 800 ° C., a value of 190 HV or more is obtained in all cases, and in the high temperature tensile test at 800 ° C., a value of 370 MPa or more is obtained. That is, it has high high temperature mechanical strength. In addition, No. with less addition amount of V. Compared with No. 15, No. 15 having a larger addition amount. High values of both hardness and tensile strength were obtained at 13 and 14.
更に、図1のNo.16及び17に示す、本発明による第3の実施例である排気バルブ用耐熱鋼の合金組成は、上記した第1の実施例である排気バルブ用耐熱鋼の合金組成にMg及び/又はCaを添加した組成を有する。 Further, in FIG. The alloy composition of the heat resistant steel for exhaust valves according to the third embodiment of the present invention shown in 16 and 17 is the same as that of the heat resistant steel for exhaust valves according to the first embodiment described above. It has an added composition.
更に、図1のNo.18及び19に示す、本発明による第4の実施例である排気バルブ用耐熱鋼の合金組成は、上記した第1の実施例である排気バルブ用耐熱鋼の合金組成にB及び/又はZrを添加した組成を有する。 Further, in FIG. The alloy composition of the heat resistant steel for exhaust valves according to the fourth embodiment of the present invention shown in 18 and 19 is B and / or Zr in the alloy composition of the heat resistant steel for exhaust valves according to the first embodiment described above. It has an added composition.
更に、図1のNo.20に示す、本発明による第5の実施例である排気バルブ用耐熱鋼の合金組成は、上記した第1の実施例である排気バルブ用耐熱鋼の合金組成にCoを添加した組成を有する。 Further, in FIG. The alloy composition of the heat resistant steel for exhaust valves according to the fifth embodiment of the present invention shown in FIG. 20 has a composition in which Co is added to the alloy composition of the heat resistant steel for exhaust valves according to the first embodiment described above.
更に、図1のNo.21に示す、本発明による第6の実施例である排気バルブ用耐熱鋼の合金組成は、上記した第1の実施例である排気バルブ用耐熱鋼の合金組成にCuを添加した組成を有する。 Further, in FIG. The alloy composition of the heat resistant steel for exhaust valves according to the sixth embodiment of the present invention shown in FIG. 21 has a composition in which Cu is added to the alloy composition of the heat resistant steel for exhaust valves according to the first embodiment described above.
この図1のNo.16〜21の場合であっても、図4に示すように、結晶粒界に沿った炭化物及び/又は炭窒化物を抑制できて、粒内に細かい粒状の炭化物、特に、MがCr、V、Nb及び/又はTiからなるMC型炭化物及び/又はMX型炭窒化物を微細に分散析出させ得て、高温機械強度を高め得る。つまり、図2に示すように、少なくともインゴットからφ18の丸棒に鍛造加工しても鍛造割れを発生させることはなかった。つまり、良好な熱間加工性を与えるのである。また、800℃での高温硬さ試験では、いずれも190HV以上の値が得られ、更に、800℃での高温引張試験では370MPa以上の値が得られている。つまり、高い高温機械強度を有するのである。 No. 1 in FIG. Even in the case of 16 to 21, as shown in FIG. 4, carbides and / or carbonitrides along the grain boundaries can be suppressed, and fine granular carbides in the grains, in particular, M is Cr, V MC type carbide and / or MX type carbonitride composed of Nb and / or Ti can be finely dispersed and precipitated, and the high-temperature mechanical strength can be increased. That is, as shown in FIG. 2, forging cracks did not occur even when forging at least a φ18 round bar from the ingot. That is, it provides good hot workability. Moreover, in the high temperature hardness test at 800 ° C., a value of 190 HV or more is obtained in all cases, and in the high temperature tensile test at 800 ° C., a value of 370 MPa or more is obtained. That is, it has high high temperature mechanical strength.
なお、図1のNo.101〜105には、比較例としての排気バルブ用耐熱鋼の一連の合金組成を示す。No.101に示す組成は、排気バルブ用鋼として代表的な0.4mass%のNを含む高窒素高Crオーステナイト鋼である21−4N(JIS SUH35)相当である。No.102に示す組成は、前記した21−4N相当の組成に、更にW及びNbを添加した組成であるが、上述した第1の実施例における合金組成に比べてSi量及びW量が少なく、Nb量が多い組成である。No.104に示す組成は、No.102に示す組成よりもSiを増量した組成であるが、Cが低めである。 In FIG. 101-105 shows a series of alloy compositions of heat-resistant steel for exhaust valves as a comparative example. No. The composition shown in 101 is equivalent to 21-4N (JIS SUH35), which is a high nitrogen high Cr austenitic steel containing 0.4 mass% N, which is a typical exhaust valve steel. No. The composition shown in 102 is a composition in which W and Nb are further added to the above-described composition corresponding to 21-4N, but the amount of Si and the amount of W are small compared to the alloy composition in the first embodiment described above. The composition has a large amount. No. The composition shown in No. 104 is No. 104. Although it is a composition in which the amount of Si is increased from the composition shown in 102, C is lower.
この場合、図3に示すような、多くの粗大化した炭化物及び/又は炭窒化物が結晶粒界に沿って析出し、粒内には筋状に連なったストリンガー状の炭化物が析出する。つまり、図2に示すように、例えば、No.103及び105では、インゴットからφ18の丸棒に鍛造加工したときに鍛造割れが発生してしまった。同様に、No.102では、同様の鍛造加工時に表面に割れが発生してしまった。つまり、熱間加工性について少なくとも上記した実施例の鋼に対して劣ることが判る。また、800℃での高温硬さ試験では、いずれの比較例においても実施例よりも大幅に硬度が低い。同様に800℃での高温引張試験でも、いずれの比較例においても実施例よりも大幅に機械強度が低い。 In this case, as shown in FIG. 3, many coarse carbides and / or carbonitrides are precipitated along the crystal grain boundaries, and stringer-like carbides that are continuous in a string form are precipitated in the grains. That is, as shown in FIG. In 103 and 105, forging cracks occurred when forging from an ingot into a round bar of φ18. Similarly, no. In 102, cracks occurred on the surface during the same forging process. That is, it turns out that it is inferior to the steel of the above-mentioned Example at least about hot workability. Moreover, in the high-temperature hardness test at 800 ° C., the hardness of each comparative example is significantly lower than that of the examples. Similarly, in the high-temperature tensile test at 800 ° C., the mechanical strength is significantly lower in all the comparative examples than in the examples.
なお、上記した実施例及び比較例から本発明による排気バルブ用耐熱鋼の合金組成の各成分範囲を求める指針は以下の如きである。 In addition, the guideline which calculates | requires each component range of the alloy composition of the heat resistant steel for exhaust valves by this invention from the above-mentioned Example and comparative example is as follows.
Cは、オーステナイト安定化元素であって、オーステナイト組織を安定化させるとともに、鋼の脆化の原因となるσ相やラーベス相の生成を抑制し、素地を強化する。また、Nb、V及びTiと優先的に結合しMC型炭化物を生成して、固溶化熱処理における結晶粒の粗大化を抑制し、結果として機械強度を向上させ得る。さらにMC型炭化物は硬化相として働いて耐摩耗性を向上させ得る。特に、Crとは、Cr23C6炭化物を生成して機械強度を向上させ得る。その一方で、過剰に添加すると、炭化物が過剰に生成して排気バルブ用耐熱鋼として必要とされる加工性を低下させてしまう。故に、Cは質量%で、0.50〜0.90%の範囲内とした。 C is an austenite stabilizing element, stabilizes the austenite structure, suppresses the formation of σ phase and Laves phase that cause embrittlement of steel, and strengthens the substrate. Moreover, it can combine with Nb, V, and Ti preferentially to produce MC type carbide, thereby suppressing the coarsening of crystal grains in the solution heat treatment, and as a result, the mechanical strength can be improved. Furthermore, MC type carbides can work as a hardened phase to improve wear resistance. In particular, Cr can generate Cr 23 C 6 carbide to improve mechanical strength. On the other hand, if added excessively, carbides are excessively generated and workability required as heat resistant steel for exhaust valves is reduced. Therefore, C is mass%, and is within the range of 0.50 to 0.90%.
Nは、オーステナイト安定化元素であって、オーステナイト組織を安定化させる。また、Nは、侵入型の固溶強化元素であって、素地の固溶強化を与え、MoやWなどの置換型固溶強化元素ととともに複合的に働いて、機械強度を高め得る。故に、Nは質量%で、0.40〜0.60%の範囲内とした。 N is an austenite stabilizing element and stabilizes the austenite structure. Further, N is an interstitial solid solution strengthening element that gives solid solution strengthening of the substrate and can work in combination with substitutional solid solution strengthening elements such as Mo and W to increase the mechanical strength. Therefore, N is mass%, and is within the range of 0.40 to 0.60%.
なお、C及びNは、上記したように、強力なオーステナイト生成元素であって素地の強化を与え、NiやMnの代替元素となる。特にこれら安価な元素により比較的高価なNiを代替できることは、コスト低減に有効である。ここで、Nは、MC型炭化物のCサイトに置換してMX型の窒化物を形成し、C及びNは相互補完の関係にある。故に、C及びNの総量を規定することができて、0.90≦C+N≦1.30%とできる。 As described above, C and N are strong austenite generating elements, which strengthen the substrate and serve as substitute elements for Ni and Mn. In particular, the ability to replace relatively expensive Ni with these inexpensive elements is effective for cost reduction. Here, N substitutes for the C site of the MC type carbide to form an MX type nitride, and C and N are in a complementary relationship. Therefore, the total amount of C and N can be defined, and 0.90 ≦ C + N ≦ 1.30%.
Crは、合金表面にCr2O3の酸化保護被膜を形成して排気バルブ用途としての耐食性及び耐酸化性を大幅に向上させ得る。また、Cと結びついて、Cr23C6炭化物を生成して機械強度を向上させ得る。その一方で、フェライト安定化元素であって、オーステナイト組織を不安定化させ得るとともに、脆化相であるσ相やラーベス相の生成を促進させたり、排気バルブ用耐熱鋼として必要とされる熱間加工性及び機械強度を低下させ得る。故に、Crは質量%で、15.0〜25.0%の範囲とし、好ましくは17.0〜23.5%の範囲内とできる。 Cr can significantly improve the corrosion resistance and oxidation resistance for exhaust valve applications by forming an oxidation protective film of Cr 2 O 3 on the alloy surface. In combination with C, Cr 23 C 6 carbide can be generated to improve mechanical strength. On the other hand, it is a ferrite stabilizing element that can destabilize the austenite structure, promote the formation of σ phase and Laves phase, which are embrittled phases, and heat required as heat resistant steel for exhaust valves. Interworkability and mechanical strength can be reduced. Therefore, Cr is mass% and can be in the range of 15.0 to 25.0%, preferably in the range of 17.0 to 23.5%.
更に、高窒素高Crオーステナイト鋼において、任意添加元素をNb、Ti、Si、W、Mo、V、Co、B、Zr、Mg、Ca及びCuとして、これらについて以下の指針で合金組成に添加できる。 Furthermore, in the high nitrogen high Cr austenitic steel, optional additional elements can be added to the alloy composition as Nb, Ti, Si, W, Mo, V, Co, B, Zr, Mg, Ca and Cu, with the following guidelines. .
Siは、溶製時の脱酸材であって、高温度での耐酸化性を与え得る。また、固溶強化元素として素地の固溶強化を与える。一方で、過剰な添加は機械強度を低下させ、排気バルブ用鋼では特に問題となる耐鉛腐食性を低下させる。なお、後者については、無鉛ガソリンにおける耐鉛腐食性の必要性が低減していることから、前者の機械強度の低下との関係で添加量が決定されるべきである。故に、Siは質量%で、0.5〜1.6%の範囲とし、好ましくは0.6〜1.6%の範囲内である。 Si is a deoxidizing material at the time of melting and can give oxidation resistance at high temperatures. Moreover, the solid solution strengthening of the substrate is given as a solid solution strengthening element. On the other hand, excessive addition reduces the mechanical strength and lowers lead corrosion resistance, which is a particular problem in exhaust valve steel. In addition, about the latter, since the necessity of the lead corrosion resistance in unleaded gasoline is reducing, the addition amount should be determined in relation to the fall of the former mechanical strength. Therefore, Si is mass% and is in the range of 0.5 to 1.6%, preferably in the range of 0.6 to 1.6%.
Mn及びNiはオーステナイト安定化元素であって、オーステナイト組織を安定化させ素地の強化を図り得る。また、Mnは高価なNiの代替元素として働き、Nの溶解度を高める効果を有する。故に、質量%で、Niは4.0〜8.0%、Mnは6.0〜13.0%の範囲とし、好ましくはNi:4.5〜7.5%、Mn:7.0〜11.0%の範囲内である。 Mn and Ni are austenite stabilizing elements, and can stabilize the austenite structure and strengthen the substrate. Further, Mn acts as an alternative element for expensive Ni and has an effect of increasing the solubility of N. Therefore, by mass%, Ni is in the range of 4.0 to 8.0% and Mn is in the range of 6.0 to 13.0%, preferably Ni: 4.5 to 7.5%, Mn: 7.0 to It is in the range of 11.0%.
Mo及びWは母相であるオーステナイト相に対する固溶強化元素であって、素地の強化を与える。また、高温機械強度の向上を与える。一方で、過剰に添加すると、高温における変形抵抗を増大させ、また脆化相であるσ相やラーベス相の生成を促進させることから、熱間加工性を低下させてしまう。故に、質量%で、Moは1.0〜6.0%、Wは1.0〜8.0%以下の範囲とし、Mo及びWの上記効果に対する寄与の差から、Mo+1/2Wを3.0〜6.0%とする。好ましくは、Moは1.5〜5.5%、Wは1.0〜7.5%以下の範囲内である。 Mo and W are solid solution strengthening elements for the austenite phase, which is a parent phase, and provide strengthening of the substrate. It also improves high temperature mechanical strength. On the other hand, excessive addition increases deformation resistance at high temperatures and promotes the formation of σ phase and Laves phase, which are embrittled phases, and thus reduces hot workability. Therefore, in mass%, Mo is in the range of 1.0 to 6.0%, W is in the range of 1.0 to 8.0% or less, and Mo + 1 / 2W is set to 3. from the difference in contribution of Mo and W to the above effect. 0 to 6.0%. Preferably, Mo is in the range of 1.5 to 5.5% and W is in the range of 1.0 to 7.5% or less.
Nb及びTiは、Cと結合してMC型炭化物を生成する。微細なMC型炭化物を分散して析出させることにより、固溶化熱処理中の結晶粒の粗大化を抑制し、更に排気バルブ用耐熱鋼として必要とされる高温機械強度を向上させ得る。しかし、過剰の添加はフェライトの生成を促進し、粗大炭化物を生成させ得ることから、逆に排気バルブ用耐熱鋼として必要とされる熱間加工性を低下させ得る。故に、Nb及びTiはそれぞれ質量%で、1.0%以下の範囲とし、更に双方の上記した効果に対する寄与から、0.05%≦Nb+Ti≦1.0%とし、好ましくは0.1%≦Nb≦0.9%、0.15%≦Ti≦0.8%である。 Nb and Ti combine with C to generate MC type carbides. By dispersing and precipitating the fine MC type carbide, it is possible to suppress the coarsening of crystal grains during the solution heat treatment, and to further improve the high-temperature mechanical strength required as a heat-resistant steel for exhaust valves. However, excessive addition promotes the formation of ferrite and can generate coarse carbides, and conversely, the hot workability required as a heat-resistant steel for exhaust valves can be reduced. Therefore, Nb and Ti are each in mass%, and are in the range of 1.0% or less, and from the contribution to the above-described effects, 0.05% ≦ Nb + Ti ≦ 1.0%, preferably 0.1% ≦ Nb ≦ 0.9%, 0.15% ≦ Ti ≦ 0.8%.
Pは、上記したような炭化物及び/又は炭窒化物の特徴的な組織を形成させ得る。特に炭化物及び/又は炭窒化物の微細化を促進して、排気バルブ用耐熱鋼として必要とされる高温機械強度の向上を与える。しかし、過剰の添加は合金の融点を著しく下げて、排気バルブ用耐熱鋼として必要とされる高温機械強度及び熱間加工性を低下させ得て、耐酸化性をも低下させ得る。故に、Pは質量%で、0.03〜0.30%の範囲内とし、好ましくは0.04〜0.25%の範囲内である。 P may form a characteristic structure of carbide and / or carbonitride as described above. In particular, the refinement of carbides and / or carbonitrides is promoted to improve the high-temperature mechanical strength required for heat-resistant steel for exhaust valves. However, excessive addition can significantly lower the melting point of the alloy, reduce the high-temperature mechanical strength and hot workability required as heat-resistant steel for exhaust valves, and also reduce oxidation resistance. Therefore, P is mass% and is in the range of 0.03 to 0.30%, preferably in the range of 0.04 to 0.25%.
Vは、Cと結合してMC型炭化物を生成し、固溶化熱処理中の結晶粒の粗大化を抑制し得る。特にNb及び/又はTiと複合的に添加することで排気バルブ用耐熱鋼として必要とされる高温機械強度を向上させ得る。しかし、過剰の添加はフェライト生成を促進し素地の安定性を低減させてしまう。また、MC炭化物の生成量が多くなりすぎると、MC型炭化物、特にM23C6型炭化物の析出量が減少して排気バルブ用耐熱鋼として必要とされる高温機械強度を低下させ得る。故に、Vは質量%で、1.0%以下とし、好ましくは、0.85%以下である。更に、Nb、V及びTiの上記した効果に対する寄与から、0.05%≦Nb+V+Ti≦1.0%である。 V combines with C to produce MC type carbides, and can suppress coarsening of crystal grains during solution heat treatment. In particular, high-temperature mechanical strength required as a heat-resistant steel for exhaust valves can be improved by adding it in combination with Nb and / or Ti. However, excessive addition promotes ferrite formation and reduces the stability of the substrate. If the amount of MC carbide produced is too large, the amount of MC-type carbide, particularly M 23 C 6- type carbide, decreases, and the high-temperature mechanical strength required for heat-resistant steel for exhaust valves can be reduced. Therefore, V is mass% and is 1.0% or less, preferably 0.85% or less. Furthermore, 0.05% ≦ Nb + V + Ti ≦ 1.0% from the contribution of Nb, V and Ti to the above-described effect.
Coはオーステナイト安定化元素であって、オーステナイト組織を安定化させるとともに、Niの代替元素として置換され得る。しかし、多量の添加はコスト高となるため、Coは質量%で、5%以下とした。 Co is an austenite stabilizing element that stabilizes the austenite structure and can be substituted as an alternative element for Ni. However, since the addition of a large amount increases the cost, Co is 5% by mass or less.
B及びZrは結晶粒界に偏析して粒界を強化する。かかる効果はそれぞれの含有量が0.001%以上で得られる。但し、Bは0.03%、Zrは0.1%を越えて含有させると排気バルブ用耐熱鋼として必要とされる熱間加工性が悪化する。故に、Bは質量%で、0.001〜0.03%、Zrは0.001〜0.1%とした。 B and Zr segregate at the grain boundaries and strengthen the grain boundaries. Such an effect is obtained when each content is 0.001% or more. However, the hot workability required as heat-resistant steel for exhaust valves deteriorates when B is contained in an amount exceeding 0.03% and Zr exceeds 0.1%. Therefore, B is mass%, 0.001 to 0.03%, and Zr is 0.001 to 0.1%.
Mg及びCaは合金の溶製時に脱酸剤及び脱硫剤として働き、排気バルブ用耐熱鋼として必要とされる熱間加工性の向上に寄与する。かかる効果は0.001%という極微量の添加でも認められるが、一方で、0.01%を越えると排気バルブ用耐熱鋼として必要とされる加工性が損なわれる。故に、質量%で、0.001%≦Mg+Ca≦0.01%の範囲内である。 Mg and Ca act as a deoxidizing agent and a desulfurizing agent when the alloy is melted, and contribute to the improvement of hot workability required as a heat-resistant steel for exhaust valves. Such an effect is recognized even with the addition of a very small amount of 0.001%. On the other hand, if it exceeds 0.01%, the workability required as a heat-resistant steel for exhaust valves is impaired. Therefore, it is in the range of 0.001% ≦ Mg + Ca ≦ 0.01% by mass%.
Cuはオーステナイト中に固溶し積層欠陥エネルギーを高め加工硬化を抑制し、排気バルブ鋼として必要とされる加工時の冷間加工性を向上させ得る。また、Cuは合金表面の酸化皮膜の密着性を高め、排気バルブ用途としての耐酸化性を向上させ得る。かかる効果は含有量が0.1%以下ではほとんど得られず、5%を越えて添加しても耐酸化性はほとんど変化しなくなる。故に、Cuは質量%で、0.1〜5.0%の範囲内である。 Cu forms a solid solution in austenite, increases stacking fault energy, suppresses work hardening, and can improve cold workability during processing required as exhaust valve steel. Further, Cu can enhance the adhesion of the oxide film on the alloy surface and improve the oxidation resistance as an exhaust valve application. Such an effect is hardly obtained when the content is 0.1% or less, and the oxidation resistance hardly changes even if the content exceeds 5%. Therefore, Cu is mass% and is in the range of 0.1 to 5.0%.
以上、本実施例においては、特定の固溶強化元素を特定範囲の添加量で添加して素地の固溶強化を図るとともに、特定の元素を特定範囲の添加量で添加して、従来の排気バルブ用耐熱鋼である炭化物及び/又は炭窒化物を析出させた高窒素高Crオーステナイト系耐熱鋼と比較して、結晶粒界に析出する一次炭化物及び/又は炭窒化物の量を所定量まで減じるとともに、結晶粒内に微細な二次炭化物及び/又は炭窒化物を多く析出させている。すなわち、相互に影響を与え得る前者の固溶強化元素と後者の元素とのバランスをはかり、特徴的な組織を得られるようにしたことで、排気バルブとしての用途に対応した高い高温機械強度を有しつつも、製造工程における良好な熱間加工性をも与え得る排気バルブ用耐熱鋼を提供できるのである。 As described above, in this embodiment, a specific solid solution strengthening element is added in an addition amount within a specific range to enhance the solid solution of the substrate, and a specific element is added in an addition amount within a specific range, so that conventional exhaust gas is added. Compared with high nitrogen high Cr austenitic heat resistant steel with precipitated carbide and / or carbonitride, which is heat resistant steel for valves, the amount of primary carbide and / or carbonitride precipitated at grain boundaries is up to a predetermined amount. Along with the decrease, a lot of fine secondary carbides and / or carbonitrides are precipitated in the crystal grains. In other words, by balancing the former solid solution strengthening elements that can affect each other and the latter elements and obtaining a characteristic structure, high high-temperature mechanical strength corresponding to the use as an exhaust valve can be achieved. While having it, it is possible to provide a heat-resistant steel for exhaust valves that can provide good hot workability in the manufacturing process.
ここまで本発明による代表的実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、添付した特許請求の範囲を逸脱することなく種々の代替実施例及び改変例を見出すことができるであろう。例えば、必須添加元素の量は本発明による鋼の典型的組織及び機械特性を損なうことなく、所定の範囲内で変更され得るとともに、任意添加元素の量についても、その添加の有無を含めて、本発明による鋼の典型的組織及び機械特性を損なうことなく変更され得る。 So far, representative embodiments and modifications based on the embodiments have been described. However, the present invention is not necessarily limited thereto, and those skilled in the art will not depart from the scope of the appended claims. Various alternative embodiments and modifications may be found. For example, the amount of the essential additive element can be changed within a predetermined range without impairing the typical structure and mechanical properties of the steel according to the present invention, and the amount of the optional additive element, including the presence or absence of the addition, The typical structure and mechanical properties of the steel according to the invention can be changed without impairing it.
Claims (11)
前記必須添加元素をC、Cr、N、Mn、Ni及びPとして、
前記任意添加元素をNb、Ti、Si、W、Mo、V、Co、B、Zr、Mg、Ca及びCuとして、
前記必須添加元素において、質量%で、
Nを0.40〜0.60%の範囲内で0.90≦C+N≦1.3
となるように含み、更に、
Mnを6.0〜13.0%の範囲内、
Niを4.0〜8.0%の範囲内、
Pを0.03〜0.30%の範囲内で含み、
前記任意添加元素において、質量%で、
Nb及び/又はTiを少なくともそれぞれ1.0%を越えない範囲で、且つ、0.05≦Nb+Ti≦1.0を満たすように添加し、
Siを1.6%以内、
Wを8.0%以内、
Moを6.0%以内、
Vを1.0%以内、
Coを5.0%以内、
Bを0.03%以内、
Zrを0.1%以内、
Mgを0.01%以内、
Caを0.01%以内、及び、
Cuを5.0%以内で任意に含むことを特徴とする排気バルブ用耐熱鋼。 The mass% of the additive element is an essential additive element and an optional additive element that can be optionally contained, and contains 0.50 to 0.90% C and 15.0 to 25.0% Cr. Or a heat resistant steel for exhaust valves made of high nitrogen high Cr austenitic steel in which fine carbonitride is dispersed and precipitated in at least crystal grains,
The essential additive elements are C, Cr, N, Mn, Ni and P,
The optional additive elements are Nb, Ti, Si, W, Mo, V, Co, B, Zr, Mg, Ca and Cu,
In the essential additive element, in mass%,
N within the range of 0.40 to 0.60%, 0.90 ≦ C + N ≦ 1.3
Including,
Mn within a range of 6.0 to 13.0%,
Ni in the range of 4.0 to 8.0%,
P is included in the range of 0.03 to 0.30%,
In the optional additive element, in mass%,
Nb and / or Ti are added so as not to exceed at least 1.0%, respectively, and 0.05 ≦ Nb + Ti ≦ 1.0.
Si within 1.6%,
W is within 8.0%,
Mo is within 6.0%,
V within 1.0%,
Co within 5.0%,
B within 0.03%,
Zr within 0.1%,
Mg within 0.01%,
Ca within 0.01%, and
Heat-resistant steel for exhaust valves, characterized by containing Cu arbitrarily within 5.0%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135020A JP2010280950A (en) | 2009-06-04 | 2009-06-04 | Heat resistant steel for exhaust valve and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009135020A JP2010280950A (en) | 2009-06-04 | 2009-06-04 | Heat resistant steel for exhaust valve and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010280950A true JP2010280950A (en) | 2010-12-16 |
Family
ID=43537937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009135020A Pending JP2010280950A (en) | 2009-06-04 | 2009-06-04 | Heat resistant steel for exhaust valve and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010280950A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2371980A1 (en) * | 2010-03-25 | 2011-10-05 | Daido Tokushuko Kabushiki Kaisha | Heat resistant steel for exhaust valve |
WO2013027841A1 (en) * | 2011-08-24 | 2013-02-28 | 大同特殊鋼株式会社 | Heat-resisting steel for exhaust valves |
CN105839028A (en) * | 2015-01-12 | 2016-08-10 | 宝钢特钢有限公司 | Austenite heat-resistant valve steel and manufacturing method thereof |
CN106269869A (en) * | 2016-08-25 | 2017-01-04 | 江苏申源特钢有限公司 | A kind of production method of Valve Steel 53Cr21Mn9Ni4N polishing bar |
EP3249059A1 (en) * | 2016-05-27 | 2017-11-29 | The Swatch Group Research and Development Ltd. | Method for thermal treatment of austenitic steels and austenitic steels thus obtained |
WO2019022460A1 (en) * | 2017-07-24 | 2019-01-31 | 포항공과대학교 산학협력단 | Austenite steel having excellent high-temperature strength |
CN116162852A (en) * | 2022-12-09 | 2023-05-26 | 中国核动力研究设计院 | High-strength corrosion-resistant austenitic heat-resistant steel for cores, and preparation method and application thereof |
-
2009
- 2009-06-04 JP JP2009135020A patent/JP2010280950A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2371980A1 (en) * | 2010-03-25 | 2011-10-05 | Daido Tokushuko Kabushiki Kaisha | Heat resistant steel for exhaust valve |
WO2013027841A1 (en) * | 2011-08-24 | 2013-02-28 | 大同特殊鋼株式会社 | Heat-resisting steel for exhaust valves |
CN103764861A (en) * | 2011-08-24 | 2014-04-30 | 大同特殊钢株式会社 | Heat-resisting steel for exhaust valves |
EP2749663A4 (en) * | 2011-08-24 | 2016-02-24 | Daido Steel Co Ltd | Heat-resisting steel for exhaust valves |
US9745649B2 (en) | 2011-08-24 | 2017-08-29 | Daido Steel Co., Ltd. | Heat-resisting steel for exhaust valves |
CN105839028B (en) * | 2015-01-12 | 2017-07-28 | 宝钢特钢有限公司 | Austenite heat-resistance Valve Steel manufacture method |
CN105839028A (en) * | 2015-01-12 | 2016-08-10 | 宝钢特钢有限公司 | Austenite heat-resistant valve steel and manufacturing method thereof |
EP3249059A1 (en) * | 2016-05-27 | 2017-11-29 | The Swatch Group Research and Development Ltd. | Method for thermal treatment of austenitic steels and austenitic steels thus obtained |
JP2017210684A (en) * | 2016-05-27 | 2017-11-30 | ザ・スウォッチ・グループ・リサーチ・アンド・ディベロップメント・リミテッド | Method for heat treatment of austenitic steels and austenitic steels obtained thereby |
US11136638B2 (en) | 2016-05-27 | 2021-10-05 | The Swatch Group Research And Development Ltd | Method for heat treatment of austenitic steels and austenitic steels obtained thereby |
CN106269869A (en) * | 2016-08-25 | 2017-01-04 | 江苏申源特钢有限公司 | A kind of production method of Valve Steel 53Cr21Mn9Ni4N polishing bar |
WO2019022460A1 (en) * | 2017-07-24 | 2019-01-31 | 포항공과대학교 산학협력단 | Austenite steel having excellent high-temperature strength |
CN116162852A (en) * | 2022-12-09 | 2023-05-26 | 中国核动力研究设计院 | High-strength corrosion-resistant austenitic heat-resistant steel for cores, and preparation method and application thereof |
CN116162852B (en) * | 2022-12-09 | 2023-11-24 | 中国核动力研究设计院 | High-strength corrosion-resistant austenitic heat-resistant steel for cores, and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010013565A1 (en) | Welding material for ni-based alloy | |
JP2006225756A (en) | Heat resistant alloy for exhaust valve enduring use at 900°c and exhaust valve using the alloy | |
JP5403192B1 (en) | Duplex stainless steel | |
JP2015528057A (en) | Austenitic alloy steel with excellent creep strength, oxidation resistance and corrosion resistance at high operating temperature | |
JP2010280950A (en) | Heat resistant steel for exhaust valve and method for producing the same | |
JP2011219864A (en) | Heat resistant steel for exhaust valve | |
JP2017202494A (en) | Austenitic heat-resistant steel weld metal and weld joint having the same | |
WO2012132679A1 (en) | Cast austenitic stainless steel | |
JP6733211B2 (en) | Ni-based superalloy for hot forging | |
JP2004277860A (en) | Heat-resistant alloy for high-strength exhaust valve excellent in overaging resistance | |
JP6293682B2 (en) | High strength Ni-base superalloy | |
JP5788360B2 (en) | Heat-resistant steel for exhaust valves | |
JP2007254804A (en) | Ni-BASED ALLOY | |
US20160215373A1 (en) | Wear resistant alloy | |
JP5272020B2 (en) | Heat resistant steel for engine valves with excellent high temperature strength | |
JP5880836B2 (en) | Precipitation strengthened heat resistant steel and processing method thereof | |
US8741215B2 (en) | Heat-resisting steel for engine valves excellent in high temperature strength | |
JP6738010B2 (en) | Nickel-based alloy with excellent high-temperature strength and high-temperature creep properties | |
JP6201731B2 (en) | Austenitic heat-resistant casting alloy | |
JP6337514B2 (en) | Precipitation hardening type Fe-Ni alloy and manufacturing method thereof | |
JP2007113057A (en) | Heat-resistant alloy having superior strength properties at high temperature for exhaust valve | |
JPWO2019182024A1 (en) | Ni-based alloy and heat-resistant plate material using the same | |
JP2011094220A (en) | Electrode material for spark plug | |
JP2017202492A (en) | Austenitic heat-resistant steel weld metal and weld joint having the same | |
JP2015108177A (en) | Nickel-based alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120501 |