[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007119865A - Steel pipe for machine structural member and manufacturing method thereof - Google Patents

Steel pipe for machine structural member and manufacturing method thereof Download PDF

Info

Publication number
JP2007119865A
JP2007119865A JP2005314474A JP2005314474A JP2007119865A JP 2007119865 A JP2007119865 A JP 2007119865A JP 2005314474 A JP2005314474 A JP 2005314474A JP 2005314474 A JP2005314474 A JP 2005314474A JP 2007119865 A JP2007119865 A JP 2007119865A
Authority
JP
Japan
Prior art keywords
steel pipe
less
temperature
cooling
machine structural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005314474A
Other languages
Japanese (ja)
Other versions
JP4500246B2 (en
JP2007119865A5 (en
Inventor
Yasuhiro Shinohara
康浩 篠原
Tetsuo Ishizuka
哲夫 石塚
Kazuhiro Inoue
和洋 井上
Bunshi Kato
文士 加藤
Teruhisa Takamoto
照久 高本
Junichi Okamoto
潤一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005314474A priority Critical patent/JP4500246B2/en
Publication of JP2007119865A publication Critical patent/JP2007119865A/en
Publication of JP2007119865A5 publication Critical patent/JP2007119865A5/ja
Application granted granted Critical
Publication of JP4500246B2 publication Critical patent/JP4500246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

【課題】歯車、シリンダ等の機械部品やシャフト等の構造部材に好適な機械構造部材用鋼管および高価な合金や調質熱処理を要せず安価に製造可能なその製造方法を提供する。
【解決手段】鋼管であり、質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなり、肉厚が5〜22mm、長さが外径の5倍以上であって、その金属組織が、フェライトとパーライトの混合組織であり、硬さの平均値がビッカース硬さで185〜260であり、硬さの最大値と最小値の差がビッカース硬さで20以下であることを特徴とする。また、その製造方法は、700℃以上の温度にある、前記成分系の鋼管の外表面から0.5〜10℃/秒の冷却速度で円周方向に回転させながら外表面側から加速冷却し、550〜700℃の温度域で加速冷却を停止することを特徴とする。
【選択図】図1
A steel pipe for a mechanical structural member suitable for mechanical parts such as gears and cylinders and a structural member such as a shaft, and a manufacturing method thereof that can be manufactured at low cost without requiring expensive alloy or tempering heat treatment.
SOLUTION: Steel pipe, in mass%, C: 0.3-0.6%, Si: 0.05-0.4%, Mn: 0.5-1.0%, P: 0.03% or less, S: 0.005-0.03%, Al: 0.08% The remainder is composed of Fe and inevitable elements, the thickness is 5 to 22 mm, the length is 5 times or more of the outer diameter, the metal structure is a mixed structure of ferrite and pearlite, hardness The average value of Vickers hardness is 185 to 260, and the difference between the maximum value and the minimum value of hardness is 20 or less in terms of Vickers hardness. Moreover, the manufacturing method is accelerated cooling from the outer surface side while rotating in the circumferential direction at a cooling rate of 0.5 to 10 ° C./second from the outer surface of the steel pipe of the component system at a temperature of 700 ° C. or higher, and 550 Accelerated cooling is stopped in a temperature range of ˜700 ° C.
[Selection] Figure 1

Description

本発明は、機械構造部材、特に歯車、シリンダー等の機械部品およびシャフト等の中空構造部材に好適な鋼管およびその製造方法に関する。   The present invention relates to a steel pipe suitable for machine structural members, particularly machine parts such as gears and cylinders, and hollow structural members such as shafts, and a method for manufacturing the same.

自動車や産業機械に使用される機械部品は、棒鋼を素材として鍛造や切削により所定の形状に加工された後、調質熱処理によって所定の機械的性質が付与されて使用されることが多い。一方、部品コストのダウンの要請から、中空形状部品に対して必要とされる機械的性質を既に付与された鋼管を素材として用いることにより、鍛造工程の短縮および熱処理工程の省略を図る場合が増えてきている。しかし、一般に棒鋼素材よりも鋼管素材の方が高価なため、たとえ中空形状部品であっても鋼管化によるコストダウンの効果が得られないことがある。   Machine parts used in automobiles and industrial machines are often used after being processed into a predetermined shape by forging or cutting using steel bar as a raw material and then given predetermined mechanical properties by tempering heat treatment. On the other hand, due to the demand for reducing the cost of parts, the use of steel pipes already provided with the mechanical properties required for hollow-shaped parts as materials increases the number of cases for shortening the forging process and omitting the heat treatment process. It is coming. However, since the steel pipe material is generally more expensive than the steel bar material, the cost reduction effect due to the steel pipe may not be obtained even if it is a hollow shaped part.

そこで、鋼管製造コストのさらなる低減のために、特許文献1〜7に記載のような、熱間製管後の調質熱処理を省略した、いわゆる非調質型の機械部品・構造用鋼管がいくつか提案されている。特許文献1〜6はいずれも合金元素の多量添加により焼き入れ性や析出強化能を向上させて所定の強度を得ようとするものである。そのために、必然的に合金コストの上昇が避けられないばかりでなく、製鋼プロセス上の困難さを伴う場合がある。特許文献7は600℃〜750℃という熱間圧延温度としてかなり低温で圧延することによって金属組織を微細化し、強度を向上させようとするものである。しかしながら、低温圧延は厚板圧延では今や一般的な技術となっているものの、鋼管圧延に際しては工具との接触により疵や焼き付きが発生しやすい等の問題があることから、現実には適用範囲が大きく制限されている。   Therefore, in order to further reduce the cost of manufacturing steel pipes, a number of so-called non-tempered mechanical parts / structural steel pipes that omit the tempering heat treatment after hot pipe making as described in Patent Documents 1 to 7 are disclosed. Or has been proposed. Patent Documents 1 to 6 all seek to obtain a predetermined strength by improving the hardenability and precipitation strengthening ability by adding a large amount of alloy elements. For this reason, not only an increase in alloy costs is unavoidable, but also there may be difficulties in the steelmaking process. Patent Document 7 intends to refine the metal structure and improve the strength by rolling at a considerably low temperature as a hot rolling temperature of 600 ° C. to 750 ° C. However, although low temperature rolling is now a common technique in thick plate rolling, there are problems such as the occurrence of wrinkles and seizures due to contact with tools when rolling steel pipes. It is greatly restricted.

特許文献8〜10には熱間性管直後に加速冷却を行うことにより強度を向上させる技術が開示されている。特許文献8は未再結晶域で圧下率30%以上の低温圧延と1〜35℃/秒の加速冷却を組み合わせることにより高強度を得るものであり、対象とする用途は原油タンカーの荷油管である。そのため、炭素含有量は0.03〜0.07%と低い。また、特許文献9は最終仕上げ圧延後の鋼管の内表面を放冷し、外表面をAr3点以上の温度から10℃/秒から60℃/秒で500〜400℃まで冷却し以降放冷するものである。対象とする用途は油井管であり、炭素含有量は0.1〜0.3に規定されている。特許文献10も炭素量0.15〜0.4%の油井管であり、熱間圧延ままで直接焼き入れ、または加速冷却し、その後焼き戻しを行う。 Patent Documents 8 to 10 disclose a technique for improving strength by performing accelerated cooling immediately after a hot tube. Patent Document 8 obtains high strength by combining low-temperature rolling with a reduction rate of 30% or more and accelerated cooling of 1 to 35 ° C./second in an unrecrystallized region, and the intended application is a cargo pipe of a crude oil tanker. is there. Therefore, the carbon content is as low as 0.03 to 0.07%. Further, Patent Document 9 was allowed to cool inner surface of the steel pipe after final finishing rolling, cooling after cooling the outer surface to from 500 to 400 ° C. at 60 ° C. / sec from 10 ° C. / sec from Ar 3 point or more temperature To do. The intended use is oil well pipes, and the carbon content is defined as 0.1 to 0.3. Patent Document 10 is also an oil well pipe having a carbon content of 0.15 to 0.4%, and is directly quenched or acceleratedly cooled while being hot-rolled, and then tempered.

しかし、機械構造用鋼管の場合、部品加工後に表面に高周波焼き入れを施して疲労特性や耐摩耗性が付与される場合が多いが、高周波焼き入れによる表面硬さは炭素量で決定されるために、一般的には0.3%を超える炭素量が必要とされている。このような高い炭素量の鋼管を何の配慮もせずに加速冷却すると、鋼管の表面近傍が局所的に著しく硬化し、その後の切断や機械加工が困難になるばかりでなく、場合によっては焼き割れが発生することもある。   However, in the case of steel pipes for machine structures, the surface is often subjected to induction hardening after parts processing to impart fatigue properties and wear resistance, but the surface hardness by induction hardening is determined by the amount of carbon. In general, a carbon content exceeding 0.3% is required. If such a high-carbon steel pipe is accelerated and cooled without any consideration, not only the surface of the steel pipe is locally hardened, but the subsequent cutting and machining become difficult, and in some cases, cracking occurs. May occur.

しかし、特許文献8および9のような低い炭素量および用途ではそのような問題は生じないため、それらの先行例では加速冷却に対してのプロセス面あるいは素材面での配慮はほとんどされていない。また、特許文献10は炭素量の上限を0.4%と規定しているが、実施例には最大0.3%の炭素量までしか記載がなく、実質的には0.3%Cまでの適用に制限されるのに加えて、本特許文献では加速冷却後に焼き戻しを必須としている。   However, since such a problem does not arise in the low carbon amount and application as in Patent Documents 8 and 9, in the preceding examples, consideration is not given to the accelerated cooling in terms of process or material. Moreover, although patent document 10 prescribes | regulates the upper limit of carbon amount as 0.4%, only the maximum carbon amount of 0.3% is described in the Example, and it is substantially to 0.3% C. In addition, in this patent document, tempering is essential after accelerated cooling.

上記背景のもと、特許文献11は、機械構造部材用鋼管を、高価な合金を添加せず、また調質熱処理を行うことなく、安価に製造する方法を提供している。上記目的を達成するため、0.3%を超える量のCを含有する鋼管を加速冷却する際に、あらかじめ冷却表面に脱炭層を形成さえておけば、表面の硬化を抑制出来る。また、加工性を確保するには、組織としてフェライトとパーライトが望ましく、必要強度が達せられるような、限定した条件で加速冷却する必要があり、均一に冷却するには、鋼管を回転させ外面から冷却することが有効であるとしている。   Based on the above background, Patent Document 11 provides a method of manufacturing a steel pipe for machine structural members at a low cost without adding an expensive alloy and without performing a tempering heat treatment. In order to achieve the above object, when a steel pipe containing C in an amount exceeding 0.3% is accelerated and cooled, if a decarburized layer is formed on the cooling surface in advance, surface hardening can be suppressed. In order to ensure workability, ferrite and pearlite are desirable as the structure, and it is necessary to accelerate cooling under limited conditions that can achieve the required strength. To uniformly cool, the steel pipe is rotated from the outer surface. It is said that cooling is effective.

しかしながら、特許文献11に記載した鋼管を加工した場合、円周方向および長手方向の任意の位置の硬さのバラツキが認められ、安定した加工精度を得ることに問題が生じた。その要因を鋭意調査した結果、フェライトの生成が不均一であることに起因していることが明らかとなった。   However, when the steel pipe described in Patent Document 11 is machined, variations in hardness at arbitrary positions in the circumferential direction and the longitudinal direction are recognized, and a problem arises in obtaining stable machining accuracy. As a result of diligent investigation of the cause, it became clear that it was caused by non-uniform ferrite formation.

特開平05−202447号公報JP 05-202447 A 特開平10−130783号公報Japanese Patent Laid-Open No. 10-130783 特開平10−204571号公報Japanese Patent Laid-Open No. 10-204571 特開平10−324946号公報JP-A-10-324946 特開平11−036017号公報Japanese Patent Laid-Open No. 11-036017 特開2004−292857号公報JP 2004-292857 A 特開2001−247931号公報JP 2001-247931 A 特許第3252651号公報Japanese Patent No. 3252651 特許第3503211号公報Japanese Patent No. 3503211 特開平07−041856号公報Japanese Unexamined Patent Publication No. 07-041856 特願2005−092045号Japanese Patent Application No. 2005-092045

本発明は、上記課題を解決した、特に歯車、シリンダ等の機械部品及びシャフト等の構造部材に好適な機械構造部材用鋼管を提供するものであり、また、その鋼管を、高価な合金を添加せず、また調質熱処理を行うことなく、安価に製造することのできる製造方法を提供するものである。   The present invention provides a steel pipe for a machine structural member suitable for structural parts such as gears, cylinders, and other mechanical parts that solve the above-mentioned problems, and an expensive alloy added to the steel pipe. Therefore, the present invention provides a manufacturing method that can be manufactured at low cost without performing tempering heat treatment.

本発明者らは、上記目的を達成するために、加速冷却の条件とその際の鋼管形状に対する金属組織および硬さの関係を種々検討した。その結果、金属組織全体、あるいは一部がベイナイト組織になるとその後の切断や機械加工が困難になるため、フェライト+パーライトの組織が得られ、かつ硬さおよびフェライト生成量を制御し、かつこれら組織を得るための限定された加速冷却条件を見出した。   In order to achieve the above object, the present inventors have studied various relations between the accelerated cooling conditions and the metal structure and hardness with respect to the steel pipe shape at that time. As a result, if the whole or part of the metal structure becomes a bainite structure, subsequent cutting and machining become difficult, so a ferrite + pearlite structure is obtained, and the hardness and the amount of ferrite produced are controlled, and these structures We found limited accelerated cooling conditions to obtain

また、合金元素の添加を抑制しつつ高周波焼き入れ性が確保できる、0.3%を超える量のCを含有する鋼管を加速冷却する際に、あらかじめ冷却表面に脱炭層を形成させておけば、表面の局所的な著しい硬化が抑制できることを見出した。   Moreover, when accelerated cooling of a steel pipe containing C in an amount exceeding 0.3%, which can ensure induction hardenability while suppressing the addition of alloy elements, a decarburized layer is formed on the cooling surface in advance. It was found that the local significant hardening of the surface can be suppressed.

本発明は、上記知見に基づきなされたものであり、その要旨とするところは以下の通りである。
(1)質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有し、肉厚5mm以上22mm以下、長さが外径の5倍以上の700℃以上の温度にある鋼管の外表面側から0.5〜10℃/秒の冷却速度で円周方向に回転させながら加速冷却し、550〜700℃の温度域で加速冷却を停止することを特徴とする機械構造部材用鋼管の製造方法。
(2)質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有し、熱間での延伸工程で肉厚5mm以上22mm以下、長さが外径の5倍以上に造管した700℃以上の温度にある鋼管の外表面側から0.5〜10℃/秒の冷却速度で円周方向に回転させながら加速冷却し、550〜700℃の温度域で加速冷却を停止することを特徴とする機械構造部材用鋼管の製造方法。
(3)質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有する円筒状ブルームを用いて、熱間での穿孔、圧延および延伸工程により肉厚5mm以上22mm以下、長さが外径の5倍以上に造管した700℃以上の温度にある鋼管の外表面側から0.5〜10℃/秒の冷却速度で円周方向に回転させながら加速冷却し、550〜700℃の温度域で加速冷却を停止することを特徴とする機械構造部材用鋼管の製造方法。
(4)質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有する円筒状ブルームを、下記(1)式を満足する温度、時間で均熱保持した後、熱間での穿孔、圧延および延伸工程により肉厚5mm以上22mm以下、長さが外径の5倍以上に造管した700℃以上の温度にある鋼管の外表面から肉厚方向に100〜500μmの脱炭層を形成し、0.5〜10℃/秒の冷却速度で円周方向に回転させながら外表面側から加速冷却し、550〜700℃の温度域で加速冷却を停止することを特徴とする機械構造部材用鋼管の製造方法。
This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) By mass%, C: 0.3-0.6%, Si: 0.05-0.4%, Mn: 0.5-1.0%, P: 0.03% or less, S: 0.005 to 0.03%, Al: 0.08% or less, with the balance having chemical components composed of Fe and inevitable elements, thickness 5 mm to 22 mm, length 5 times or more the outer diameter Accelerated cooling while rotating in the circumferential direction at a cooling rate of 0.5 to 10 ° C./second from the outer surface side of the steel pipe at a temperature of 700 ° C. or higher, and stops accelerated cooling in the temperature range of 550 to 700 ° C. The manufacturing method of the steel pipe for machine structural members characterized by the above-mentioned.
(2) By mass%, C: 0.3-0.6%, Si: 0.05-0.4%, Mn: 0.5-1.0%, P: 0.03% or less, S: 0.005 to 0.03%, Al: 0.08% or less, with the balance having chemical components composed of Fe and inevitable elements, with a thickness of 5 mm or more and 22 mm or less in the hot drawing step, length Is accelerated and cooled while rotating in the circumferential direction at a cooling rate of 0.5 to 10 ° C./second from the outer surface side of a steel tube at a temperature of 700 ° C. or more that is piped 5 times or more of the outer diameter, A method for producing a steel pipe for a machine structural member, characterized in that accelerated cooling is stopped in a temperature range of ° C.
(3) By mass%, C: 0.3-0.6%, Si: 0.05-0.4%, Mn: 0.5-1.0%, P: 0.03% or less, S: 0.005 to 0.03%, Al: 0.08% or less is contained, and the balance is obtained by hot piercing, rolling and stretching processes using a cylindrical bloom having a chemical component composed of Fe and inevitable elements. Rotate in the circumferential direction at a cooling rate of 0.5 to 10 ° C / sec from the outer surface side of a steel tube at a temperature of 700 ° C or higher, where the wall thickness is 5 mm or more and 22 mm or less and the length is 5 times the outer diameter. A method for producing a steel pipe for machine structural members, characterized in that accelerated cooling is performed while stopping and the accelerated cooling is stopped in a temperature range of 550 to 700 ° C.
(4) By mass%, C: 0.3-0.6%, Si: 0.05-0.4%, Mn: 0.5-1.0%, P: 0.03% or less, S: 0.005 to 0.03% Al: 0.08% or less, with the balance being a cylindrical bloom having a chemical component composed of Fe and inevitable elements at a temperature and time satisfying the following formula (1). Thickness from the outer surface of the steel pipe at a temperature of 700 ° C. or higher, which is formed by hot drilling, rolling and stretching processes, and having a wall thickness of 5 mm or more and 22 mm or less and a length of 5 times or more of the outer diameter. A decarburized layer of 100 to 500 μm is formed in the direction, accelerated cooling from the outer surface side while rotating in the circumferential direction at a cooling rate of 0.5 to 10 ° C./second, and accelerated cooling in a temperature range of 550 to 700 ° C. A method of manufacturing a steel pipe for a machine structural member, characterized by stopping.

2.7335×1062-19.509>t>2.4726×1057-18.121 ・・・・・・(1)
ここで、T:温度(℃) t:時間(分)
(5)前記鋼管が、さらに、質量%で、Cr:0.05〜0.25%を含有することを特徴とする、上記(1)〜(4)のいずれか1項に記載の機械構造部材用鋼管の製造方法。
(6)前記鋼管が、さらに、質量%で、Nb:0.001〜0.1%を含有することを特徴とする、上記(1)〜(5)のいずれか1項に記載の機械構造部材用鋼管の製造方法。
(7)前記圧延の終了温度が850℃以上であり、前記延伸工程前の再加熱炉に挿入する温度が750℃以上であることを特徴とする、上記(3)〜(6)のいずれか1項に記載の機械構造部材用鋼管の製造方法。
(8)冷却後さらに500〜600℃で10〜60分の応力除去焼鈍を施すことを特徴とする、上記(1)〜(7)のいずれか1項に記載の機械構造部材用鋼管の製造方法。
(9)質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有し、肉厚5mm以上22mm以下、長さが外径の5倍以上の機械構造部材用鋼管であって、その金属組織が、フェライトとパーライトの混合組織であり、硬さの平均値がビッカース硬さで185〜260であり、硬さの最大値と最小値の差がビッカース硬さで20以下であることを特徴とする、機械構造部材用鋼管。
(10)さらに、質量%で、Cr:0.05〜0.25%を含有することを特徴とする、上記(9)に記載の機械構造部材用鋼管。
(11)さらに、質量%で、Nb:0.001〜0.1%を含有することを特徴とする、上記(9)または(10)に記載の機械構造部材用鋼管。
(12)前記フェライトの面積率が15〜35%であることを特徴とする、上記(9)〜(11)のいずれか1項に記載の機械構造部材用鋼管。
2.7335 × 10 62 T -19.509 >t> 2.4726 × 10 57 T -18.121 (1)
Where T: temperature (° C.) t: time (minutes)
(5) The mechanical structure according to any one of (1) to (4) above, wherein the steel pipe further contains Cr: 0.05 to 0.25% by mass%. Manufacturing method of steel pipe for members.
(6) The mechanical structure according to any one of (1) to (5) above, wherein the steel pipe further contains Nb: 0.001 to 0.1% by mass%. Manufacturing method of steel pipe for members.
(7) The end temperature of the rolling is 850 ° C. or higher, and the temperature to be inserted into the reheating furnace before the stretching step is 750 ° C. or higher, any one of (3) to (6) above The manufacturing method of the steel pipe for machine structural members of 1 item | term.
(8) Manufacture of steel pipe for machine structural members according to any one of (1) to (7) above, further subjected to stress relief annealing at 500 to 600 ° C. for 10 to 60 minutes after cooling. Method.
(9) By mass%, C: 0.3-0.6%, Si: 0.05-0.4%, Mn: 0.5-1.0%, P: 0.03% or less, S: 0.005 to 0.03%, Al: 0.08% or less, with the balance having chemical components composed of Fe and inevitable elements, thickness 5 mm to 22 mm, length 5 times or more the outer diameter The steel pipe for machine structural members of which the metal structure is a mixed structure of ferrite and pearlite, the average hardness is 185 to 260 in terms of Vickers hardness, and the difference between the maximum and minimum hardness values Is a steel pipe for machine structural members, characterized in that the Vickers hardness is 20 or less.
(10) The steel pipe for machine structural members according to (9), further comprising Cr: 0.05 to 0.25% by mass.
(11) The steel pipe for machine structural members according to (9) or (10) above, further containing, by mass%, Nb: 0.001 to 0.1%.
(12) The steel pipe for machine structural members according to any one of (9) to (11) above, wherein an area ratio of the ferrite is 15 to 35%.

本発明では、肉厚が5mm以上22mm以下、長さが外径の5倍以上の鋼管において、700℃以上の温度域から冷却速度0.5℃/秒〜10℃/秒で加速冷却し、550℃〜700℃で加速冷却を停止することで、フェライト+パーライト組織でありかつ均一なフェライトが生成するため、硬さバラツキの小さい鋼管が得られる。   In the present invention, in a steel pipe having a wall thickness of 5 mm or more and 22 mm or less and a length of 5 times or more of the outer diameter, it is accelerated and cooled from a temperature range of 700 ° C. or more at a cooling rate of 0.5 ° C./second to 10 ° C./second, By stopping accelerated cooling at 550 ° C. to 700 ° C., a ferrite with a pearlite structure and uniform ferrite is generated, so that a steel pipe with small hardness variation can be obtained.

また、本発明では、外表面から肉厚方向に100〜500μmの脱炭層を有していることにより、表面に加工しやすい層を有する。また、この脱炭層は、少なくとも下記式を満足する温度、時間で均熱保持することで得ることができる。   Moreover, in this invention, it has a layer which is easy to process on the surface by having a 100-500 micrometers decarburization layer from the outer surface to the thickness direction. Further, this decarburized layer can be obtained by maintaining soaking at a temperature and time satisfying at least the following formula.

2.7335×1062-19.509>t>2.4726×1057-18.121
ここで、T:温度(℃) t:時間(分)
2.7335 × 10 62 T -19.509 >t> 2.4726 × 10 57 T -18.121
Where T: temperature (° C.) t: time (minutes)

本発明において鋼管の化学成分を限定した理由を述べる。なお、以下に示す「%」は、特段の説明がない限り、「質量%」を意味する。   The reason why the chemical composition of the steel pipe is limited in the present invention will be described. Note that “%” shown below means “% by mass” unless otherwise specified.

C:Cは高周波焼き入れによりHv550以上の硬化層を得るため、下限を0.3%とした。しかし、0.6%を超えると靭性及び切削性が著しく低下するので、上限を0.6%に定めた。   C: C has a lower limit of 0.3% in order to obtain a cured layer of Hv550 or higher by induction hardening. However, if it exceeds 0.6%, the toughness and machinability are remarkably lowered, so the upper limit was set to 0.6%.

Si:Siは脱酸作用を有するほかに、フェライトを固溶強化する作用も有し、その効果を得るため、下限を0.05%とした。しかし、過剰に添加すると靭性を損なうため上限を0.4%に制限した。   Si: Si not only has a deoxidizing action but also has an action of strengthening ferrite by solid solution, and in order to obtain the effect, the lower limit was made 0.05%. However, the upper limit was limited to 0.4% because excessive addition would impair toughness.

Mn:Mnはオーステナイト域を拡大させて初析フェライトを減らしパーライト分率を高めるとともに、パーライト変態開始温度を低下させてパーライトのラメラ間隔を狭くするために、フェライト+パーライト組織の強度向上に寄与する。その効果を得るためには、0.5%以上の添加が必要である。しかし、過剰に添加するとパーライト変態が抑制されてベイナイト変態が生成しやすくなるため、上限を1.0%とした。   Mn: Mn expands the austenite region, reduces the proeutectoid ferrite and increases the pearlite fraction, and lowers the pearlite transformation start temperature and narrows the pearlite lamellar spacing, thereby contributing to the strength improvement of the ferrite + pearlite structure. . In order to obtain the effect, addition of 0.5% or more is necessary. However, if added excessively, the pearlite transformation is suppressed and the bainite transformation is easily generated, so the upper limit was made 1.0%.

P:Pは靭性を低下させるため、その上限を0.03%とした。靭性確保の観点から添加量はできるだけ少ない方が望ましく、0.02%以下がより好適である。   P: P lowers toughness, so its upper limit was made 0.03%. From the viewpoint of securing toughness, the addition amount is desirably as small as possible, and 0.02% or less is more preferable.

S:Sは切削性向上に有効な元素であり、その効果を得るためには0.005%以上の添加が必要である。しかし、過度に添加すると靭性低下を招くので上限を0.03%とした。   S: S is an element effective for improving the machinability, and 0.005% or more must be added to obtain the effect. However, excessive addition causes a decrease in toughness, so the upper limit was made 0.03%.

Al:Alは脱酸元素であり、その効果をえるためには0.01%以上必要である。しかしながら、過剰添加すると粗大なAl酸化物が生成し靭性を招くので、上限を0.08%とした。   Al: Al is a deoxidizing element, and 0.01% or more is necessary to obtain the effect. However, if added excessively, coarse Al oxide is generated and toughness is caused, so the upper limit was made 0.08%.

Nb:本発明において、硬さバラツキ抑制を目的にフェライトの均一生成させるために有効な元素である。フェライトの均一生成には、変態前のオーステナイトの一部異常成長を抑制して、できるだけオーステナイト粒径をそろえる必要がある。異常成長を抑制するには、オーステナイト域で微細なNb炭窒化物を生成させ、粒界移動を抑制させることが極めて有効であり、その効果を得るためには0.001%以上の添加が必要である。しかしながら、過剰添加すると粗大なNb炭窒化物が生成し靭性低下を招くので、上限を0.1%に定めた。   Nb: In the present invention, Nb is an effective element for uniformly forming ferrite for the purpose of suppressing hardness variation. For uniform formation of ferrite, it is necessary to suppress the partial abnormal growth of austenite before transformation and make the austenite grain size as uniform as possible. In order to suppress abnormal growth, it is extremely effective to generate fine Nb carbonitrides in the austenite region and suppress grain boundary migration. To obtain this effect, 0.001% or more must be added. It is. However, excessive addition produces coarse Nb carbonitrides and causes toughness reduction, so the upper limit was set to 0.1%.

Cr:CrはMnと同様にフェライト+パーライト組織の強度向上に寄与し、その効果を得るためには、0.05%以上の添加が必要である。しかし、過度に添加すると焼き入れ性が高まり、組織がベイナイト主体に変化するため好ましくなく、その上限を0.25%以下とした。   Cr: Cr contributes to improving the strength of the ferrite + pearlite structure in the same way as Mn, and in order to obtain the effect, addition of 0.05% or more is necessary. However, excessive addition is not preferable because the hardenability is increased and the structure changes mainly to bainite, and the upper limit is made 0.25% or less.

本発明においてはコスト上昇を招く合金元素の添加を極力抑えたが、Mn,Crと同等の効果を有する他の元素として、0.05%〜0.5%のNi,0.05%〜0.5%のMo,0.0002〜0.005%のBも必要に応じて添加することが可能である。また、本発明では通常の不純物レベルのNは許容されるが、靭性低下を防止するため、その量が0.02%を超えないことが望ましい。   In the present invention, the addition of alloying elements that causes an increase in cost is suppressed as much as possible, but as other elements having the same effect as Mn and Cr, 0.05% to 0.5% Ni, 0.05% to 0% .5% Mo and 0.0002 to 0.005% B can be added as necessary. Further, in the present invention, normal impurity level N is allowed, but in order to prevent toughness deterioration, the amount is preferably not more than 0.02%.

金属組織は、機械構造部品となるための加工において、工具寿命および加工面粗さの観点からフェライトとパーライトの混合組織とし、硬さをHv185〜260に限定した。硬さがHv185より小さいと機械構造部品としての強度が不足するため、下限をHv185とした。しかしながら、Hv260を超えると加工時に使用する工具の摩耗が著しくなるため、上限をHv260とした。硬さがHv185〜260の場合、フェライトとパーライトの混合組織以外にベイナイト、焼き戻しマルテンサイト、フェライトと球状化セメンタイトの混合組織などが考えられるが、いずれの組織よりもフェライトとパーライトの混合組織の方が加工性に優れており、金属組織としてフェライトとパーライトの今後組織に限定した。また、硬さのバラツキを出来るだけ抑制するには、フェライトの面積率が15〜35%であること必要であり、金属組織としてフェライトとパーライトの混合組織であり、フェライトの面積率が15〜35%であることを限定した。   The metal structure was a mixed structure of ferrite and pearlite from the viewpoint of tool life and machined surface roughness, and the hardness was limited to Hv 185 to 260 in machining to become a mechanical structural component. If the hardness is smaller than Hv185, the strength as a mechanical structural component is insufficient, so the lower limit is set to Hv185. However, since the wear of the tool used at the time of machining becomes remarkable when it exceeds Hv260, the upper limit is set to Hv260. When the hardness is Hv 185 to 260, in addition to the mixed structure of ferrite and pearlite, bainite, tempered martensite, mixed structure of ferrite and spheroidized cementite, etc. can be considered, but the mixed structure of ferrite and pearlite is more than any structure. However, the metallographic structure was limited to ferrite and pearlite in the future. Further, in order to suppress variations in hardness as much as possible, the area ratio of ferrite needs to be 15 to 35%, and the metal structure is a mixed structure of ferrite and pearlite, and the area ratio of ferrite is 15 to 35. %.

次に、本発明において製造工程を限定した理由を説明する。   Next, the reason why the manufacturing process is limited in the present invention will be described.

本発明では上記化学成分を有する700℃以上の鋼管を用いる。この鋼管は、熱間での穿孔−圧延−延伸工程によって造管した直後、製造工程の最終段階で700℃以上であれば、インラインでそのまま用いることが可能である。冷間成形−電縫溶接工程あるいは冷間成形−電縫溶接−延伸工程においてインラインでそのまま用いても可能である。しかし、一旦鋼管製造工程を終了した後、オフラインで再加熱した鋼管を用いても一向に差し支えはない。鋼管の温度を750℃以上に限定した理由は、加速冷却開始時の金属組織をオーステナイト単相とするためである。鋼管の温度が高すぎるとオーステナイト粒が粗大化し靭性低下を招くので、950℃以下が望ましい。   In the present invention, a steel pipe having a chemical component of 700 ° C. or higher is used. This steel pipe can be used as it is in-line as long as it is 700 ° C. or higher immediately after being formed by a hot piercing-rolling-stretching process at the final stage of the manufacturing process. It may be used in-line as it is in the cold forming-electricity welding process or the cold forming-electricity welding-stretching process. However, once the steel pipe manufacturing process is finished, there is no problem even if a steel pipe reheated offline is used. The reason why the temperature of the steel pipe is limited to 750 ° C. or more is that the metal structure at the start of accelerated cooling is an austenite single phase. If the temperature of the steel pipe is too high, the austenite grains become coarse and cause a reduction in toughness.

次にこの鋼管を加速冷却の速度について述べる。0.5℃/秒以下ではフェライトの成長が進み、平均の硬さがHv185以下となる。一方、10℃/秒を超えるとフェライトの生成が円周方向、長手方向によって不均一で硬さのバラツキが大きくなる。したがって、加速冷却速度を0.5〜10℃/秒に限定した。   Next, the speed of accelerated cooling of this steel pipe will be described. At 0.5 ° C./second or less, the growth of ferrite proceeds, and the average hardness becomes Hv 185 or less. On the other hand, if it exceeds 10 ° C./second, the generation of ferrite is not uniform depending on the circumferential direction and the longitudinal direction, and the variation in hardness increases. Therefore, the accelerated cooling rate was limited to 0.5 to 10 ° C./second.

加速冷却の停止温度は、700℃以上ではフェライト生成が多く平均硬さがHv185より小さくなるので上限を700℃とした。550℃より小さくなると、フェライト、パーライトの生成に加え、一部ベイナイトが生成、硬さのバラツキが大きくなるため、下限を550℃とした。   The stop temperature for accelerated cooling is 700 ° C. or more, since ferrite is generated much and the average hardness is smaller than Hv185. When the temperature is lower than 550 ° C., in addition to the generation of ferrite and pearlite, some bainite is generated and the variation in hardness increases, so the lower limit was set to 550 ° C.

加速冷却の方法は、水を鋼管の表面に直接当てる方法、管の接戦方向に当てる方法、ミスト冷却など任意に選定できるが、加速冷却の際には鋼管を円周方向に回転させながら外表面のみから冷却することに規定した。これは、円周方向、長手方向に渡って均一に冷却するためであり、鋼管を回転させなければ鋼管下面が過剰に冷え、また内面側からの冷却でも下面に水が貯まり十分な冷却速度得られない問題がある。   The method of accelerated cooling can be selected arbitrarily, such as applying water directly to the surface of the steel pipe, applying water in the direction of contact with the pipe, or mist cooling, but during accelerated cooling, the outer surface is rotated while rotating the steel pipe in the circumferential direction. It was stipulated that only cooling from. This is for cooling uniformly in the circumferential direction and the longitudinal direction. If the steel pipe is not rotated, the lower surface of the steel pipe will be excessively cooled, and even when cooling from the inner surface side, water will be stored on the lower surface and a sufficient cooling rate will be obtained. There is a problem that can not be.

また、本発明では硬さのバラツキを抑制するため、熱間での穿孔−圧延−延伸工程によって造管する場合、最終圧延の終了温度と延伸工程前の再熱炉の挿入温度を限定した。その理由は、硬さのバラツキ要因であるフェライト生成の不均一は旧オーステナイト粒の一部粒成長に起因しており、旧オーステナイト粒の粒成長は圧延終了温度と再熱炉挿入炉温度に依存するためである。最終圧延温度が850℃以上であるとすべてのオーステナイトが再結晶するため一部粒成長することはない。また、挿入する温度を750℃以上であれば粒成長を助長する2相域まで冷えることはないので粒成長は抑制される。したがって、硬さバラツキの抑制の観点から最終圧延の終了温度を850℃以上、再熱炉挿入温度を750℃以上に限定した。   In addition, in the present invention, in order to suppress variation in hardness, when the pipe is formed by a hot piercing-rolling-stretching process, a final rolling end temperature and a reheating furnace insertion temperature before the stretching process are limited. The reason for this is that the nonuniformity of ferrite formation, which is a factor of hardness variation, is caused by partial grain growth of the prior austenite grains, and the grain growth of the former austenite grains depends on the rolling end temperature and the reheating furnace insertion furnace temperature. It is to do. When the final rolling temperature is 850 ° C. or higher, all austenite is recrystallized, so that some grains do not grow. Further, if the insertion temperature is 750 ° C. or higher, the grain growth is suppressed because it is not cooled to the two-phase region that promotes grain growth. Therefore, the final rolling end temperature is limited to 850 ° C. or higher and the reheating furnace insertion temperature is limited to 750 ° C. or higher from the viewpoint of suppressing hardness variation.

本発明では適用できる鋼管形状を、肉厚5mm以上22mm以下、長さが外径の5倍以上に限定した。その理由は22mm以上の肉厚では、外表面側と内表面側との冷却速度の差が大きくなるためである。また5mm以下では、内外面の削り代を差し引くと肉厚が薄すぎて、機械部品用としてあまり一般的でないからである。鋼管の長さを5倍以上に限定した理由は、長さが外径の5倍未満の短尺管は棒鋼を素材として鍛造するという従来技術によって製造可能であるが、長さが外径の5倍以上の長尺管は、棒鋼からの鍛造では座屈しやすく製造が困難であるためである。長尺鋼管素材を用いることによる鍛造材に対するコストメリットをより確実なものとするためには、鋼管長さを外径の10倍以上とするのがより好ましい。   In the present invention, applicable steel pipe shapes are limited to a wall thickness of 5 mm or more and 22 mm or less and a length of 5 times or more of the outer diameter. The reason is that when the thickness is 22 mm or more, the difference in cooling rate between the outer surface side and the inner surface side becomes large. On the other hand, if the thickness is 5 mm or less, the wall thickness is too thin when the machining allowance on the inner and outer surfaces is subtracted, which is not so common for machine parts. The reason why the length of the steel pipe is limited to 5 times or more is that a short pipe whose length is less than 5 times the outer diameter can be manufactured by the conventional technique of forging a steel bar as a raw material, but the length is 5 This is because a long pipe more than double is easily buckled by forging from a steel bar and is difficult to manufacture. In order to make the cost merit for the forged material more reliable by using the long steel pipe material, it is more preferable that the steel pipe length is 10 times or more of the outer diameter.

また、加速冷却する直前の鋼管に対して外表面から肉厚方向に100〜500μmの脱炭層を有することが必要である。円筒状ブルームを加熱して熱間で穿孔、圧延および延伸工程で、所定の脱炭層厚さを得るために、ブルームの加熱温度と時間が下記の(1)式を満たすことを条件とした。脱炭層厚さ、ブルーム加熱条件を規定した理由は、鋼管を外表面から加速冷却するため、外表面極近傍が硬化しやすいためであり、加工性劣化を抑制するためである。その効果をえるためには脱炭層深さを100μm以上必要である。脱炭層が500μmを超えるとその後高周波焼き入れによる硬化に影響を及ぼすため、上限を500μmとした。望ましい脱炭層深さは100〜200μmである。   Moreover, it is necessary to have a 100-500 micrometers decarburization layer in the thickness direction from an outer surface with respect to the steel pipe just before accelerated cooling. In order to obtain a predetermined decarburized layer thickness in the hot piercing, rolling and stretching processes by heating the cylindrical bloom, the bloom heating temperature and time were set to satisfy the following formula (1). The reason why the decarburized layer thickness and the Bloom heating condition are defined is that the steel pipe is accelerated and cooled from the outer surface, so that the vicinity of the outer surface pole is easily hardened, and the workability deterioration is suppressed. In order to obtain the effect, the decarburized layer depth needs to be 100 μm or more. If the decarburized layer exceeds 500 μm, it will affect the subsequent hardening by induction hardening, so the upper limit was set to 500 μm. A desirable decarburized layer depth is 100 to 200 μm.

(1)式は、円筒状ビレットを加熱して造管した場合に、加工度により多少の違いはあるが、形成される脱炭層厚さが100〜500μmとなるようなビレット加熱条件を、図1に示すような実験結果から回帰分析で得た式である。   The formula (1) shows the billet heating conditions such that the thickness of the decarburized layer to be formed is 100 to 500 μm, although there are some differences depending on the degree of processing when the cylindrical billet is heated to form a pipe. 1 is an equation obtained by regression analysis from the experimental results shown in FIG.

2.7335×1062-19.509>t>2.4726×1057-18.121 ・・・・・・(1)
ここで、T:温度(℃) t:時間(分)
本発明では、内面側に対して特に脱炭層の厚さを規定しなかった。その理由は、外表面側からの冷却の場合、内表面側に行くほど冷却速度が遅くなり硬化が小さくなるため、内表面側に脱炭層が不要であるからである。したがって、内表面側の脱炭層はなるべく薄く抑える方が良い。本発明での脱炭層とは、粒状フェライトの面積率が80%以上の領域と定義する。
2.7335 × 10 62 T -19.509 >t> 2.4726 × 10 57 T -18.121 (1)
Where T: temperature (° C.) t: time (minutes)
In the present invention, the thickness of the decarburized layer is not particularly defined with respect to the inner surface side. The reason is that in the case of cooling from the outer surface side, the cooling rate becomes slower and the hardening becomes smaller toward the inner surface side, so that a decarburized layer is unnecessary on the inner surface side. Therefore, it is better to keep the decarburized layer on the inner surface side as thin as possible. The decarburized layer in the present invention is defined as a region where the area ratio of granular ferrite is 80% or more.

なお、本発明での鋼管とは、主として熱間での穿孔−圧延−延伸して製造される継ぎ目無し鋼管を対象にするが、冷間または熱間で穿孔し、熱間押し出しプレスにより製造された継ぎ目無し鋼管や、ホットコイルを冷間または熱間でロールにて管状に成形した後、両端面を溶接することにより製造された溶接鋼管も含まれるものとする。   The steel pipe in the present invention is mainly a seamless steel pipe manufactured by hot-drilling-rolling-stretching, but it is manufactured by hot-extrusion press by cold-drilling or hot-drilling. In addition, a seamless steel pipe or a welded steel pipe manufactured by welding a hot coil into a tubular shape with a roll by cold or hot and then welding both end faces is also included.

なお、500℃〜600℃で10〜60分の応力除去焼鈍を施すことを本発明の1つの形態として規定した。加速冷却を適用した場合、わずかな冷却ムラにより残留応力が発生するからである。残留応力があると機械部品の加工後の精度が悪くなるため、出来る限り残留応力を除去することが望ましい。熱処理条件の限定は残留応力が150MPa以下とすることを主眼として、500℃未満では長時間を要し、600℃を超えると軟化が著しくなるからである。望ましくは530〜570℃で20〜40分とするのが最良である。   In addition, it was prescribed | regulated as one form of this invention to give the stress removal annealing for 10 to 60 minutes at 500 to 600 degreeC. This is because when accelerated cooling is applied, residual stress is generated due to slight cooling unevenness. If there is residual stress, the accuracy of machine parts after processing deteriorates, so it is desirable to remove the residual stress as much as possible. The limitation of the heat treatment condition is that the residual stress is set to 150 MPa or less, and it takes a long time if it is less than 500 ° C., and softening becomes remarkable if it exceeds 600 ° C. Desirably, it is best to set the temperature at 530 to 570 ° C. for 20 to 40 minutes.

表1に示す化学成分の鋼を溶製し、転炉−連続鋳造プロセスにより直径170mmのブルームを鋳造した。これらブルームを1240℃に加熱し、マンネスマン−プラグミル方式により穿孔−圧延した後、950℃に再加熱し縮研圧延した後、リング冷却により外表面側から水冷した。縮径圧延後の鋼管サイズは、外径:120mm、肉厚12mmとした。さらに肉厚の影響を調べるため、外径150mm、肉厚25mmの管も製造した。脱炭層の深さを変化させるため、ブルームの加熱温度および加熱時間を調整した。製造した鋼管は、円周方向および長手方向および肉厚方向の任意の位置について、金属組織を観察し、10kgfにてビッカース硬度を測定した。金属組織は走査型電子顕微鏡及び光学顕微鏡を用いた。   Steels having chemical components shown in Table 1 were melted and a 170 mm diameter bloom was cast by a converter-continuous casting process. These blooms were heated to 1240 ° C., pierced and rolled by the Mannesmann-plug mill method, then reheated to 950 ° C. and subjected to shrinkage rolling, and then water-cooled from the outer surface side by ring cooling. The steel pipe size after the reduction rolling was set to an outer diameter of 120 mm and a wall thickness of 12 mm. Furthermore, in order to investigate the influence of the wall thickness, a tube having an outer diameter of 150 mm and a wall thickness of 25 mm was also manufactured. In order to change the depth of the decarburized layer, the heating temperature and heating time of the bloom were adjusted. The manufactured steel pipe was observed for metal structure at arbitrary positions in the circumferential direction, the longitudinal direction, and the thickness direction, and the Vickers hardness was measured at 10 kgf. As the metal structure, a scanning electron microscope and an optical microscope were used.

通常の場合、管外面の平均的な脱炭層の厚さは200μmとしたが、さらに、脱炭層厚さの影響を調査するため、ブルームの加熱温度と時間を調整し、管外面の脱炭層厚さを600μmと80μmにした鋼管も作製した。   In the normal case, the average thickness of the decarburized layer on the outer surface of the pipe is 200 μm. In order to investigate the effect of the thickness of the decarburized layer, the heating temperature and time of the bloom are adjusted, and the thickness of the decarburized layer on the outer surface of the pipe is adjusted. Steel pipes having a thickness of 600 μm and 80 μm were also produced.

試作管の外表面および内表面からそれぞれ1mmだけ内側の任意の位置に対して、金属組織を観察し、10kgにてビッカース硬さを測定した。金属組織は走査型電子顕微鏡にて最大5000倍まで拡大して観察し、フェライト+パーライト、べーナイト(一部フェライトを含む場合ある)、および焼き戻しマルテンサイトに判別した。   The metal structure was observed at an arbitrary position 1 mm inside from the outer surface and the inner surface of the prototype tube, and the Vickers hardness was measured at 10 kg. The metal structure was observed by magnifying up to 5000 times with a scanning electron microscope, and was determined to be ferrite + pearlite, banite (sometimes including ferrite), and tempered martensite.

靭性の評価は、ハーフサイズの2mmUノッチ試験片を用いて+20℃にてシャルピー試験を実施し、衝撃値を測定した。   The evaluation of toughness was carried out by conducting a Charpy test at + 20 ° C. using a half-size 2 mm U notch test piece and measuring the impact value.

試作鋼管を50mm長さに輪切りし、内外面1mmづつ切削した後、外表面を950℃になるまで高周波加熱しただちに水冷して、高周波焼き入れを行った。その後表面硬さを測定した。その結果を表2に示した。   The prototype steel pipe was cut into a length of 50 mm and cut by 1 mm on the inner and outer surfaces, and then the outer surface was heated at high frequency until it reached 950 ° C. and then cooled with water to perform induction hardening. Thereafter, the surface hardness was measured. The results are shown in Table 2.

本発明例であるNo.1〜8は適正な加速冷却条件で製造された鋼管であり、適正な金属組織と機械部品として必要な硬さと靭性を有し、切断や切削が容易であり、高周波焼き入れ性に優れていた。   No. which is an example of the present invention. 1 to 8 are steel pipes manufactured under appropriate accelerated cooling conditions, having a proper metal structure and hardness and toughness required as machine parts, easy to cut and cut, and excellent in high frequency hardenability. .

No.9は、C量が高すぎ硬さの平均値が高いため、切削性に難があった例である。   No. No. 9 is an example in which the amount of C is too high and the average value of the hardness is high, so that the machinability is difficult.

No.10は、C量が低すぎて高周波焼き入れ後の表面硬さが不十分であった例である。   No. No. 10 is an example in which the amount of C was too low and the surface hardness after induction hardening was insufficient.

No.11は、Mn量が不十分であり、また冷却速度が遅すぎるため、硬さの平均値が低すぎた例である。   No. No. 11 is an example in which the average value of hardness is too low because the amount of Mn is insufficient and the cooling rate is too slow.

No.12は、Mn量が高すぎて、靭性が悪いの加え、冷却速度が低すぎかつ冷却速度が低すぎるため、硬さの平均値が不十分であった例である。   No. No. 12 is an example in which the average value of hardness was insufficient because the amount of Mn was too high and the toughness was poor, and the cooling rate was too low and the cooling rate was too low.

No.13は、Cr量が高すぎてまた冷却速度が高すぎるため、平均の硬さが高かった例である。   No. No. 13 is an example in which the average hardness was high because the amount of Cr was too high and the cooling rate was too high.

No.14は、Nb量が高すぎたため靭性が悪いのに加え、冷却停止温度が低かったため硬さのバラツキが大きかった例である。   No. No. 14 is an example in which the variation in hardness was large because the cooling stop temperature was low, in addition to the poor toughness because the Nb amount was too high.

No.15は、冷却速度が遅すぎたため、フェライト分率が高く平均硬さが低すぎた例である。   No. No. 15 is an example in which the cooling rate was too slow, so the ferrite fraction was high and the average hardness was too low.

No.16は、冷却速度が速すぎかつ停止温度が低すぎたため、平均硬さが大きく、また組織がベイナイトであったため、靭性が低すぎた例である。   No. No. 16 is an example in which the cooling rate was too fast and the stop temperature was too low, the average hardness was large, and the structure was bainite, so the toughness was too low.

No.17は、冷却停止温度が低かったため硬さバラツキが大きかった例である。   No. 17 is an example in which the variation in hardness was large because the cooling stop temperature was low.

No.18は、圧延終了温度および冷却開始温度が低すぎたため、フェライト生成に不均一が生じ、硬さバラツキが大きかった例である。   No. No. 18 is an example in which since the rolling end temperature and the cooling start temperature were too low, the generation of ferrite was uneven and the hardness variation was large.

Figure 2007119865
Figure 2007119865

Figure 2007119865
Figure 2007119865

実施例で製造したNo.4に対して、種々の熱処理条件で応力除去焼鈍を実施し、外表面の円周方向の残量応力および加工精度との関係を調査した。応力除去焼鈍後の管は50mm長さに輪切りにし、内外面を1mmずつ切削した後、内表面を機械加工により歯切りして、内歯を10kHz×10秒で高周波焼き入れすることにより歯車形状の機械構造部材を作製した。その加工精度を部材の内径を中心に対して向かい合う歯の頂点間の距離として15°毎に測定し、六点の測定値の最大値と最小値との差を「楕円度」と定義して求めた。結果を表3に示す。No.4は応力除去焼鈍する前から残量応力が150MPa以下であり、良品に分類される楕円度100μm以下を満足していた。No.4に対して、450℃で60分の応力除去焼鈍したNo.20は、熱処理温度が低すぎ応力除去の効果がほとんど無かった例である。500℃で5分の焼鈍を施したNo.22は、時間が短かったため最良品に分類される楕円度50μm以下にわずか達せなかった例である。500〜600℃の温度で10〜60分の応力除去焼鈍したNo.21およびNo.23〜26は、適正な熱処理であったため、必要硬さを満足しつつ楕円度を50μm以下にすることが出来た例である。No.27は、楕円度は著しく改善できたものの、熱処理温度が高すぎたため回復し必要硬さが低くなりすぎた例である。   No. manufactured in the examples. 4 was subjected to stress relief annealing under various heat treatment conditions, and the relationship between the residual stress in the circumferential direction of the outer surface and the processing accuracy was investigated. The pipe after stress-relief annealing is cut into a length of 50 mm, the inner and outer surfaces are cut by 1 mm each, the inner surface is cut by machining, and the inner teeth are induction hardened at 10 kHz × 10 seconds to form a gear shape. A mechanical structural member was prepared. The machining accuracy is measured every 15 ° as the distance between the tooth vertices facing the center of the inner diameter of the member, and the difference between the maximum value and the minimum value of the six measured values is defined as “ellipticity”. Asked. The results are shown in Table 3. No. No. 4 had a residual stress of 150 MPa or less before the stress-relieving annealing and satisfied an ellipticity of 100 μm or less classified as a good product. No. 4 was subjected to stress removal annealing at 450 ° C. for 60 minutes. No. 20 is an example in which the heat treatment temperature was too low and there was almost no effect of stress removal. No. 5 annealed at 500 ° C. for 5 minutes. No. 22 is an example in which the degree of ellipticity, which is classified as the best product, did not reach 50 μm or less because the time was short. No. 1 subjected to stress relief annealing at a temperature of 500 to 600 ° C. for 10 to 60 minutes. 21 and no. Since Nos. 23 to 26 were appropriate heat treatments, the ellipticity could be reduced to 50 μm or less while satisfying the required hardness. No. No. 27 is an example in which the ellipticity can be remarkably improved, but the required heat is too low because the heat treatment temperature is too high.

Figure 2007119865
Figure 2007119865

形成される脱炭層厚さが100〜500μmとなるような、実験的に得られたビレット加熱条件と、本発明範囲を画する回帰式を示す図である。It is a figure which shows the regression formula which demarcates the billet heating conditions experimentally obtained so that the thickness of the decarburized layer formed may be 100-500 micrometers, and the scope of the present invention.

Claims (12)

質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有し、肉厚5mm以上22mm以下、長さが外径の5倍以上の700℃以上の温度にある鋼管の外表面側から0.5〜10℃/秒の冷却速度で円周方向に回転させながら加速冷却し、550〜700℃の温度域で加速冷却を停止することを特徴とする機械構造部材用鋼管の製造方法。   In mass%, C: 0.3 to 0.6%, Si: 0.05 to 0.4%, Mn: 0.5 to 1.0%, P: 0.03% or less, S: 0.005 ~ 0.03%, Al: not more than 0.08%, the balance having chemical components consisting of Fe and inevitable elements, thickness 5 mm or more and 22 mm or less, length 700 ° C. which is 5 times the outer diameter or more Accelerated cooling while rotating in the circumferential direction at a cooling rate of 0.5 to 10 ° C./second from the outer surface side of the steel pipe at the above temperature, and the accelerated cooling is stopped in a temperature range of 550 to 700 ° C. A method for manufacturing a steel pipe for machine structural members. 質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有し、熱間での延伸工程で肉厚5mm以上22mm以下、長さが外径の5倍以上に造管した700℃以上の温度にある鋼管の外表面側から0.5〜10℃/秒の冷却速度で円周方向に回転させながら加速冷却し、550〜700℃の温度域で加速冷却を停止することを特徴とする機械構造部材用鋼管の製造方法。   In mass%, C: 0.3 to 0.6%, Si: 0.05 to 0.4%, Mn: 0.5 to 1.0%, P: 0.03% or less, S: 0.005 ~ 0.03%, Al: 0.08% or less, with the balance having chemical components composed of Fe and inevitable elements, with a thickness of 5 mm or more and 22 mm or less in the hot drawing step, and the length is the outer diameter Accelerated cooling while rotating in the circumferential direction at a cooling rate of 0.5 to 10 ° C./second from the outer surface side of the steel tube at a temperature of 700 ° C. or more which is made 5 times higher than the temperature of 550 to 700 ° C. A method of manufacturing a steel pipe for machine structural members, characterized in that accelerated cooling is stopped in a region. 質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有する円筒状ブルームを用いて、熱間での穿孔、圧延および延伸工程により肉厚5mm以上22mm以下、長さが外径の5倍以上に造管した700℃以上の温度にある鋼管の外表面側から0.5〜10℃/秒の冷却速度で円周方向に回転させながら加速冷却し、550〜700℃の温度域で加速冷却を停止することを特徴とする機械構造部材用鋼管の製造方法。   In mass%, C: 0.3 to 0.6%, Si: 0.05 to 0.4%, Mn: 0.5 to 1.0%, P: 0.03% or less, S: 0.005 .About.0.03%, Al: 0.08% or less, the balance is 5 mm by hot piercing, rolling and stretching processes using a cylindrical bloom having a chemical component consisting of Fe and inevitable elements. Accelerating while rotating in the circumferential direction at a cooling rate of 0.5 to 10 ° C./second from the outer surface side of a steel tube at a temperature of 700 ° C. or higher and having a length of 22 mm or less and a length of 5 or more times the outer diameter. A method for producing a steel pipe for a machine structural member, characterized by cooling and stopping accelerated cooling in a temperature range of 550 to 700 ° C. 質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有する円筒状ブルームを、下記(1)式を満足する温度、時間で均熱保持した後、熱間での穿孔、圧延および延伸工程により肉厚5mm以上22mm以下、長さが外径の5倍以上に造管した700℃以上の温度にある鋼管の外表面から肉厚方向に100〜500μmの脱炭層を形成し、0.5〜10℃/秒の冷却速度で円周方向に回転させながら外表面側から加速冷却し、550〜700℃の温度域で加速冷却を停止することを特徴とする機械構造部材用鋼管の製造方法。
2.7335×1062-19.509>t>2.4726×1057-18.121 ・・・・・・(1)
ここで、T:温度(℃) t:時間(分)
In mass%, C: 0.3 to 0.6%, Si: 0.05 to 0.4%, Mn: 0.5 to 1.0%, P: 0.03% or less, S: 0.005 ~ 0.03%, Al: 0.08% or less, with the balance being soaked at a temperature and time satisfying the following formula (1), a cylindrical bloom having a chemical component composed of Fe and inevitable elements Then, 100 mm in the thickness direction from the outer surface of the steel pipe at a temperature of 700 ° C. or higher, which was piped to a thickness of 5 mm to 22 mm and whose length was 5 times or more of the outer diameter by hot drilling, rolling and stretching processes. Form a decarburized layer of ˜500 μm, accelerate cooling from the outer surface side while rotating in the circumferential direction at a cooling rate of 0.5 to 10 ° C./second, and stop the accelerated cooling in the temperature range of 550 to 700 ° C. The manufacturing method of the steel pipe for machine structural members characterized by these.
2.7335 × 10 62 T -19.509 >t> 2.4726 × 10 57 T -18.121 (1)
Where T: temperature (° C.) t: time (minutes)
前記鋼管が、さらに、質量%で、Cr:0.05〜0.25%を含有することを特徴とする、請求項1〜4のいずれか1項に記載の機械構造部材用鋼管の製造方法。   The said steel pipe is a mass%, and contains Cr: 0.05-0.25%, The manufacturing method of the steel pipe for machine structural members of any one of Claims 1-4 characterized by the above-mentioned. . 前記鋼管が、さらに、質量%で、Nb:0.001〜0.1%を含有することを特徴とする、請求項1〜5のいずれか1項に記載の機械構造部材用鋼管の製造方法。   The method for manufacturing a steel pipe for machine structural members according to any one of claims 1 to 5, wherein the steel pipe further contains Nb: 0.001 to 0.1% by mass%. . 前記圧延の終了温度が850℃以上であり、前記延伸工程前の再加熱炉に挿入する温度が750℃以上であることを特徴とする、請求項3〜6のいずれか1項に記載の機械構造部材用鋼管の製造方法。   The machine according to any one of claims 3 to 6, wherein an end temperature of the rolling is 850 ° C or higher, and a temperature to be inserted into a reheating furnace before the stretching step is 750 ° C or higher. Manufacturing method of steel pipe for structural members. 冷却後さらに500〜600℃で10〜60分の応力除去焼鈍を施すことを特徴とする、請求項1〜7のいずれか1項に記載の機械構造部材用鋼管の製造方法。   The method for producing a steel pipe for machine structural members according to any one of claims 1 to 7, wherein stress-relieving annealing is further performed at 500 to 600 ° C after cooling for 10 to 60 minutes. 質量%で、C:0.3〜0.6%、Si:0.05〜0.4%、Mn:0.5〜1.0%、P:0.03%以下、S:0.005〜0.03%、Al:0.08%以下を含有し、残部はFeおよび不可避元素からなる化学成分を有し、肉厚5mm以上22mm以下、長さが外径の5倍以上の機械構造部材用鋼管であって、その金属組織が、フェライトとパーライトの混合組織であり、硬さの平均値がビッカース硬さで185〜260であり、硬さの最大値と最小値の差がビッカース硬さで20以下であることを特徴とする、機械構造部材用鋼管。   In mass%, C: 0.3 to 0.6%, Si: 0.05 to 0.4%, Mn: 0.5 to 1.0%, P: 0.03% or less, S: 0.005 ~ 0.03%, Al: 0.08% or less, the balance is a chemical structure composed of Fe and inevitable elements, the thickness is 5 mm or more and 22 mm or less, and the length is 5 times or more of the outer diameter. It is a steel pipe for members, and its metal structure is a mixed structure of ferrite and pearlite, the average value of hardness is 185 to 260 in terms of Vickers hardness, and the difference between the maximum value and the minimum value of hardness is Vickers hardness A steel pipe for machine structural members, wherein the steel pipe is 20 or less. さらに、質量%で、Cr:0.05〜0.25%を含有することを特徴とする、請求項9に記載の機械構造部材用鋼管。   Furthermore, the steel pipe for machine structural members of Claim 9 containing Cr: 0.05-0.25% by the mass%. さらに、質量%で、Nb:0.001〜0.1%を含有することを特徴とする、請求項9または10に記載の機械構造部材用鋼管。   The steel pipe for machine structural members according to claim 9 or 10, further comprising Nb: 0.001 to 0.1% by mass. 前記フェライトの面積率が15〜35%であることを特徴とする、請求項9〜11のいずれか1項に記載の機械構造部材用鋼管。   The steel pipe for machine structural members according to any one of claims 9 to 11, wherein an area ratio of the ferrite is 15 to 35%.
JP2005314474A 2005-10-28 2005-10-28 Steel pipe for machine structural member and manufacturing method thereof Active JP4500246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005314474A JP4500246B2 (en) 2005-10-28 2005-10-28 Steel pipe for machine structural member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005314474A JP4500246B2 (en) 2005-10-28 2005-10-28 Steel pipe for machine structural member and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2007119865A true JP2007119865A (en) 2007-05-17
JP2007119865A5 JP2007119865A5 (en) 2008-02-28
JP4500246B2 JP4500246B2 (en) 2010-07-14

Family

ID=38144010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005314474A Active JP4500246B2 (en) 2005-10-28 2005-10-28 Steel pipe for machine structural member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4500246B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119802A1 (en) * 2013-01-31 2014-08-07 Jfeスチール株式会社 Electric-resistance-welded steel pipe
JP2017048441A (en) * 2015-09-04 2017-03-09 新日鐵住金株式会社 Steel pipe for machine construction member excellent in machinability and manufacturing method therefor
JP2017048440A (en) * 2015-09-04 2017-03-09 新日鐵住金株式会社 Steel pipe for machine construction member excellent in machinability and manufacturing method therefor
WO2020129337A1 (en) * 2018-12-19 2020-06-25 Jfeスチール株式会社 Electric resistance welded steel pipe
KR20220072336A (en) * 2020-11-25 2022-06-02 현대제철 주식회사 Hot rolled steel lowering the formation of decarburize layer and method of manufacturing the same
WO2025008264A1 (en) * 2023-07-06 2025-01-09 Thyssenkrupp Steel Europe Ag Hollow shaft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145793A (en) * 1992-10-29 1994-05-27 Sumitomo Metal Ind Ltd Method for preventing decarburization of seamless steel tube
JPH1136017A (en) * 1997-07-19 1999-02-09 Sanyo Special Steel Co Ltd Manufacture of high strength non-heat treated steel for seamless steel tube
JP2001247931A (en) * 2000-03-07 2001-09-14 Nippon Steel Corp Non-tempered high-strength seamless steel pipe and method for producing the same
JP2001262276A (en) * 2000-03-22 2001-09-26 Nippon Steel Corp Seamless steel pipe excellent in wear resistance and weldability and method for producing the same
JP2003342689A (en) * 2002-05-29 2003-12-03 Sumitomo Metal Ind Ltd Medium carbon steel pipe and low alloy steel pipe and their manufacturing method
JP3503211B2 (en) * 1994-09-30 2004-03-02 住友金属工業株式会社 Manufacturing method of high strength seamless steel pipe

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145793A (en) * 1992-10-29 1994-05-27 Sumitomo Metal Ind Ltd Method for preventing decarburization of seamless steel tube
JP3503211B2 (en) * 1994-09-30 2004-03-02 住友金属工業株式会社 Manufacturing method of high strength seamless steel pipe
JPH1136017A (en) * 1997-07-19 1999-02-09 Sanyo Special Steel Co Ltd Manufacture of high strength non-heat treated steel for seamless steel tube
JP2001247931A (en) * 2000-03-07 2001-09-14 Nippon Steel Corp Non-tempered high-strength seamless steel pipe and method for producing the same
JP2001262276A (en) * 2000-03-22 2001-09-26 Nippon Steel Corp Seamless steel pipe excellent in wear resistance and weldability and method for producing the same
JP2003342689A (en) * 2002-05-29 2003-12-03 Sumitomo Metal Ind Ltd Medium carbon steel pipe and low alloy steel pipe and their manufacturing method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014119802A1 (en) * 2013-01-31 2014-08-07 Jfeスチール株式会社 Electric-resistance-welded steel pipe
CN104968821A (en) * 2013-01-31 2015-10-07 杰富意钢铁株式会社 Electric-resistance-welded steel pipe
JP5892267B2 (en) * 2013-01-31 2016-03-23 Jfeスチール株式会社 ERW steel pipe
JP2017048441A (en) * 2015-09-04 2017-03-09 新日鐵住金株式会社 Steel pipe for machine construction member excellent in machinability and manufacturing method therefor
JP2017048440A (en) * 2015-09-04 2017-03-09 新日鐵住金株式会社 Steel pipe for machine construction member excellent in machinability and manufacturing method therefor
JP6747623B1 (en) * 2018-12-19 2020-08-26 Jfeスチール株式会社 ERW steel pipe
WO2020129337A1 (en) * 2018-12-19 2020-06-25 Jfeスチール株式会社 Electric resistance welded steel pipe
KR20210091282A (en) * 2018-12-19 2021-07-21 제이에프이 스틸 가부시키가이샤 electric wire pipe
KR102526496B1 (en) 2018-12-19 2023-04-26 제이에프이 스틸 가부시키가이샤 Electric resistance welded steel pipe or tube
US12037655B2 (en) 2018-12-19 2024-07-16 Jfe Steel Corporation Electric resistance welded steel pipe or tube
KR20220072336A (en) * 2020-11-25 2022-06-02 현대제철 주식회사 Hot rolled steel lowering the formation of decarburize layer and method of manufacturing the same
KR102490926B1 (en) 2020-11-25 2023-01-26 현대제철 주식회사 Hot rolled steel lowering the formation of decarburize layer and method of manufacturing the same
WO2025008264A1 (en) * 2023-07-06 2025-01-09 Thyssenkrupp Steel Europe Ag Hollow shaft

Also Published As

Publication number Publication date
JP4500246B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
EP2135962B1 (en) Case-hardened steel pipe excellent in workability and process for production thereof
US6736910B2 (en) High carbon steel pipe excellent in cold formability and high frequency hardenability and method for producing the same
US10808304B2 (en) Steel for induction hardening
JP6747623B1 (en) ERW steel pipe
US20190300994A1 (en) Steel for Induction Hardening
US20190300993A1 (en) Steel for Induction Hardening
US20190241997A1 (en) Steel for Induction Hardening
US10801091B2 (en) Steel for induction hardening
JP6065121B2 (en) High carbon hot rolled steel sheet and manufacturing method thereof
US20140363329A1 (en) Rolled steel bar or wire rod for hot forging
JP2006307273A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same
JP4464862B2 (en) Case-hardening steel with excellent grain coarsening resistance and cold workability that can be omitted for soft annealing.
JP4500246B2 (en) Steel pipe for machine structural member and manufacturing method thereof
JP6597077B2 (en) Steel pipe for machine structural members with excellent machinability and manufacturing method thereof
JP4495106B2 (en) Steel pipe for machine structure excellent in machinability and manufacturing method thereof
JP4448047B2 (en) A steel for skin hardening that has excellent grain coarsening resistance and cold workability, and can omit softening annealing.
JP4464863B2 (en) Case hardening steel with excellent grain coarsening resistance and cold workability
JP4500193B2 (en) Manufacturing method of steel pipe for machine structural member
JP2017048441A (en) Steel pipe for machine construction member excellent in machinability and manufacturing method therefor
JP2016074951A (en) Manufacturing method of case hardened steel
JP4319948B2 (en) High carbon cold-rolled steel sheet with excellent stretch flangeability
KR102209556B1 (en) Steel sheet having excellent hole-expandability, formed member, and manufacturing method of therefor
JP3724142B2 (en) Method for producing coarse grain-resistant case-hardened steel
JP5020689B2 (en) Machine structure steel pipe with excellent machinability
JP4510677B2 (en) Steel pipe for ring gear material

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4500246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350