[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007114464A - Polarization entangled photon couple generating device - Google Patents

Polarization entangled photon couple generating device Download PDF

Info

Publication number
JP2007114464A
JP2007114464A JP2005305524A JP2005305524A JP2007114464A JP 2007114464 A JP2007114464 A JP 2007114464A JP 2005305524 A JP2005305524 A JP 2005305524A JP 2005305524 A JP2005305524 A JP 2005305524A JP 2007114464 A JP2007114464 A JP 2007114464A
Authority
JP
Japan
Prior art keywords
optical crystal
photon
phase matching
polarization
entangled photon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005305524A
Other languages
Japanese (ja)
Inventor
Koji Minazu
光司 水津
Keiichi Edamatsu
圭一 枝松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Original Assignee
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC filed Critical Tohoku University NUC
Priority to JP2005305524A priority Critical patent/JP2007114464A/en
Publication of JP2007114464A publication Critical patent/JP2007114464A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device capable of generating high-efficiency and wide-band photon couple in an optical communication wavelength band and also capable of generating wide-band two-photon polarization entangled photon couple and three-photon polarization entangled photon couple by the design of a pseudo phase matching element. <P>SOLUTION: As a generating device for the polarization entangled photon couple using pseudo phase matching optical crystal based upon periodically poled lithium niobate, obtained are a generating device for a two-photon polarization entangled photon couple characterized in a structure wherein first optical crystal of phase matching ooe of a phase matching type I and second optical crystal of phase matching eee of a phase matching type 0 are cascaded; and a generating device for a three-photon polarization entangled photon couple characterized in a structure wherein third optical crystal of eee of the phase matching type 0 and fourth optical crystal of eee of the phase matching type 0 are cascaded. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光通信帯コンポーネントが利用可能な波長帯で偏光もつれ光子対の生成を行う、変換効率の高い擬似位相整合素子を使用した、高効率な偏光もつれ光子対の発生デバイスに関するものである。   The present invention relates to a device for generating a highly efficient entangled photon pair using a quasi-phase matching element having a high conversion efficiency, which generates a entangled photon pair in a wavelength band in which an optical communication band component can be used. .

従来技術の2光子偏光もつれ光子対生成デバイスは、擬似位相整合を利用した光通信波長帯の偏光もつれ光子対生成デバイスとして、TypeII位相整合oeo, eooを利用したデバイスが報告されている。このデバイスに対し励起光を常光として入射する事で、出力光は常光および異常光となり、これは偏光もつれ光子対である。本デバイスは分極反転周期を7μmとする事で光通信波長帯での偏光もつれ光子対生成デバイスの実現が可能である。単一デバイスで偏光もつれ光子対を生成できることから、シンプルで信頼性の高いデバイスとなる事が期待される。従来の偏光もつれ光子対デバイスの構造と入射出射光を図7に示した。   As for the two-photon polarization entangled photon pair generating device of the prior art, a device using Type II phase matching oeo, eoo has been reported as a polarization entangled photon pair generating device in the optical communication wavelength band using pseudo phase matching. By making excitation light incident on this device as ordinary light, the output light becomes ordinary light and extraordinary light, which is a pair of polarization entangled photons. This device can realize a entangled photon pair generation device in the optical communication wavelength band by setting the polarization inversion period to 7 μm. Since a entangled photon pair can be generated with a single device, it is expected to be a simple and reliable device. The structure of a conventional polarization entangled photon pair device and incident outgoing light are shown in FIG.

しかし、従来のデバイスの動作線幅は約500 GHzであり、将来的に超短パルスでの励起では波長変換の効率が落ちるため、広帯域で動作するデバイスを実現する必要がある。また、分極反転周期が7μmと短周期である事が、作製上の歩留まりを低下させる一因となるため、より長周期の分極反転で動作するデバイスを実現する必要がある。   However, since the operation line width of the conventional device is about 500 GHz, and the efficiency of wavelength conversion decreases in the future by excitation with an ultrashort pulse, it is necessary to realize a device operating in a wide band. In addition, the fact that the polarization inversion period is as short as 7 μm contributes to the reduction of the manufacturing yield, and therefore it is necessary to realize a device that operates with a longer period of polarization inversion.

また、本発明の先行技術とては、BBO結晶を2つ用い、それぞれの位相整合条件を適切に調節する事で、偏光もつれ光子対を入射ポンプ光に対し+3度および−3度の方向に取り出す提案がある。(特許文献1参照)この先行技術の実践例としてポンプ波長を351.1nmとし、生成される偏光もつれ光子対の波長は702.2nmである。この発明の方法では、入射ポンプ光に対して角度を持って偏光もつれ光子対が生成されることから、波長変換の際にウォークオフが生じるため変換効率が低下する。また、生成される偏光もつれ光子対の波長が702.2nmであることから、光ファイバーを使用した長距離伝送での損失が大きい問題がある。   The prior art of the present invention uses two BBO crystals and appropriately adjusts the respective phase matching conditions so that the polarization entangled photon pair is oriented in the directions of +3 degrees and -3 degrees with respect to the incident pump light. There is a suggestion to take out. (See Patent Document 1) As a practical example of this prior art, the pump wavelength is 351.1 nm, and the wavelength of the generated polarization-entangled photon pair is 702.2 nm. In the method of the present invention, the polarization entangled photon pair is generated at an angle with respect to the incident pump light, so that a walk-off occurs at the time of wavelength conversion, resulting in a decrease in conversion efficiency. In addition, since the wavelength of the generated entangled photon pair is 702.2 nm, there is a problem that loss in long-distance transmission using an optical fiber is large.

また、別の先行技術とては、PPLNを用いた光通信波長帯での偏光もつれ光子対を生成する方法がある。(特許文献2参照)しかし、この方式は単一結晶で偏光もつれ光子対を直接出す方法ではなく、複数個の結晶を干渉計の中に配置することにより偏光もつれ光子対とする方法であるため、構成が複雑になる。   As another prior art, there is a method of generating a polarization-entangled photon pair in an optical communication wavelength band using PPLN. However, this method is not a method of directly emitting a polarization entangled photon pair with a single crystal, but a method of forming a polarization entangled photon pair by arranging a plurality of crystals in an interferometer. The configuration becomes complicated.

特開2003-228091号公報JP2003-228091 特開2005-258232号公報JP 2005-258232 A

そこで、光通信波長帯での高効率かつ広帯域な偏光もつれ光子対生成が可能となり、擬似位相整合素子のデザインにより、広帯域な2光子偏光もつれ光子対生成や、3光子偏光もつれ光子対生成が可能であるデバイスの提供が本発明の課題である。   Therefore, high-efficiency and broadband polarization-entangled photon pairs can be generated in the optical communication wavelength band, and broadband two-photon polarization-entangled photon pairs and three-photon polarization-entangled photon pairs can be generated by the design of the quasi-phase matching element. It is an object of the present invention to provide such a device.

本発明によれば、周期分極反転のニオブ酸リチウム系の疑似位相整合光学結晶を用いた偏向もつれ光子対の生成デバイスにおいて、励起光を異常光として入射する事で、TypeI位相整合:ooeからの出力が常光、Type0位相整合:eeeからの出力が異常光となり、2光子偏光もつれ光子対が生成するように、位相整合タイプとしてTypeI位相整合:ooeの第一の光学結晶と、Type0位相整合:eeeの第二の光学結晶とをカスケードに配置した構造を特徴とする2光子の偏向もつれ光子対の生成デバイスが得られる。   According to the present invention, in a polarization entangled photon pair generating device using a periodically poled lithium niobate-based quasi-phase-matching optical crystal, by making excitation light incident as extraordinary light, Type I phase matching: from ooe The output is ordinary light, Type0 phase matching: the output from eee becomes extraordinary light, and a two-photon polarization entangled photon pair is generated. As a phase matching type, TypeI phase matching: ooe first optical crystal, Type0 phase matching: A device for producing a two-photon entangled photon pair characterized by a cascade arrangement of eee second optical crystals is obtained.

また、本発明によれば、前記第一の光学結晶と第二の光学結晶は、単一のニオブ酸リチウム系の疑似位相整合光学結晶に周期分極反転として構成した構造を特徴とする2光子の偏向もつれ光子対の生成デバイスが得られる。   Further, according to the present invention, the first optical crystal and the second optical crystal are two-photon structures characterized by a structure in which a single lithium niobate-based quasi-phase-matching optical crystal is configured as periodic polarization inversion. A device for generating a entangled photon pair is obtained.

また、本発明によれば、周期分極反転のニオブ酸リチウム系の疑似位相整合光学結晶を用いた偏向もつれ光子対の生成デバイスにおいて、パラメトリック波長変換および縮退点動作パラメトリック波長変換をカスケードで動作させる事で、3光子の偏向もつれ光子対を生成するように、位相整合タイプとしてType 0:eee の第三の光学結晶と同じく位相整合タイプとしてType 0:eee の第四の光学結晶とをカスケードに配置した構造を特徴とする3光子の偏向もつれ光子対の生成デバイスが得られる。   In addition, according to the present invention, parametric wavelength conversion and degenerate point operation parametric wavelength conversion can be operated in cascade in a device for generating a entangled photon pair using a periodically poled lithium niobate-based quasi-phase-matched optical crystal. So, in order to generate a three-photon deflection entangled photon pair, the phase matching type Type 0: eee third optical crystal and the phase matching type Type 0: eee fourth optical crystal are arranged in cascade. A device for producing a three-photon entangled photon pair characterized by the above structure is obtained.

また、本発明によれば、前記第三の光学結晶と第四の光学結晶は、単一のニオブ酸リチウム系の疑似位相整合光学結晶に周期分極反転として構成した構造を特徴とする3光子の偏向もつれ光子対の生成デバイスが得られる。   Further, according to the present invention, the third optical crystal and the fourth optical crystal each have a structure of three photons characterized by being configured as a periodic polarization inversion in a single lithium niobate-based quasi phase matching optical crystal. A device for generating a entangled photon pair is obtained.

本発明によれば、偏光もつれ光子対生成デバイスに擬似位相整合素子を使用することで、光通信波長帯での高効率かつ広帯域な偏光もつれ光子対生成が可能となる。擬似位相整合素子のデザインにより、広帯域な2光子偏光もつれ光子対生成や、3光子偏光もつれ光子対生成が可能である。   According to the present invention, by using a quasi-phase matching element as a polarization entangled photon pair generation device, it is possible to generate a polarization entangled photon pair with high efficiency and wide bandwidth in the optical communication wavelength band. The design of the quasi-phase matching element enables generation of broadband two-photon polarization entangled photon pairs and generation of three-photon polarization entangled photon pairs.

1.2光子偏光もつれ光子対生成デバイスの構成例
本デバイスは常光発生部および異常光発生部の分極反転周期をそれぞれ25μmおよび19μmとする事で実現可能である。本デバイスの動作線幅は75 THzと広帯域であり、励起光源として100 fsecオーダーの短パルス光を使用する際にも、そのスペクトル領域全体に渡ってパラメトリック波長変換が可能である。同一ウェハ上に位相整合タイプとしてTypeI位相整合ooeとType0位相整合eee の2つの周期を書き込む事で単一デバイスとして作製した2光子偏光もつれ光子対生成デバイスを図1に示した。
1.2 Configuration example of a two-photon polarization entangled photon pair generation device This device can be realized by setting the polarization inversion periods of the ordinary light generation unit and the abnormal light generation unit to 25 μm and 19 μm, respectively. The operating line width of this device is as wide as 75 THz, and parametric wavelength conversion is possible over the entire spectral region even when short pulse light of the order of 100 fsec is used as the excitation light source. A two-photon polarization entangled photon pair generation device fabricated as a single device by writing two periods of TypeI phase matching ooe and Type0 phase matching eee as phase matching types on the same wafer is shown in FIG.

複屈折性も考慮した擬似位相整合パラメトリックデバイスの設計および開発を行い、コリニア位相位相整合条件下で、従来よりも効率の良い偏光もつれ光子対の生成を行う。励起光源として光通信波長帯の第二高調波に相当する775 nmに着目し、デバイス設計の検討を行う。また、実際のPPLNデバイス作製を考慮して、分極反転周期が10μm程度もしくはそれ以上の値となる位相整合タイプを採用する。尚、ニオブ酸リチウム(LN)結晶の実効的非線形係数から波長変換が可能な位相整合タイプは、Type0位相整合であるeee、ooo、TypeI位相整合であるooe、TypeII位相整合であるoeo、eooの5種である。ここでeee等の表記法は、eは当該の光が異常光(extra-ordinary)、oは当該の光が常光(ordinary)であることを表しており、アイドラ光・シグナル光・ポンプ光の順番にパラメトリック過程に寄与する光の偏光を示している。例えばeeeは全ての偏光が異常光である事を示しており、ooeはアイドラ光およびシグナル光の偏光が常光かつポンプ光の偏光が異常光である事を示している。   We will design and develop a quasi-phase-matching parametric device that also takes into account birefringence, and generate entangled photon pairs that are more efficient than conventional ones under collinear phase-matching conditions. Focusing on the 775 nm equivalent to the second harmonic of the optical communication wavelength band as the excitation light source, we will study device design. In consideration of actual PPLN device fabrication, a phase matching type in which the polarization inversion period is about 10 μm or more is adopted. The phase matching type that can convert the wavelength from the effective nonlinear coefficient of the lithium niobate (LN) crystal is Type0 phase matching eee, ooo, TypeI phase matching ooe, TypeII phase matching oeo, eoo There are 5 types. In the notation such as eee, e indicates that the light is extra-ordinary, and o indicates that the light is ordinary. In turn, the polarization of light contributing to the parametric process is shown. For example, eee indicates that all polarized light is extraordinary light, and ooe indicates that idler light and signal light are ordinary light, and pump light is extraordinary light.

擬似位相整合パラメトリック過程による波長変換は、エネルギー保存則である(1)式
ωp=ωs+ωi (1)
および、運動量保存則である(2)式、
kp=ks+ki+2π/Λ (2)
とが同時に満たされる時に実現される。ここで、ωp、ωsおよびωiはそれぞれポンプ光、シグナル光およびアイドラ光の周波数、kp、ksおよびkiはそれぞれポンプ光、シグナル光およびアイドラ光の波数、Λは擬似位相整合結晶の分極反転周期であり、波数はkp=2πnp/λp、ks=2πns/λsおよびki=2πni/λiで表され、ここでnp、nsおよびniはそれぞれポンプ光、シグナル光およびアイドラ光に対する結晶の屈折率、λp、λsおよびλiはそれそれポンプ光、シグナル光およびアイドラ光の波長である。結晶の屈折率は波長および温度に対する関数であり、セルマイヤー方程式によって表されるため、動作温度とポンプ光の波長を決めれば(1)式と(2)式により位相整合が得られる分極反転周期Λとシグナル光およびアイドラ光の波長が決定される。偏光もつれ光子対はシグナル光とアイドラ光の波長が同じであるため ωs=ωi=ωp/2となり、かかる条件下での分極反転周期Λを求めれば、偏光もつれ光子対生成デバイスとして機能する。
Wavelength conversion by the quasi-phase-matching parametric process is an energy conservation law (1) Equation ωp = ωs + ωi (1)
And the equation (2) that is the law of conservation of momentum,
kp = ks + ki + 2π / Λ (2)
This is realized when and are satisfied at the same time. Where ωp, ωs, and ωi are the frequencies of the pump light, signal light, and idler light, kp, ks, and ki are the wave numbers of the pump light, signal light, and idler light, respectively, and Λ is the polarization inversion period of the quasi-phase-matched crystal. The wave number is expressed by kp = 2πnp / λp, ks = 2πns / λs and ki = 2πni / λi, where np, ns and ni are the refractive index of the crystal for pump light, signal light and idler light, λp, λs and λi are the wavelengths of pump light, signal light and idler light, respectively. The refractive index of the crystal is a function of wavelength and temperature, and is expressed by the Selmeier equation. Therefore, if the operating temperature and the wavelength of the pump light are determined, the phase inversion period in which phase matching can be obtained by the equations (1) and (2) Λ and the wavelengths of the signal light and idler light are determined. Since the polarization entangled photon pair has the same wavelength of signal light and idler light, ωs = ωi = ωp / 2, and if the polarization inversion period Λ is obtained under such conditions, it functions as a polarization entangled photon pair generating device.

動作温度を100℃とした時の励起波長に対する分極反転の周期を計算した結果を図3に示した。常光および異常光を同時に生成するためのデバイスとして、TypeII位相整合を用いたもの、および、Type0とTypeI位相整合デバイスをカスケードに使用するものが実現できる。ここでTypeII位相整合を用いたデバイスは従来の報告にあるものであり、分極反転周期がもっとも短くなることがわかる。一方、Type0とTypeIの位相整合に着目すると、Type0のeeeは異常光のポンプ光で励起して異常光のシグナル光とアイドラ光を生成し、TypeIのooeは異常光のポンプ光で励起して常光のシグナル光とアイドラ光を生成するものであり、この2過程をカスケードで用いれば、異常光のポンプ光から異常光と常光を得る事になり、これは偏光もつれ光子対となる。各過程を実現するための分極反転周期はいずれもTypeII位相整合よりも長く作製上容易である。   FIG. 3 shows the result of calculating the polarization reversal period with respect to the excitation wavelength when the operating temperature is 100 ° C. As a device for simultaneously generating ordinary light and extraordinary light, a device using Type II phase matching and a device using Type 0 and Type I phase matching devices in cascade can be realized. Here, the device using Type II phase matching is in the conventional report, and it can be seen that the polarization inversion period is the shortest. On the other hand, focusing on phase matching between Type 0 and Type I, Type 0 eee is excited by extraordinary pump light to generate abnormal signal light and idler light, and Type I oee is excited by extraordinary pump light. It generates ordinary signal light and idler light. If these two processes are used in cascade, the extraordinary light and ordinary light are obtained from the extraordinary pump light, which becomes a entangled photon pair. The polarization inversion period for realizing each process is longer than Type II phase matching and easy to manufacture.

偏光もつれ光子対の波長を光通信波長帯の1.55μmとすると、ポンプ光の波長は775nmである。励起波長を775 nmとした時の動作温度に対する分極反転の周期を計算した結果を図4にしめした。TypeII位相整合を用いたデバイスは分極反転周期が10μm以下であるのに対し、Type0のeeeとTypeIのooeの位相整合を用いたデバイスは分極反転周期がいずれも15μm以上となる。   If the wavelength of the polarization entangled photon pair is 1.55 μm in the optical communication wavelength band, the wavelength of the pump light is 775 nm. FIG. 4 shows the result of calculating the polarization inversion period with respect to the operating temperature when the excitation wavelength is 775 nm. A device using Type II phase matching has a polarization inversion period of 10 μm or less, while a device using Type 0 eee and Type I ooe phase matching has a polarization inversion period of 15 μm or more.

すなわち、第一の光学結晶にType0のeee、第二の光学結晶にTypeIのooeを用いる、もしくは、第一の光学結晶にTypeIのooe、第二の光学結晶にType0のeeeを用いることで広帯域偏光もつれ光子対デバイスが実現できる。動作温度を100℃とすると、第一の光学結晶の分極反転周期を19μm、第二の光学結晶の分極反転周期を25μm、もしくは、第一の光学結晶の分極反転周期を25μm、第二の光学結晶の分極反転周期を19μmとすればよい。また、実現の形態として、第一の光学結晶と第二の光学結晶を同一ウェハ上にモノリシックに作製しても、別々の結晶で作製したのちに並べても同様の効果を得る事が可能である。   In other words, Type 0 eee is used for the first optical crystal, Type I ooe is used for the second optical crystal, or Type I oee is used for the first optical crystal, and Type 0 eee is used for the second optical crystal. A polarization entangled photon pair device can be realized. If the operating temperature is 100 ° C., the polarization inversion period of the first optical crystal is 19 μm, the polarization inversion period of the second optical crystal is 25 μm, or the polarization inversion period of the first optical crystal is 25 μm, and the second optical crystal The polarization inversion period of the crystal may be 19 μm. Moreover, as a form of realization, it is possible to obtain the same effect even if the first optical crystal and the second optical crystal are manufactured monolithically on the same wafer, or are formed after separate crystals are arranged. .

2.3光子もつれ光子対生成デバイスの構成例
パラメトリック波長変換および縮退点動作パラメトリック波長変換をカスケードで動作させる事で、3光子のもつれ生成を行うデバイスを実現する事が可能である。図2は、得られた3光子偏光もつれ光子対生成デバイスおよび波長変換である。偏光もつれ光子対の光子数を3光子とすることで、光子の持つ情報量が向上する。励起光源として波長517 nmのレーザー光を用いると、分極反転デバイスに変換効率が最大となるType 0:eee位相整合を用いた場合、初段および二段目の分極反転周期はそれぞれ7μmおよび19μmとなる。
2.3 Configuration example of a three-photon entangled photon pair generating device By operating the parametric wavelength conversion and degenerate point parametric wavelength conversion in cascade, it is possible to realize a device that generates entangled three-photons. FIG. 2 is the resulting three-photon polarization entangled photon pair generating device and wavelength conversion. By setting the number of photons in the entangled photon pair to 3 photons, the information content of the photons is improved. When using a laser beam with a wavelength of 517 nm as the excitation light source, the first and second stage polarization inversion periods are 7 μm and 19 μm, respectively, when Type 0: eee phase matching is used, which maximizes the conversion efficiency of the polarization inversion device. .

パラメトリック過程による3光子のもつれ光子対を生成するためには、単一デバイスでは不可能であるため、波長変換の過程を2段階に分けて設計する必要がある。第三の光学結晶でポンプ光から波長がポンプ光の3/2倍となるシグナル光と波長がポンプ光の3倍となるアイドラ光を生成し、上記シグナル光とアイドラ光を第四の光学結晶に導入し当該結晶内でシグナル光から波長がシグナル光の2倍となる2つの光を生成すれば、第三の光学結晶および第四の光学結晶においてポンプ光から波長がポンプ光の3倍となる3つの光を生成した事になり、この3つの光子はもつれ光子対となる。光通信波長帯での3光子のもつれ光子対を生成するためのデバイス設計には、2光子の場合と同様に、(1)式と(2)式を満たすように設計すればよい。また、ここでは実効的な非線形光学定数が最大となるType0のeeeのみについて検討を行う。最終的に生成される3つの光子の波長を1550nmとすると、第三の光学結晶に導入するポンプ光の波長は516.7nmとなる。パラメトリック過程に寄与する3つの光の周波数の関係は既知であり(ωs=3/2*ωp、ωi=3*ωp)、5図は、この時の動作温度と分極反転周期の関係をである。また、第四の光学結晶に導入するシグナル光とアイドラ光の波長はそれぞれ775nmと1550nmであり、図6は、この時の動作温度と分極反転周期の関係である。いずれも動作温度を100℃とすると、必要な分極反転周期はそれぞれ、6.7μmおよび18.7μmとなる。実現の形態として、第1の光学結晶と第2の光学結晶を同一ウェハ上にモノリシックに作製しても、別々の結晶で作製したのちに並べても同様の効果を得る事が可能である。   In order to generate a three-photon entangled photon pair by a parametric process, it is not possible with a single device, so it is necessary to design the wavelength conversion process in two stages. The third optical crystal generates a signal light having a wavelength 3/2 times that of the pump light and an idler light having a wavelength three times that of the pump light from the pump light, and the signal light and idler light are generated from the fourth optical crystal. In the third crystal and the fourth optical crystal, the wavelength of the pump light is three times that of the pump light. These three photons are generated, and these three photons are entangled photon pairs. The device design for generating the entangled photon pair of three photons in the optical communication wavelength band may be designed so as to satisfy the equations (1) and (2) as in the case of two photons. Also, only Type 0 eee that maximizes the effective nonlinear optical constant is considered here. If the wavelength of the three finally generated photons is 1550 nm, the wavelength of the pump light introduced into the third optical crystal is 516.7 nm. The relationship between the three light frequencies contributing to the parametric process is known (ωs = 3/2 * ωp, ωi = 3 * ωp), and FIG. 5 shows the relationship between the operating temperature and the polarization inversion period at this time. . The wavelengths of the signal light and idler light introduced into the fourth optical crystal are 775 nm and 1550 nm, respectively, and FIG. 6 shows the relationship between the operating temperature and the polarization inversion period at this time. In either case, if the operating temperature is 100 ° C., the necessary polarization inversion periods are 6.7 μm and 18.7 μm, respectively. As a form of realization, it is possible to obtain the same effect even if the first optical crystal and the second optical crystal are manufactured monolithically on the same wafer, or are formed after separate crystals.

図8と図9は、実際の2光子偏光もつれ光子対生成装置構成と3光子もつれ光子対生成装置構成である。このような構成をとることで、将来に向けた、量子コンピュータや量子暗号通信の研究開発が可能である。   8 and 9 show the actual two-photon polarization entangled photon pair generation device configuration and the three-photon entangled photon pair generation device configuration. With this configuration, research and development of quantum computers and quantum cryptography communications for the future is possible.

同一ウェハ上に位相整合タイプとしてつの周期を書き込む事で単一デバイスとして作製した2光子偏光もつれ光子対生成デバイスと入射出射光である。A two-photon polarization entangled photon pair generating device and incident outgoing light produced as a single device by writing one period as a phase matching type on the same wafer. パラメトリック波長変換および縮退点動作パラメトリック波長変換をカスケードで動作させる3光子偏光もつれ光子対生成デバイスと入射出射光および波長変換である。Parametric wavelength conversion and degenerate point operation A three-photon polarization entangled photon pair generating device, incident outgoing light and wavelength conversion that operate parametric wavelength conversion in cascade. 動作温度を100℃とした時の励起波長に対する分極反転の周期を計算した結果である。It is the result of calculating the period of polarization inversion with respect to the excitation wavelength when the operating temperature is 100 ° C. 励起波長を775 nmとした時の動作温度に対する分極反転の周期を計算した結果である。It is the result of calculating the period of polarization inversion with respect to the operating temperature when the excitation wavelength is 775 nm. 3光子偏光もつれ光子対生成デバイスの動作温度と分極反転周期の関係である。This is the relationship between the operating temperature and the polarization inversion period of the three-photon polarization entangled photon pair generating device. シグナル光とアイドラ光の波長はそれぞれ775nmと1550nmの3光子偏光もつれ光子対生成デバイスの動作温度と分極反転周期の関係である。The wavelength of the signal light and idler light is the relationship between the operating temperature and the polarization inversion period of the three-photon polarization entangled photon pair generating device of 775 nm and 1550 nm, respectively. 従来の偏光もつれ光子対デバイスの構造と入射出射光である。It is the structure of a conventional polarization entangled photon pair device and incident outgoing light. 2光子偏光もつれ光子対生成装置構成である。A two-photon polarization entangled photon pair generator configuration. 3光子もつれ光子対生成装置構成である。It is a three-photon entangled photon pair generator configuration.

Claims (4)

周期分極反転のニオブ酸リチウム系の疑似位相整合光学結晶を用いた偏向もつれ光子対の生成デバイスにおいて、励起光を異常光として入射する事で、TypeI位相整合:ooeからの出力が常光、Type0位相整合:eeeからの出力が異常光となり、2光子偏光もつれ光子対が生成するように、位相整合タイプとしてTypeI位相整合:ooeの第一の光学結晶と、Type0位相整合:eeeの第二の光学結晶とをカスケードに配置した構造を特徴とする2光子の偏向もつれ光子対の生成デバイス。   In a polarization-entangled photon pair generation device using a periodically poled lithium niobate-based quasi-phase-matched optical crystal, the incident light as extraordinary light makes TypeI phase matching: output from ooe normal, Type0 phase Matching: Type I phase matching: oee first optical crystal and Type0 phase matching: eee second optical so that the output from eee becomes extraordinary light and a two-photon polarization entangled photon pair is generated A device for producing a pair of two-photon entangled photons characterized by a structure in which crystals are arranged in cascade. 前記第一の光学結晶と第二の光学結晶は、単一のニオブ酸リチウム系の疑似位相整合光学結晶に周期分極反転として構成した構造を特徴とする2光子の偏向もつれ光子対の生成デバイス。   The first optical crystal and the second optical crystal are two-photon deflection entangled photon pair generating devices characterized by a structure in which a single lithium niobate-based quasi-phase-matching optical crystal is configured as periodic polarization inversion. 周期分極反転のニオブ酸リチウム系の疑似位相整合光学結晶を用いた偏向もつれ光子対の生成デバイスにおいて、パラメトリック波長変換および縮退点動作パラメトリック波長変換をカスケードで動作させる事で、3光子の偏向もつれ光子対を生成するように、位相整合タイプとしてType0:eeeの第三の光学結晶と同じく位相整合タイプとしてType0:eeeの第四の光学結晶とをカスケードに配置した構造を特徴とする3光子の偏向もつれ光子対の生成デバイス。   Three-photon entangled photons are generated by cascading parametric wavelength conversion and degenerate point operation parametric wavelength conversion in a polarization entangled photon pair generation device using periodically poled lithium niobate-based quasi-phase-matched optical crystal Three-photon deflection characterized by a cascade arrangement of Type0: eee third optical crystal as phase matching type and Type0: eee fourth optical crystal as cascade type to form pairs Tangle photon pair generation device. 前記第三の光学結晶と第四の光学結晶は、単一のニオブ酸リチウム系の疑似位相整合光学結晶に周期分極反転として構成した構造を特徴とする3光子の偏向もつれ光子対の生成デバイス。   The third optical crystal and the fourth optical crystal are a three-photon deflection entangled photon pair generating device characterized in that a single lithium niobate-based quasi-phase-matching optical crystal is configured as periodic polarization inversion.
JP2005305524A 2005-10-20 2005-10-20 Polarization entangled photon couple generating device Pending JP2007114464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005305524A JP2007114464A (en) 2005-10-20 2005-10-20 Polarization entangled photon couple generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005305524A JP2007114464A (en) 2005-10-20 2005-10-20 Polarization entangled photon couple generating device

Publications (1)

Publication Number Publication Date
JP2007114464A true JP2007114464A (en) 2007-05-10

Family

ID=38096717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005305524A Pending JP2007114464A (en) 2005-10-20 2005-10-20 Polarization entangled photon couple generating device

Country Status (1)

Country Link
JP (1) JP2007114464A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093391A1 (en) 2008-01-25 2009-07-30 Japan Science And Technology Agency Non-degenerate polarization-entangled photon pairs generation device and non-degenerate polarization-entangled photon pairs generation method
WO2010140661A1 (en) 2009-06-03 2010-12-09 独立行政法人科学技術振興機構 Device and method for generating polarization-entangled photon pair
CN104965374A (en) * 2015-07-28 2015-10-07 中国科学技术大学 High-dimensional path entangled source preparing and judging method
CN105182654A (en) * 2010-11-10 2015-12-23 昆士技术有限公司 Waveguide sandwich source of polarization entangled photons
CN107450250A (en) * 2017-08-10 2017-12-08 天津领芯科技发展有限公司 A kind of polarization-entangled photon pair source selected after nothing
CN109164663A (en) * 2018-08-21 2019-01-08 中国科学技术大学 Source and preparation method thereof and the unrelated quantum random number generator of equipment are tangled in a kind of miniaturization
CN109976066A (en) * 2019-04-04 2019-07-05 山东大学 A kind of polarization-entangled source system of nondegenerate using periodically poled lithium niobate thin-film waveguide and its working method
CN112952533A (en) * 2021-01-20 2021-06-11 山东大学 Preparation device and working method of hybrid multiplexing single photon source
CN113253538A (en) * 2021-01-08 2021-08-13 南京大学 Wide-frequency tuning path entanglement and frequency entanglement chip based on Mach-Zehnder interferometer
WO2021215479A1 (en) * 2020-04-22 2021-10-28 国立大学法人京都大学 Light source device and optical tomography system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257939A (en) * 2004-03-10 2005-09-22 Nippon Telegr & Teleph Corp <Ntt> Device for generating entangled photon pair
JP2005258232A (en) * 2004-03-15 2005-09-22 Univ Nihon Polarization entangled photon couple generating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257939A (en) * 2004-03-10 2005-09-22 Nippon Telegr & Teleph Corp <Ntt> Device for generating entangled photon pair
JP2005258232A (en) * 2004-03-15 2005-09-22 Univ Nihon Polarization entangled photon couple generating device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009093391A1 (en) 2008-01-25 2009-07-30 Japan Science And Technology Agency Non-degenerate polarization-entangled photon pairs generation device and non-degenerate polarization-entangled photon pairs generation method
EP2233971A1 (en) * 2008-01-25 2010-09-29 Japan Science and Technology Agency Non-degenerate polarization-entangled photon pairs generation device and non-degenerate polarization-entangled photon pairs generation method
US8173982B2 (en) 2008-01-25 2012-05-08 Japan Science And Technology Agency Non-degenerate polarization-entangled photon pair generation device and non-degenerate polarization-entangled photon pair generation method
JP5240864B2 (en) * 2008-01-25 2013-07-17 独立行政法人科学技術振興機構 Non-degenerate polarization entangled photon pair generator and non-degenerate polarization entangled photon pair generation method
EP2233971A4 (en) * 2008-01-25 2014-12-17 Japan Science & Tech Agency Non-degenerate polarization-entangled photon pairs generation device and non-degenerate polarization-entangled photon pairs generation method
WO2010140661A1 (en) 2009-06-03 2010-12-09 独立行政法人科学技術振興機構 Device and method for generating polarization-entangled photon pair
US8488231B2 (en) 2009-06-03 2013-07-16 Japan Science And Technology Agency Generator of polarization entangled photon pairs and method of generating the same
CN105182654A (en) * 2010-11-10 2015-12-23 昆士技术有限公司 Waveguide sandwich source of polarization entangled photons
CN104965374A (en) * 2015-07-28 2015-10-07 中国科学技术大学 High-dimensional path entangled source preparing and judging method
CN104965374B (en) * 2015-07-28 2020-10-27 中国科学技术大学 Preparation and judgment method of high-dimensional path entanglement source
CN107450250A (en) * 2017-08-10 2017-12-08 天津领芯科技发展有限公司 A kind of polarization-entangled photon pair source selected after nothing
CN109164663A (en) * 2018-08-21 2019-01-08 中国科学技术大学 Source and preparation method thereof and the unrelated quantum random number generator of equipment are tangled in a kind of miniaturization
CN109164663B (en) * 2018-08-21 2020-08-25 中国科学技术大学 Miniaturized entanglement source, preparation method thereof and device-independent quantum random number generator
CN109976066A (en) * 2019-04-04 2019-07-05 山东大学 A kind of polarization-entangled source system of nondegenerate using periodically poled lithium niobate thin-film waveguide and its working method
CN109976066B (en) * 2019-04-04 2020-06-09 山东大学 Nondegenerate polarization entanglement source system utilizing periodically polarized lithium niobate thin film waveguide and working method thereof
WO2021215479A1 (en) * 2020-04-22 2021-10-28 国立大学法人京都大学 Light source device and optical tomography system
CN113253538A (en) * 2021-01-08 2021-08-13 南京大学 Wide-frequency tuning path entanglement and frequency entanglement chip based on Mach-Zehnder interferometer
CN112952533A (en) * 2021-01-20 2021-06-11 山东大学 Preparation device and working method of hybrid multiplexing single photon source
CN112952533B (en) * 2021-01-20 2022-04-12 山东大学 Preparation device and working method of hybrid multiplexing single photon source

Similar Documents

Publication Publication Date Title
Niu et al. Research progress on periodically poled lithium niobate for nonlinear frequency conversion
CN103606813B (en) A kind of generation device of cascade triple frequency harmonic
JP2007114464A (en) Polarization entangled photon couple generating device
Sjaardema et al. Third-and fourth-harmonic generation in cascaded periodically-poled lithium niobate ultracompact waveguides on silicon
JP7415195B2 (en) wavelength conversion element
JP5848211B2 (en) Self-referencing interference apparatus and method
Mutter et al. Phase-locked degenerate backward wave optical parametric oscillator
JP2011257559A (en) Wavelength converting element
Liu et al. A scheme to realize three-fundamental-colors laser based on quasi-phase matching
JP4251040B2 (en) How to use wavelength converter
JP2015165260A (en) wavelength conversion laser device
Shi et al. Review of advanced progress of χ 2-based all-optical devices on thin-film lithium niobate
US7106496B2 (en) Element for wavelength conversion and/or optical computing
CN102044839A (en) Bi-wavelength transition stimulated Raman sum frequency laser wavelength conversion equipment
KR100929872B1 (en) Simultaneous Generation of Three Primary Colors by Quasi-Phase Matched Ultra-Wide Broadband Mediation in Periodically Polarized Crystals
JP2002250948A (en) Polarization reversal structure element
JP2007187920A (en) Nonlinear optical medium and wavelength converter using the same
JP2012118333A (en) Wavelength conversion element
Chang et al. Monolithically integrated multi-wavelength filter and second harmonic generator in aperiodically poled lithium niobate
WO2006064939A1 (en) Wavelength conversion element suppressing light having unintended wavelength
Kim et al. Dispersion engineered hetero-slot waveguides for broadband on-chip second-harmonic phase-matching
Solntsev et al. Observation of spontaneous parametric down conversion in LiNbO 3 waveguide arrays
Banfi et al. Second-order cascaded frequency shifting and signal amplification in organic and inorganic crystals
Qu et al. Proposal for a Tunable and Switchable Multiwavelength Laser With Variable Spacing Based on Broadband Cascaded Quadratic Nonlinearity
EP3316034A1 (en) Apparatus for generating frequency converted radiation, multi-frequency radiation source, fiber laser, method of generating frequency converted radiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306