JP2007184557A - 半導体発光素子および該素子を備えた光源装置および光断層画像化装置 - Google Patents
半導体発光素子および該素子を備えた光源装置および光断層画像化装置 Download PDFInfo
- Publication number
- JP2007184557A JP2007184557A JP2006319817A JP2006319817A JP2007184557A JP 2007184557 A JP2007184557 A JP 2007184557A JP 2006319817 A JP2006319817 A JP 2006319817A JP 2006319817 A JP2006319817 A JP 2006319817A JP 2007184557 A JP2007184557 A JP 2007184557A
- Authority
- JP
- Japan
- Prior art keywords
- light
- light emitting
- wavelength
- semiconductor light
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
【課題】半導体発光素子において、広帯域なスペクトル分布を有するとともに、スペクトル分布を任意に制御可能とする。
【解決手段】活性層15が光の導波方向に沿って利得波長の異なる構造を備え、上面または下面の少なくともいずれか一方の電極層19を、活性層15が生ずる光のスペクトル分布を可変とするように、導波方向に互いに分離された2以上の電極19a、19bおよび19cから構成する。
【選択図】図1F
【解決手段】活性層15が光の導波方向に沿って利得波長の異なる構造を備え、上面または下面の少なくともいずれか一方の電極層19を、活性層15が生ずる光のスペクトル分布を可変とするように、導波方向に互いに分離された2以上の電極19a、19bおよび19cから構成する。
【選択図】図1F
Description
本発明は半導体発光素子に関し、特に、スペクトル分布を制御可能とした半導体発光素子に関するものである。
また、本発明は半導体発光素子を備えた光源装置に関するものである。
さらに、本発明は半導体発光素子を備えた光源装置を用いた光断層画像化装置に関するものである。
近年の光通信、計測、及び医療分野における光を用いた診断等に置いて安価な多波長光源に対する要求が強くなっている。具体的には光通信における波長検査用、ファイバジャイロ、OTDR計測用、眼科検診で実用化されているOCT(Optical Coherence Tomography)用光源が該当する。このような多波長光源としては、低コスト化の可能性が高いスーパールミネッセントダイオード(以下、「SLD」という。)に期待が集まっている。
SLDは通常の発光ダイオード同様にインコヒーレント性を示し、かつ広帯域なスペクトル分布を示しながら、光出力特性では半導体レーザ同様に1mW以上の光出力を得ることが可能な素子である。SLDは半導体レーザ同様に注入キャリアの再結合により生じた自然放出光が、光出射端面方向に進む間に誘導放出による高い利得を受けて増幅され、光出射端面から放出される機構を備えている。
SLDなどの半導体発素子において、より広帯域な(広い波長範囲に亘る)スペクトル分布を得る方法として、活性層を導波路の延びる方向に異なる利得波長の光を生じる構造を備えたものとすることが知られている。例えば、特許文献1には、選択成長を利用して量子井戸活性層の厚みを光の導波方向に変調するという手法が提案されている。特許文献1には、積層面上に2つのストライプ状のSiO2マスクを互いに一定間隔を開けて平行に形成し、且つマスク幅を変えることでマスクに挟まれた領域に成長した活性層を共振器軸方向に膜厚・組成を変える手法が記載されている。また、特許文献1では有機金属気相成長法を用いた場合に、原子層エピタキシーモードと通常モードでの成長法の使い分けを行うことで、所望の層のみを膜厚変調することが提案されている。
特開平6−196809号公報
上記手法を用いて作製した、導波方向に異なる利得波長の光を生じる構造を備えたSLDは通常の単一の利得波長の光のみを生じる構造のSLDと比較して広い帯域のスペクトル分布を得ることができる。一方、スペクトル分布がガウス分布からはずれ非対称な凹凸を有する形状となってしまう(図3中の曲線B参照)という問題点がある。
OCTの様な光の干渉を利用した計測に用いられる光はそのスペクトル分布がガウス分布に近いことが重要であるため、そのような計測装置において、特許文献1記載の手法で作製したSLDを光源として用いる場合には、その発光スペクトル分布をガウス分布に整形するための光フィルタなどを備える必要がある。
また、半導体発光素子を備えた波長可変レーザにおいても、半導体発光素子の広帯域化が求められており、上記特許文献1に記載の作製方法で得られる広帯域な利得波長構造を備えた半導体発光素子を用いることが考えられる。波長可変レーザ光源装置においては、広帯域で動作可能であると共に、広帯域に亘って出力が均一であることも重要となってくる。そのため、従来は可変領域に亘って光出力を均一にするための光フィルタなどを備える必要がある。
上述の半導体発光素子を備えた光源装置においては、いずれの場合もそのため半導体発光素子毎にそのスペクト分布を所望のスペクトル分布に整形するために、該半導体発光素子に応じた光フィルタを備える必要があり、光フィルタの設計、作製の手間およびそのためのコストなどを抑制できないという問題があった。
本発明は、上記事情に鑑みてなされたものであって、スペクトル分布を制御可能な半導体発光素子を提供することを目的とするものである。
また、本発明は、所望のスペクトル分布を得ることができる、簡単な構成の光源装置を提供することを目的とするものである。
さらに、本発明は良好な光断層画像を取得することのできる光断層画像化を提供することを目的とするものである。
本発明の半導体発光素子は、活性層を含む積層体の上面および下面に電極層を備えてなる半導体発光素子であって、
前記上面または下面の少なくともいずれか一方の電極層が光の導波方向に互いに分離された2以上の電極に分割されており、
前記活性層が前記導波方向に沿って、利得波長の異なる構造を備えて、該活性層の前記分割された2以上の電極の各電極に対応する各領域から、互いに異なるスペクトルの光を生じるものであり、
前記各電極からの注入電流を個別に変化させることにより出力光のスペクトル分布を変化させることができるものであることを特徴とする。
前記上面または下面の少なくともいずれか一方の電極層が光の導波方向に互いに分離された2以上の電極に分割されており、
前記活性層が前記導波方向に沿って、利得波長の異なる構造を備えて、該活性層の前記分割された2以上の電極の各電極に対応する各領域から、互いに異なるスペクトルの光を生じるものであり、
前記各電極からの注入電流を個別に変化させることにより出力光のスペクトル分布を変化させることができるものであることを特徴とする。
「光の導波方向に沿って利得波長の異なる構造」とは、具体的には、光の導波方向に沿って活性層の厚みが変化している、および/または活性層の組成が変化している構造が挙げられる。なお、この利得波長の異なる構造は、導波方向に沿って光出射端面側に近くなるにつれて短波長の利得波長となるように構成されていることが望ましい。
「各領域から互いに異なるスペクトルの光を生じる」ためには、互いに分離された2つ以上の電極が、前記活性層の、少なくとも一部が互いに利得波長の異なる光を発する領域に対応するように設けられていればよい。
本発明の半導体発光素子は、スーパールミネッセントダイオードあるいは光増幅器として好適に用いることができる。
本発明の光源装置は、本発明の半導体発光素子と、該半導体発光素子の分割された電極毎に注入電流量を個別に調整可能な駆動手段とを備えたことを特徴とするものである。
前記駆動手段は、前記半導体発光素子を駆動するための電源と、該電源に並列に接続され、かつ前記分割された電極にそれぞれ接続された、前記電極と同数の可変抵抗とを備えたものとすることができる。また、電極毎に可変抵抗と電源をそれぞれ設けてもよい。
さらに、本発明の光源装置は、半導体発光素子から出力された光の波長の一部を選択的に該半導体発光素子に戻す波長選択手段を備え、波長可変レーザとして用いてもよい。また、前記波長選択手段は、半導体発光素子から出力された光の波長の一部を、該波長を所定の周期で連続的に変化させながら選択的に前記半導体発光素子に戻す波長掃引手段であってもよい。
本発明の光断層画像化装置は、本発明の光源装置と、該光源装置から射出されたレーザ光を測定光と参照光とに分割する光分割手段と、前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、該合波手段により合波された前記反射光と前記参照光との干渉光の周波数および強度に基づいて、前記測定対象の各深さ位置における前記反射光の強度を検出する干渉光検出手段と、該干渉光検出手段により検出された前記各深さ位置における前記反射光の強度を用いて前記測定対象の断層画像を取得する画像取得手段とを有することを特徴とするものである。
本発明の半導体発光素子は、活性層が光の導波方向に沿って利得波長の異なる構造を備え、上面または下面の少なくともいずれか一方の電極層が、導波方向に互いに分離された2以上の電極に分割されているので、それぞれの電極に独立に注入電流を制御することが可能であり、利得波長が変調された構造を有することから広帯域のスペクトル特性が得られると共に、電極毎に注入電流量やその割合を変化させることができるので、スペクトル分布を任意の形状に制御することができる。
本発明の光源装置は、上記半導体発光素子を備えているので、特別の光フィルタを備えることなく、スペクトル分布を任意の形状に制御することができるので、高歩留・低コストで且つ品質面でも理想的な光源の提供が可能となる。
また、本発明の光源装置は、広帯域のスペクトル特性かつ任意のスペクトル分布に制御可能な半導体発光素子を備えて、広い波長域に亘ってほぼ一定の光強度となるスペクトル分布を得ることができるので、波長可変レーザとして用いる場合に、各波長でほぼ一定の強度の出力光を得ることができる。
さらに、本発明の光断層画像化装置は、各波長でほぼ一定の強度の出力光を得ることができる波長可変レーザとして動作する光源装置から射出されたレーザ光を用いて、光断層画像を取得するため、良好な光断層画像を取得することができる。
以下、本発明の実施の形態について説明する。図1A〜図1Fは本発明の一実施の形態の半導体発光素子1の層構成および作製方法を示すための斜視図である。
図1Fは本実施形態の半導体発光素子1概略構成を示す。本半導体発光素子1は、活性層に光の導波方向に利得波長が連続的に変化する構造をし、積層体10の上面に設けられている電極層19が光の導波方向に、互いに絶縁された3つの電極19a、19bおよび19cに分離されたものである。互いに分離された各電極19a、19bおよび19cは、個別に注入電流の調整が可能である。
本半導体発光素子1の具体的な構成および作製方法について図1A〜図1Eを用いて説明する。n型GaAs基板11上に第1回目の結晶成長にてn-InGaPクラッド層12を成長後、続けてSiO223を製膜し、図1Aに示すように、選択的にSiO223をテーパ形状にパターニングする。そして第2回目の結晶成長工程に投入し、テーパ形状のSiO223をマスクとして、GaAs光導波層13、InGaAs歪量子井戸活性層14、GaAs光導波層15、及びp-InGaPクラッド層16を選択成長させた後、SiO223を除去する(図1B)。SiO223を除去した後に全面にn-InGaPブロック層17を第3回目の成長にて製膜する(図1C)。その後ストライプ状の活性層領域の上部領域にある部分のn-InGaPブロック層17にイオン注入法によりp型ドーパントを打ち込み、ブロック層17のストライプ状の部分17aをp型化する(図1D)。続けて全面に第4回目の成長によりp-GaAsコンタクト層18を成長させて積層体10とし(図1E)、積層体10の上面であるコンタクト層18上にp型電極層19を、積層体10の下面である基板11裏面にn型電極層20をそれぞれ形成する。図1Fに示すように、p型電極層19は活性層ストライプ軸方向に互いに分離した3つの電極19a、19b、19cからなる。p型電極層19の形成前に分離部にマスクを設けておくことにより3つの電極として形成してもよいし、全面に単一の電極層を設けた後に分離部に対応する電極層の一部を除去するようにしてもよい。
上記作製方法においては、テーパ形状のマスク23を用い選択成長させることにより、テーパの広がっている部分が狭い部分と比較してマスク23に隣接する領域の成長が早くなる性質を利用している。この性質を利用することにより、マスク23で挟まれたストライプ状の領域において導波方向に前方端面21から後方端面22に向けて徐々に厚みが変化した活性層を形成することができる。活性層の厚みが異なるとその利得波長が異なり、厚みの薄い方が短波長側の光を発することが知られている。出射端面である前方端面21側から後方端面22側に徐々に厚みを厚くすることにより、前方端面21側が短波長側の利得波長となるように構成することができる。このような構成とするのは、短波長の光は自身の波長より長波長側の利得部で吸収されてしまうので、後方からの光が前方端面21に至るまでの導波路内で吸収されてしまうのを防ぐためである。
図2は上記半導体発光素子をスーパールミネッセントダイオードとして用いた光源装置の概略構成を示した模式図である。
光源装置2は、SLDとしての半導体発光素子1のほか、素子駆動用の電源5と、該電源5に対して並列に接続され、それぞれ電極19a、19bおよび19cに接続された可変抵抗4a、4bおよび4cを備えている。すなわち、半導体発光素子1の分離電極19aは可変抵抗4aを経て、分離電極19bは可変抵抗4bを経て、分離電極19cは可変抵抗4cを経てそれぞれ電源5に接続されており、それぞれの可変抵抗値を変化させることにより、それぞれの分離電極19a、19bおよび19cから注入する注入電流を個別に調節できる構成となっている。本光源装置2からの出力光L1のスペクトル分布をモニタに表示させて観察しつつ、各電極19a、19bおよび19cへの注入電流を調整することにより、任意のスペクトル分布に整形することができる。
図3は、本実施形態のSLD(曲線A)および従来の単一電極構造のSLD(曲線B)の駆動時のスペクトル特性を模式的に示したものである。従来のSLD30は本実施形態のSLD1と同一の半導体層(積層体10)を備えるが、図6に示すように上面の電極層が分離されていない単一電極31を備えた構造となっている。なお、図3の曲線Aで示される本実施形態のSLDの出力光L1のスペクトル分布は、3つの可変抵抗4a、4bおよび4cの値を同一にして全ての電極に同一の電流を注入させて発光させた状態から、スペクトル分布をモニタしつつその形状がガウシアン分布になるように、それぞれの可変抵抗の可変抵抗値を徐々に変化させて調整することにより得ることができる。
図3に示すように、曲線Bで示す従来のSLDの出力光L3のスペクトル分布は短波側のピークが高く非対称形状をしているのに対し、曲線Aで示す本実施形態のSLDの出力光L1のスペクトル分布は各電極に流す電流を調節しガウシアン分布となっている。すなわち本半導体発光素子を用いれば、OCT用の光源として理想的なガウシアンのスペクトル特性を容易に得ることが可能である。
なお、スペクトル分布はガウシアンに限らず、所望の様々な形状に調整可能である。また、導波方向に分離された電極の数を多くすればするほど種々多様な形状を得ることができる。
また、上記実施の形態においては、半導体発光素子の3つの分割領域は上面に設けられた電極層を3等分にした大きさとしたが、各領域の大きさは必ずしも等分である必要はない。さらに、上記実施形態の光源装置においては、1つの駆動電源を用い各電極に電流注入を行う形態としたが、各電極毎に個別に異なる駆動電源を備えた構成とすることもできる。
図4Aは、上記半導体発光素子を光増幅器として用いた波長可変レーザとして構成された光源装置の概略を示す模式図である。
図4Aの波長可変レーザ3は、半導体発光素子1と、素子駆動用の電源5と、該電源5に対して並列に接続され、それぞれ電極19a、19bおよび19cに接続された可変抵抗4a、4bおよび4cと、素子1から射出された光をコリメートするためのレンズ6と、コリメートされた光の波長の一部を選択的に半導体素子1に戻す波長選択手段である回折格子7および回折格子7を回転する図示しない可動部とから構成されている。
一般的に、波長可変レーザでは広い可変動作が求められており、本実施形態の半導体素子は活性層が異なる利得波長の光を生じる構造を有しているために、利得波長が一定である通常の半導体素子が約50nm程度の動作範囲しか得られないのに対し、約100〜200nmの動作を得ることができる。
また、半導体発光素子1は、光の導波方向に複数の電極19a、19bおよび19cを備え、電極毎に電流値を設定することができるため、すなわち波長毎に利得を変化させることが可能であるため、異なる利得波長の光が一定出力となるようにスペクトル分布をトップハット形状に整形することができる。これにより、広い動作範囲に亘って各波長の光出力が一定の可変レーザ光L2を得ることができる。
また、図4Bは、上記半導体発光素子を光増幅器として用いた波長掃引型の波長可変レーザとして構成された光源装置の概略を示す模式図である。図4Bに示す波長可変レーザ9は、図4Aに示す波長可変レーザ3に用いられている回折格子7の代わり、ポリゴンミラー8Aおよび回折格子8Bを有している。
半導体発光素子1から射出した光は、レンズ6により平行光に変換され、ポリゴンミラー8Aにおいて反射され、回折格子8Bに入射する。回折格子8Bにより分散された光のうち、入射方向へ分散された光(以下戻り光と記載)は、ポリゴンミラー8Aにおいて反射され、半導体発光素子1 へ帰還する。半導体発光素子1の射出端面および回折格子により、共振器が構成され、半導体発光素子1の射出端面から、レーザ光Laが射出される。なお、この際、レーザ光Laの波長は、戻り光の波長である。
ここで、ポリゴンミラー8Aは矢印R1方向に回転するものであって、各反射面において、反射角度が連続的に変化するようになっている。これにより、回折格子8Bに入射する光の角度が連続的に変化し、発振波長も連続的に変化することとなる。
また、ポリゴンミラー8Aが矢印R1方向に等速で回転したとき、戻り光の波長は、時間の経過に伴って一定の周期で変化することになる。このため、波長可変レーザ9からは、一定の周期で波長掃引されたレーザ光Laが射出される。
また、波長可変レーザ3と同様に、半導体発光素子1は、光の導波方向に複数の電極19a、19bおよび19cを備え、電極毎に電流値を設定することができるため、すなわち波長毎に利得を変化させることが可能であるため、異なる利得波長の光が一定出力となるようにスペクトル分布をトップハット形状に整形することができる。これにより、広い動作範囲に亘って各波長の光出力が一定の掃引レーザ光Laを得ることができる。
図5は、本実施形態の半導体発光素子1(曲線A)、本実施形態の半導体発光素子と同一の積層体10を備えるが、図6に示すように上面の電極層が分離されていない単一電極構造の素子30(曲線B)、活性層全域に亘って利得波長が一定である通常の活性層を有する素子(曲線C)をそれぞれ備えた波長可変レーザについて、波長可変特性である波長と光出力の関係を模式的に示した図である。
活性層が異なる利得波長の光を発する構造を備えた素子を備えた波長可変レーザの波長−光出力特性は曲線Aおよび曲線Bで示すとおり、利得波長が一定の素子を備えた場合の特性(曲線C)と比較して出力帯域が1.5倍から2倍程度広い。また、本半導体発光素子1を備えた波長可変レーザの特性は曲線Aで示すとおり、単一電極構造の素子30を備えた場合の特性と(曲線B)と比較して、広い帯域に亘って一定の光出力が得られる。
このように、本実施形態の素子を備えることにより、広い範囲に亘って出力が一定の理想的な波長可変レーザが構成可能となる。
なお、本発明の半導体発光素子は、通信、計測、医療、印刷、画像処理の分野での光源として応用可能である。上記実施形態では、SLDとしてあるいは光増幅器として光源装置に用いられた例を挙げたが、本発明は上記実施形態に限定されるものではなく、光通信で用いられる光増幅器としても応用可能である。また波長帯に関しても、上記実施形態ではGaAs基板を用いた1μm帯の波長の光を出力する半導体発光素子の例を示したが、GaN基板を用いた0.3〜0.5μm帯の波長の光を出力するもの、あるいは、InP基板を用いた1.3〜1.6μm帯の光を出力するものなどであってもよい。
次に、図4Bに示す波長可変レーザ9を光源として用いた光断層画像化装置200について図7を参照して説明する。光断層画像化装置200は、光源から波長掃引されているコヒーレンス光を射出し、このコヒーレンス光を測定光と参照光とに分割した後、測定光が測定対象に照射されたときの反射光と参照光とを合波し、反射光と参照光との干渉光の強度に基づいて光断層画像を取得する光断層画像化装置である。図7は光断層画像化装置の概略構成図である。
図7に示す光断層画像化装置200は、発振波長を一定の周期で掃引させながらレーザ光Laを射出する波長可変レーザ9と、波長可変レーザ9から射出されたレーザ光Laを測定光L1と参照光L2とに分割する光分割手段53と、光分割手段53により分割された参照光L2の光路長を調整する光路長調整手段220と、光分割手段53により分割された測定光L1を測定対象Sbに照射する光プローブ230と、こうして測定対象Sbに測定光L1が照射されたとき該測定対象Sbで反射した反射光L3と参照光L2とを合波する合波手段54と、合波された反射光L3と参照光L2との間の干渉光L4を検出する干渉光検出手段240と、該干渉光検出手段240の検出結果に基づいて、測定対象の光断層画像を生成する画像取得部241と、この光断層画像を表示する表示装置242とを有している。
波長可変レーザ9は、発振波長λcが950nm〜1150nmの範囲になるように、発振波長を一定の周期で掃引させながらレーザ光Laを射出する。
光分割手段53は、例えば2×2の光ファイバカプラから構成されており、波長可変レーザ9から光ファイバFB1を介して導波した光Laを測定光L1と参照光L2とに分割する。この光分割手段53は、2本の光ファイバFB2、FB3にそれぞれ光学的に接続されており、測定光L1は光ファイバFB2を導波し、参照光L2は光ファイバFB3を導波する。なお、本例におけるこの光分割手段53は、合波手段54としても機能するものである。
光ファイバFB2には、光プローブ230が光学的に接続されており、測定光L1は光ファイバFB2から光プローブ230へ導波する。光プローブ230は、例えば鉗子口から鉗子チャンネルを介して体腔内に挿入されるものであって、光学コネクタ61により光ファイバFB2に対して着脱可能に取り付けられている。
光プローブ230は、先端が閉じられた円筒状のプローブ外筒65と、このプローブ外筒65の内部空間に、該外筒65の軸方向に延びる状態に配設された1本の光ファイバ63と、光ファイバ63の先端から出射した光Lをプローブ外筒65の周方向に偏向させるプリズムミラー67と、光ファイバ63の先端から出射した光L1を、プローブ外筒65の周外方に配された被走査体としての測定対象Sbにおいて収束するように集光するロッドレンズ68と、光ファイバ63を該光ファイバ63の光軸を回転軸として回転させるモータ64とを備えている。なお、ロッドレンズ68およびプリズムミラー67は、光ファイバ63とともに回転するように配設されている。
一方、光ファイバFB3の参照光L2の射出側には光路長調整手段220が配置されている。光路長調整手段220は、断層画像の取得を開始する位置を調整するために、参照光L2の光路長を変更するものであって、光ファイバFB3から射出された参照光L2を反射させる反射ミラー72と、反射ミラー72と光ファイバFB3との間に配置された第1光学レンズ71aと、第1光学レンズ71aと反射ミラー72との間に配置された第2光学レンズ71bとを有している。
第1光学レンズ71aは、光ファイバFB3のコアから射出された参照光L2を平行光にするとともに、反射ミラー72により反射された参照光L2を光ファイバFB3のコアに集光する機能を有している。また、第2光学レンズ71bは、第1光学レンズ71aにより平行光にされた参照光L2を反射ミラー72上に集光するとともに、反射ミラー72により反射された参照光L2を平行光にする機能を有している。つまり、第1光学レンズ71aと第2光学レンズ71bとにより共焦点光学系が形成されている。
したがって、光ファイバFB3から射出した参照光L2は、第1光学レンズ71aにより平行光になり、第2光学レンズ71bにより反射ミラー72上に集光される。その後、反射ミラー72により反射された参照光L2は、第2光学レンズ71bにより平行光になり、第1光学レンズ71aにより光ファイバFB3のコアに集光される。
さらに光路長調整手段220は、第2光学レンズ71bと反射ミラー72とを固定した基台73と、該基台73を第1光学レンズ71aの光軸方向に移動させるミラー移動手段74とを有している。そして基台73が矢印A方向に移動することにより、参照光L2の光路長が変えられるようになっている。
また合波手段54は、前述の通り2×2の光ファイバカプラからなり、光路長調整手段220により光路長が変更された参照光L2と、測定対象Sbからの反射光L3とを合波し、光ファイバFB4を介して干渉光検出手段240側に射出するように構成されている。
干渉光検出手段240は、合波手段54により合波された反射光L3と参照光L2との干渉光L4を検出する。なお本例の装置においては、干渉光L4を光ファイバカプラ3で二分した光を光検出器90aと90bに導き、演算手段91においてバランス検波を行う機構を有している。
画像取得手段241は、干渉光検出手段240により検出された干渉光L4をフーリエ変換することにより、測定対象Sbの各深さ位置における反射光L3の強度を検出し、測定対象Sbの断層画像を取得する。この断像画像は表示装置242に表示される。
以下、上記構成を有する光断層画像化装置200の作用について説明する。断層画像を取得する際には、まず基台73を矢印A方向に移動させることにより、測定可能領域内に測定対象Sbが位置するように光路長の調整が行われる。その後、波長可変レーザ9から光Laが射出され、この光Laは光分割手段53により測定光L1と参照光L2とに分割される。測定光L1は光プローブ230から体腔内に向けて射出され、測定対象Sbに照射される。このとき、前述したように作動する該光プローブ230により、そこから出射した測定光L1が測定対象Sbを1次元に走査する。そして、測定対象Sbからの反射光L3が反射ミラー72において反射した参照光L2と合波され、反射光L3と参照光L2との干渉光L4が干渉光検出手段240によって検出される。
ここで、干渉光検出手段240および画像取得手段241における干渉光L4の検出および画像の生成について簡単に説明する。なお、この点の詳細については「武田 光夫、「光周波数走査スペクトル干渉顕微鏡」、光技術コンタクト、2003、Vol.41、No.7、p426−p432」に詳しい記載がなされている。
測定光L1が測定対象Sbに照射されたとき、測定対象Sbの各深さからの反射光L3と参照光L2とがいろいろな光路長差をもって干渉しあう際の各光路長差lに対する干渉縞の光強度をS(l)とすると、干渉光検出手段240において検出される光強度I(k)は、
I(k)=∫0 ∞S(l)[1+cos(kl)]dl
で表される。ここで、kは波数、lは光路長差である。上式は波数k=ω/cを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。このため、画像取得手段241において、干渉光検出手段240が検出したスペクトル干渉縞をフーリエ変換し、干渉光L4の光強度S(l)を決定することにより、測定対象Sbの測定開始位置からの距離情報と反射強度情報とを取得することができ、断層画像を生成することができる。この断層画像は表示装置242に表示される。
I(k)=∫0 ∞S(l)[1+cos(kl)]dl
で表される。ここで、kは波数、lは光路長差である。上式は波数k=ω/cを変数とする光周波数領域のインターフェログラムとして与えられていると考えることができる。このため、画像取得手段241において、干渉光検出手段240が検出したスペクトル干渉縞をフーリエ変換し、干渉光L4の光強度S(l)を決定することにより、測定対象Sbの測定開始位置からの距離情報と反射強度情報とを取得することができ、断層画像を生成することができる。この断層画像は表示装置242に表示される。
光断層画像化装置200は、各波長でほぼ一定の強度の出力光を得ることができる波長可変レーザとして動作する光源装置から射出されたレーザ光を用いて、光断層画像を取得するため、良好な光断層画像を取得することができる。
なお、本光断層画像化装置200においては、マイケルソン型干渉計を用いているが、干渉計の形態はこれに限定されるものではなく、例えばマッハツェンダー型干渉計あるいはフィゾー型干渉計等も用いることができる。
また、前述したOCT装置としては、光断層画像化装置200にように、波長掃引されているコヒーレンス光を用いて光断層画像を取得するタイプのOCT装置と、低コヒーレンス光を用いて光断層画像を取得するタイプのOCT装置が知られている。後者の低コヒーレンス光を用いて光断層画像を取得するタイプのOCT装置用の光源としては、図2に示すような本発明の半導体発光素子をSLDとして用いた光源を使用することができる。
1 半導体発光素子
2 光源装置
3、9 波長可変レーザ
4A、4B、4C 可変抵抗
5 電源
6 コリメートレンズ
7 回折格子
8 ポリンゴンミラー
10 積層体
11 n-GaAs基板
12 n-InGaPクラッド層
13 GaAs光導波層
14 InGaAs歪量子井戸活性層
15 GaAs光導波層
16 p-InGaPクラッド層
17 n-InGaPブロック層
17a ドーパント注入領域
18 p-GaAsコンタクト層
19 p型電極層
19a、19b、19c p型電極
20 n型電極層
23 SiO2
53 光分割手段
54 合波手段
200 光断層画像化装置
220 光路長調整手段
230 光プローブ
240 干渉光検出手段
241 画像取得手段
242 表示装置
2 光源装置
3、9 波長可変レーザ
4A、4B、4C 可変抵抗
5 電源
6 コリメートレンズ
7 回折格子
8 ポリンゴンミラー
10 積層体
11 n-GaAs基板
12 n-InGaPクラッド層
13 GaAs光導波層
14 InGaAs歪量子井戸活性層
15 GaAs光導波層
16 p-InGaPクラッド層
17 n-InGaPブロック層
17a ドーパント注入領域
18 p-GaAsコンタクト層
19 p型電極層
19a、19b、19c p型電極
20 n型電極層
23 SiO2
53 光分割手段
54 合波手段
200 光断層画像化装置
220 光路長調整手段
230 光プローブ
240 干渉光検出手段
241 画像取得手段
242 表示装置
Claims (9)
- 活性層を含む積層体の上面および下面に電極層を備えてなる半導体発光素子であって、
前記上面または下面の少なくともいずれか一方の電極層が、光の導波方向に互いに分離された2以上の電極に分割されており、
前記活性層が前記導波方向に沿って、利得波長の異なる構造を備えて、該活性層の前記分割された2以上の電極の各電極に対応する各領域から互いに異なるスペクトルの光を生じるものであり、
前記各電極からの注入電流を個別に変化させることにより出力光のスペクトル分布を変化させることができるものであることを特徴とする半導体発光素子。 - 前記利得波長の異なる構造が、前記導波方向に沿って光出射端面に近づくに連れて短波長側の利得波長となるように構成されたものであることを特徴とする請求項1記載の半導体発光素子。
- スーパールミネッセントダイオードとして用いられることを特徴とする請求項1または2記載の半導体発光素子。
- 光増幅器として用いられることを特徴とする請求項1または2記載の半導体発光素子。
- 請求項1または2記載の半導体発光素子と、
前記半導体発光素子の前記分割された電極毎に注入電流量を個別に調整可能な駆動手段とを備えたことを特徴とする光源装置。 - 前記駆動手段が、前記半導体発光素子を駆動するための電源と、該電源に並列に接続され、かつ前記分割された電極にそれぞれ接続された、前記電極と同数の可変抵抗とを備えたことを特徴とする請求項5記載の光源装置。
- 前記半導体発光素子から出力された光の波長の一部を選択的に該半導体発光素子に戻す波長選択手段をさらに備え、波長可変レーザとして用いられるものであることを特徴とする請求項5または6記載の光源装置。
- 前記波長選択手段が、半導体発光素子から出力された光の波長の一部を、該波長を所定の周期で連続的に変化させながら選択的に前記半導体発光素子に戻す波長掃引手段であることを特徴とする請求項7記載の光源装置。
- 請求項8記載の光源装置と、
該光源装置から射出されたレーザ光を測定光と参照光とに分割する光分割手段と、
前記測定光が測定対象に照射されたときの該測定対象からの反射光と前記参照光とを合波する合波手段と、
該合波手段により合波された前記反射光と前記参照光との干渉光の周波数および強度に基づいて、前記測定対象の各深さ位置における前記反射光の強度を検出する干渉光検出手段と、
該干渉光検出手段により検出された前記各深さ位置における前記反射光の強度を用いて前記測定対象の断層画像を取得する画像取得手段とを有することを特徴とする光断層画像化装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006319817A JP2007184557A (ja) | 2005-12-05 | 2006-11-28 | 半導体発光素子および該素子を備えた光源装置および光断層画像化装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005350158 | 2005-12-05 | ||
JP2006319817A JP2007184557A (ja) | 2005-12-05 | 2006-11-28 | 半導体発光素子および該素子を備えた光源装置および光断層画像化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007184557A true JP2007184557A (ja) | 2007-07-19 |
Family
ID=38340336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006319817A Abandoned JP2007184557A (ja) | 2005-12-05 | 2006-11-28 | 半導体発光素子および該素子を備えた光源装置および光断層画像化装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007184557A (ja) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009238828A (ja) * | 2008-03-26 | 2009-10-15 | Seiko Epson Corp | 発光装置 |
JP2010062426A (ja) * | 2008-09-05 | 2010-03-18 | Sun Tec Kk | 波長走査型レーザ光源 |
JP2010141039A (ja) * | 2008-12-10 | 2010-06-24 | Hamamatsu Photonics Kk | スーパールミネッセントダイオード |
CN102117868A (zh) * | 2010-11-24 | 2011-07-06 | 中国科学院半导体研究所 | 一种低波纹系数半导体超辐射发光二极管的制备方法 |
JP2011142313A (ja) * | 2009-12-09 | 2011-07-21 | Canon Inc | 光源装置及びこれを用いた撮像装置 |
WO2014051137A1 (en) * | 2012-09-28 | 2014-04-03 | Canon Kabushiki Kaisha | Optical semiconductor device, driving method thereof, and optical coherence tomography apparatus having the optical semiconductor device |
JP2014082486A (ja) * | 2012-09-28 | 2014-05-08 | Canon Inc | 光源及び前記光源を用いた光干渉断層撮像装置 |
JP2014120633A (ja) * | 2012-12-17 | 2014-06-30 | Canon Inc | スーパールミネッセントダイオード、スーパールミネッセントダイオードを備えている光干渉断層撮像装置、及びスーパールミネッセントダイオードの制御方法 |
CN104662677A (zh) * | 2012-09-28 | 2015-05-27 | 佳能株式会社 | 光源和包括光源的光学相干层析成像装置 |
EP2924742A1 (en) | 2014-03-27 | 2015-09-30 | Canon Kabushiki Kaisha | Light source system and optical coherence tomography apparatus using the light source system |
WO2015147334A1 (en) * | 2014-03-27 | 2015-10-01 | Canon Kabushiki Kaisha | Light emitting device, light source system including the light emitting device, and optical coherence tomography including the light source system |
EP3131125A1 (en) * | 2015-08-13 | 2017-02-15 | Canon Kabushiki Kaisha | Light emitting device, control method thereof and optical coherence tomography apparatus using the same |
JP2017199877A (ja) * | 2016-04-28 | 2017-11-02 | キヤノン株式会社 | 光増幅器、それを備える光干渉断層計、及び光増幅器を用いた光増幅方法 |
WO2022101859A1 (en) * | 2020-11-12 | 2022-05-19 | Denselight Semiconductors Pte Ltd | Super-broadband continuous spectrum superluminescent light emitting diode |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07231144A (ja) * | 1993-03-25 | 1995-08-29 | Nippon Telegr & Teleph Corp <Ntt> | 光機能素子、これを含む光集積素子およびそれらの製造方法 |
-
2006
- 2006-11-28 JP JP2006319817A patent/JP2007184557A/ja not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07231144A (ja) * | 1993-03-25 | 1995-08-29 | Nippon Telegr & Teleph Corp <Ntt> | 光機能素子、これを含む光集積素子およびそれらの製造方法 |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009238828A (ja) * | 2008-03-26 | 2009-10-15 | Seiko Epson Corp | 発光装置 |
JP2010062426A (ja) * | 2008-09-05 | 2010-03-18 | Sun Tec Kk | 波長走査型レーザ光源 |
JP2010141039A (ja) * | 2008-12-10 | 2010-06-24 | Hamamatsu Photonics Kk | スーパールミネッセントダイオード |
US8922784B2 (en) | 2009-12-09 | 2014-12-30 | Canon Kabushiki Kaisha | Light source apparatus and image pickup apparatus using the same |
JP2011142313A (ja) * | 2009-12-09 | 2011-07-21 | Canon Inc | 光源装置及びこれを用いた撮像装置 |
EP2333914A3 (en) * | 2009-12-09 | 2017-12-13 | Canon Kabushiki Kaisha | Light source apparatus and image pickup apparatus using the same |
CN102117868A (zh) * | 2010-11-24 | 2011-07-06 | 中国科学院半导体研究所 | 一种低波纹系数半导体超辐射发光二极管的制备方法 |
JP2014082486A (ja) * | 2012-09-28 | 2014-05-08 | Canon Inc | 光源及び前記光源を用いた光干渉断層撮像装置 |
CN104662677A (zh) * | 2012-09-28 | 2015-05-27 | 佳能株式会社 | 光源和包括光源的光学相干层析成像装置 |
WO2014051137A1 (en) * | 2012-09-28 | 2014-04-03 | Canon Kabushiki Kaisha | Optical semiconductor device, driving method thereof, and optical coherence tomography apparatus having the optical semiconductor device |
US10109762B2 (en) | 2012-09-28 | 2018-10-23 | Canon Kabushiki Kaisha | Light source and optical coherence tomography apparatus including the light source |
CN104662677B (zh) * | 2012-09-28 | 2018-09-04 | 佳能株式会社 | 光源和包括光源的光学相干层析成像装置 |
JP2014120633A (ja) * | 2012-12-17 | 2014-06-30 | Canon Inc | スーパールミネッセントダイオード、スーパールミネッセントダイオードを備えている光干渉断層撮像装置、及びスーパールミネッセントダイオードの制御方法 |
EP2924742A1 (en) | 2014-03-27 | 2015-09-30 | Canon Kabushiki Kaisha | Light source system and optical coherence tomography apparatus using the light source system |
US9929307B2 (en) | 2014-03-27 | 2018-03-27 | Canon Kabushiki Kaisha | Light emitting device, light source system including the light emitting device, and optical coherence tomography including the light source system |
JP2015195379A (ja) * | 2014-03-27 | 2015-11-05 | キヤノン株式会社 | 発光素子、前記発光素子を有する光源システム、及び前記光源システムを有する光干渉断層計 |
WO2015147334A1 (en) * | 2014-03-27 | 2015-10-01 | Canon Kabushiki Kaisha | Light emitting device, light source system including the light emitting device, and optical coherence tomography including the light source system |
CN106449898A (zh) * | 2015-08-13 | 2017-02-22 | 佳能株式会社 | 发光装置及其控制方法和光学相干断层成像设备 |
EP3131125A1 (en) * | 2015-08-13 | 2017-02-15 | Canon Kabushiki Kaisha | Light emitting device, control method thereof and optical coherence tomography apparatus using the same |
US10403784B2 (en) | 2015-08-13 | 2019-09-03 | Canon Kabushiki Kaisha | Light emitting device controlling a current injection amount into an electrode according to pieces of optical information |
JP2017199877A (ja) * | 2016-04-28 | 2017-11-02 | キヤノン株式会社 | 光増幅器、それを備える光干渉断層計、及び光増幅器を用いた光増幅方法 |
WO2017188364A1 (ja) * | 2016-04-28 | 2017-11-02 | キヤノン株式会社 | 光増幅器、それを備える光干渉断層計、及び光増幅器を用いた光増幅方法 |
WO2022101859A1 (en) * | 2020-11-12 | 2022-05-19 | Denselight Semiconductors Pte Ltd | Super-broadband continuous spectrum superluminescent light emitting diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007184557A (ja) | 半導体発光素子および該素子を備えた光源装置および光断層画像化装置 | |
US7944567B2 (en) | Semiconductor light emitting element, light source using the semiconductor light emitting element, and optical tomography imaging apparatus | |
USRE41633E1 (en) | Light source for swept source optical coherence tomography based on cascaded distributed feedback lasers with engineered band gaps | |
US9337619B2 (en) | Swept frequency laser for FD OCT with intracavity element and method of operation | |
US7864331B2 (en) | Optical coherence tomographic imaging apparatus | |
Oh et al. | Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers | |
JP5541831B2 (ja) | 光断層画像化装置およびその作動方法 | |
US20070002327A1 (en) | Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver | |
JP2009283736A (ja) | 光半導体素子および光半導体素子を用いた光干渉断層画像装置 | |
JP2008128709A (ja) | 光断層画像化装置 | |
JP2009049123A (ja) | 光半導体素子、該光半導体素子を用いた波長可変光源および光断層画像取得装置 | |
JP2008145429A (ja) | 光断層画像化装置 | |
JP2015017966A (ja) | 撮像装置および撮像方法 | |
JP2013197237A (ja) | スーパールミネッセントダイオードを備えた光源装置とその駆動方法、及び光断層画像撮像装置 | |
JP2008270585A (ja) | 光半導体素子、該光半導体素子を用いた波長可変光源および光断層画像取得装置 | |
JP2010010172A (ja) | 波長掃引光源 | |
JP2015069988A (ja) | スーパールミネッセントダイオード、それを光源として備える光干渉断層撮像装置 | |
JP2010005266A (ja) | 光断層画像化装置 | |
JP2012069770A (ja) | 半導体発光素子および、該半導体発光素子による波長可変光源装置、sd−oct装置、ss−oct装置 | |
JP2008128707A (ja) | 断層画像処理方法、装置およびプログラムならびにこれを用いた光断層画像化システム | |
JP4818823B2 (ja) | 光断層画像化装置 | |
JP2008192731A (ja) | 半導体発光素子および該素子を備えた光断層画像化装置 | |
JP2013088416A (ja) | Sd−octシステムによる光断層画像取得装置 | |
WO2017188364A1 (ja) | 光増幅器、それを備える光干渉断層計、及び光増幅器を用いた光増幅方法 | |
JP2013115305A (ja) | Sd−octシステムの駆動制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090910 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110705 |
|
A762 | Written abandonment of application |
Free format text: JAPANESE INTERMEDIATE CODE: A762 Effective date: 20110715 |