JP2007184132A - Electromagnetic relay - Google Patents
Electromagnetic relay Download PDFInfo
- Publication number
- JP2007184132A JP2007184132A JP2006000528A JP2006000528A JP2007184132A JP 2007184132 A JP2007184132 A JP 2007184132A JP 2006000528 A JP2006000528 A JP 2006000528A JP 2006000528 A JP2006000528 A JP 2006000528A JP 2007184132 A JP2007184132 A JP 2007184132A
- Authority
- JP
- Japan
- Prior art keywords
- base
- electromagnetic relay
- terminal
- cover
- width
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Switch Cases, Indication, And Locking (AREA)
Abstract
Description
本発明は、電磁継電器に関し、特に車載用として大電流(100A程度)の通電が可能な密閉型の電磁継電器に関する。 The present invention relates to an electromagnetic relay, and more particularly to a hermetic electromagnetic relay capable of energizing a large current (about 100 A) for in-vehicle use.
近年、カーエレクトロニクスの進展/燃費向上要求にともなってパワーステアリングを油圧からEPS(電動パワーステアリング)に置き換える動きが本格化してきた。それにより、これを実現するための周辺技術として電子部品である電磁継電器に100Aもの大電流を流すことができる性能が求められ始めてきた。このような大電流通電を可能にするために、電磁継電器の端子は断面積を大きくとらなければならず、必然的に大型化してきた。このとき密閉型の電磁継電器では、この大型化した端子と電磁継電器本体を設置したベースおよびその本体を覆うカバーとを封止剤で密閉しなければならない。 In recent years, with the progress of car electronics / demands for improving fuel efficiency, the movement of replacing power steering from hydraulic pressure to EPS (electric power steering) has become full-scale. Accordingly, as a peripheral technology for realizing this, a performance capable of flowing a large current of 100 A to an electromagnetic relay, which is an electronic component, has begun to be demanded. In order to enable such a large current flow, the terminals of the electromagnetic relay have to have a large cross-sectional area, which inevitably increases in size. At this time, in the sealed electromagnetic relay, the enlarged terminal, the base on which the electromagnetic relay main body is installed, and the cover that covers the main body must be sealed with a sealant.
大型端子を有する密閉型電磁継電器の先行技術として、例えば、特許文献1が挙げられる。これには、より大きな電流を通電可能にする電磁継電器の構造に関する技術が記載されている。しかしながら、大型化した端子を持つ電磁継電器のベースおよびカバーを封止するのに適した技術は記載されていない。また、密閉型電磁継電器の先行技術として、例えば、特許文献2が挙げられる。これにはカバーと封止剤の剥離防止に関する記載はあるが、端子周りの封止剤の亀裂防止に関する技術の記載はない。
As a prior art of a sealed electromagnetic relay having a large terminal, for example,
一般に、密閉型の電磁継電器では顧客の信頼を十分に満足する品質であるかどうかを確認するため、回路基板に接合する時の溶接熱ストレスあるいは使用環境を想定し、より過酷な条件の−40℃から+125℃といった冷熱ストレスを繰り返し作用させ密閉性が保たれるかどうかを確認する試験が行われる。 In general, in order to confirm whether or not the sealed electromagnetic relay is of a quality that sufficiently satisfies the customer's trust, it is assumed that the welding thermal stress or the use environment when joining to the circuit board is assumed, and the -40 of severer conditions A test is performed to check whether the sealing performance is maintained by repeatedly applying a thermal stress of from ℃ to +125 ℃.
図2は、特許文献1に示された従来の電磁継電器を示す図である。図2(a)、図2(b)は、それぞれ封止剤を塗布前および塗布後の底面側から見た斜視図であり、図2(c)は封止剤塗布後の底面図である。
FIG. 2 is a diagram showing a conventional electromagnetic relay disclosed in
図2において、この電磁継電器は、ベース9上に設置された電磁継電器本体(図示せず)とベース9の底面から下方(図面では上方)に突出した端子2、電磁継電器本体とベースの側壁部を覆うように設置されたカバー1とからなり、ベース9の側壁部とカバー1との間隙およびベース9およびカバー1と端子2との間隙には絶縁封止用の樹脂である封止剤11が注入されている。
In FIG. 2, this electromagnetic relay includes an electromagnetic relay body (not shown) installed on the
通常、この端子2の成分は、ほぼ銅であり、ベース9およびカバー1はプラスチック樹脂である。そのため、端子2の方がベース9およびカバー1より暖まりやすく冷めやすい。したがって、冷熱ストレスが加わった場合、封止剤11の端子まわりの部分はカバー1およびベース9まわりの部分より早く加熱および冷却されることになり、封止剤11内で温度差が生じることになる。すなわち、端子2周りの封止剤が膨張あるいは収縮しようとするのに対し、そこから離れたカバー1およびベース9まわりの封止剤はそれを抑えようとする。このため、そこに応力が発生し封止剤の耐久範囲を超えたところで亀裂が生じ、さらに冷熱ストレスが繰り返し作用することで亀裂が進行し、最終的には気密劣化にいたる。このような過酷な冷熱ストレスが繰返し作用した場合、端子が大型になればなるほど早い回数で亀裂が発生し始めるため規定の繰り返し回数を満足できなくなるといった問題があった。
Usually, the component of the
したがって、本発明の課題は、端子が大型化した場合にも封止剤の亀裂を防止して密閉性を保つことができ、信頼性の高い電磁継電器を提供することである。 Accordingly, an object of the present invention is to provide a highly reliable electromagnetic relay that can prevent the sealing agent from cracking and maintain hermeticity even when the terminal is enlarged.
上記課題を解決するために本発明の電磁継電器は、ベース上に設置された電磁継電器本体と、前記ベースの底面より下方に突出した端子と、前記電磁継電器本体および前記ベースの側壁部を覆うように設置されたカバーと、前記ベースの側壁部と前記カバーとの間隙および前記ベースおよび前記カバーと前記端子との間隙に注入された絶縁封止用の樹脂とからなる電磁継電器において、前記ベースの底面の前記端子が突出する周囲にほぼ一様な幅およびほぼ一様な深さを有する溝部を有し該溝部内に前記絶縁封止用の樹脂が注入される。前記端子の厚さが0.8mm以上か、または前記端子の幅が4mm以上であってもよい。また、前記端子の周囲の溝部の幅が1.5mm以下であり、かつ溝部の最大幅Waと最小幅Wbの比率Wa/Wbが2以下であることが望ましい。また、前記端子の周囲の溝部の深さが1.0mm以下であり、かつ溝部の最大深さDaと最小深さDbの比率Da/Dbが2以下であることが望ましい。 In order to solve the above problems, an electromagnetic relay of the present invention covers an electromagnetic relay main body installed on a base, a terminal projecting downward from a bottom surface of the base, and the electromagnetic relay main body and a side wall portion of the base. An electromagnetic relay comprising: a cover installed on the base; a gap between the side wall of the base and the cover; and a resin for insulation sealing injected into the gap between the base and the cover and the terminal. A groove portion having a substantially uniform width and a substantially uniform depth is provided around the terminal on the bottom surface where the terminal protrudes, and the insulating sealing resin is injected into the groove portion. The thickness of the terminal may be 0.8 mm or more, or the width of the terminal may be 4 mm or more. Further, it is desirable that the width of the groove around the terminal is 1.5 mm or less, and the ratio Wa / Wb between the maximum width Wa and the minimum width Wb of the groove is 2 or less. Further, it is desirable that the depth of the groove around the terminal is 1.0 mm or less, and the ratio Da / Db between the maximum depth Da and the minimum depth Db of the groove is 2 or less.
本発明の電磁継電器は、端子の周囲のベース底面にほぼ一様幅、一様深さの溝を設け、封止剤を注入し接着固定することで、電磁継電器に繰り返し冷熱ストレスが作用した場合にも封止剤に亀裂が生じ難く、長期的な密閉性が向上し、高い信頼性が得られる。 The electromagnetic relay of the present invention is provided with a groove having a substantially uniform width and uniform depth on the bottom surface of the base around the terminal, and when a thermal stress is repeatedly applied to the electromagnetic relay by injecting a sealing agent and fixing it. In addition, cracks are hardly generated in the sealant, and the long-term sealing property is improved, and high reliability is obtained.
次に、本発明の実施の形態を実施例に基づいて図面を参照して説明する。ただし、本発明は、この実施例に限定されるものではない。 Next, embodiments of the present invention will be described based on examples with reference to the drawings. However, the present invention is not limited to this embodiment.
図1は、本発明による電磁継電器の一実施例を示す図である。図1(a)、図1(b)はそれぞれ封止剤を塗布前および塗布後の底面側から見た斜視図であり、図1(c)は封止剤塗布後の底面図である。 FIG. 1 is a diagram showing an embodiment of an electromagnetic relay according to the present invention. FIGS. 1A and 1B are perspective views as seen from the bottom side before and after application of the sealant, respectively, and FIG. 1C is a bottom view after application of the sealant.
図1において、この電磁継電器は、従来の電磁継電器と同様にベース3上に設置された電磁継電器本体(図示せず)とベース3の底面から下方(図面では上方)に突出した端子2、電磁継電器本体とベースの側壁部を覆うように設置されたカバー1とからなり、ベース3の側壁部とカバー1との間隙およびベース3およびカバー1と端子2との間隙には絶縁封止用の樹脂である封止剤5が注入されて接着固定され密閉されている。
In FIG. 1, this electromagnetic relay includes an electromagnetic relay main body (not shown) installed on a
ただし、本実施例の電磁継電器では端子2の周りのベース3の底面にほぼ一様幅、一様深さの溝部6を設けその溝部6に封止剤5を注入し端子2とベース3およびカバー1を接着固定する構造になっている。溝部6の幅は端子2の周囲で0.5〜1.5mm程度の範囲の中のほぼ一定の値とすることができ、また深さも0.5〜1.0mm程度の範囲の中のほぼ一定の値とすることができる。
However, in the electromagnetic relay according to the present embodiment, a
図2に示した従来の電磁継電器でも端子2の周囲に溝部12を有しているがその幅は場所によって1.0〜5.5mm程度の間で変化し、また溝の深さも0.3〜1.0mm程度の変化がある。
The conventional electromagnetic relay shown in FIG. 2 also has a
なお、溝部6の幅および深さは接着強度および封止剤5を注入する際のノズルが入りうる限界まで小さくすることでより封止剤5の亀裂防止効果が増す。
In addition, the crack prevention effect of the
上記本発明の実施例の電磁継電器と、比較例として図2に示す従来の密閉型の電磁継電器を各々50個作製し、両者に冷熱サイクルを加えた後に外観検査を行った。従来の密閉型の電磁継電器は大型の端子2周りのベース9に溝部12は有しているが、上述のようにその幅および深さは一様ではなく、また大きい。これに対し、本発明の実施例では、溝部6の幅および深さは端子の周囲でほぼ一様となっており、その幅は従来より狭い。また、深さも従来よりも小さくほぼ一様である。本実施例と従来の比較例は端子周りのベースの溝部の形状の差以外は同一形状で、封止剤の注入なども同一条件で製造した。
50 electromagnetic relays according to the examples of the present invention and 50 conventional sealed electromagnetic relays shown in FIG. 2 as comparative examples were produced, and the appearance inspection was performed after applying a cooling cycle. The conventional hermetic electromagnetic relay has the
冷熱サイクルは、環境試験槽に試験品を入れ、−40℃と+125℃の温度設定を30分ごとに交互に切り替えるパターンで25サイクル行った。外観検査の結果、従来の比較例の電磁継電器は22個/50個に封止剤の亀裂が認められたが、本発明の実施例の電磁継電器には亀裂が入ったものは認められなかった(0個/50個)。 The cooling / heating cycle was performed for 25 cycles in a pattern in which the test product was put in an environmental test tank and the temperature setting of −40 ° C. and + 125 ° C. was alternately switched every 30 minutes. As a result of visual inspection, cracks of the sealing agent were observed in 22/50 electromagnetic relays of the conventional comparative example, but no cracks were observed in the electromagnetic relays of the examples of the present invention. (0/50).
端子の熱伝導率はベース樹脂より約2000倍大きい。そのため端子近傍の封止剤はベース樹脂近傍の封止剤より暖まり易く冷め易い。その熱温度差が局所的な膨張/収縮差を生みひずみができ割れが発生する。端子が大型化した場合、例えば端子の厚さが0.8mm程度以上、またはその幅が4mm程度以上の大型端子の場合はその周りに存在する封止剤の量も多くなり適正な幅、厚さ(深さ)で、かつその幅、厚さが一様でなければ封止剤内の温度差がより大きくなり大きなひずみが生じることになり上述の従来例の試験結果のように封止剤の亀裂が生じる。本発明によりその解決が得られることが上記試験結果より証明された。 The thermal conductivity of the terminal is about 2000 times larger than that of the base resin. Therefore, the sealant near the terminal is easier to warm and cool than the sealant near the base resin. The difference in thermal temperature creates a local expansion / contraction difference, causing distortion and cracking. When the terminal is enlarged, for example, in the case of a large terminal having a terminal thickness of about 0.8 mm or more, or a width of about 4 mm or more, the amount of the sealing agent present around the terminal is increased, and the appropriate width and thickness are increased. If the width (thickness) is not uniform and the width and thickness are not uniform, the temperature difference in the sealant becomes larger and a large strain is generated. Cracks occur. From the above test results, it was proved that the solution can be obtained by the present invention.
上述のように、本発明の封止剤を注入し接着固定された電磁継電器は、端子周りのベースにほぼ一様幅および一様深さの溝を設けさらに可能な限りその幅および深さを小さくすることで、冷熱ストレスが作用したときの封止剤内部の温度差が抑制されるため、封止剤の亀裂が防げるものと推測され、端子が大型化した場合にも従来の電磁継電器よりも、長期的に密閉性が向上し、高い信頼性が得られる。 As described above, the electromagnetic relay in which the sealing agent of the present invention is injected and bonded and fixed is provided with a groove having a substantially uniform width and a uniform depth in the base around the terminal, and further, the width and the depth as much as possible. By reducing the size, the temperature difference inside the sealant when a thermal stress is applied is suppressed, so it is estimated that cracking of the sealant can be prevented, and even when the terminal is larger than the conventional electromagnetic relay However, the sealing performance is improved in the long term, and high reliability is obtained.
なお、端子周りのベースの溝はその幅と深さが一様であるほど望ましいが、従来の電磁継電器と比較すると、その溝部の幅が1.5mm以下であり、かつ溝部の最大幅Waと最小幅Wbの比率Wa/Wbが2以下であるか、またはその溝部の深さが1.0mm以下であり、かつ溝部の最大深さDaと最小深さDbの比率Da/Dbが2以下であれば上述の本発明の十分な効果が得られる。 It is desirable that the width and depth of the base groove around the terminal be uniform, but the width of the groove is 1.5 mm or less and the maximum width Wa of the groove compared to a conventional electromagnetic relay. The ratio Wa / Wb of the minimum width Wb is 2 or less, or the depth of the groove is 1.0 mm or less, and the ratio Da / Db of the maximum depth Da to the minimum depth Db is 2 or less. If it exists, sufficient effect of the above-mentioned this invention is acquired.
2 端子
3,9 ベース
1 カバー
5,11 封止剤
6,12 溝部
2
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006000528A JP2007184132A (en) | 2006-01-05 | 2006-01-05 | Electromagnetic relay |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006000528A JP2007184132A (en) | 2006-01-05 | 2006-01-05 | Electromagnetic relay |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007184132A true JP2007184132A (en) | 2007-07-19 |
Family
ID=38340043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006000528A Pending JP2007184132A (en) | 2006-01-05 | 2006-01-05 | Electromagnetic relay |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007184132A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112008001841T5 (en) | 2007-07-13 | 2010-06-17 | Advantest Corporation | Test device and transmission device |
EP3629355A1 (en) * | 2018-09-27 | 2020-04-01 | Panasonic Intellectual Property Management Co., Ltd. | Electric apparatus and electromagnetic relay |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54140287U (en) * | 1978-03-23 | 1979-09-28 | ||
JPS59158257U (en) * | 1984-01-17 | 1984-10-24 | オムロン株式会社 | sealed relay |
JPH0589758A (en) * | 1990-11-09 | 1993-04-09 | Siemens Ag | Electromagnetic type relay |
JP2004342398A (en) * | 2003-05-14 | 2004-12-02 | Nec Tokin Corp | Electromagnetic relay |
-
2006
- 2006-01-05 JP JP2006000528A patent/JP2007184132A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54140287U (en) * | 1978-03-23 | 1979-09-28 | ||
JPS59158257U (en) * | 1984-01-17 | 1984-10-24 | オムロン株式会社 | sealed relay |
JPH0589758A (en) * | 1990-11-09 | 1993-04-09 | Siemens Ag | Electromagnetic type relay |
JP2004342398A (en) * | 2003-05-14 | 2004-12-02 | Nec Tokin Corp | Electromagnetic relay |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112008001841T5 (en) | 2007-07-13 | 2010-06-17 | Advantest Corporation | Test device and transmission device |
EP3629355A1 (en) * | 2018-09-27 | 2020-04-01 | Panasonic Intellectual Property Management Co., Ltd. | Electric apparatus and electromagnetic relay |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10181445B2 (en) | Power module | |
JP4598053B2 (en) | Casing for electronic circuit and method for sealing the casing | |
TW200723494A (en) | Electronic device | |
CN102315178A (en) | Semiconductor device | |
KR102056899B1 (en) | Semiconductor device and manufacturing method of semiconductor device | |
WO2009148072A1 (en) | Chip inductor and manufacturing method thereof | |
JP6327140B2 (en) | Electronic equipment | |
JP5903650B2 (en) | Coil component and manufacturing method thereof | |
WO2016088684A1 (en) | Circuit structure and circuit structure with heat radiating body | |
JP5136569B2 (en) | Gel injector and method of manufacturing power module using the same | |
JP2007184132A (en) | Electromagnetic relay | |
WO2017077913A1 (en) | Fixing structure | |
JP6825306B2 (en) | Semiconductor device | |
JP4635963B2 (en) | Electrical circuit device | |
JP2010080517A (en) | Chip inductor and manufacturing method thereof | |
JP2013055235A (en) | Printed wiring board with shield case and manufacturing method of the same | |
JP4952478B2 (en) | Seal structure | |
JP2018528366A (en) | Multi-part device and method of manufacturing the multi-part device | |
JP5814521B2 (en) | Manufacturing method of electronic equipment | |
JP2008288381A (en) | Electronic unit | |
TWI476792B (en) | Planar magnetic component and method for manufacturing the same | |
CN104851872B (en) | A kind of integrated circuit structure and preparation method thereof | |
JP5546964B2 (en) | Electromagnetic relay | |
JP2008294021A (en) | Electronic component module and manufacturing method thereof | |
US10347555B2 (en) | Electronic device and method for manufacturing electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080701 |
|
A977 | Report on retrieval |
Effective date: 20101012 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20101020 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20110302 |