[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007182803A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2007182803A
JP2007182803A JP2006001402A JP2006001402A JP2007182803A JP 2007182803 A JP2007182803 A JP 2007182803A JP 2006001402 A JP2006001402 A JP 2006001402A JP 2006001402 A JP2006001402 A JP 2006001402A JP 2007182803 A JP2007182803 A JP 2007182803A
Authority
JP
Japan
Prior art keywords
urea water
ultrasonic irradiation
exhaust
control device
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006001402A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kawada
吉弘 川田
Shinya Sato
信也 佐藤
Mitsuru Hosoya
満 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2006001402A priority Critical patent/JP2007182803A/en
Publication of JP2007182803A publication Critical patent/JP2007182803A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of positively decomposing urea water into ammonia to obtain an excellent NOx reducing effect from an exhaust temperature lower than the conventional one even in a vehicle of such an operating form that an operating state at a low exhaust temperature continues for a long time. <P>SOLUTION: An ultrasonic irradiation tank 14 having an inflow port 14a and an outflow port 14b of urea water 12 is disposed as an ultrasonic irradiation means 13 for irradiating urea water 12 with ultrasonic wave. A urea water supply line 15 is connected to the inflow port 14a of the ultrasonic irradiation tank 14 serving as the ultrasonic irradiation means 13, and an addition nozzle 16 leading the urea water 12 irradiated with ultrasonic wave, into an exhaust pipe 9 upstream of an selective reduction type catalyst 10 is connected to the outflow port 14b of the ultrasonic irradiation tank 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、ディーゼルエンジンにおいては、排気ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排気ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにした排気浄化装置がある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas flows, and the selective reduction catalyst A required amount of a reducing agent is added to the upstream side of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is an exhaust purification device.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の排気浄化装置の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている(例えば、特許文献1参照)。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. In the case of a purification apparatus, since it is difficult to ensure safety with respect to traveling with ammonia itself, in recent years, the use of non-toxic urea water as a reducing agent has been studied (for example, patents). Reference 1).

即ち、尿素水を選択還元型触媒の上流側で排気ガス中に添加すれば、該排気ガス中で尿素水が
(NH22・CO+H2O→2NH3+CO2
で示される化学反応式によりアンモニアと炭酸ガスに熱分解され、選択還元型触媒上で排気ガス中のNOxがアンモニアにより良好に還元浄化されることになる。
特開2002−161732号公報
That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water will be (NH 2 ) 2 .CO + H 2 O → 2NH 3 + CO 2 in the exhaust gas.
Is thermally decomposed into ammonia and carbon dioxide by the chemical reaction formula shown below, and NOx in the exhaust gas is favorably reduced and purified by ammonia on the selective catalytic reduction catalyst.
JP 2002-161732 A

しかしながら、このような尿素水を還元剤として使用する排気浄化装置の場合、その還元反応時における充分な触媒活性を得るのに約200[℃]以上の排気温度が必要となるので、排気温度が200[℃]を下まわるような低い運転状態(一般的に低負荷運転領域に排気温度が低い領域が拡がっている)が続くと、尿素水からアンモニアへの分解が進まないためにNOx低減率がなかなか高まらないという問題があり、例えば、都市部の路線バス等のように渋滞路ばかりを走行するような運行形態の車両では、必要な所定温度以上での運転が長く継続しないため、NOx低減率が低いまま推移してしまって良好なNOx低減効果を得ることができなかった。   However, in the case of an exhaust gas purification apparatus using such urea water as a reducing agent, an exhaust temperature of about 200 [° C.] or higher is required to obtain sufficient catalytic activity during the reduction reaction. NOx reduction rate because the decomposition from urea water to ammonia does not proceed when the low operating condition (generally, the low exhaust temperature range extends to the low load operating range) that is below 200 [° C] There is a problem that it does not increase easily. For example, in the case of a vehicle that travels on a congested road such as an urban route bus, driving at a predetermined temperature or higher does not continue for a long time. The rate remained low and a good NOx reduction effect could not be obtained.

しかも、従来の場合、尿素水を単に排気管内へ直接噴射するだけであるため、排気ガスの排熱から尿素水への熱伝達効率が低く、特に排気温度が低い場合にはアンモニア生成量が少なくなることから、NOx低減に必要な量のアンモニアを選択還元型触媒へ供給できず、NOx低減効果が著しく小さくなるという不具合を有していた。   Moreover, in the conventional case, urea water is simply injected directly into the exhaust pipe, so that the heat transfer efficiency from exhaust gas exhaust heat to urea water is low, especially when the exhaust temperature is low, the amount of ammonia produced is small. Therefore, the amount of ammonia necessary for NOx reduction cannot be supplied to the selective reduction catalyst, and the NOx reduction effect is significantly reduced.

本発明は、斯かる実情に鑑み、排気温度の低い運転状態が長く続くような運行形態の車両であっても、尿素水を積極的にアンモニアに分解することができ、従来より低い排気温度から良好なNOx低減効果が得られる排気浄化装置を提供しようとするものである。   In view of such circumstances, the present invention is capable of actively decomposing urea water into ammonia even when the vehicle is in an operation mode in which an operation state with a low exhaust temperature continues for a long time. It is an object of the present invention to provide an exhaust purification device that can provide a good NOx reduction effect.

本発明は、排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化するようにした排気浄化装置であって、
添加される尿素水に超音波を照射する超音波照射手段を備えたことを特徴とする排気浄化装置にかかるものである。
The present invention is an exhaust emission control device equipped with a selective reduction catalyst in the middle of an exhaust pipe and reducing and purifying NOx by adding urea water as a reducing agent upstream of the selective reduction catalyst,
The present invention relates to an exhaust emission control device comprising ultrasonic irradiation means for irradiating the added urea water with ultrasonic waves.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

運転時に選択還元型触媒の上流側に還元剤として添加される尿素水に、超音波照射手段において超音波が照射されると、キャビテーションによる気泡が発生し、該キャビテーションによる気泡の崩壊時には、短寿命の高温・高圧の局所場(ホットスポット)が形成され、これにより、尿素分子における結合エネルギの低いC−N結合部が切断されるため、たとえ排気温度が低い場合であっても、前記超音波照射手段において超音波が照射された尿素水は、アンモニアと炭酸ガスに効率良く分解され、アンモニア生成量が多くなることから、従来のように尿素水を単に排気管内へ直接噴射するのとは異なり、NOx低減に必要な量のアンモニアを選択還元型触媒へ供給可能となり、該アンモニアが選択還元型触媒上で排気ガス中のNOxと効果的に反応し、該排気ガス中のNOxが従来より低い排気温度から良好に還元浄化される。   When ultrasonic waves are applied to the urea water added as a reducing agent upstream of the selective catalytic reduction catalyst during operation, bubbles are generated by cavitation, and when the bubbles collapse due to the cavitation, the lifetime is short. The high temperature and high pressure local field (hot spot) is formed, and the CN bond portion having a low binding energy in the urea molecule is cut. Therefore, even if the exhaust temperature is low, the ultrasonic wave The urea water irradiated with ultrasonic waves in the irradiation means is efficiently decomposed into ammonia and carbon dioxide gas, and the amount of ammonia produced increases, so it is different from simply injecting urea water directly into the exhaust pipe as in the past. , The amount of ammonia required for NOx reduction can be supplied to the selective catalytic reduction catalyst, and the ammonia is effectively combined with NOx in the exhaust gas on the selective catalytic reduction catalyst. The reaction was, NOx in the exhaust gas is satisfactorily reduced and purified from lower than a conventional exhaust temperature.

前記排気浄化装置においては、振動子により槽全体を振動させて導入される尿素水に超音波を照射し排出する超音波照射槽によって、超音波照射手段を構成することができる。   In the exhaust gas purification apparatus, the ultrasonic irradiation means can be configured by an ultrasonic irradiation tank that irradiates and discharges the urea water introduced by vibrating the entire tank with a vibrator.

又、前記排気浄化装置においては、振動子によりホーンを振動させて導入される尿素水に超音波を照射し排出する超音波照射槽によって、超音波照射手段を構成することもできる。   Further, in the exhaust purification apparatus, the ultrasonic irradiation means can be constituted by an ultrasonic irradiation tank that irradiates and discharges the urea water introduced by vibrating the horn by a vibrator.

本発明の排気浄化装置によれば、排気温度の低い運転状態が長く続くような運行形態の車両であっても、尿素水を積極的にアンモニアに分解することができ、従来より低い排気温度から良好なNOx低減効果が得られるという優れた効果を奏し得る。   According to the exhaust emission control device of the present invention, urea water can be actively decomposed into ammonia even when the vehicle is in an operation mode in which an operation state with a low exhaust temperature continues for a long time. An excellent effect of obtaining a good NOx reduction effect can be obtained.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図4は本発明を実施する形態の一例であって、図示しているディーゼルエンジン1では、ターボチャージャ2が備えられており、エアクリーナ3から導いた空気4が吸気管5を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された空気4が更にインタークーラ6へと送られて冷却され、該インタークーラ6から図示しないインテークマニホールドへと空気4が導かれてディーゼルエンジン1の各シリンダに導入されるようにしてある。   1 to 4 show an example of an embodiment of the present invention. In the illustrated diesel engine 1, a turbocharger 2 is provided, and the air 4 guided from an air cleaner 3 passes through an intake pipe 5. The air 4 sent to the compressor 2a of the turbocharger 2 and pressurized by the compressor 2a is further sent to the intercooler 6 to be cooled, and the air 4 is led from the intercooler 6 to an intake manifold (not shown). Thus, it is introduced into each cylinder of the diesel engine 1.

前記ディーゼルエンジン1の各シリンダから排出された排気ガス7はエキゾーストマニホールド8を介し前記ターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排気ガス7が排気管9を介し車外へ排出されるようにしてある。   Exhaust gas 7 discharged from each cylinder of the diesel engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 8, and the exhaust gas 7 driving the turbine 2b is discharged outside the vehicle through the exhaust pipe 9. It is supposed to be.

又、前記排気ガス7が流通する排気管9の途中には、選択還元型触媒10がケーシング11により抱持されて装備されており、該選択還元型触媒10は、図2に示す如きフロースルー方式のハニカム構造物として形成され、酸素共存下でも選択的にNOxをアンモニアと反応させ得るような性質を有している。   In addition, a selective reduction catalyst 10 is held by a casing 11 in the middle of an exhaust pipe 9 through which the exhaust gas 7 flows. The selective reduction catalyst 10 is flow-through as shown in FIG. It is formed as a honeycomb structure of the type, and has the property that NOx can be selectively reacted with ammonia even in the presence of oxygen.

そして、尿素水12に超音波(周波数がおよそ20[kHz]〜数[MHz]程度)を照射する超音波照射手段13として、尿素水12の流入口14aと流出口14bとを有する超音波照射槽14を配設し、該超音波照射手段13としての超音波照射槽14の流入口14aに尿素水供給ライン15を接続すると共に、前記超音波照射槽14の流出口14bに、超音波が照射された尿素水12を選択還元型触媒10の上流側における排気管9内へ導く添加ノズル16を接続するようにしてある。   And as the ultrasonic irradiation means 13 for irradiating the urea water 12 with ultrasonic waves (frequency is about 20 [kHz] to several [MHz]), the ultrasonic irradiation having the inlet 14a and the outlet 14b of the urea water 12 is performed. A tank 14 is provided, a urea water supply line 15 is connected to an inlet 14a of an ultrasonic irradiation tank 14 as the ultrasonic irradiation means 13, and ultrasonic waves are supplied to an outlet 14b of the ultrasonic irradiation tank 14. An addition nozzle 16 for guiding the irradiated urea water 12 into the exhaust pipe 9 on the upstream side of the selective catalytic reduction catalyst 10 is connected.

ここで、前記超音波照射槽14には、例えば、図3(a)に示す如く、その底部に振動子17を埋め込み、該振動子17により槽全体を振動させて尿素水12に超音波を照射する方式のものを採用したり、或いは図3(b)に示す如く、その内部に、振動子17からの振動を伝えるホーン18を配設し、該振動子17によりホーン18を振動させて尿素水12に超音波を照射する方式のものを採用することができる。尚、前記超音波照射槽14の振動子17は、電源19(図1参照)のオン・オフにより作動・停止するようになっている。   Here, in the ultrasonic irradiation tank 14, for example, as shown in FIG. 3A, a vibrator 17 is embedded at the bottom thereof, and the whole tank is vibrated by the vibrator 17 so that ultrasonic waves are applied to the urea water 12. An irradiating type is adopted, or as shown in FIG. 3B, a horn 18 for transmitting the vibration from the vibrator 17 is disposed therein, and the horn 18 is vibrated by the vibrator 17. A method of irradiating urea water 12 with ultrasonic waves can be employed. The vibrator 17 of the ultrasonic irradiation tank 14 is activated and stopped by turning on and off a power source 19 (see FIG. 1).

又、前記尿素水供給ライン15は、尿素水12が貯留される尿素水タンク20から延び、該尿素水供給ライン15の途中には、尿素水タンク20の尿素水12を圧送する供給ポンプ21と、該供給ポンプ21によって圧送される尿素水12の圧力を調整するレギュレータ22と、該レギュレータ22によって圧力が調整された尿素水12を前記超音波照射手段13としての超音波照射槽14を経て添加ノズル16から噴射させるインジェクタ23とを設けるようにしてある。   The urea water supply line 15 extends from a urea water tank 20 in which the urea water 12 is stored, and a supply pump 21 that pumps the urea water 12 in the urea water tank 20 in the middle of the urea water supply line 15. The regulator 22 for adjusting the pressure of the urea water 12 pumped by the supply pump 21 and the urea water 12 whose pressure has been adjusted by the regulator 22 are added via the ultrasonic irradiation tank 14 as the ultrasonic irradiation means 13. An injector 23 for injecting from the nozzle 16 is provided.

一方、制御装置24からは、前記供給ポンプ21に対し駆動指令信号21aが出力され、前記レギュレータ22に対し調圧指令信号22aが出力され、前記インジェクタ23に対し開弁指令信号23aが出力されるようになっており、該インジェクタ23の開弁作動により尿素水12の添加量が適切に制御され、その添加時に必要な噴射圧力が前記供給ポンプ21の駆動とレギュレータ22の作動により適宜に得られると共に、前記尿素水12の添加時にそれと連動させて前記電源19に対し制御指令信号19aが出力され、添加される尿素水12に超音波が照射されるようになっている。   On the other hand, the control device 24 outputs a drive command signal 21 a to the supply pump 21, outputs a pressure adjustment command signal 22 a to the regulator 22, and outputs a valve opening command signal 23 a to the injector 23. The addition amount of the urea water 12 is appropriately controlled by the valve opening operation of the injector 23, and the injection pressure required at the time of the addition is appropriately obtained by driving the supply pump 21 and the operation of the regulator 22. At the same time, when the urea water 12 is added, a control command signal 19a is output to the power source 19 in conjunction with the urea water 12 so that the urea water 12 to be added is irradiated with ultrasonic waves.

尚、前記制御装置24においては、図示していないエンジン制御コンピュータ(ECU:Electronic Control Unit)との間でディーゼルエンジン1の回転数及び負荷が遣り取りされるようになっており、これらから判断される現在の運転状態に基づきNOxの発生量が推定され、その推定されたNOxの発生量に見合う尿素水12の添加量が算出されて必要量の尿素水12の添加と超音波の照射とが実行されるようになっている。   In the control device 24, the rotational speed and load of the diesel engine 1 are exchanged with an unillustrated engine control computer (ECU: Electronic Control Unit). The amount of NOx generated is estimated based on the current operating state, the amount of urea water 12 added corresponding to the estimated amount of NOx generated is calculated, and the addition of the necessary amount of urea water 12 and ultrasonic irradiation are executed. It has come to be.

次に、上記図示例の作用を説明する。   Next, the operation of the illustrated example will be described.

運転時に、制御装置24からの駆動指令信号21aと調圧指令信号22aと開弁指令信号23aとによって供給ポンプ21とレギュレータ22とインジェクタ23とを作動させることにより、必要量の尿素水12を尿素水供給ライン15から流入口14aを経て超音波照射槽14の内部へ導入すると共に、前記制御装置24からの制御指令信号19aにより電源19をオンにして超音波照射槽14の振動子17を作動させると、該超音波照射槽14内において尿素水12には、超音波が照射される。   During operation, the supply pump 21, the regulator 22, and the injector 23 are actuated by the drive command signal 21 a, the pressure regulation command signal 22 a, and the valve opening command signal 23 a from the control device 24, so that a necessary amount of urea water 12 is urea. The water supply line 15 is introduced into the ultrasonic irradiation tank 14 through the inlet 14a, and the power supply 19 is turned on by the control command signal 19a from the control device 24 to operate the vibrator 17 of the ultrasonic irradiation tank 14. Then, the urea water 12 is irradiated with ultrasonic waves in the ultrasonic irradiation tank 14.

前記超音波照射槽14内において尿素水12に超音波が照射されると、キャビテーションによる気泡が発生し、該キャビテーションによる気泡の崩壊時には、短寿命の高温・高圧の局所場(ホットスポット)が形成され、これにより、尿素分子における結合エネルギの低いC−N結合部が切断されるため、たとえ排気温度が低い場合であっても、前記超音波照射槽14において超音波が照射された尿素水12は、アンモニアと炭酸ガスに効率良く分解され、アンモニア生成量が多くなることから、従来のように尿素水12を単に排気管9内へ直接噴射するのとは異なり、NOx低減に必要な量のアンモニアを選択還元型触媒10へ供給可能となり、該アンモニアが選択還元型触媒10上で排気ガス7中のNOxと効果的に反応し、該排気ガス7中のNOxが従来より低い排気温度から良好に還元浄化されることになる。   When the urea water 12 is irradiated with ultrasonic waves in the ultrasonic irradiation tank 14, bubbles are generated by cavitation, and when the bubbles are collapsed by the cavitation, a short-lived high-temperature and high-pressure local field (hot spot) is formed. As a result, the C—N bond portion having a low binding energy in the urea molecule is cut, so that the urea water 12 irradiated with ultrasonic waves in the ultrasonic irradiation tank 14 even when the exhaust temperature is low. Is efficiently decomposed into ammonia and carbon dioxide gas, and the amount of ammonia produced increases, so that the amount of NOx required for NOx reduction is different from that in which the urea water 12 is simply injected directly into the exhaust pipe 9 as in the prior art. Ammonia can be supplied to the selective catalytic reduction catalyst 10, and the ammonia effectively reacts with NOx in the exhaust gas 7 on the selective catalytic reduction catalyst 10, and the exhaust gas 7 NOx is to be satisfactorily reduced and purified from lower than a conventional exhaust gas temperature.

事実、本発明者等が行った実験結果によれば、図4のグラフに示す如く、前述した本図示例の装置構成にて尿素水12への超音波照射を行うことにより分解されたアンモニアを選択還元型触媒10の上流側に添加するケースXと、このような超音波照射を行わずに尿素水12をそのまま選択還元型触媒10の上流側に添加した従来のケースYとを比較したところ、従来のケースYでは、高いNOx低減率を得るためには選択還元型触媒10の床温(入側排気温度)がおよそ200[℃]以上必要であるのに対し、ケースXでは、選択還元型触媒10の床温(入側排気温度)がおよそ140[℃]程度あれば高いNOx低減率を得られることが実際に確認された。   In fact, according to the results of experiments conducted by the present inventors, as shown in the graph of FIG. 4, the ammonia decomposed by irradiating the urea water 12 with ultrasonic waves in the above-described apparatus configuration of the illustrated example. When comparing the case X added to the upstream side of the selective catalytic reduction catalyst 10 and the conventional case Y in which the urea water 12 is added directly to the upstream side of the selective catalytic reduction catalyst 10 without performing such ultrasonic irradiation. In the conventional case Y, in order to obtain a high NOx reduction rate, the bed temperature (incoming exhaust temperature) of the selective catalytic reduction catalyst 10 is required to be approximately 200 [° C.] or higher, whereas in the case X, selective reduction is performed. It was actually confirmed that a high NOx reduction rate can be obtained if the bed temperature (inlet side exhaust gas temperature) of the type catalyst 10 is about 140 [° C.].

こうして、排気温度の低い運転状態が長く続くような運行形態の車両であっても、尿素水12を積極的にアンモニアに分解することができ、従来より低い排気温度から良好なNOx低減効果が得られる。   In this way, even in a vehicle having an operation mode in which an operation state with a low exhaust temperature continues for a long time, the urea water 12 can be actively decomposed into ammonia, and a favorable NOx reduction effect can be obtained from a lower exhaust temperature than before. It is done.

尚、本発明の排気浄化装置は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   It should be noted that the exhaust emission control device of the present invention is not limited to the illustrated examples described above, and it is needless to say that various modifications can be made without departing from the scope of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. 図1の選択還元型触媒の一部を切り欠いて示す斜視図である。FIG. 2 is a perspective view showing a part of the selective catalytic reduction catalyst of FIG. 図1の超音波照射槽を示す概略断面図であって、(a)は振動子により槽全体を振動させて尿素水に超音波を照射する方式の図、(b)は振動子によりホーンを振動させて尿素水に超音波を照射する方式の図である。It is a schematic sectional drawing which shows the ultrasonic irradiation tank of FIG. 1, (a) is a figure of the system which vibrates the whole tank with a vibrator | oscillator, and irradiates an ultrasonic wave to urea water, (b) is a horn with a vibrator | oscillator. It is a figure of the system which vibrates and irradiates an ultrasonic wave to urea water. 選択還元型触媒床温(入側排気温度)とNOx低減率との関係を示すグラフである。It is a graph which shows the relationship between selective reduction type | mold catalyst bed temperature (inlet side exhaust gas temperature), and NOx reduction rate.

符号の説明Explanation of symbols

1 ディーゼルエンジン
7 排気ガス
9 排気管
10 選択還元型触媒
11 ケーシング
12 尿素水
13 超音波照射手段
14 超音波照射槽
15 尿素水供給ライン
16 添加ノズル
17 振動子
18 ホーン
19 電源
20 尿素水タンク
21 供給ポンプ
22 レギュレータ
23 インジェクタ
DESCRIPTION OF SYMBOLS 1 Diesel engine 7 Exhaust gas 9 Exhaust pipe 10 Selective reduction type catalyst 11 Casing 12 Urea water 13 Ultrasonic irradiation means 14 Ultrasonic irradiation tank 15 Urea water supply line 16 Addition nozzle 17 Vibrator 18 Horn 19 Power supply 20 Urea water tank 21 Supply Pump 22 Regulator 23 Injector

Claims (3)

排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化するようにした排気浄化装置であって、
添加される尿素水に超音波を照射する超音波照射手段を備えたことを特徴とする排気浄化装置。
An exhaust emission control device equipped with a selective reduction catalyst in the middle of an exhaust pipe and reducing and purifying NOx by adding urea water as a reducing agent upstream of the selective reduction catalyst,
An exhaust emission control device comprising ultrasonic irradiation means for irradiating the added urea water with ultrasonic waves.
振動子により槽全体を振動させて導入される尿素水に超音波を照射し排出する超音波照射槽によって、超音波照射手段を構成した請求項1記載の排気浄化装置。   The exhaust emission control device according to claim 1, wherein the ultrasonic irradiation means is configured by an ultrasonic irradiation tank that irradiates and discharges the urea water introduced by vibrating the entire tank with a vibrator. 振動子によりホーンを振動させて導入される尿素水に超音波を照射し排出する超音波照射槽によって、超音波照射手段を構成した請求項1記載の排気浄化装置。   The exhaust emission control device according to claim 1, wherein the ultrasonic irradiation means is constituted by an ultrasonic irradiation tank that irradiates and discharges the urea water introduced by vibrating the horn with a vibrator.
JP2006001402A 2006-01-06 2006-01-06 Exhaust emission control device Pending JP2007182803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006001402A JP2007182803A (en) 2006-01-06 2006-01-06 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001402A JP2007182803A (en) 2006-01-06 2006-01-06 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2007182803A true JP2007182803A (en) 2007-07-19

Family

ID=38339106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001402A Pending JP2007182803A (en) 2006-01-06 2006-01-06 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2007182803A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035669A1 (en) * 2008-09-26 2010-04-01 日産ディーゼル工業株式会社 Exhaust gas purifier for engine
US8146343B2 (en) 2007-08-08 2012-04-03 Ford Global Technologies, Llc Approach for injecting a reductant
JP2014037788A (en) * 2012-08-13 2014-02-27 Isuzu Motors Ltd Exhaust gas post-processing device and internal combustion engine mounted with the same
JP2014037789A (en) * 2012-08-13 2014-02-27 Isuzu Motors Ltd Exhaust gas post-processing device and internal combustion engine mounted with the same
CN105019988A (en) * 2015-08-03 2015-11-04 包头北大工道发动机技术有限公司 Vehicle-mounted urea solution metering, ultrasonic atomizing and supplying device
CN111608769A (en) * 2019-02-23 2020-09-01 彭志军 A three-way catalyst for motor vehicle with ultrasonic exhaust gas decomposition function
WO2021039303A1 (en) * 2019-08-29 2021-03-04 いすゞ自動車株式会社 Liquid injection system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262943A (en) * 1988-08-30 1990-03-02 Meidensha Corp Method of measuring material in cell
JPH0333418A (en) * 1989-06-30 1991-02-13 Shinko Electric Co Ltd Reactor of exhaust gas denitrating device
JP2000352306A (en) * 1999-06-09 2000-12-19 Isuzu Motors Ltd Catalytic exhaust emission control system for diesel engine
JP2001348581A (en) * 2000-06-08 2001-12-18 Shigemi Sawada Liquid molecule cluster miniaturization apparatus and method
JP2005264731A (en) * 2004-03-16 2005-09-29 Hino Motors Ltd Control method for exhaust emission control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0262943A (en) * 1988-08-30 1990-03-02 Meidensha Corp Method of measuring material in cell
JPH0333418A (en) * 1989-06-30 1991-02-13 Shinko Electric Co Ltd Reactor of exhaust gas denitrating device
JP2000352306A (en) * 1999-06-09 2000-12-19 Isuzu Motors Ltd Catalytic exhaust emission control system for diesel engine
JP2001348581A (en) * 2000-06-08 2001-12-18 Shigemi Sawada Liquid molecule cluster miniaturization apparatus and method
JP2005264731A (en) * 2004-03-16 2005-09-29 Hino Motors Ltd Control method for exhaust emission control device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8146343B2 (en) 2007-08-08 2012-04-03 Ford Global Technologies, Llc Approach for injecting a reductant
WO2010035669A1 (en) * 2008-09-26 2010-04-01 日産ディーゼル工業株式会社 Exhaust gas purifier for engine
JP2010077902A (en) * 2008-09-26 2010-04-08 Ud Trucks Corp Engine exhaust emission control device
CN102165155A (en) * 2008-09-26 2011-08-24 优迪卡汽车株式会社 Exhaust gas purifier for engine
US8490389B2 (en) 2008-09-26 2013-07-23 Ud Trucks Corporation Exhaust gas purification apparatus for engine
JP2014037788A (en) * 2012-08-13 2014-02-27 Isuzu Motors Ltd Exhaust gas post-processing device and internal combustion engine mounted with the same
JP2014037789A (en) * 2012-08-13 2014-02-27 Isuzu Motors Ltd Exhaust gas post-processing device and internal combustion engine mounted with the same
CN105019988A (en) * 2015-08-03 2015-11-04 包头北大工道发动机技术有限公司 Vehicle-mounted urea solution metering, ultrasonic atomizing and supplying device
CN111608769A (en) * 2019-02-23 2020-09-01 彭志军 A three-way catalyst for motor vehicle with ultrasonic exhaust gas decomposition function
WO2021039303A1 (en) * 2019-08-29 2021-03-04 いすゞ自動車株式会社 Liquid injection system

Similar Documents

Publication Publication Date Title
JP5804376B2 (en) Exhaust gas purification device for internal combustion engine
JP5465407B2 (en) Exhaust gas purification device for ship use
JP2007182803A (en) Exhaust emission control device
JP2004257325A (en) NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2006009608A (en) Exhaust emission control device
KR100999622B1 (en) Urea injection control device and method of vehicle
JP5861920B2 (en) Exhaust gas purification device for internal combustion engine
JP4681284B2 (en) Exhaust purification device
JP5465408B2 (en) Exhaust gas purification device for ship use
JP4728124B2 (en) Exhaust purification device
JP5975320B2 (en) Exhaust gas purification device for internal combustion engine
JP2006009606A (en) Reducing agent supply device
JP2007182804A (en) Exhaust emission control device
JP2003293739A (en) NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2010144632A (en) Exhaust emission control device
WO2006022214A1 (en) Exhaust gas purifier
JP2013124642A (en) Exhaust emission control device of internal combustion engine
JP2005273509A (en) NOx REMOVAL EQUIPMENT AND NOx REMOVING METHOD
JP2002161732A (en) Exhaust gas cleaning device
JP5915927B2 (en) Exhaust gas purification device for internal combustion engine
JP2005061362A (en) Exhaust emission control device
JP2005264894A (en) Exhaust emission control device
JP2004156471A (en) Denitrator
JP2013032777A (en) Exhaust gas purifying apparatus to be mounted in ship
JP2006002662A (en) Exhaust emission control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111115