[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006009608A - Exhaust emission control device - Google Patents

Exhaust emission control device Download PDF

Info

Publication number
JP2006009608A
JP2006009608A JP2004184588A JP2004184588A JP2006009608A JP 2006009608 A JP2006009608 A JP 2006009608A JP 2004184588 A JP2004184588 A JP 2004184588A JP 2004184588 A JP2004184588 A JP 2004184588A JP 2006009608 A JP2006009608 A JP 2006009608A
Authority
JP
Japan
Prior art keywords
urea water
nox
exhaust gas
exhaust
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004184588A
Other languages
Japanese (ja)
Inventor
Keiichi Nakagome
惠一 中込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2004184588A priority Critical patent/JP2006009608A/en
Publication of JP2006009608A publication Critical patent/JP2006009608A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To miniaturize device constitution related to NO<SB>x</SB>reduction purification using urea water as a reducing agent, to improve mountability onto a vehicle. <P>SOLUTION: This exhaust emission control device is equipped with a selective reduction type catalyst 10 at an intermediate part of an exhaust pipe 9 and constituted to add urea water 17 as the reducing agent upstream of the selective reduction type catalyst 10 to carry out reduction purification of NO<SB>x</SB>. A mixer 20 equipped with a plurality of dispersion plates 19 for allowing exhaust gas 7 to meander to equally disperse the spray of urea water 17, is provided between the added position of the urea water 17 and the selective reduction type catalyst 10. Each dispersion plate 19 and an internal wall 20' of the mixer 20 carry hydrolytic catalysts 25 for decomposing the urea water 17 into ammonia and carbon dioxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device.

従来より、ディーゼルエンジンにおいては、排出ガスが流通する排気管の途中に、酸素共存下でも選択的にNOxを還元剤と反応させる性質を備えた選択還元型触媒を装備し、該選択還元型触媒の上流側に必要量の還元剤を添加して該還元剤を選択還元型触媒上で排出ガス中のNOx(窒素酸化物)と還元反応させ、これによりNOxの排出濃度を低減し得るようにしたものがある。   Conventionally, a diesel engine is equipped with a selective reduction catalyst having a property of selectively reacting NOx with a reducing agent even in the presence of oxygen in the middle of an exhaust pipe through which exhaust gas circulates. A required amount of reducing agent is added upstream of the catalyst so that the reducing agent undergoes a reduction reaction with NOx (nitrogen oxide) in the exhaust gas on the selective catalytic reduction catalyst, thereby reducing the NOx emission concentration. There is what I did.

他方、プラント等における工業的な排煙脱硝処理の分野では、還元剤にアンモニア(NH3)を用いてNOxを還元浄化する手法の有効性が既に広く知られているところであるが、自動車の場合には、アンモニアそのものを搭載して走行することに関し安全確保が困難であるため、近年においては、毒性のない尿素水を還元剤として使用することが研究されている。 On the other hand, in the field of industrial flue gas denitration treatment in plants and the like, the effectiveness of a method for reducing and purifying NOx using ammonia (NH 3 ) as a reducing agent is already widely known. Since it is difficult to ensure safety with respect to traveling with ammonia itself, in recent years, the use of non-toxic urea water as a reducing agent has been studied.

即ち、尿素水を選択還元型触媒の上流側で排出ガス中に添加すれば、該排出ガス中で尿素水がアンモニアと炭酸ガスに熱分解され、選択還元型触媒上で排出ガス中のNOxがアンモニアにより良好に還元浄化されることになる(例えば、特許文献1参照)。
特開2002−161732号公報
That is, if urea water is added to the exhaust gas upstream of the selective catalytic reduction catalyst, the urea water is thermally decomposed into ammonia and carbon dioxide gas in the exhaust gas, and NOx in the exhaust gas is converted to ammonia on the selective catalytic reduction catalyst. It is reduced and purified well by ammonia (see, for example, Patent Document 1).
JP 2002-161732 A

図2は尿素水を還元剤としてNOxを還元浄化するようにした排気浄化装置の一例を示すもので、図1中における符号1はディーゼル機関であるエンジンを示し、ここに図示しているエンジン1では、ターボチャージャ2が備えられており、エアクリーナ3から導いた空気4が吸気管5を介し前記ターボチャージャ2のコンプレッサ2aへと送られ、該コンプレッサ2aで加圧された空気4が更にインタークーラ6へと送られて冷却され、該インタークーラ6から図示しないインテークマニホールドへと空気4が導かれてエンジン1の各シリンダに導入されるようにしてある。   FIG. 2 shows an example of an exhaust gas purification device that reduces and purifies NOx using urea water as a reducing agent. Reference numeral 1 in FIG. 1 denotes an engine that is a diesel engine. The turbocharger 2 is provided, and the air 4 guided from the air cleaner 3 is sent to the compressor 2a of the turbocharger 2 through the intake pipe 5, and the air 4 pressurized by the compressor 2a is further supplied to the intercooler. The air 4 is led to an intake manifold (not shown) from the intercooler 6 and introduced into each cylinder of the engine 1.

また、このエンジン1の各シリンダから排出された排出ガス7がエキゾーストマニホールド8を介し前記ターボチャージャ2のタービン2bへと送られ、該タービン2bを駆動した排出ガス7が排気管9を介し車外へ排出されるようにしてある。   The exhaust gas 7 discharged from each cylinder of the engine 1 is sent to the turbine 2b of the turbocharger 2 through the exhaust manifold 8, and the exhaust gas 7 that has driven the turbine 2b goes out of the vehicle through the exhaust pipe 9. It is supposed to be discharged.

そして、排出ガス7が流通する排気管9の途中には、酸素共存下でも選択的にNOxをアンモニアと反応させ得る性質を備えた選択還元型触媒10がケーシング11により抱持されて装備されており、このケーシング11内における選択還元型触媒10の前段には、酸化鉄(Fe23)等のような酸化作用の弱い鉄系の加水分解触媒12が装備されている。 In the middle of the exhaust pipe 9 through which the exhaust gas 7 circulates, a selective reduction catalyst 10 having a property capable of selectively reacting NOx with ammonia even in the presence of oxygen is held and equipped by a casing 11. In addition, an iron-based hydrolysis catalyst 12 having a weak oxidizing action, such as iron oxide (Fe 2 O 3 ), is provided in the front stage of the selective reduction catalyst 10 in the casing 11.

また、ケーシング11より上流側の排気管9に噴射ノズル13’付き尿素水噴射弁13が設置され、該尿素水噴射弁13と所要場所に設けた尿素水タンク14との間が尿素水供給ライン15により接続されており、該尿素水供給ライン15の途中に装備した供給ポンプ16の駆動により尿素水タンク14内の尿素水17(還元剤)を尿素水噴射弁13を介し選択還元型触媒10の上流側に添加し得るようになっていて、これら尿素水噴射弁13と尿素水タンク14と尿素水供給ライン15と供給ポンプ16とにより尿素水添加装置18が構成されている。   A urea water injection valve 13 with an injection nozzle 13 ′ is installed in the exhaust pipe 9 upstream of the casing 11, and a urea water supply line is provided between the urea water injection valve 13 and a urea water tank 14 provided at a required location. 15, the urea water 17 (reducing agent) in the urea water tank 14 is driven through the urea water injection valve 13 by the drive of the supply pump 16 provided in the middle of the urea water supply line 15. These urea water injection valves 13, the urea water tank 14, the urea water supply line 15, and the supply pump 16 constitute a urea water adding device 18.

そして、この尿素水添加装置18による尿素水17の添加位置(噴射ノズル13’の開口位置)とケーシング11との間に、排出ガス7を蛇行させて尿素水17の噴霧を均等に拡散し得るよう複数枚の分散板19を装備したミキサ20が設けられており、また、前記ケーシング11内における選択還元型触媒10の直後には、リークアンモニア対策として余剰のアンモニアを酸化処理するNH3スリップ触媒21が装備されている。 Then, the spray of the urea water 17 can be evenly diffused by meandering the exhaust gas 7 between the addition position of the urea water 17 (opening position of the injection nozzle 13 ′) by the urea water addition device 18 and the casing 11. A mixer 20 equipped with a plurality of dispersion plates 19 is provided, and immediately after the selective reduction catalyst 10 in the casing 11, an NH 3 slip catalyst that oxidizes surplus ammonia as a countermeasure against leaked ammonia. 21 is equipped.

また、尿素水17の添加位置(噴射ノズル13’の開口位置)より上流側の適宜位置と、ケーシング11より下流側の適宜位置とに、排出ガス7中のNOx濃度を検出するNOxセンサ22,23が夫々装備されており、これらNOxセンサ22,23からの検出信号22a,23aが、エンジン制御コンピュータ(ECU:Electronic Control Unit)を成す制御装置24に対し入力され、尿素水17の添加量に見合う適切なNOx低減率が得られているかどうかが監視されるようになっている。   Further, a NOx sensor 22 that detects the NOx concentration in the exhaust gas 7 at an appropriate position upstream of the addition position of the urea water 17 (opening position of the injection nozzle 13 ′) and an appropriate position downstream of the casing 11. 23 are respectively provided, and the detection signals 22a and 23a from these NOx sensors 22 and 23 are input to a control device 24 constituting an engine control computer (ECU: Electronic Control Unit), and the added amount of urea water 17 is determined. Whether or not a suitable NOx reduction rate is obtained is monitored.

他方、前記制御装置24からは、尿素水噴射弁13と供給ポンプ16に対し開弁指令信号13aと駆動指令信号16aが夫々出力されるようになっており、前記尿素水噴射弁13の開弁作動により尿素水17の添加量が適切に制御され、その尿素水17の添加時に必要な噴射圧力が前記供給ポンプ16の駆動により適宜に得られるようになっている。   On the other hand, the control device 24 outputs a valve opening command signal 13a and a drive command signal 16a to the urea water injection valve 13 and the supply pump 16, respectively. The addition amount of the urea water 17 is appropriately controlled by the operation, and an injection pressure required when the urea water 17 is added can be appropriately obtained by driving the supply pump 16.

而して、このように構成された排気浄化装置によれば、尿素水添加装置18により噴射ノズル13’から噴射された尿素水17の噴霧が、ミキサ20に導入されて複数枚の分散板19の間を蛇行して流れ、このミキサ20内で均等に拡散された状態となって加水分解触媒12に入り、該加水分解触媒12において、次式
[化1]
(NH22CO+H2O→2NH3+CO2
のような分解反応が促進され、尿素水17が比較的低い温度領域から効率良くアンモニアと炭酸ガスに分解される。
Thus, according to the exhaust gas purification apparatus configured in this way, the spray of urea water 17 injected from the injection nozzle 13 ′ by the urea water adding apparatus 18 is introduced into the mixer 20 and a plurality of the dispersion plates 19. Meanderingly flows between the two components and is evenly diffused in the mixer 20 and enters the hydrolysis catalyst 12. In the hydrolysis catalyst 12, the following formula [Chemical Formula 1]
(NH 2 ) 2 CO + H 2 O → 2NH 3 + CO 2
Thus, the urea water 17 is efficiently decomposed into ammonia and carbon dioxide gas from a relatively low temperature range.

次いで、後段の選択還元型触媒10にて反応性の高いアンモニアにより、主として以下の各式
[化2]
4NH3+4NO+O2→4N2+6H2
[化3]
4NH3+2NO+O2→3N2+6H2
[化4]
2NH3+NO+NO2→2N2+3H2
の何れかにより排出ガス7中のNOxが効率良く窒素に還元処理されることになり、尿素水17をそのままNOxと反応させる場合よりも比較的低い温度領域からNOxを還元浄化させることが可能となる。
Next, ammonia having high reactivity in the selective catalytic reduction catalyst 10 in the latter stage mainly uses the following formulas [Chemical Formula 2]
4NH 3 + 4NO + O 2 → 4N 2 + 6H 2 O
[Chemical formula 3]
4NH 3 + 2NO + O 2 → 3N 2 + 6H 2 O
[Chemical formula 4]
2NH 3 + NO + NO 2 → 2N 2 + 3H 2 O
Thus, NOx in the exhaust gas 7 is efficiently reduced to nitrogen, and it is possible to reduce and purify NOx from a relatively lower temperature range than when the urea water 17 is reacted with NOx as it is. Become.

しかしながら、このような排気浄化装置にあっては、還元剤に尿素水17を利用しても比較的低い温度領域から高いNOx低減率を得ることができる反面、選択還元型触媒10の前後にミキサ20や加水分解触媒12、NH3スリップ触媒21といった付帯構成が必要となるため、NOxの還元浄化に関連する装置構成が排気管9の長手方向に長尺なものとなって車両への搭載性が著しく悪くなるという問題があった。 However, in such an exhaust purification device, even if urea water 17 is used as the reducing agent, a high NOx reduction rate can be obtained from a relatively low temperature range, but on the other hand, the mixer is placed before and after the selective catalytic reduction catalyst 10. 20, the hydrolysis catalyst 12, and the NH 3 slip catalyst 21 are required, so that the apparatus configuration related to NOx reduction purification is long in the longitudinal direction of the exhaust pipe 9 and can be mounted on a vehicle. There was a problem that it became extremely worse.

また、この図2には特に図示していないが、ディーゼルエンジンの場合には、パティキュレート対策としてパティキュレートフィルタを排気管9の途中に搭載する必要もあり、このパティキュレートフィルタの搭載性に悪影響を及ぼさないためにもNOxの還元浄化に関連する装置構成をコンパクト化することが望まれている。   Although not particularly shown in FIG. 2, in the case of a diesel engine, it is necessary to mount a particulate filter in the middle of the exhaust pipe 9 as a measure against particulates, which adversely affects the mountability of the particulate filter. Therefore, it is desired to make the apparatus configuration related to NOx reduction purification compact.

本発明は上述の実情に鑑みてなしたもので、尿素水を還元剤としたNOxの還元浄化に関連する装置構成のコンパクト化を図り、車両への搭載性を向上することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object of the present invention is to reduce the size of the apparatus related to the reduction and purification of NOx using urea water as a reducing agent, and to improve the mountability in a vehicle.

本発明は、排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化するようにした排気浄化装置であって、尿素水の添加位置と選択還元型触媒との間に、排出ガスを蛇行させて尿素水の噴霧を均等に拡散し得るよう複数枚の分散板を装備したミキサを設け、該ミキサの各分散板と内壁に、尿素水をアンモニアと二酸化炭素に分解する加水分解触媒を担持させたことを特徴とするものである。   The present invention is an exhaust emission control device equipped with a selective reduction catalyst in the middle of an exhaust pipe and reducing and purifying NOx by adding urea water as a reducing agent upstream of the selective reduction catalyst, A mixer equipped with a plurality of dispersion plates is provided between the urea water addition position and the selective catalytic reduction catalyst so that the exhaust gas can meander and the spray of urea water can be evenly diffused, and each dispersion plate of the mixer is provided. And a hydrolysis catalyst for decomposing urea water into ammonia and carbon dioxide is supported on the inner wall.

而して、このようにすれば、還元剤として添加した尿素水の噴霧が、ミキサ内を蛇行して流れる間に均等に拡散され、同時にミキサ内の各分散板と内壁に担持された加水分解触媒に接触して尿素水をアンモニアと二酸化炭素に分解する分解反応が促進されるので、従来と同じように、比較的低い温度領域から尿素水を効率良く分解して反応性の高いアンモニアを選択還元型触媒に導くことが可能となり、比較的低い温度領域から高いNOx低減率が得られることになる。   Thus, in this way, the spray of urea water added as a reducing agent is evenly diffused while flowing in a meandering manner in the mixer, and at the same time, hydrolysis carried on each dispersion plate and inner wall in the mixer. Since the decomposition reaction that decomposes urea water into ammonia and carbon dioxide in contact with the catalyst is promoted, as in the past, urea water is efficiently decomposed from a relatively low temperature range to select highly reactive ammonia. It is possible to lead to a reduction catalyst, and a high NOx reduction rate can be obtained from a relatively low temperature range.

この際、従来においてミキサの後段に独立して配置されていた加水分解触媒による触媒作用がミキサにより受け持たれるので、ミキサの後段に加水分解触媒を配置する必要がなくなり、ミキサの直後に選択還元型触媒を配置することで装置全長が短縮されて装置構成のコンパクト化が図られる。   In this case, since the catalytic action of the hydrolysis catalyst that has been arranged independently in the subsequent stage of the mixer is handled by the mixer, it is not necessary to arrange the hydrolysis catalyst in the subsequent stage of the mixer, and selective reduction immediately after the mixer. By arranging the mold catalyst, the overall length of the apparatus is shortened, and the apparatus configuration can be made compact.

また、本発明においては、尿素水の添加位置より上流側で排出ガス中のNOx濃度を検出する第一のNOxセンサと、選択還元型触媒より下流側で排出ガス中のNOx濃度を検出する第二のNOxセンサと、これら各NOxセンサの近傍位置に夫々配置されて排出ガスの温度を検出する温度センサと、該各温度センサからの検出信号に基づき前記各NOxセンサの熱による劣化の度合を推定し且つその劣化の度合に応じて前記各NOxセンサの検出値を補正し得るように構成すると良い。   Further, in the present invention, the first NOx sensor that detects the NOx concentration in the exhaust gas upstream from the urea water addition position and the NOx concentration in the exhaust gas that detects the NOx concentration in the exhaust gas downstream from the selective catalytic reduction catalyst. Two NOx sensors, a temperature sensor arranged near each of these NOx sensors to detect the temperature of exhaust gas, and the degree of deterioration of each NOx sensor due to heat based on a detection signal from each temperature sensor. It may be configured to be able to correct the detected value of each NOx sensor according to the estimation and the degree of deterioration.

このようにすれば、高温の排出ガスに晒されているNOxセンサの熱による劣化の度合を推定し、その劣化の度合に応じて各NOxセンサの検出値を補正することが可能となり、各NOxセンサによる検出値と実際のNOx濃度とのずれを極力低減して検出精度を高く維持することが可能となる。   In this way, it is possible to estimate the degree of deterioration due to heat of the NOx sensor exposed to the high temperature exhaust gas, and to correct the detected value of each NOx sensor according to the degree of deterioration. It is possible to reduce the difference between the detected value by the sensor and the actual NOx concentration as much as possible and maintain high detection accuracy.

更に、本発明においては、排気管の長手方向における選択還元型触媒の直後に、余剰のアンモニアを酸化処理するNH3スリップ触媒を設けることが好ましく、このようにすれば、選択還元型触媒を未反応のまま通過してしまった余剰のアンモニアをNOやH2Oに酸化処理して無害化することが可能となる。 Further, in the present invention, it is preferable to provide an NH 3 slip catalyst for oxidizing excess ammonia immediately after the selective reduction catalyst in the longitudinal direction of the exhaust pipe. Excess ammonia that has passed through the reaction can be rendered harmless by oxidizing it with NO or H 2 O.

上記した本発明の排気浄化装置によれば、下記の如き種々の優れた効果を奏し得る。   According to the exhaust emission control device of the present invention described above, various excellent effects as described below can be obtained.

(I)本発明の請求項1に記載の発明によれば、尿素水の噴霧をミキサ内を蛇行させて流す間に均等に拡散し且つ各分散板と内壁に担持された加水分解触媒と接触させてアンモニアと二酸化炭素に効率良く分解させることができるので、ミキサの後段に独立して配置されていた従来の如き加水分解触媒を不要として装置構成のコンパクト化を図ることができ、車両への搭載性を大幅に向上することができる。   (I) According to the invention described in claim 1 of the present invention, the spray of urea water is evenly diffused while flowing through the mixer while being in contact with the hydrolysis catalyst carried on each dispersion plate and the inner wall. Therefore, it can be efficiently decomposed into ammonia and carbon dioxide, so that it is possible to reduce the size of the apparatus by eliminating the need for a conventional hydrolysis catalyst that has been arranged independently after the mixer. Mountability can be greatly improved.

(II)本発明の請求項2に記載の発明によれば、高温の排出ガスに晒されているNOxセンサが熱による劣化を生じても、その劣化の度合に応じて各NOxセンサの検出値を補正するようにしているので、各NOxセンサによる検出値と実際のNOx濃度とのずれを極力低減して検出精度を高く維持することができる。   (II) According to the invention described in claim 2 of the present invention, even if the NOx sensor exposed to the high temperature exhaust gas deteriorates due to heat, the detected value of each NOx sensor according to the degree of deterioration. Therefore, the deviation between the detected value of each NOx sensor and the actual NOx concentration can be reduced as much as possible to maintain high detection accuracy.

(III)本発明の請求項3に記載の発明によれば、選択還元型触媒を未反応のまま通過してしまった余剰のアンモニアをNOやH2Oに酸化処理して無害化させることができ、最終的に大気中へ排出される排出ガス中にアンモニアが残存してしまう虞れを未然に回避することができる。 (III) According to the invention described in claim 3 of the present invention, surplus ammonia that has passed through the selective reduction catalyst in an unreacted state is oxidized to NO or H 2 O to be rendered harmless. It is possible to avoid the possibility of ammonia remaining in the exhaust gas finally discharged into the atmosphere.

以下本発明の実施の形態を図面を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明を実施する形態の一例を示すもので、この図1に示す本形態例の排気浄化装置においては、先に説明した図2の従来例にてミキサ20の後段に独立して配置されていた加水分解触媒12を廃止し、その替わりにミキサ20の各分散板19と内壁20’に、尿素水17をアンモニアと二酸化炭素に分解する加水分解触媒25を担持させ、ミキサ20の直後に選択還元型触媒10が配置されるようにしてある。   FIG. 1 shows an example of an embodiment for carrying out the present invention. In the exhaust emission control device of this embodiment shown in FIG. 1, in the conventional example of FIG. The disposed hydrolysis catalyst 12 is abolished, and instead, each dispersion plate 19 and inner wall 20 ′ of the mixer 20 is loaded with a hydrolysis catalyst 25 that decomposes the urea water 17 into ammonia and carbon dioxide. Immediately after that, the selective catalytic reduction catalyst 10 is arranged.

また、特に本形態例においては、各NOxセンサ22,23の近傍位置に排出ガス7の温度を検出する温度センサ26,27を夫々配置しており、該各温度センサ26,27からの検出信号26a,27aが制御装置24に入力されるようにしてある。   In particular, in the present embodiment, temperature sensors 26 and 27 for detecting the temperature of the exhaust gas 7 are arranged in the vicinity of the NOx sensors 22 and 23, respectively, and detection signals from the temperature sensors 26 and 27 are provided. 26 a and 27 a are input to the control device 24.

他方、制御装置24においては、前記各温度センサ26,27からの検出信号26a,27aに基づき、前記各NOxセンサ22,23の熱による劣化の度合を推定し且つその劣化の度合に応じて前記各NOxセンサ22,23の検出値を補正し得るように構成されている。   On the other hand, in the control device 24, the degree of deterioration due to heat of the NOx sensors 22 and 23 is estimated based on the detection signals 26a and 27a from the temperature sensors 26 and 27, and the degree of deterioration depends on the degree of deterioration. The detection values of the NOx sensors 22 and 23 can be corrected.

即ち、各NOxセンサ22,23は、高温の排出ガス7に晒されることにより徐々に劣化して出力が低下してくるが、その劣化の度合は、どれほどの温度帯に何時間晒されたかにより異なるので、各NOxセンサ22,23が晒された温度帯と時間を制御装置24に記録し、これを基に各NOxセンサ22,23の劣化の度合を推定して補正劣化係数を算出し、この補正劣化係数を各NOxセンサ22,23の検出値に乗算して該検出値の補正を行うようにしている。   That is, the NOx sensors 22 and 23 are gradually deteriorated by being exposed to the high-temperature exhaust gas 7, and the output is lowered. The degree of the deterioration depends on what temperature zone and how many hours it has been exposed. Since it is different, the temperature zone and time at which each NOx sensor 22, 23 is exposed are recorded in the control device 24, and based on this, the degree of deterioration of each NOx sensor 22, 23 is estimated to calculate a corrected deterioration coefficient, This detected deterioration coefficient is multiplied by the detected value of each NOx sensor 22, 23 to correct the detected value.

而して、このようにすれば、還元剤として添加した尿素水17の噴霧が、ミキサ20内を蛇行して流れる間に均等に拡散され、同時にミキサ20内の各分散板19と内壁20’に担持された加水分解触媒25に接触して尿素水17をアンモニアと二酸化炭素に分解する分解反応が促進されるので、従来と同じように、比較的低い温度領域から尿素水17を効率良く分解して反応性の高いアンモニアを選択還元型触媒10に導くことが可能となり、比較的低い温度領域から高いNOx低減率が得られることになる。   Thus, in this way, the spray of urea water 17 added as a reducing agent is evenly diffused while meandering and flowing in the mixer 20, and at the same time, each dispersion plate 19 and inner wall 20 'in the mixer 20. Since the decomposition reaction of decomposing urea water 17 into ammonia and carbon dioxide is promoted in contact with the hydrolysis catalyst 25 supported on the catalyst, the urea water 17 is efficiently decomposed from a relatively low temperature range as in the prior art. Thus, highly reactive ammonia can be guided to the selective catalytic reduction catalyst 10, and a high NOx reduction rate can be obtained from a relatively low temperature range.

この際、従来においてミキサ20の後段に独立して配置されていた加水分解触媒による触媒作用がミキサ20により受け持たれるので、ミキサ20の後段に加水分解触媒12(図2参照)を配置する必要がなくなり、ミキサ20の直後に選択還元型触媒10を配置することで装置全長が短縮されて装置構成のコンパクト化が図られる。   At this time, since the catalytic action of the hydrolysis catalyst that is conventionally arranged independently in the subsequent stage of the mixer 20 is handled by the mixer 20, it is necessary to arrange the hydrolysis catalyst 12 (see FIG. 2) in the subsequent stage of the mixer 20. By arranging the selective catalytic reduction catalyst 10 immediately after the mixer 20, the overall length of the apparatus is shortened and the apparatus configuration can be made compact.

従って、上記形態例によれば、尿素水17の噴霧をミキサ20内を蛇行させて流す間に均等に拡散し且つ各分散板19と内壁20’に担持された加水分解触媒25と接触させてアンモニアと二酸化炭素に効率良く分解させることができるので、ミキサ20の後段に独立して配置されていた従来の如き加水分解触媒12(図2参照)を不要として装置構成のコンパクト化を図ることができ、車両への搭載性を大幅に向上することができる。   Therefore, according to the above embodiment, the spray of urea water 17 is evenly diffused while meandering in the mixer 20 and is brought into contact with each of the dispersion plates 19 and the hydrolysis catalyst 25 carried on the inner wall 20 ′. Since it can be efficiently decomposed into ammonia and carbon dioxide, the conventional hydrolysis catalyst 12 (see FIG. 2), which is arranged independently after the mixer 20, is not required, and the apparatus configuration can be made compact. It is possible to greatly improve the mountability on the vehicle.

更に、特に本形態例においては、高温の排出ガス7に晒されているNOxセンサ22,23が熱による劣化を生じても、その劣化の度合に応じ制御装置24で各NOxセンサ22,23の検出値を補正するようにしているので、各NOxセンサ22,23による検出値と実際のNOx濃度とのずれを極力低減して検出精度を高く維持することができ、延いては、前記制御装置24による尿素水17の添加量制御を正確に実行することができる。   Further, particularly in this embodiment, even if the NOx sensors 22 and 23 exposed to the high temperature exhaust gas 7 are deteriorated due to heat, the control device 24 controls the NOx sensors 22 and 23 according to the degree of deterioration. Since the detection value is corrected, the deviation between the detection value of each NOx sensor 22 and 23 and the actual NOx concentration can be reduced as much as possible to maintain high detection accuracy. The amount control of the urea water 17 by 24 can be executed accurately.

また、本形態例においても、先に説明した図2の従来例と同様に、排気管9の長手方向における選択還元型触媒10の直後に、余剰のアンモニアを酸化処理するNH3スリップ触媒21を設けているので、選択還元型触媒10を未反応のまま通過してしまった余剰のアンモニアを次式
[化5]
4NH3+5O2→4NO+6H2
によりNOやH2Oに酸化処理して無害化させることができ、最終的に大気中へ排出される排出ガス7中にアンモニアが残存してしまう虞れを未然に回避することができる。
Also in the present embodiment, as in the conventional example of FIG. 2 described above, an NH 3 slip catalyst 21 that oxidizes excess ammonia immediately after the selective reduction catalyst 10 in the longitudinal direction of the exhaust pipe 9 is provided. Therefore, surplus ammonia that has passed through the selective catalytic reduction catalyst 10 unreacted is represented by the following formula [Chemical Formula 5].
4NH 3 + 5O 2 → 4NO + 6H 2 O
Thus, it can be rendered harmless by oxidizing it into NO or H 2 O, and it is possible to avoid the possibility of ammonia remaining in the exhaust gas 7 finally discharged into the atmosphere.

尚、本発明の排気浄化装置は、上述の形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   Note that the exhaust emission control device of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention.

本発明を実施する形態の一例を示す概略図である。It is the schematic which shows an example of the form which implements this invention. NOxを還元浄化する従来の排気浄化装置の一例を示す概略図である。It is the schematic which shows an example of the conventional exhaust gas purification apparatus which carries out reduction purification of NOx.

符号の説明Explanation of symbols

7 排出ガス
9 排気管
10 選択還元型触媒
17 尿素水
18 尿素水添加装置
19 分散板
20 ミキサ
20’ 内壁
21 NH3スリップ触媒
22 NOxセンサ(第一のNOxセンサ)
22a 検出信号
23 NOxセンサ(第二のNOxセンサ)
23a 検出信号
24 制御装置
25 加水分解触媒
26 温度センサ
26a 検出信号
27 温度センサ
27a 検出信号
7 Exhaust gas 9 Exhaust pipe 10 Selective reduction type catalyst 17 Urea water 18 Urea water addition device 19 Dispersion plate 20 Mixer 20 'inner wall 21 NH 3 slip catalyst 22 NOx sensor (first NOx sensor)
22a Detection signal 23 NOx sensor (second NOx sensor)
23a Detection signal 24 Controller 25 Hydrolysis catalyst 26 Temperature sensor 26a Detection signal 27 Temperature sensor 27a Detection signal

Claims (3)

排気管の途中に選択還元型触媒を装備し且つ該選択還元型触媒の上流側に還元剤として尿素水を添加してNOxを還元浄化するようにした排気浄化装置であって、尿素水の添加位置と選択還元型触媒との間に、排出ガスを蛇行させて尿素水の噴霧を均等に拡散し得るよう複数枚の分散板を装備したミキサを設け、該ミキサの各分散板と内壁に、尿素水をアンモニアと二酸化炭素に分解する加水分解触媒を担持させたことを特徴とする排気浄化装置。   An exhaust gas purification apparatus equipped with a selective reduction catalyst in the middle of an exhaust pipe and adding urea water as a reducing agent to the upstream side of the selective reduction catalyst to reduce and purify NOx. A mixer equipped with a plurality of dispersion plates is provided between the position and the selective catalytic reduction catalyst so that the exhaust gas can meander and the spray of urea water can be evenly diffused. An exhaust emission control device comprising a hydrolysis catalyst for decomposing urea water into ammonia and carbon dioxide. 尿素水の添加位置より上流側で排出ガス中のNOx濃度を検出する第一のNOxセンサと、選択還元型触媒より下流側で排出ガス中のNOx濃度を検出する第二のNOxセンサと、これら各NOxセンサの近傍位置に夫々配置されて排出ガスの温度を検出する温度センサと、該各温度センサからの検出信号に基づき前記各NOxセンサの熱による劣化の度合を推定し且つその劣化の度合に応じて前記各NOxセンサの検出値を補正し得るように構成したことを特徴とする請求項1に記載の排気浄化装置。   A first NOx sensor that detects the NOx concentration in the exhaust gas upstream from the urea water addition position, a second NOx sensor that detects the NOx concentration in the exhaust gas downstream from the selective catalytic reduction catalyst, and these A temperature sensor that is disposed in the vicinity of each NOx sensor and detects the temperature of the exhaust gas, and the degree of deterioration of each NOx sensor due to heat is estimated based on the detection signal from each temperature sensor and the degree of deterioration The exhaust emission control device according to claim 1, wherein the exhaust purification device is configured to be able to correct the detected value of each NOx sensor according to the conditions. 排気管の長手方向における選択還元型触媒の直後に、余剰のアンモニアを酸化処理するNH3スリップ触媒を設けたことを特徴とする請求項1又は2に記載の排気浄化装置。 The exhaust emission control device according to claim 1 or 2, wherein an NH 3 slip catalyst for oxidizing excess ammonia is provided immediately after the selective reduction catalyst in the longitudinal direction of the exhaust pipe.
JP2004184588A 2004-06-23 2004-06-23 Exhaust emission control device Pending JP2006009608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004184588A JP2006009608A (en) 2004-06-23 2004-06-23 Exhaust emission control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004184588A JP2006009608A (en) 2004-06-23 2004-06-23 Exhaust emission control device

Publications (1)

Publication Number Publication Date
JP2006009608A true JP2006009608A (en) 2006-01-12

Family

ID=35777133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004184588A Pending JP2006009608A (en) 2004-06-23 2004-06-23 Exhaust emission control device

Country Status (1)

Country Link
JP (1) JP2006009608A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037924A1 (en) 2007-09-21 2009-03-26 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
EP2075051A2 (en) * 2007-12-14 2009-07-01 Hyundai Motor Company Apparatus for reducing nitrogen oxide in exhaust pipe
KR100949382B1 (en) 2009-09-18 2010-03-25 광성(주) Scr system
KR100949383B1 (en) * 2009-09-18 2010-03-25 광성(주) Scr system
KR100951440B1 (en) * 2009-09-18 2010-04-07 광성(주) Scr system of ship with bypass system
KR100953951B1 (en) * 2009-09-18 2010-04-21 광성(주) Scr system with anti vibration device
WO2010100352A1 (en) * 2009-03-04 2010-09-10 Renault S.A.S. Device and method for processing nitrogen oxides contained in exhaust gases
KR100999617B1 (en) 2007-12-14 2010-12-08 현대자동차주식회사 Monitoring system for selective catalytic reduction of vehicle
EP2278132A1 (en) 2009-06-30 2011-01-26 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification system
KR101011758B1 (en) 2008-07-17 2011-02-07 희성촉매 주식회사 After-treatment apparatus for treating exhaust gases from diesel engines
EP2284371A1 (en) 2009-08-05 2011-02-16 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification apparatus
EP2292904A2 (en) 2009-09-02 2011-03-09 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification apparatus
EP2295754A1 (en) 2009-08-05 2011-03-16 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purifing apparatus
EP2299080A1 (en) 2009-09-02 2011-03-23 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification apparatus
EP2299078A1 (en) 2009-09-02 2011-03-23 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification apparatus
CN102350217A (en) * 2011-09-08 2012-02-15 北京龙电宏泰环保科技有限公司 High-efficiency and low-resistance static mixer for selective catalytic reduction system
EP2570178A1 (en) * 2011-09-19 2013-03-20 Hug Engineering AG Mixing device
KR101394885B1 (en) * 2013-03-25 2014-05-14 (주)광산 Selective catalytic reduction system for marine structure
WO2014087763A1 (en) 2012-12-03 2014-06-12 トヨタ自動車株式会社 System for determining deterioration of exhaust purification device
US8800271B2 (en) 2009-09-18 2014-08-12 Kwang Sung Co., Ltd. Selective catalyst reduction system with bypass system
JP2014163232A (en) * 2013-02-21 2014-09-08 Toyota Motor Corp Dispersion plate and dispersion device
EP2529091B1 (en) 2010-01-25 2016-04-06 Peugeot Citroën Automobiles SA Exhaust gas aftertreatment device of an internal combustion engine
WO2018153162A1 (en) * 2017-02-22 2018-08-30 天纳克(苏州)排放系统有限公司 Tail gas post-treatment apparatus
CN109876626A (en) * 2019-02-28 2019-06-14 华电电力科学研究院有限公司 A kind of three-stage urea pyrolysis ammonia denitrating system and its working method
WO2019128163A1 (en) * 2017-12-29 2019-07-04 天纳克(苏州)排放系统有限公司 Tail gas after-treatment mixing apparatus and package thereof
CN110073089A (en) * 2016-12-21 2019-07-30 珀金斯发动机有限公司 Method for selective catalytic reduction system operating
CN110073087A (en) * 2016-12-21 2019-07-30 珀金斯发动机有限公司 Method and apparatus for selective catalytic reduction system operating
JP2020037902A (en) * 2018-09-04 2020-03-12 株式会社Soken Exhaust emission control device for internal combustion engine
JP2021030203A (en) * 2019-08-16 2021-03-01 練韓奇 Exhaust smoke denitration treatment equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047979A (en) * 2000-08-03 2002-02-15 Hitachi Ltd Engine controller ! exhaust air particulate treatment device for internal combustion engine
JP2002161732A (en) * 2000-11-30 2002-06-07 Hino Motors Ltd Exhaust gas cleaning device
JP2003232218A (en) * 2002-02-08 2003-08-22 Hino Motors Ltd Exhaust emission control device for engine
JP2004100700A (en) * 2002-09-04 2004-04-02 Ford Global Technologies Llc Exhaust emission control and its diagnosis
JP2004510909A (en) * 2000-10-04 2004-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for forming a mixture of reducing agent and exhaust gas and exhaust gas purification device
JP2004132286A (en) * 2002-10-11 2004-04-30 Nikki Co Ltd Exhaust emission control system
WO2004047952A2 (en) * 2002-11-22 2004-06-10 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust gas system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047979A (en) * 2000-08-03 2002-02-15 Hitachi Ltd Engine controller ! exhaust air particulate treatment device for internal combustion engine
JP2004510909A (en) * 2000-10-04 2004-04-08 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for forming a mixture of reducing agent and exhaust gas and exhaust gas purification device
JP2002161732A (en) * 2000-11-30 2002-06-07 Hino Motors Ltd Exhaust gas cleaning device
JP2003232218A (en) * 2002-02-08 2003-08-22 Hino Motors Ltd Exhaust emission control device for engine
JP2004100700A (en) * 2002-09-04 2004-04-02 Ford Global Technologies Llc Exhaust emission control and its diagnosis
JP2004132286A (en) * 2002-10-11 2004-04-30 Nikki Co Ltd Exhaust emission control system
WO2004047952A2 (en) * 2002-11-22 2004-06-10 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust gas system

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009037924A1 (en) 2007-09-21 2009-03-26 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for internal combustion engine
US8333064B2 (en) 2007-09-21 2012-12-18 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
EP2075051A2 (en) * 2007-12-14 2009-07-01 Hyundai Motor Company Apparatus for reducing nitrogen oxide in exhaust pipe
EP2075051A3 (en) * 2007-12-14 2009-09-30 Hyundai Motor Company Apparatus for reducing nitrogen oxide in exhaust pipe
US8894935B2 (en) 2007-12-14 2014-11-25 Hyundai Motor Company Monitoring system for selective catalyst reduction system
US8336295B2 (en) 2007-12-14 2012-12-25 Hyundai Motor Company Apparatus for reducing nitrogen oxide in exhaust pipe
KR100999617B1 (en) 2007-12-14 2010-12-08 현대자동차주식회사 Monitoring system for selective catalytic reduction of vehicle
KR100999614B1 (en) * 2007-12-14 2010-12-08 기아자동차주식회사 Apparatus for reducing nitrogen oxide in exhaust pipe
KR101011758B1 (en) 2008-07-17 2011-02-07 희성촉매 주식회사 After-treatment apparatus for treating exhaust gases from diesel engines
WO2010100352A1 (en) * 2009-03-04 2010-09-10 Renault S.A.S. Device and method for processing nitrogen oxides contained in exhaust gases
FR2942847A1 (en) * 2009-03-04 2010-09-10 Renault Sas DEVICE AND METHOD FOR TREATING NITROGEN OXIDES CONTAINED IN EXHAUST GASES
EP2278132A1 (en) 2009-06-30 2011-01-26 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification system
EP2284371A1 (en) 2009-08-05 2011-02-16 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification apparatus
EP2295754A1 (en) 2009-08-05 2011-03-16 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purifing apparatus
EP2299078A1 (en) 2009-09-02 2011-03-23 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification apparatus
EP2292904A2 (en) 2009-09-02 2011-03-09 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification apparatus
EP2299080A1 (en) 2009-09-02 2011-03-23 Kabushiki Kaisha Toyota Jidoshokki Exhaust gas purification apparatus
US8800271B2 (en) 2009-09-18 2014-08-12 Kwang Sung Co., Ltd. Selective catalyst reduction system with bypass system
KR100953951B1 (en) * 2009-09-18 2010-04-21 광성(주) Scr system with anti vibration device
WO2011034240A1 (en) * 2009-09-18 2011-03-24 광성(주) Scr system having bypass system
WO2011034239A1 (en) * 2009-09-18 2011-03-24 광성(주) Scr system having an anti-vibration apparatus
KR100951440B1 (en) * 2009-09-18 2010-04-07 광성(주) Scr system of ship with bypass system
KR100949383B1 (en) * 2009-09-18 2010-03-25 광성(주) Scr system
WO2011034238A1 (en) * 2009-09-18 2011-03-24 광성(주) Scr system
KR100949382B1 (en) 2009-09-18 2010-03-25 광성(주) Scr system
EP2529091B1 (en) 2010-01-25 2016-04-06 Peugeot Citroën Automobiles SA Exhaust gas aftertreatment device of an internal combustion engine
CN102350217A (en) * 2011-09-08 2012-02-15 北京龙电宏泰环保科技有限公司 High-efficiency and low-resistance static mixer for selective catalytic reduction system
EP2570178A1 (en) * 2011-09-19 2013-03-20 Hug Engineering AG Mixing device
CH705552A1 (en) * 2011-09-19 2013-03-28 Hug Eng Ag Mixing device.
WO2014087763A1 (en) 2012-12-03 2014-06-12 トヨタ自動車株式会社 System for determining deterioration of exhaust purification device
US9366168B2 (en) 2012-12-03 2016-06-14 Toyota Jidosha Kabushiki Kaisha Deterioration determination system of exhaust emission control device
JP2014163232A (en) * 2013-02-21 2014-09-08 Toyota Motor Corp Dispersion plate and dispersion device
KR101394885B1 (en) * 2013-03-25 2014-05-14 (주)광산 Selective catalytic reduction system for marine structure
CN110073089A (en) * 2016-12-21 2019-07-30 珀金斯发动机有限公司 Method for selective catalytic reduction system operating
CN110073087A (en) * 2016-12-21 2019-07-30 珀金斯发动机有限公司 Method and apparatus for selective catalytic reduction system operating
CN110073087B (en) * 2016-12-21 2021-02-26 珀金斯发动机有限公司 Method and apparatus for selective catalytic reduction system
CN110073089B (en) * 2016-12-21 2021-02-26 珀金斯发动机有限公司 Method for selective catalytic reduction system
US11242787B2 (en) 2016-12-21 2022-02-08 Perkins Engines Company Limited Method and apparatus for selective catalytic reduction system
WO2018153162A1 (en) * 2017-02-22 2018-08-30 天纳克(苏州)排放系统有限公司 Tail gas post-treatment apparatus
WO2019128163A1 (en) * 2017-12-29 2019-07-04 天纳克(苏州)排放系统有限公司 Tail gas after-treatment mixing apparatus and package thereof
JP2020037902A (en) * 2018-09-04 2020-03-12 株式会社Soken Exhaust emission control device for internal combustion engine
JP7099912B2 (en) 2018-09-04 2022-07-12 株式会社Soken Exhaust purification device for internal combustion engine
CN109876626A (en) * 2019-02-28 2019-06-14 华电电力科学研究院有限公司 A kind of three-stage urea pyrolysis ammonia denitrating system and its working method
JP2021030203A (en) * 2019-08-16 2021-03-01 練韓奇 Exhaust smoke denitration treatment equipment

Similar Documents

Publication Publication Date Title
JP2006009608A (en) Exhaust emission control device
JP3951774B2 (en) NOx purification device for internal combustion engine
KR101114816B1 (en) Exhaust gas purifying system
JP4438828B2 (en) Exhaust gas purification device for internal combustion engine
US7673446B2 (en) Dual path exhaust emission control system
WO2006009196A1 (en) METHOD OF MEASURING NOx REDUCTION RATE OF EXHAUST EMISSION CONTROL DEVICE
JP2006002663A (en) Exhaust emission control device
JP2005023921A (en) Exhaust emission control device
JP2010261326A (en) Method for detecting abnormality in reducing agent
JP4728124B2 (en) Exhaust purification device
JP2011196311A (en) Exhaust emission purifying method and exhaust emission purifying apparatus
JP4267536B2 (en) Exhaust purification device control method
JP2007182804A (en) Exhaust emission control device
EP1795724A1 (en) Exhaust gas purifier
JP2009156159A (en) Device for determining abnormal section of exhaust emission control system
JP2002161732A (en) Exhaust gas cleaning device
JP2006242094A (en) Exhaust emission control device
EP3075975B1 (en) Exhaust gas purification device for internal combustion engine
US10632422B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP4261393B2 (en) Exhaust purification device control method
JP2005226504A (en) Method for controlling exhaust emission control device
JP2005264894A (en) Exhaust emission control device
JP2006002662A (en) Exhaust emission control device
JP2005233117A (en) Control method of exhaust purifier
JP4581753B2 (en) Exhaust gas purification device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316