JP2007158486A - Crystal resonator element, crystal resonator, and crystal oscillator - Google Patents
Crystal resonator element, crystal resonator, and crystal oscillator Download PDFInfo
- Publication number
- JP2007158486A JP2007158486A JP2005347526A JP2005347526A JP2007158486A JP 2007158486 A JP2007158486 A JP 2007158486A JP 2005347526 A JP2005347526 A JP 2005347526A JP 2005347526 A JP2005347526 A JP 2005347526A JP 2007158486 A JP2007158486 A JP 2007158486A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- shape
- crystal resonator
- axis
- resonator element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 140
- 239000010453 quartz Substances 0.000 claims description 49
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 49
- 230000002093 peripheral effect Effects 0.000 claims description 16
- 230000010355 oscillation Effects 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 3
- 239000000758 substrate Substances 0.000 abstract 3
- 238000006073 displacement reaction Methods 0.000 description 17
- 238000009826 distribution Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
- Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
Abstract
Description
本発明は、小型水晶振動素子の直列共振抵抗を改善し、不要モードを抑圧した水晶振動
素子、水晶振動子、及び水晶発振器に関する。
The present invention relates to a crystal resonator element, a crystal resonator, and a crystal oscillator in which a series resonance resistance of a small crystal resonator element is improved and unnecessary modes are suppressed.
水晶振動子は、小型、経年変化が小さい、高精度、高安定な周波数が容易に得られる等
の利点を有するため、産業用機器、民生用機器の基準周波数源として広く用いられている
。近年、機器が小型化、軽量化されると共に水晶振動子の小型化への要求が強くなり、ま
た電子部品の組み立て自動化に適した表面実装型水晶振動子の需要が大きい。
水晶は物理的、化学的に安定な物質であるが、天然水晶は品質的、量的に問題があるた
め、現在では品質の安定性、供給量の安定確保という点で優れた人工水晶を用いて水晶振
動子を製造している。中でも周波数−温度特性が3次曲線を呈するATカット水晶振動子
は、携帯電話等の通信機器に多量に用いられている。周知のように、ATカット水晶振動
子は、水晶の結晶軸Yに垂直な水晶板(Y板)を結晶軸Xの周りに約35度15分回転し
て得られる水晶板(ATカット水晶板)の両主面に、真空蒸着、あるいはスパッタ装置を
用いて金属膜を付着し、パッケージに気密封止して構成される。ATカット水晶振動子の
振動モードは厚みすべり振動であり、その共振周波数fは厚さtの逆数に比例し、比例常
数kは水晶の密度ρと切断角度に依存する弾性定数c’とから決まり、約1.65MHz
・mmである。
A crystal resonator is widely used as a reference frequency source for industrial equipment and consumer equipment because it has advantages such as small size, small secular change, high accuracy, and high frequency stability. In recent years, the size and weight of devices have been reduced, and the demand for miniaturization of crystal resonators has increased, and there is a great demand for surface mount crystal resonators suitable for automating the assembly of electronic components.
Quartz is a physically and chemically stable substance, but natural quartz is problematic in terms of quality and quantity, so today we use artificial quartz that is superior in terms of quality stability and supply stability. To manufacture crystal units. Among them, AT-cut crystal resonators having a frequency-temperature characteristic exhibiting a cubic curve are used in large quantities in communication devices such as mobile phones. As is well known, an AT-cut crystal unit is a crystal plate (AT-cut crystal plate) obtained by rotating a crystal plate (Y plate) perpendicular to the crystal axis Y of the crystal around the crystal axis X for about 35
-Mm.
近年のATカット水晶振動子は、小型化、低コスト化への強い要求から、水晶板は量産
に適した矩形状となり、その水晶板の両主面に矩形状の電極を形成し、矩形状のセラミッ
クパッケージに収容した上で、セラミックパッケージの上部周縁部に形成したメタライズ
部に金属蓋を抵抗溶接装置を用いて気密封止し、構成される。
図6は従来のATカット水晶振動素子の構成を示す図であって、同図(a)は平面図、
同図(b)はP−Pにおける断面図、同図(c)はQ−Qにおける断面図である。また、
図6(d)、(e)は長手方向、短手方向から見た厚みすべり振動の変位分布を示す図で
ある。図6の左側に座標軸を示すように、矩形状ATカット水晶板31は長手方向(長さ
L)をX軸方向、短手方向(幅W)をZ’軸方向とするのが一般的である。このATカッ
ト水晶板31の表裏面に、真空蒸着、あるいはスパッタ装置の中でマスクを介して電極3
2a、32bを形成し、該水晶振動素子を図示しない表面実装用パッケージの内底部に収
容し、パッケージ側の端子電極(図示しない)と各電極32a、32bから水晶板31の
端縁に延びるリード電極とを導電性接着剤33a、33bを用いて導通固定して水晶振動
子を構成する。
Due to the strong demand for miniaturization and cost reduction in recent AT-cut quartz crystal units, the quartz plate has a rectangular shape suitable for mass production, and rectangular electrodes are formed on both main surfaces of the quartz plate. After being accommodated in the ceramic package, a metal lid is hermetically sealed using a resistance welding apparatus on the metallized portion formed on the upper peripheral edge of the ceramic package.
FIG. 6 is a diagram showing a configuration of a conventional AT-cut crystal resonator element, in which FIG.
FIG. 4B is a cross-sectional view taken along the line PP, and FIG. 5C is a cross-sectional view taken along the line Q-Q. Also,
6D and 6E are diagrams showing the displacement distribution of the thickness shear vibration viewed from the longitudinal direction and the short direction. As shown in the coordinate axis on the left side of FIG. 6, the rectangular AT-
2a and 32b are formed, the crystal resonator element is accommodated in an inner bottom portion of a surface mount package (not shown), and terminal electrodes (not shown) on the package side and leads extending from the
上記のように構成された水晶振動素子の電気的等価回路は、一般的にインダクタンスL
1、容量C1、抵抗R1の直列回路に、静電容量C0を並列接続した回路で表される。こ
こで、インダクタンスL1、容量C1、静電容量C0は水晶板の厚さと電極の面積に依存
し、抵抗R1は振動エネルギーの損失を表している。また、水晶振動素子が共振状態、即
ち2端子からみて位相が零となる周波数での抵抗を実効抵抗Re(≒直列共振抵抗R1)
という。
水晶振動子を基準周波数源として用いるには、水晶振動子と増幅回路とを接続して水晶
発振器を構成する必要がある。水晶発振回路としては回路が簡単なコルピッツ型水晶発振
器が一般的であり、水晶振動子から回路側をみた際の回路側の増幅度(負性抵抗という)
は、水晶振動子の実効抵抗Reの数倍程度が必要とされている。
図6(d)、(e)に振動変位分布を示すように、水晶板31が小さく、即ち、辺比(
水晶板の長さLあるいは幅Wと厚さtとの比、L/tあるいはW/t)が小さくなると、
電極32a、32bと水晶板31の端部との間隔が狭まり、エネルギー閉じ込め理論を用
いて設計しても、振動エネルギーは電極下に閉じ込めきれずに支持部に漏洩して、直列共
振抵抗R1が大きくなる。また、辺比を最適値に選んでも水晶板31の端部で主振動の振
動エネルギーの一部が輪郭モードに変換して、水晶振動素子の直列共振抵抗R1を劣化さ
せる。
An electrical equivalent circuit of a crystal resonator element configured as described above generally has an inductance L
1, a circuit in which a capacitance C0 is connected in parallel to a series circuit of a capacitor C1 and a resistor R1. Here, the inductance L1, the capacitance C1, and the capacitance C0 depend on the thickness of the crystal plate and the area of the electrode, and the resistance R1 represents the loss of vibration energy. Further, the resistance at the frequency at which the crystal resonator element is in a resonance state, that is, the phase is zero when viewed from the two terminals, is the effective resistance Re (≈ series resonance resistance R1)
That's it.
In order to use a crystal resonator as a reference frequency source, it is necessary to configure a crystal oscillator by connecting the crystal resonator and an amplifier circuit. Colpitts-type crystal oscillators with a simple circuit are common as crystal oscillation circuits, and the amplification factor on the circuit side (called negative resistance) when the circuit side is viewed from the crystal unit
Requires several times the effective resistance Re of the crystal resonator.
As shown in FIGS. 6D and 6E, the vibration displacement distribution is small, that is, the side ratio (
When the length L or the ratio of the width W to the thickness t (L / t or W / t) of the quartz plate is reduced,
Even if the distance between the
この問題の解決する水晶振動素子として、図7に示すように、水晶板41の長手方向(
X軸方向)の両端部にベベル加工を施した水晶板を用い、厚みすべり振動の振動エネルギ
ーを水晶板の中央部に閉じ込めることにより、支持部の影響、端部での他のモードへの変
換を極力低減し、抵抗R1を改良した水晶振動素子が用いられている。なお、図6と同一
部位には同一符号を付して説明を省略している。
また、特許文献1には、図8に示すような水晶振動素子が開示されている。なお、図6
と同一部位には同一符号を付して説明を省略する。図8(a)は平面図、同図(b)、(
c)はそれぞれP−P、Q−Qにおける断面図である。図8(a)、(b)、(c)に示
すように水晶板51の四辺の各々に対応する縁部の表裏を曲率Rで変化させ、水晶板51
の四辺に対応する縁部に、その厚さが水晶板の端面部に向かって徐々に薄くなるように漸
減した漸減部52を形成する。このように加工した水晶板51の両主面に電極32a、3
2bを付着して、水晶振動素子を構成すると、厚みすべり振動の振動エネルギーは水晶板
51の中央部に閉じ込められ、直列共振抵抗R1が改良できることが開示されている。
By using a quartz plate with beveled at both ends (in the X-axis direction) and confining the vibration energy of thickness-shear vibration in the center of the quartz plate, the effect of the support part, conversion to other modes at the edge part Is used as much as possible to improve the resistance R1. In addition, the same code | symbol is attached | subjected to the same site | part as FIG. 6, and description is abbreviate | omitted.
Further,
The same parts as those in FIG. FIG. 8A is a plan view, FIG.
c) are cross-sectional views along PP and QQ, respectively. As shown in FIGS. 8A, 8 </ b> B, and 8 </ b> C, the front and back of the edges corresponding to each of the four sides of the
At the edge corresponding to the four sides, a gradually decreasing portion 52 is formed that gradually decreases so that the thickness gradually decreases toward the end face of the quartz plate. The
It is disclosed that when a crystal resonator element is configured by attaching 2b, the vibration energy of the thickness shear vibration is confined in the center of the
しかしながら、図7に示した構成の水晶振動素子ではエネルギー閉じ込めの効果にバラ
ツキがあり、直列共振抵抗R1に十分な改良が得られないだけでなく、主振動が輪郭モー
ドと結合して、周波数温度特性が理想的な3次曲線から変形されるという問題があった。
また、図8に示した水晶板の四辺に対応する縁部に漸減部を形成した水晶板は加工にかか
る時間が大きくなり、水晶振動素子のコストが大きくなるという問題があった。
本発明は、直列共振抵抗R1を改良し、不要モードを抑圧すると共に低コストの小型水
晶振動素子、水晶振動子、及び水晶発振器を提供することにある。
However, in the crystal resonator element having the configuration shown in FIG. 7, the effect of energy confinement varies, and not only the series resonance resistance R1 is sufficiently improved, but the main vibration is combined with the contour mode, and the frequency temperature There is a problem that the characteristics are deformed from an ideal cubic curve.
Further, the crystal plate in which gradually decreasing portions are formed at the edge portions corresponding to the four sides of the crystal plate shown in FIG. 8 has a problem that the time required for processing increases and the cost of the crystal resonator element increases.
An object of the present invention is to provide a small crystal resonator element, a crystal resonator, and a crystal oscillator that are improved in series resonance resistance R1, suppress unnecessary modes, and are low in cost.
本発明にかかる水晶振動素子は、小型水晶振動素子の改善を図るため、X軸方向を長手
方向、Z’軸方向を短手方向とし、前記長手方向の両端を長軸対短軸比が略1.26であ
る半楕円状に形成した水晶板と、該水晶板の両主面に水晶板の形状と相似形に形成した電
極と、を備えるようにした。このような発明では、水晶板及び電極の両端部を半楕円状と
し、楕円の長軸と短軸との比を振動変位分布に合わせたことで、水晶振動素子の直列共振
抵抗を改善すると共に、主振動と輪郭振動との結合を抑圧できるので不要振動の少ない小
型水晶振動素子の歩留まりがよくなるという利点がある。
また、本発明にかかる水晶振動素子は、X軸方向を長手方向、Z’軸方向を短手方向と
し、前記長手方向の両端を長軸対短軸比が略1.26である半楕円状に形成すると共に、
両主面の中央部が周縁部より厚いメサ型とし、さらに前記中央部の形状を外形と相似形に
形成した水晶板と、該水晶板の中央部の両面に水晶板の形状と相似形に形成した電極と、
を備えるようにした。このような発明では、水晶板をメサ型にし、水晶板の中央部及び電
極の両端部を半楕円状とし、楕円の長軸と短軸との比を振動変位分布に合わせたことで、
小型水晶振動素子の直列共振抵抗をより改善すると共に、主振動と輪郭振動との結合を抑
圧して不要振動の少ない小型水晶振動素子が得られるという利点がある。
また、本発明にかかる水晶振動素子は、X軸方向を長手方向、Z’軸方向を短手方向と
し、前記長手方向の一端を長軸対短軸比が略1.26である半楕円状に形成すると共に、
両主面の中央部が周縁部より厚いメサ型とし、さらに前記中央部の両端を長軸対短軸比が
略1.26である半楕円状に形成した水晶板と、該水晶板の中央部の両面に前記中央部の
形状と相似形に形成した電極と、を備えるようにした。このような発明では、水晶板の一
端部を半楕円状とし、該水晶板をメサ型にし、水晶板の中央部及び電極の両端部を半楕円
状とし、楕円の長軸と短軸との比を振動変位分布に合わせたことで、小型水晶振動素子の
直列共振抵抗をより改善すると共に、不要振動を抑圧した小型水晶振動素子が構成できる
という利点がある。
また、上記の水晶振動素子を表面実装用パッケージ内に気密封止することにより、水晶
振動子を構築することができる。
また、上記の水晶振動子に対して発振回路部品を付加することにより、水晶発振器を構
築することができる。
In order to improve the small-sized crystal resonator element, the crystal resonator element according to the present invention has the X-axis direction as the longitudinal direction, the Z′-axis direction as the short direction, and both ends of the longitudinal direction have a major axis to minor axis ratio of approximately A quartz plate formed in a semi-elliptical shape of 1.26 and electrodes formed on both main surfaces of the quartz plate in a shape similar to the shape of the quartz plate are provided. In such an invention, both ends of the quartz plate and the electrode are made semi-elliptical, and the ratio of the major axis to the minor axis of the ellipse is matched to the vibration displacement distribution, thereby improving the series resonance resistance of the quartz resonator element. Since the coupling between the main vibration and the contour vibration can be suppressed, there is an advantage that the yield of the small crystal resonator element with less unnecessary vibration is improved.
The crystal resonator element according to the present invention has a semi-elliptical shape in which the X-axis direction is the longitudinal direction, the Z′-axis direction is the short-side direction, and both ends of the longitudinal direction have a major-to-minor axis ratio of approximately 1.26. And forming
A crystal plate in which the central part of both main surfaces is thicker than the peripheral part and the shape of the central part is similar to the outer shape, and the crystal plate is similar to the shape of the crystal plate on both sides of the central part of the crystal plate The formed electrode;
I was prepared to. In such an invention, the quartz plate is a mesa type, the center portion of the quartz plate and both ends of the electrode are semi-elliptical, and the ratio of the major axis to the minor axis of the ellipse is matched to the vibration displacement distribution,
There are advantages that the series resonance resistance of the small crystal resonator element is further improved, and that the coupling between the main vibration and the contour vibration is suppressed, and a small crystal resonator element with less unnecessary vibration can be obtained.
The crystal resonator element according to the present invention has a semi-elliptical shape in which the X-axis direction is the longitudinal direction, the Z′-axis direction is the short direction, and one end of the long direction is a major axis to minor axis ratio of approximately 1.26. And forming
A quartz plate in which the central part of both main surfaces is a mesa type thicker than the peripheral part, and both ends of the central part are formed in a semi-elliptical shape having a major axis to minor axis ratio of approximately 1.26, and the center of the quartz plate And electrodes formed on both surfaces of the part in a shape similar to the shape of the central part. In such an invention, one end of the quartz plate is semi-elliptical, the quartz plate is mesa-shaped, the center of the quartz plate and both ends of the electrode are semi-elliptical, and the major axis and minor axis of the ellipse By adjusting the ratio to the vibration displacement distribution, there are advantages that the series resonance resistance of the small crystal resonator element can be further improved and a small crystal resonator element in which unnecessary vibration is suppressed can be configured.
In addition, a crystal resonator can be constructed by hermetically sealing the crystal resonator element in a surface mounting package.
Further, a crystal oscillator can be constructed by adding an oscillation circuit component to the above-described crystal resonator.
以下、本発明を図面に基づいて詳細に説明する。
図1は本発明に係る小型ATカット水晶振動素子の実施形態を示す概略図であって、同
図(a)は平面図、同図(b)はP−Pにおける断面図、同図(c)はQ−Qにおける断
面図、同図(d)、(e)はそれぞれ長手方向、短手方向からみた振動変位分布図である
。水晶の結晶軸Yと直交する水晶板(Y板)を結晶軸Xの周りに約35度15分回転して
切り出した矩形水晶板(ATカット水晶板)の長手方向をX軸方向、短手方向をZ’軸方
向とする。そして、長手方向の両端部を半楕円形状に加工し、該楕円は長軸対短軸の比(
長軸/短軸)を約1.26とする。従って、図1(a)に示すように、水晶板1の短手方
向の長さをhとした場合、水晶板1の図中左端部と参考線S1、あるいは図中右端部と参
考線S2との長さは長軸の1/2の0.63hとなる。
図1(a)に示すように、水晶板1は長手方向両端部が半楕円形状であり、且つ中間部
が矩形状の長円形である。この水晶板1の両主面に水晶板1と相似形の電極2a、2bを
、真空蒸着装置、あるいはスパッタ装置を用い、マスクを介して形成することにより水晶
振動素子Aを得る。水晶振動素子Aを図示しないパッケージの内底部に載置し、パッケー
ジの端子電極と水晶振動素子Aのリード電極3a、3bとを導電性接着剤で導通固定した
後、パッケージの上部周縁部に形成したメタライズ部と図示しない金属蓋とを抵抗溶接装
置を用いて気密封止し、小型水晶振動素子Aを構成する。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of a small-sized AT-cut quartz crystal resonator element according to the present invention. FIG. 1 (a) is a plan view, FIG. 1 (b) is a cross-sectional view at PP, and FIG. ) Is a cross-sectional view taken along Q-Q, and FIGS. 4D and 4E are vibration displacement distribution diagrams viewed from the longitudinal direction and the lateral direction, respectively. The longitudinal direction of a rectangular crystal plate (AT-cut crystal plate) cut out by rotating a crystal plate (Y plate) orthogonal to the crystal axis Y of the crystal about 35
The major axis / minor axis is about 1.26. Accordingly, as shown in FIG. 1A, when the length of the
As shown in FIG. 1A, the
本発明の実施形態にかかる水晶振動素子Aの特徴的な構成は、水晶板1の長手方向(X
軸方向)の両端部及び電極2a、2bのX軸方向の両端部の形状を半楕円状とし、且つ楕
円の長軸対短軸の比(長軸/短軸)をほぼ1.26とした点である。ここで、定数1.2
6を用いる理由について説明する。
周知のエネルギー閉じ込め理論の中で、振動変位uの式に用いられる伝搬定数を、無電
極部でk、電極部でkeとするとそれぞれ次式で表すことができる。
k=μ(mπ/h)(1−(f/(mfs))2)1/2 ・・・(1)
ke=μ(mπ/h)((f/(mfe))2−1)1/2 ・・・(2)
ここで、定数μは弾性定数で決まる定数、mは高調波次数、hは水晶板の厚さ、fsは
無電極部の遮断周波数、feは電極部の周波数である。
水晶は三方晶系(trigonal system)に属する結晶であるため異方性を有し、結晶軸方
向により弾性定数が異なる。ATカット水晶板の場合はX軸方向に伝搬する波動の弾性定
数と、Z’軸方向に伝搬する波動の弾性定数とが異なることになる。その結果、伝搬定数
k、keに用いられる定数μもX軸方向伝搬ではμx、Z’軸方向伝搬ではμzとなり、
μx/μzの比が1.26となる。このため、ATカット水晶振動素子の振動変位分布は
、X軸方向とZ’軸方向とで変位分布の広がりが異なり、X軸方向を長軸、Z’軸方向を
短軸とした楕円状の分布となる。長軸/短軸の比はμx/μzで、1.26である。
本発明に係る水晶振動素子Aでは、振動変位分布が楕円状に分布することを小型ATカ
ット水晶振動素子の設計にとりいれて、水晶板1及び電極2a、2bの両端部を半楕円状
とし、楕円の長軸と短軸との比を振動変位の分布に合わせてほぼ1.26とした。図1に
示すように構成した水晶振動素子の振動変位分布は長手方向では同図(d)、短手方向で
は同図(e)に示すような分布となり、直列共振抵抗R1も改善され、主振動近傍の不要
モードも十分に抑圧される。
A characteristic configuration of the crystal resonator element A according to the embodiment of the present invention is the longitudinal direction of the crystal plate 1 (X
The shape of both ends in the axial direction) and both ends in the X-axis direction of the
The reason for using 6 will be described.
In the well-known energy confinement theory, if the propagation constant used in the equation of vibration displacement u is k for the electrodeless portion and ke for the electrode portion, it can be expressed by the following equations.
k = μ (mπ / h) (1− (f / (mfs)) 2 ) 1/2 (1)
ke = μ (mπ / h) ((f / (mfe)) 2 −1) 1/2 (2)
Here, the constant μ is a constant determined by an elastic constant, m is the harmonic order, h is the thickness of the quartz plate, fs is the cutoff frequency of the electrodeless portion, and fe is the frequency of the electrode portion.
Since quartz is a crystal belonging to the trigonal system, it has anisotropy, and its elastic constant varies depending on the crystal axis direction. In the case of an AT-cut quartz plate, the elastic constant of the wave propagating in the X-axis direction is different from the elastic constant of the wave propagating in the Z′-axis direction. As a result, the constant μ used for the propagation constants k and ke is also μx in the X-axis direction propagation and μz in the Z′-axis direction propagation,
The ratio of μx / μz is 1.26. For this reason, the vibration displacement distribution of the AT-cut crystal resonator element is different in the X-axis direction and the Z′-axis direction in the spread of the displacement distribution, and is elliptical with the X-axis direction as the major axis and the Z′-axis direction as the minor axis. Distribution. The ratio of major axis / minor axis is μx / μz, which is 1.26.
In the crystal resonator element A according to the present invention, the fact that the vibration displacement distribution is distributed in an elliptical shape is taken into the design of the small AT cut crystal resonator element, and both ends of the
図2は本発明に係る第2の実施形態であって、同図(a)は平面図、同図(b)はP−
Pにおける断面図、同図(c)はQ−Qにおける断面図、同図(d)、(e)はそれぞれ
長手方向、短手方向からみた振動変位分布を示す図である。図1と同一部位には同一符号
を付して説明を省略する。水晶板11の外周部は図1と同様に長手方向(X軸方向)の両
端部を半楕円状に加工し、楕円の長軸/短軸の比を1.26とする。そして、水晶板11
の両主面を図(a)、(b)、(c)に示すように中央部を周縁部より厚くした所謂メサ
型(台地型)に加工し、且つ周縁部より厚い中央部(台地部)12の長手方向の両端部の
形状を水晶板11の外周輪郭形状と同様に半楕円状に加工する。この楕円の長軸/短軸の
比も1.26とする。また、水晶板11の中央部12の両面に付着する電極2a、2bの
形状を中央部12と相似形に形成して水晶振動素子Aを構成する。
図2に示すように構成した水晶振動素子Aの振動変位分布は、長手方向では同図(d)
の実線14、短手方向のそれは同図(e)に示す実線15に示すような分布となり、水晶
板11をメサ型に加工していない、即ち周縁部より厚い中央部12を形成しない図1の水
晶振動素子の振動変位分布4、5(重ね書きした破線)と比較して振動変位分布が中央部
に集中していることが分かる。即ち、エネルギー閉じ込めがより深くなり、振動エネルギ
ーの一部が支持部に漏洩したり、他の輪郭振動へ変換したりして損失される量が少なくな
り、その分だけ直列共振抵抗R1が改善され、不要モードも抑圧されることになる。
FIG. 2 shows a second embodiment according to the present invention. FIG. 2A is a plan view, and FIG.
The cross-sectional view at P, (c) is a cross-sectional view at Q-Q, and (d), (e) are diagrams showing the vibration displacement distribution as viewed from the longitudinal direction and the short-side direction, respectively. The same parts as those in FIG. The outer peripheral portion of the
As shown in FIGS. 1 (a), (b), and (c), both main surfaces are processed into a so-called mesa type (plateau type) in which the central portion is thicker than the peripheral portion, and the central portion (plateau portion) that is thicker than the peripheral portion. ) The shape of both ends in the longitudinal direction of 12 is processed into a semi-elliptical shape like the outer peripheral contour shape of the
The vibration displacement distribution of the crystal resonator element A configured as shown in FIG.
The
図3は本発明に係る第3の実施形態であって、同図(a)は平面図、同図(b)はP−
Pにおける断面図、同図(c)はQ−Qにおける断面図である。本実施形態に係る水晶振
動素子Aと図2の水晶振動素子との構成上の相違点は、水晶板21の外周輪郭形状であり
、本実施形態では水晶板21の長手方向の一方の端部のみを半楕円状に加工し、他方の端
部は矩形とする。そして、水晶板21をメサ型に加工し、さらに周縁部より厚い中央部2
2の長手方向の両端部の形状を半楕円状に加工する。この場合も楕円の長軸/短軸の比も
1.26とする。このように構成した水晶板21の中央部22上に中央部22と相似形の
電極2a、2bを形成して水晶振動素子Aを構成する。このように構成した水晶振動素子
の直列共振抵抗R1も従来のものより改良され、主振動近傍の不要モードが抑圧されるこ
とが判明した。
なお、図8(a)に示した従来例では漸減部は楕円形状となっているが長軸/短軸の比
が明示されていないし、本発明のように長軸/短軸比をある特定の範囲に制御することも
できないことは明らかである。
FIG. 3 shows a third embodiment according to the present invention. FIG. 3A is a plan view, and FIG.
A cross-sectional view at P and FIG. 10C are cross-sectional views at QQ. The difference in configuration between the crystal resonator element A according to the present embodiment and the crystal resonator element of FIG. 2 is the outer peripheral contour shape of the
The shape of both ends in the longitudinal direction of 2 is processed into a semi-elliptical shape. Also in this case, the ratio of the major axis / minor axis of the ellipse is 1.26. A crystal resonator element A is configured by forming
In the conventional example shown in FIG. 8 (a), the gradually decreasing portion has an elliptical shape, but the ratio of the major axis / minor axis is not clearly shown, and the major axis / minor axis ratio is specified as in the present invention. Obviously, it cannot be controlled within the range.
次に、図4は図1の実施形態に係る水晶振動素子を用いて構成した水晶振動子の構成例
を示す断面図であり、水晶振動素子Aを表面実装用パッケージ61の内底部に収容し、パ
ッケージ内底部に設けた2つの端子電極62と、各電極2a、2bから水晶板1の各端縁
に延びるリード電極3a、3bとを導電性接着剤63を用いて導通固定してから蓋64に
より気密封止することにより水晶振動子Bを構成する。パッケージ61の外底面には表面
実装用の実装電極65が配置されている。
なお、図2、図3に夫々示した他の実施形態に係る水晶振動素子についても、同様にパ
ッケージ61内に搭載した上で、気密封止することにより、水晶振動子を構築することが
できる。
この水晶振動子Bは、本発明の各実施形態に係る水晶振動素子Aが有する特有の効果を
発揮することができる。
次に、図5は図4の実施形態に係る水晶振動子Bを用いて構成した水晶発振器の構成例
を示す断面図であり、この水晶発振器Cは、図4に示した水晶振動子Bのパッケージ底部
に下部パッケージ71を連設した略H型構造を有し、下部パッケージ71の天井面に設け
たパッド72に対して発振回路等を構成するICチップ73をフリップチップ実装した構
成を備えている。下部パッケージ71の底面には表面実装用の実装端子74が形成されて
いる。
この水晶発振器Cは、本発明の各実施形態に係る水晶振動素子Aが有する特有の効果を
発揮することができる。
Next, FIG. 4 is a cross-sectional view illustrating a configuration example of a crystal resonator configured using the crystal resonator element according to the embodiment of FIG. 1, and the crystal resonator element A is accommodated in the inner bottom portion of the
Note that the quartz crystal resonator according to the other embodiments shown in FIGS. 2 and 3 can also be built in the
This crystal resonator B can exhibit a unique effect of the crystal resonator element A according to each embodiment of the present invention.
Next, FIG. 5 is a cross-sectional view illustrating a configuration example of a crystal oscillator configured using the crystal resonator B according to the embodiment of FIG. 4, and the crystal oscillator C includes the crystal resonator B illustrated in FIG. 4. It has a substantially H-shaped structure in which a
This crystal oscillator C can exhibit a unique effect of the crystal resonator element A according to each embodiment of the present invention.
A 水晶振動素子、1、11、21 水晶板、2a、2b 電極、3a、3b リード
電極、4、5、14、15 振動変位分布、12、22 中央部、h 楕円の短軸、S1
、S2 参考線、B 水晶振動子、61 表面実装用パッケージ、62 端子電極、63
導電性接着剤、64 蓋、65 実装電極、71 下部パッケージ、72 パッド、7
3 ICチップ、74 実装端子、C 水晶発振器。
A
, S2 reference line, B crystal resonator, 61 surface mount package, 62 terminal electrode, 63
Conductive adhesive, 64 lid, 65 mounting electrode, 71 lower package, 72 pad, 7
3 IC chip, 74 mounting terminal, C crystal oscillator.
Claims (5)
対短軸比が略1.26である半楕円状に形成したATカット水晶板と、該水晶板の両主面
に該水晶板の外周輪郭形状と相似形に形成した電極と、を備えたことを特徴とする水晶振
動素子。 An AT-cut quartz plate in which the X-axis direction is the longitudinal direction, the Z′-axis direction is the short-side direction, and the shape of both ends in the longitudinal direction is a semi-elliptical shape having a long-to-short-axis ratio of approximately 1.26 And an electrode formed on both main surfaces of the crystal plate in a shape similar to the outer peripheral contour shape of the crystal plate.
対短軸比が略1.26である半楕円状に形成すると共に、両主面の中央部が周縁部より厚
いメサ型とし、さらに前記中央部の形状を外周輪郭形状と相似形に形成したATカット水
晶板と、該水晶板の中央部の両面に水晶板の外周輪郭形状と相似形に形成した電極と、を
備えたことを特徴とする水晶振動素子。 The X-axis direction is the longitudinal direction, the Z′-axis direction is the short-side direction, and both end portions of the long-side direction are formed in a semi-elliptical shape having a long-to-short-axis ratio of approximately 1.26, and both main surfaces An AT-cut quartz plate in which the central portion of the quartz plate is thicker than the peripheral portion, and the shape of the central portion is similar to the outer peripheral contour shape, and the outer peripheral contour shape of the crystal plate on both sides of the central portion of the crystal plate A crystal resonator element comprising: an electrode formed in a similar shape.
対短軸比が略1.26である半楕円状に形成すると共に、両主面の中央部が周縁部より厚
いメサ型とし、さらに前記中央部の両端部の形状を長軸対短軸比が略1.26である半楕
円状に形成したATカット水晶板と、該水晶板の中央部の両面に前記中央部の形状と相似
形に形成した電極と、を備えたことを特徴とする水晶振動素子。 The X-axis direction is the longitudinal direction, the Z′-axis direction is the short-side direction, and the shape of one end of the long-side direction is formed into a semi-elliptical shape with a long-axis to short-axis ratio of approximately 1.26, and both main surfaces An AT-cut quartz plate in which the central portion is a mesa type thicker than the peripheral portion, and the shape of both ends of the central portion is a semi-elliptical shape having a major axis to minor axis ratio of approximately 1.26, and the quartz plate An electrode formed on both surfaces of the central portion of the central portion so as to have a shape similar to the shape of the central portion.
と、該パッケージの開口を封止する蓋と、を備え、前記水晶振動素子を該パッケージ内に
収容し、前記蓋により該パッケージを気密封止したことを特徴とする水晶振動子。 A crystal resonator element according to any one of claims 1, 2, and 3, a package for surface mounting, and a lid for sealing an opening of the package, wherein the crystal resonator element is disposed in the package. And the package is hermetically sealed by the lid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005347526A JP2007158486A (en) | 2005-12-01 | 2005-12-01 | Crystal resonator element, crystal resonator, and crystal oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005347526A JP2007158486A (en) | 2005-12-01 | 2005-12-01 | Crystal resonator element, crystal resonator, and crystal oscillator |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007158486A true JP2007158486A (en) | 2007-06-21 |
Family
ID=38242309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005347526A Withdrawn JP2007158486A (en) | 2005-12-01 | 2005-12-01 | Crystal resonator element, crystal resonator, and crystal oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007158486A (en) |
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009044237A (en) * | 2007-08-06 | 2009-02-26 | Epson Toyocom Corp | Frequency adjustment method of piezoelectric device, and piezoelectric device and mask for frequency adjustment |
JP2009135830A (en) * | 2007-11-30 | 2009-06-18 | Epson Toyocom Corp | Crystal vibration piece, crystal vibrator, and crystal oscillator |
JP2009267888A (en) * | 2008-04-26 | 2009-11-12 | Kyocera Kinseki Corp | Crystal resonator and crystal oscillator |
JP2010028610A (en) * | 2008-07-23 | 2010-02-04 | Epson Toyocom Corp | Mesa type piezoelectric oscillating reed and piezoelectric device |
JP2011097369A (en) * | 2009-10-29 | 2011-05-12 | Kyocera Kinseki Corp | Crystal oscillation element |
JP2011124881A (en) * | 2009-12-11 | 2011-06-23 | Seiko Instruments Inc | Crystal oscillator, electronic component and method of manufacturing crystal oscillator |
JP2011205516A (en) * | 2010-03-26 | 2011-10-13 | Seiko Epson Corp | Piezoelectric vibrating element and piezoelectric vibrator |
CN102332889A (en) * | 2010-07-09 | 2012-01-25 | 精工爱普生株式会社 | Resonator element, resonator, and oscillator |
EP2493072A2 (en) | 2011-02-23 | 2012-08-29 | Nihon Dempa Kogyo Co., Ltd. | GT-cut quartz crystal resonator |
JP2013034217A (en) * | 2012-09-14 | 2013-02-14 | Seiko Epson Corp | Frequency adjusting method of vibrating device, vibrating device and electronic device |
JP2013102472A (en) * | 2012-12-25 | 2013-05-23 | Seiko Epson Corp | Mesa type piezoelectric vibration piece and piezoelectric device |
JP2013141312A (en) * | 2013-03-29 | 2013-07-18 | Seiko Epson Corp | Inspection method of piezoelectric vibrator and piezoelectric vibrator |
JP2014030113A (en) * | 2012-07-31 | 2014-02-13 | Kyocera Crystal Device Corp | Crystal vibration element |
JP2014030114A (en) * | 2012-07-31 | 2014-02-13 | Kyocera Crystal Device Corp | Crystal vibration element |
JP2014068369A (en) * | 2013-11-25 | 2014-04-17 | Seiko Epson Corp | Vibration piece, vibrator, and oscillator |
US8791766B2 (en) | 2011-08-18 | 2014-07-29 | Seiko Epson Corporation | Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element |
JP2014168128A (en) * | 2013-02-28 | 2014-09-11 | Kyocera Crystal Device Corp | Quartz oscillation element |
JP2014168145A (en) * | 2013-02-28 | 2014-09-11 | Kyocera Crystal Device Corp | Quartz oscillation element |
JP2014175811A (en) * | 2013-03-08 | 2014-09-22 | Kyocera Crystal Device Corp | Crystal vibration element |
US8970316B2 (en) | 2011-08-19 | 2015-03-03 | Seiko Epson Corporation | Resonating element, resonator, electronic device, electronic apparatus, and mobile object |
CN104518749A (en) * | 2013-10-01 | 2015-04-15 | 精工爱普生株式会社 | Resonator element, resonator, electronic device, electronic apparatus, and moving object |
US9013242B2 (en) | 2012-03-27 | 2015-04-21 | Seiko Epson Corporation | Resonator element, resonator, electronic device, electronic apparatus, and mobile object |
US9013243B2 (en) | 2012-03-27 | 2015-04-21 | Seiko Epson Corporation | Resonator element, resonator, electronic device, electronic apparatus, and mobile object |
US9048810B2 (en) | 2011-06-03 | 2015-06-02 | Seiko Epson Corporation | Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus |
JP2016140025A (en) * | 2015-01-29 | 2016-08-04 | セイコーエプソン株式会社 | Vibrating piece, vibrator, oscillation device, oscillator and mobile object |
JP2017046055A (en) * | 2015-08-24 | 2017-03-02 | 京セラクリスタルデバイス株式会社 | Crystal blank, crystal vibration element, and crystal device |
JP2017069646A (en) * | 2015-09-28 | 2017-04-06 | 富士通株式会社 | Crystal resonator with built-in coil, oscillator, and manufacturing method of crystal resonator with built-in coil |
US9712138B2 (en) | 2015-01-29 | 2017-07-18 | Seiko Epson Corporation | Resonator element, resonator, resonator device, oscillator, electronic apparatus, and moving object |
JP2017139717A (en) * | 2016-02-02 | 2017-08-10 | 新日本無線株式会社 | Piezoelectric oscillator and manufacturing method therefor |
CN107154789A (en) * | 2016-03-04 | 2017-09-12 | 日本电波工业株式会社 | Quartz crystal unit |
JP2017192032A (en) * | 2016-04-13 | 2017-10-19 | 日本電波工業株式会社 | Crystal resonator |
CN108123697A (en) * | 2016-11-30 | 2018-06-05 | 京瓷株式会社 | Piezoelectric oscillation element and piezoelectric vibration device |
JP2018088658A (en) * | 2016-11-30 | 2018-06-07 | 京セラ株式会社 | Piezoelectric vibration element and piezoelectric vibration device |
-
2005
- 2005-12-01 JP JP2005347526A patent/JP2007158486A/en not_active Withdrawn
Cited By (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009044237A (en) * | 2007-08-06 | 2009-02-26 | Epson Toyocom Corp | Frequency adjustment method of piezoelectric device, and piezoelectric device and mask for frequency adjustment |
JP2009135830A (en) * | 2007-11-30 | 2009-06-18 | Epson Toyocom Corp | Crystal vibration piece, crystal vibrator, and crystal oscillator |
JP2009267888A (en) * | 2008-04-26 | 2009-11-12 | Kyocera Kinseki Corp | Crystal resonator and crystal oscillator |
JP2010028610A (en) * | 2008-07-23 | 2010-02-04 | Epson Toyocom Corp | Mesa type piezoelectric oscillating reed and piezoelectric device |
JP2011097369A (en) * | 2009-10-29 | 2011-05-12 | Kyocera Kinseki Corp | Crystal oscillation element |
JP2011124881A (en) * | 2009-12-11 | 2011-06-23 | Seiko Instruments Inc | Crystal oscillator, electronic component and method of manufacturing crystal oscillator |
JP2011205516A (en) * | 2010-03-26 | 2011-10-13 | Seiko Epson Corp | Piezoelectric vibrating element and piezoelectric vibrator |
CN102332889A (en) * | 2010-07-09 | 2012-01-25 | 精工爱普生株式会社 | Resonator element, resonator, and oscillator |
EP2493072A2 (en) | 2011-02-23 | 2012-08-29 | Nihon Dempa Kogyo Co., Ltd. | GT-cut quartz crystal resonator |
US8957569B2 (en) | 2011-02-23 | 2015-02-17 | Nihon Dempa Kogyo Co., Ltd. | GT-cut quartz crystal resonator |
US9923544B2 (en) | 2011-06-03 | 2018-03-20 | Seiko Epson Corporation | Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus |
US9048810B2 (en) | 2011-06-03 | 2015-06-02 | Seiko Epson Corporation | Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus |
US8791766B2 (en) | 2011-08-18 | 2014-07-29 | Seiko Epson Corporation | Resonating element, resonator, electronic device, electronic apparatus, moving vehicle, and method of manufacturing resonating element |
US8970316B2 (en) | 2011-08-19 | 2015-03-03 | Seiko Epson Corporation | Resonating element, resonator, electronic device, electronic apparatus, and mobile object |
US9225314B2 (en) | 2011-08-19 | 2015-12-29 | Seiko Epson Corporation | Resonating element, resonator, electronic device, electronic apparatus, and mobile object |
US9013243B2 (en) | 2012-03-27 | 2015-04-21 | Seiko Epson Corporation | Resonator element, resonator, electronic device, electronic apparatus, and mobile object |
US9013242B2 (en) | 2012-03-27 | 2015-04-21 | Seiko Epson Corporation | Resonator element, resonator, electronic device, electronic apparatus, and mobile object |
JP2014030113A (en) * | 2012-07-31 | 2014-02-13 | Kyocera Crystal Device Corp | Crystal vibration element |
JP2014030114A (en) * | 2012-07-31 | 2014-02-13 | Kyocera Crystal Device Corp | Crystal vibration element |
JP2013034217A (en) * | 2012-09-14 | 2013-02-14 | Seiko Epson Corp | Frequency adjusting method of vibrating device, vibrating device and electronic device |
JP2013102472A (en) * | 2012-12-25 | 2013-05-23 | Seiko Epson Corp | Mesa type piezoelectric vibration piece and piezoelectric device |
JP2014168145A (en) * | 2013-02-28 | 2014-09-11 | Kyocera Crystal Device Corp | Quartz oscillation element |
JP2014168128A (en) * | 2013-02-28 | 2014-09-11 | Kyocera Crystal Device Corp | Quartz oscillation element |
JP2014175811A (en) * | 2013-03-08 | 2014-09-22 | Kyocera Crystal Device Corp | Crystal vibration element |
JP2013141312A (en) * | 2013-03-29 | 2013-07-18 | Seiko Epson Corp | Inspection method of piezoelectric vibrator and piezoelectric vibrator |
CN104518749B (en) * | 2013-10-01 | 2019-01-08 | 精工爱普生株式会社 | Vibrating elements, oscillator, electronic device, electronic equipment and moving body |
US9866198B2 (en) | 2013-10-01 | 2018-01-09 | Seiko Epson Corporation | Resonator element, resonator, electronic device, electronic apparatus, and moving object |
US10153749B2 (en) | 2013-10-01 | 2018-12-11 | Seiko Epson Corporation | Resonator element, resonator, and electronic device |
CN104518749A (en) * | 2013-10-01 | 2015-04-15 | 精工爱普生株式会社 | Resonator element, resonator, electronic device, electronic apparatus, and moving object |
JP2014068369A (en) * | 2013-11-25 | 2014-04-17 | Seiko Epson Corp | Vibration piece, vibrator, and oscillator |
JP2016140025A (en) * | 2015-01-29 | 2016-08-04 | セイコーエプソン株式会社 | Vibrating piece, vibrator, oscillation device, oscillator and mobile object |
US9712138B2 (en) | 2015-01-29 | 2017-07-18 | Seiko Epson Corporation | Resonator element, resonator, resonator device, oscillator, electronic apparatus, and moving object |
JP2017046055A (en) * | 2015-08-24 | 2017-03-02 | 京セラクリスタルデバイス株式会社 | Crystal blank, crystal vibration element, and crystal device |
JP2017069646A (en) * | 2015-09-28 | 2017-04-06 | 富士通株式会社 | Crystal resonator with built-in coil, oscillator, and manufacturing method of crystal resonator with built-in coil |
JP2017139717A (en) * | 2016-02-02 | 2017-08-10 | 新日本無線株式会社 | Piezoelectric oscillator and manufacturing method therefor |
CN107154789A (en) * | 2016-03-04 | 2017-09-12 | 日本电波工业株式会社 | Quartz crystal unit |
CN107294507A (en) * | 2016-04-13 | 2017-10-24 | 日本电波工业株式会社 | Quartz crystal unit |
JP2017192032A (en) * | 2016-04-13 | 2017-10-19 | 日本電波工業株式会社 | Crystal resonator |
CN108123697A (en) * | 2016-11-30 | 2018-06-05 | 京瓷株式会社 | Piezoelectric oscillation element and piezoelectric vibration device |
JP2018088658A (en) * | 2016-11-30 | 2018-06-07 | 京セラ株式会社 | Piezoelectric vibration element and piezoelectric vibration device |
JP2018088657A (en) * | 2016-11-30 | 2018-06-07 | 京セラ株式会社 | Piezoelectric vibration element and piezoelectric vibration device |
CN108123697B (en) * | 2016-11-30 | 2021-10-29 | 京瓷株式会社 | Piezoelectric oscillation element and piezoelectric oscillation device |
JP7008401B2 (en) | 2016-11-30 | 2022-01-25 | 京セラ株式会社 | Crystal vibrating element and crystal vibrating device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007158486A (en) | Crystal resonator element, crystal resonator, and crystal oscillator | |
KR100712758B1 (en) | Piezoelectric resonator element and piezoelectric device | |
EP1724919B1 (en) | Piezoelectric vibrating reed and piezoelectric device | |
JP4281348B2 (en) | Piezoelectric vibrating piece, piezoelectric device using the piezoelectric vibrating piece, mobile phone device using the piezoelectric device, and electronic equipment using the piezoelectric device | |
KR100802865B1 (en) | Piezoelectric resonator element and piezoelectric device | |
JP5625432B2 (en) | Piezoelectric vibration element and piezoelectric vibrator | |
JP2009065270A (en) | Mesa type vibrating piece and mesa type vibrating device | |
JP2008252800A (en) | Tuning fork type bent crystal oscillating element and quartz crystal oscillator mounted with the same, and crystal oscillator | |
JP2009135830A (en) | Crystal vibration piece, crystal vibrator, and crystal oscillator | |
JP2007208771A (en) | Piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator | |
US20160028369A1 (en) | Resonator element, resonator, oscillator, electronic apparatus, and mobile object | |
JP2011166325A (en) | Tuning fork type piezoelectric vibration piece and piezoelectric device | |
JP2006094154A (en) | Piezoelectric vibration chip and piezoelectric device | |
JP2013042440A (en) | Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus | |
JP5824958B2 (en) | Vibration element, vibrator, electronic device, and electronic apparatus | |
JP4558433B2 (en) | Crystal oscillator | |
US6849991B2 (en) | Quartz resonating piece, quartz resonator, and quartz device | |
JP2003174353A (en) | Quartz oscillator | |
JP4196641B2 (en) | Ultra-thin piezoelectric device and manufacturing method thereof | |
JP2007189492A (en) | Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator | |
JP2001257558A (en) | Piezoelectric vibrator | |
JP2001196886A (en) | Crystal resonator | |
KR20170029232A (en) | Piezoelectric vibration piece, and piezoelectric device | |
JPH09139651A (en) | Crystal oscillator for overtone | |
JP6137274B2 (en) | Vibration element, vibrator, electronic device, and electronic apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20070404 |
|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090203 |