[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007010791A - Resin film forming apparatus, resin film forming method, and diffusion reflective plate obtained by same - Google Patents

Resin film forming apparatus, resin film forming method, and diffusion reflective plate obtained by same Download PDF

Info

Publication number
JP2007010791A
JP2007010791A JP2005188783A JP2005188783A JP2007010791A JP 2007010791 A JP2007010791 A JP 2007010791A JP 2005188783 A JP2005188783 A JP 2005188783A JP 2005188783 A JP2005188783 A JP 2005188783A JP 2007010791 A JP2007010791 A JP 2007010791A
Authority
JP
Japan
Prior art keywords
resin film
substrate
ultraviolet
uncured
uncured resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005188783A
Other languages
Japanese (ja)
Inventor
Mitsuru Honda
充 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005188783A priority Critical patent/JP2007010791A/en
Publication of JP2007010791A publication Critical patent/JP2007010791A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin film forming method which enables a reduction of tact time by reducing the number of processes in forming a resin film having unevenness on the surface, and of the cost required in an apparatus for forming the resin film to achieve low-cost simplified operation, and to provide a resin film forming apparatus. <P>SOLUTION: In the resin film forming method, a resin material containing a radical polymerization type ultraviolet curing resin is applied on an ultraviolet light transmissive substrate S to form an uncured resin film R, and the resin film for an underlayer having unevenness on the surface is formed by curing the uncured resin film R by irradiating the contact surface between the substrate S and the uncured resin film R from the side of the substrate S with ultraviolet light. The resin film forming apparatus used for the method is provided to solve the problems. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、樹脂膜形成装置、樹脂膜形成方法およびそれにより得られる拡散反射板に関する。さらに詳しくは、ラジカル型紫外線硬化性樹脂を用いて樹脂膜の表面に凹凸を形成する方法、装置および凹凸表面を有する樹脂膜を用いた拡散反射板に関する。   The present invention relates to a resin film forming apparatus, a resin film forming method, and a diffuse reflector obtained thereby. More specifically, the present invention relates to a method and apparatus for forming irregularities on the surface of a resin film using a radical type ultraviolet curable resin, and a diffuse reflector using a resin film having an irregular surface.

従来、光硬化性樹脂を用いて形成した樹脂膜の表面に凹凸を形成する技術としては、パターンを形成したマスクを介して紫外線等を基板に形成した光硬化性樹脂層に照射し、光硬化性樹脂層の露光部分もしくは未露光部分を現像液にて除去するフォトリソグラフィ法による形成方法が知られている。   Conventionally, as a technique for forming irregularities on the surface of a resin film formed using a photocurable resin, photocuring is performed by irradiating a photocurable resin layer formed on a substrate with ultraviolet rays or the like through a mask on which a pattern is formed. There is known a forming method by a photolithography method in which an exposed portion or an unexposed portion of the conductive resin layer is removed with a developer.

しかしながら、光硬化性樹脂を用いた従来の樹脂膜の表面凹凸形成技術では、光硬化性樹脂の膜厚や受光感度、マスクの開口比、露光量、現像液濃度、現像液温度あるいは現像時間の調整などの多くの要素が関係するため、所望の凹凸形状を得ることが困難であり、高コストであるという課題があった。   However, conventional resin film surface unevenness forming technology using a photo-curing resin has the following problems: photo-curing resin film thickness, photosensitivity, mask aperture ratio, exposure amount, developer concentration, developer temperature or development time. Since many factors such as adjustment are involved, there is a problem that it is difficult to obtain a desired uneven shape and the cost is high.

このような問題を解決する方法として、基板に光硬化性樹脂膜を形成し、パターン形成されたマスクを介して露光した後、エッチング工程ではなく加熱工程による表面凹凸形成方法が提案されている(例えば、特許文献1参照)。   As a method for solving such a problem, there has been proposed a method for forming surface irregularities by forming a photocurable resin film on a substrate, exposing it through a patterned mask, and then performing a heating process instead of an etching process ( For example, see Patent Document 1).

特開2004−37522号公報JP 2004-37522 A

しかしながら、特許文献1に記載の表面凹凸形成方法では、エッチング工程が不要となるが加熱工程が加わるため工程数は削減することができない。また、光硬化性樹脂膜の露光にはパターン形成されたマスクが必要であるため、依然としてマスクの開口比および露光量の高精度な制御が求められると共に、マスク形成工程、マスク形成装置およびマスク材料が必要であり、大幅なコスト低減には至らない。   However, in the surface unevenness forming method described in Patent Document 1, an etching process is not necessary, but a heating process is added, so the number of processes cannot be reduced. Further, since exposure of the photocurable resin film requires a patterned mask, high-precision control of the aperture ratio and exposure amount of the mask is still required, as well as a mask forming process, a mask forming apparatus, and a mask material. This is necessary and does not lead to significant cost reduction.

本発明は、上記の問題に鑑み、表面に凹凸を有する樹脂膜を形成するに際して、工程数を削減することによりタクトタイムを減少し、かつ、樹脂膜の形成装置にかかるコストを削減し、低コストで簡易に行なうことができる樹脂膜形成方法および樹脂膜形成装置を提供する。   In view of the above problems, the present invention reduces the tact time by reducing the number of steps when forming a resin film having irregularities on the surface, and reduces the cost required for the resin film forming apparatus. A resin film forming method and a resin film forming apparatus that can be easily performed at low cost are provided.

かくして、本発明によれば、紫外線透過性の基板にラジカル重合型紫外線硬化性樹脂を含有する樹脂材料を塗布して未硬化樹脂膜を形成し、前記基板側から基板と未硬化樹脂膜との接触面に向けて紫外線を照射することにより未硬化樹脂膜を硬化して、表面に凹凸を有する下地用の樹脂膜を形成する樹脂膜形成方法が提供される。
また、本発明の別の観点によれば、ラジカル重合型紫外線硬化性樹脂を含有する未硬化樹脂膜を表面に有する紫外線透過性の基板を保持するステージと、前記基板側から基板と未硬化樹脂膜との接触面に向けて紫外線を照射するための紫外線照射機構とを備えた樹脂膜形成装置が提供される。
また、本発明のさらに別の観点によれば、上記樹脂膜形成方法を用いて基板上に形成された凹凸表面を有する樹脂膜と、この樹脂膜の凹凸表面に形成された金属膜とを備えたことを特徴とする拡散反射板。
Thus, according to the present invention, a resin material containing a radical polymerization type ultraviolet curable resin is applied to an ultraviolet transmissive substrate to form an uncured resin film, and the substrate and the uncured resin film are formed from the substrate side. There is provided a resin film forming method in which an uncured resin film is cured by irradiating ultraviolet rays toward a contact surface to form a base resin film having irregularities on the surface.
According to another aspect of the present invention, a stage for holding an ultraviolet transmissive substrate having an uncured resin film containing a radical polymerization type ultraviolet curable resin on the surface, and the substrate and the uncured resin from the substrate side. A resin film forming apparatus provided with an ultraviolet irradiation mechanism for irradiating ultraviolet rays toward a contact surface with a film is provided.
According to still another aspect of the present invention, there is provided a resin film having an uneven surface formed on a substrate using the resin film forming method, and a metal film formed on the uneven surface of the resin film. A diffuse reflector characterized by that.

本発明の樹脂膜形成方法では、紫外線透過性の基板上に未硬化樹脂膜が形成された積層体に対して、基板側から基板と未硬化樹脂膜との接触面(固液接触面)に向けて紫外線を照射して未硬化樹脂を硬化させることにより、硬化した樹脂膜の膜厚方向に硬化性の分布を形成することができる。つまり、紫外線照射時において、未硬化樹脂膜は固液接触面が光源に最も近く表面が最も遠いため、未硬化樹脂の膜厚方向における硬化性は固液接触面が最も高く、固液接触面から表面に向かうにしたがって徐々に低くなり、表面が最も低い。それに加え、ラジカル重合型紫外線硬化性樹脂は酸素により硬化が阻害されるため、未硬化樹脂膜の表面の硬化性は固液接触面側に比して極端に低くなる。したがって、未硬化樹脂が硬化していく際、固液接触面は硬化および収縮が最も速く進行するが、表面は硬化性が極端に低いことにより流動性を有しているため固液接触面側の体積収縮により引っ張られ、その結果、表面にランダム形状の微細な凹凸が形成される。   In the resin film forming method of the present invention, the contact surface (solid-liquid contact surface) between the substrate and the uncured resin film from the substrate side to the laminate in which the uncured resin film is formed on the ultraviolet transmissive substrate. By curing the uncured resin by irradiating it with ultraviolet rays, a curable distribution can be formed in the film thickness direction of the cured resin film. In other words, during UV irradiation, the uncured resin film has the solid-liquid contact surface closest to the light source and the farthest surface, so the curability in the film thickness direction of the uncured resin is the highest in the solid-liquid contact surface, and the solid-liquid contact surface It becomes gradually lower toward the surface, and the surface is the lowest. In addition, since the curing of the radical polymerization type ultraviolet curable resin is inhibited by oxygen, the curability of the surface of the uncured resin film is extremely low as compared with the solid-liquid contact surface side. Therefore, when the uncured resin is cured, the solid-liquid contact surface hardens and shrinks most rapidly, but the surface has fluidity due to extremely low curability, so the solid-liquid contact surface side As a result, fine irregularities having a random shape are formed on the surface.

よって、本発明の樹脂膜形成方法によれば、基板上への未硬化樹脂膜の形成工程と、マスクパターンを用いない未硬化樹脂の露光工程との2工程にて、微細な凹凸表面を有する樹脂膜を形成することができるため、マスク形成工程、後工程のエッチング工程(あるいは加熱工程)が削減でき、工程数を削減することにより大幅にタクトタイムを短縮して高効率に樹脂膜を形成することができる。また、マスク形成工程でのマスク形成装置およびマスク材料や、エッチング工程でのエッチング装置およびエッチング材料あるいは加熱工程での加熱装置が不要となるため、凹凸表面を有する樹脂膜の形成装置にかかるコストを大幅に削減し、低コストにて簡易に樹脂膜を形成することができる。   Therefore, according to the method for forming a resin film of the present invention, it has a fine uneven surface in two steps, an uncured resin film forming step on a substrate and an uncured resin exposure step without using a mask pattern. Since a resin film can be formed, the mask formation process and the subsequent etching process (or heating process) can be reduced. By reducing the number of processes, the takt time can be greatly shortened and the resin film can be formed with high efficiency. can do. Moreover, since the mask forming apparatus and the mask material in the mask forming process, the etching apparatus and the etching material in the etching process, or the heating apparatus in the heating process are unnecessary, the cost for the apparatus for forming the resin film having the uneven surface is reduced. The resin film can be formed easily and at a low cost.

また、本発明の樹脂膜形成装置は、表面に未硬化樹脂膜が形成された基板を保持するステージおよび基板側から基板と未硬化樹脂膜との接触面(固液接触面)に向けて紫外線を照射する紫外線照射機構を少なくとも備えていればよく、装置構成が簡素であるため低コストにて作製することができ、低コストにて簡易に樹脂膜を形成することができる。
また、本発明の拡散反射板によれば、反射特性に優れた拡散反射板を低コストかつ効率よく短時間で形成することができる。
In addition, the resin film forming apparatus of the present invention includes a stage for holding a substrate having an uncured resin film formed on the surface and an ultraviolet ray from the substrate side toward the contact surface (solid-liquid contact surface) between the substrate and the uncured resin film. It is sufficient that at least an ultraviolet irradiation mechanism for irradiating is provided. Since the apparatus configuration is simple, it can be manufactured at low cost, and a resin film can be easily formed at low cost.
In addition, according to the diffusive reflector of the present invention, a diffusive reflector having excellent reflection characteristics can be formed at low cost and efficiently in a short time.

(樹脂膜形成方法の説明)
本発明の樹脂膜形成方法は、紫外線透過性の基板にラジカル重合型紫外線硬化性樹脂を含有する樹脂材料を塗布して未硬化樹脂膜を形成し、前記基板側から基板と未硬化樹脂膜との接触面に向けて紫外線を照射することにより未硬化樹脂膜を硬化して、表面に凹凸を有する下地用の樹脂膜を形成することを特徴とする。
この基板上の凹凸表面を有する樹脂膜は、その凹凸表面に金属膜を形成することにより、例えば液晶パネルの拡散反射板として利用される。
(Description of resin film formation method)
In the resin film forming method of the present invention, an uncured resin film is formed by applying a resin material containing a radical polymerization type ultraviolet curable resin to an ultraviolet transmissive substrate, and the substrate and the uncured resin film are formed from the substrate side. The uncured resin film is cured by irradiating ultraviolet rays toward the contact surface, and a base resin film having irregularities on the surface is formed.
The resin film having a concavo-convex surface on the substrate is used as, for example, a diffusion reflection plate of a liquid crystal panel by forming a metal film on the concavo-convex surface.

本発明において、ラジカル重合型紫外線硬化性樹脂の主な構成要素は光開始剤、光開始助剤、重合性物質であり、紫外線を照射することにより、光開始剤からラジカルが発生し、このラジカルが重合性物質と反応することにより重合反応が進行していく。しかしながら、このラジカルは大気中の酸素と反応することにより失活して重合反応が停止する。このような性質を有するラジカル重合型紫外線硬化樹脂を含む樹脂材料で未硬化樹脂膜を形成することにより、紫外線照射時において、未硬化樹脂膜の表面ではラジカルが大気中の酸素と反応して硬化性が低下する。これについて詳しくは後述する。   In the present invention, the main components of the radical polymerization type ultraviolet curable resin are a photoinitiator, a photoinitiator assistant, and a polymerizable substance. Radiation is generated from the photoinitiator by irradiating ultraviolet rays, and this radical Reacts with the polymerizable substance to proceed the polymerization reaction. However, this radical is deactivated by reacting with oxygen in the atmosphere and the polymerization reaction is stopped. By forming an uncured resin film with a resin material containing a radical polymerization type ultraviolet curable resin having such properties, radicals react with oxygen in the atmosphere and cure on the surface of the uncured resin film when irradiated with ultraviolet light. Sex is reduced. This will be described in detail later.

本発明において、基板としては紫外線透過性を有していれば材質は特に限定されず、例えば、透明ガラス基板あるいは透明プラスチック基板等を用いることができる。
このような基板上に、上記ラジカル重合型紫外線硬化樹脂を含む樹脂材料を塗布して未硬化膜を形成する方法としては、特に限定されず、例えばスピンコート法、インクジェット法、ディスペンサーを用いた方法等の塗布法、印刷法等が挙げられる。なお、樹脂材料は、ラジカル重合型紫外線硬化樹脂に有機溶剤、顔料、添加剤等を添加して調製してもよい。
In the present invention, the material of the substrate is not particularly limited as long as it has ultraviolet transparency, and for example, a transparent glass substrate or a transparent plastic substrate can be used.
A method for forming an uncured film by applying a resin material containing the radical polymerization type ultraviolet curable resin on such a substrate is not particularly limited. For example, a spin coating method, an inkjet method, a method using a dispenser. Examples of such a coating method and printing method. The resin material may be prepared by adding an organic solvent, a pigment, an additive or the like to a radical polymerization type ultraviolet curable resin.

ラジカル重合型紫外線硬化樹脂を含む未硬化樹脂膜の膜厚としては、10μm以上が好ましく、10〜500μmがさらに好ましい。未硬化樹脂膜が完全に硬化できる照射量で紫外線を照射した場合において、未硬化樹脂膜の膜厚を10μm以上とすることにより、固液接触面から表面までの間の膜厚方向の硬化性分布を大きくすることが可能であり、硬化した樹脂膜の表面に目視にてはっきりと分かる程度の大きさ(深さ1〜5μm程度、開口幅1〜5μm程度)の凹凸を形成することができる。なお、未硬化樹脂の膜厚が10μmより小さいと、光照射して硬化した樹脂膜の表面に凹凸が形成され難く、500μmを越えると、表面付近以外の大部分は表面形状に寄与しない部分、つまり表面凹凸形状を形成するために必要な硬化性分布には影響しない部分が大多数となるため、材料コスト面から好ましくない。   The film thickness of the uncured resin film containing the radical polymerization type ultraviolet curable resin is preferably 10 μm or more, more preferably 10 to 500 μm. Curing in the film thickness direction from the solid-liquid contact surface to the surface by setting the film thickness of the uncured resin film to 10 μm or more when irradiated with ultraviolet rays at a dose that can completely cure the uncured resin film The distribution can be increased, and irregularities having a size (depth 1 to 5 μm, opening width 1 to 5 μm) that can be clearly seen on the surface of the cured resin film can be formed. . When the film thickness of the uncured resin is smaller than 10 μm, it is difficult to form irregularities on the surface of the resin film cured by irradiation with light, and when it exceeds 500 μm, most parts other than the vicinity of the surface do not contribute to the surface shape, In other words, the majority of the portions that do not affect the curable distribution necessary for forming the uneven surface shape are unfavorable in terms of material cost.

また、未硬化樹脂膜に紫外線を照射するに際して、未硬化樹脂膜の表面側における雰囲気中の酸素濃度を20体積%以上に調整するようにしてもよい。未硬化樹脂膜の表面側の酸素濃度を20体積%以上とすることにより、未硬化樹脂膜の表面の硬化性が極端に低下し、未硬化樹脂膜の膜厚方向の硬化性分布をさらに大きくすることができ、樹脂膜の表面に上記大きさの凹凸形状を容易に形成することができる。   Further, when the uncured resin film is irradiated with ultraviolet rays, the oxygen concentration in the atmosphere on the surface side of the uncured resin film may be adjusted to 20% by volume or more. By setting the oxygen concentration on the surface side of the uncured resin film to 20% by volume or more, the curability of the surface of the uncured resin film is extremely lowered, and the curable distribution in the film thickness direction of the uncured resin film is further increased. Therefore, it is possible to easily form an uneven shape having the above size on the surface of the resin film.

また、ラジカル重合型紫外線硬化性樹脂が3官能モノマー以上の多官能モノマーを含有するものであってもよい。3官能モノマー以上の多官能モノマーは、3次元的により強固に重合するため硬化時における体積収縮率が大きい。そのため、未硬化樹脂の硬化時において、固液接触面側に樹脂表面が強く引っ張られ、その結果、樹脂膜の表面に上記大きさの凹凸形状を容易に形成することができる。   Moreover, the radical polymerization type ultraviolet curable resin may contain a polyfunctional monomer having three or more functional monomers. Since the polyfunctional monomer having three or more functional monomers is more strongly polymerized three-dimensionally, the volume shrinkage ratio at the time of curing is large. Therefore, when the uncured resin is cured, the resin surface is strongly pulled to the solid-liquid contact surface side, and as a result, the uneven shape having the above size can be easily formed on the surface of the resin film.

また、感光性樹脂がラジカル重合型紫外線硬化樹脂の場合、未硬化樹脂膜が紫外線吸収材料を含有してもよい。未硬化樹脂膜が紫外線吸収材料を含有していることから、未硬化樹脂膜表面の硬化性が極端に低下し、それにより膜厚方向の硬化性分布がさらに大きくなるため、樹脂膜の表面に上記大きさの凹凸形状を容易に形成することができる。   When the photosensitive resin is a radical polymerization type ultraviolet curable resin, the uncured resin film may contain an ultraviolet absorbing material. Since the uncured resin film contains a UV-absorbing material, the curability of the uncured resin film surface is extremely lowered, and the curable distribution in the film thickness direction is further increased, so that the surface of the resin film is The uneven shape having the above size can be easily formed.

また、樹脂材料を基板上に塗布する際に、未硬化樹脂膜を不均一な膜厚にて基板上に形成されてもよい。つまり、未硬化樹脂膜の膜厚に厚い部分と薄い部分を形成することにより、表面側が固液接触面側よりも硬化性が低いことに加え、厚い部分では薄い部分に比して硬化性が低くなるため、未硬化樹脂膜の膜厚方向における硬化性分布をさらに大きくすることができ、同一樹脂膜の表面に不均一な形状および大きさの凹凸形状を形成することができる。   Further, when the resin material is applied on the substrate, the uncured resin film may be formed on the substrate with a non-uniform film thickness. In other words, by forming a thick part and a thin part in the film thickness of the uncured resin film, the surface side is less curable than the solid-liquid contact surface side, and the thick part is more curable than the thin part. Therefore, the curable distribution in the film thickness direction of the uncured resin film can be further increased, and an uneven shape having a non-uniform shape and size can be formed on the surface of the same resin film.

(樹脂膜形成装置の説明)
本発明の樹脂膜形成装置は、ラジカル重合型紫外線硬化樹脂を含有する未硬化樹脂膜を表面に有する透光性の基板を保持するステージと、前記基板側から基板と未硬化樹脂膜との接触面に向けて紫外線を照射するための紫外線照射機構とを備えることを特徴とする。
(Description of resin film forming apparatus)
The resin film forming apparatus of the present invention includes a stage for holding a translucent substrate having an uncured resin film containing a radical polymerization type ultraviolet curable resin on the surface, and contact between the substrate and the uncured resin film from the substrate side. And an ultraviolet irradiation mechanism for irradiating ultraviolet rays toward the surface.

また、ステージは基板を載置する載置部に紫外線を透過させるための窓部を有するもの(Aタイプ)、または載置部に紫外線透過性プレートを有するもの(Bタイプ)とした構成とすることができる。また、ステージは、基板を出し入れ可能に収容し、基板を載置する載置部が透光性材料からなる密閉容器を有し、さらに密閉容器内の酸素濃度を調整するための酸素濃度調整手段を具備する構成(Cタイプ)としてもよい。   In addition, the stage is configured to have a window part for transmitting ultraviolet light (A type) on the mounting part on which the substrate is placed, or a stage having an ultraviolet transparent plate (B type) on the mounting part. be able to. Further, the stage accommodates the substrate in a removable manner, the mounting portion on which the substrate is placed has a sealed container made of a translucent material, and oxygen concentration adjusting means for adjusting the oxygen concentration in the sealed container (C type).

Aタイプの場合、載置部を枠型または格子型に構成して1つまたは複数の窓部(空洞部)を形成することができる。枠型窓部の場合、基板上の未硬化樹脂膜に全面的に紫外線を照射することができる。また、格子型窓部の場合、格子部分にて紫外線を遮光するため、基板上の樹脂膜における格子状の遮光部分が硬化せず、未硬化部分を除去することにより1枚の基板上に複数個の硬化した表面凹凸を有する樹脂膜を形成することができる。
また、ステージの載置部が枠型の場合、窓部に未硬化樹脂膜を位置させる限りは、未硬化樹脂膜を上向きでも下向きでも基板を載置することができ、上向きの場合は基板の下方から紫外線を照射し、下向きの場合は基板の上方から紫外線を照射して、ステージにより遮光もしくは照射量が減少されることなく未硬化樹脂の固液接触面の全面に向けて紫外線を照射することができる。
Bタイプの場合、載置部を透明ガラスまたは透明プラスチックにてテーブル型に形成することができる。
In the case of the A type, one or a plurality of window portions (hollow portions) can be formed by configuring the placement portion in a frame shape or a lattice shape. In the case of a frame-type window, the entire surface of the uncured resin film on the substrate can be irradiated with ultraviolet rays. Further, in the case of the lattice type window portion, since the ultraviolet ray is shielded by the lattice portion, the lattice-like light shielding portion in the resin film on the substrate is not cured, and a plurality of uncured portions are removed on a single substrate It is possible to form a resin film having individual hardened surface irregularities.
In addition, when the stage mounting portion is a frame type, as long as the uncured resin film is positioned on the window portion, the substrate can be placed with the uncured resin film facing upwards or downwards. Irradiate ultraviolet rays from below, and irradiate ultraviolet rays from above the substrate when facing downward, and irradiate ultraviolet rays toward the entire surface of the solid-liquid contact surface of the uncured resin without being blocked or reduced by the stage. be able to.
In the case of the B type, the placing portion can be formed in a table shape with transparent glass or transparent plastic.

Cタイプの場合、密閉容器としては、基板を収容できる大きさおよび形状であって、少なくとも基板を載置する底部が透明ガラスや透明プラスチックといった透光性材料にて形成され、基板の出し入れを行なうために側壁もしくは上壁に開閉部を有する構成とされる。また、酸素濃度調整手段としては、気体流通管に接続された酸素ガス供給源および不活性ガス供給源と、これらのガス供給源と密閉容器とを連通遮断可能な気体導入管と、密閉容器と外部とを連通遮断可能なガス排出管とを備え、酸素ガスおよび不活性ガスを定量的に密閉容器内へ導入できる構成とすることができる。   In the case of the C type, the sealed container has a size and shape that can accommodate a substrate, and at least a bottom portion on which the substrate is placed is formed of a light-transmitting material such as transparent glass or transparent plastic, and the substrate is taken in and out. Therefore, an opening / closing part is provided on the side wall or the upper wall. Further, as the oxygen concentration adjusting means, an oxygen gas supply source and an inert gas supply source connected to the gas flow pipe, a gas introduction pipe capable of communicating and shutting off the gas supply source and the sealed container, a sealed container, A gas discharge pipe that can communicate with the outside can be provided, and oxygen gas and inert gas can be quantitatively introduced into the sealed container.

紫外線照射機構としては、波長200〜400nm程度の紫外線が照射可能であればよく、例えば高圧水銀ランプ、キセノンランプ、メタルハライドランプ、タングステンランプなどを用いることができる。この際、特定の波長域の紫外線を取り除く光学フィルターを用いて、任意の波長の紫外線を取り出してもよい。また、紫外線照射機構は、光源本体と照射部とが一体型でも別体型でも構わない。別体型の場合、光源本体と照射部とを光ファイバアーケーブルによって接続した構成とすることができる。   As an ultraviolet irradiation mechanism, it is only necessary to irradiate ultraviolet rays having a wavelength of about 200 to 400 nm. For example, a high pressure mercury lamp, a xenon lamp, a metal halide lamp, a tungsten lamp, or the like can be used. At this time, ultraviolet light having an arbitrary wavelength may be extracted using an optical filter that removes ultraviolet light in a specific wavelength range. Further, the ultraviolet light irradiation mechanism may be an integral type or a separate type of light source body and irradiation unit. In the case of a separate type, the light source body and the irradiation unit can be connected by an optical fiber cable.

(拡散反射板の説明)
本発明における拡散反射板は、上記の方法により作製した、凹凸表面を有する樹脂膜を有する透光性基板を用い、この樹脂膜の凹凸表面に金属膜を形成することにより構成される。金属膜としては、銀やアルミニウムといった光の反射率が高い金属膜が用いられ、低コストのアルミニウムが好ましい。金属膜を樹脂膜の凹凸表面に形成する方法としては、特に限定されず、例えば蒸着法、メッキ法等が挙げられ、中でも蒸着法が、優れた膜質および均一な膜厚が容易に得られる観点から好ましい。
以下、図面に基いて本発明の実施形態を具体的に説明する。なお、本発明は以下の実施形態に限定されるものではない。
(Explanation of diffuse reflector)
The diffusive reflecting plate in the present invention is formed by using a translucent substrate having a resin film having a concavo-convex surface produced by the above method, and forming a metal film on the concavo-convex surface of the resin film. As the metal film, a metal film having a high light reflectance such as silver or aluminum is used, and low-cost aluminum is preferable. The method for forming the metal film on the uneven surface of the resin film is not particularly limited, and examples thereof include a vapor deposition method and a plating method. Among them, the vapor deposition method is a viewpoint that an excellent film quality and a uniform film thickness can be easily obtained. To preferred.
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. In addition, this invention is not limited to the following embodiment.

(実施形態1)
図1は本発明の実施形態1の樹脂膜の形成方法および装置を説明する概略斜視図であり、図2は図1の樹脂膜形成装置のステージの概略側面図であり、図3は図1の樹脂膜形成装置のステージの平面図である。
本実施形態1にかかる樹脂膜形成装置は、ラジカル重合型紫外線硬化性樹脂を含む樹脂材料を塗布してなる未硬化樹脂膜Rが一面に形成された透光性基板Sを保持するステージ10と、ステージ10の上に載置した基板Sの下方または上方から紫外線を照射可能な紫外線照射機構15とを備える。
(Embodiment 1)
FIG. 1 is a schematic perspective view for explaining a resin film forming method and apparatus according to Embodiment 1 of the present invention, FIG. 2 is a schematic side view of a stage of the resin film forming apparatus in FIG. 1, and FIG. It is a top view of the stage of this resin film forming apparatus.
The resin film forming apparatus according to the first embodiment includes a stage 10 for holding a translucent substrate S on which an uncured resin film R formed by applying a resin material containing a radical polymerization type ultraviolet curable resin is formed on one surface. And an ultraviolet irradiation mechanism 15 that can irradiate ultraviolet rays from below or above the substrate S placed on the stage 10.

ステージ10は、基板Sを載置するための四角形の枠体11と、枠体11を支持し、枠体11の設置面からの高さを調整する高さ調整手段12とを有する。
枠体11は、その内側が紫外線を透過させるための空洞窓部11aとされると共に、載置した基板Sの隣接する2辺に当接して基板Sを所定位置に位置決めするための複数個(本実施形態1の場合3個)の位置決めピン11bを有している。基板Sを枠体11上に載置し位置決めした状態において、未硬化樹脂膜Rの全領域は、空洞窓部11aの位置に配置される。なお、空洞窓部11aに透明なガラス板またはプラスチック板といった透光性材料からなる板を嵌め込んだ構成、あるいは枠体11の代わりに透光性材料からなる板を用いてもよい。
高さ調整手段12としては、枠体11の下面四隅に設けられた4本の脚部12aと、各脚部12aを独立にまたは連動して昇降させる図示しない昇降機構とを備える。昇降機構としては特に限定されず、例えば脚部をシリンダやラック・ピニオン機構等を用いて昇降させることができる。
The stage 10 includes a rectangular frame 11 on which the substrate S is placed, and a height adjusting unit 12 that supports the frame 11 and adjusts the height from the installation surface of the frame 11.
The frame body 11 has a hollow window portion 11a for transmitting ultraviolet rays inside, and a plurality of frame bodies 11 for positioning the substrate S at predetermined positions by contacting two adjacent sides of the substrate S placed thereon ( In the first embodiment, three positioning pins 11b are provided. In a state where the substrate S is placed and positioned on the frame body 11, the entire region of the uncured resin film R is arranged at the position of the cavity window portion 11a. A configuration in which a plate made of a translucent material such as a transparent glass plate or a plastic plate is fitted in the hollow window portion 11 a, or a plate made of a translucent material may be used instead of the frame body 11.
The height adjusting means 12 includes four leg portions 12a provided at the four corners of the lower surface of the frame 11, and a lifting mechanism (not shown) that lifts and lowers each leg portion 12a independently or in conjunction with each other. The lifting mechanism is not particularly limited, and for example, the legs can be lifted and lowered using a cylinder, a rack and pinion mechanism, or the like.

紫外線照射機構15は、光源本体15aと、光ファイバーケーブル15bと、紫外線を平面的に均一に照射するための直射ユニット15cとからなり、光源本体15aには紫外線照射時間を設定可能なタイマーが内蔵されている。なお、ステージ10と紫外線照射機構15はそれぞれ独立しているため、必要に応じて紫外線照射機構15の個数を変更してもよい。   The ultraviolet irradiation mechanism 15 includes a light source body 15a, an optical fiber cable 15b, and a direct irradiation unit 15c for uniformly irradiating ultraviolet rays in a plane, and the light source body 15a has a built-in timer capable of setting the ultraviolet irradiation time. ing. Since the stage 10 and the ultraviolet irradiation mechanism 15 are independent from each other, the number of the ultraviolet irradiation mechanisms 15 may be changed as necessary.

次に、図1〜図3を参照しながら実施形態1の樹脂膜形成装置を用いた樹脂膜形成方法を説明する。
まず、ラジカル重合型紫外線硬化樹脂を含んだ樹脂材料を基板S上にスピンコートにて塗布して未硬化樹脂膜Rを形成した。このとき、スピンコートの回転数を調整することにより未硬化樹脂膜の膜厚が1μm、5μm、7μm、10μmおよび15μmである5つの試料を作製した。紫外線透過性の基板Sとしては、無アルカリガラス基板(52mm×52mm×0.7mm)を用いた。また、ラジカル重合型紫外線硬化樹脂として、大日本インキ社製の紫外線硬化樹脂SD2407を用い、紫外線硬化樹脂と有機溶剤としてのブチルカルビトールアセテートを体積比1:1となるように希釈して、樹脂材料を調製した。
Next, a resin film forming method using the resin film forming apparatus of Embodiment 1 will be described with reference to FIGS.
First, a resin material containing a radical polymerization type ultraviolet curable resin was applied onto the substrate S by spin coating to form an uncured resin film R. At this time, five samples in which the film thickness of the uncured resin film was 1 μm, 5 μm, 7 μm, 10 μm, and 15 μm were prepared by adjusting the rotation speed of the spin coat. As the ultraviolet transmissive substrate S, an alkali-free glass substrate (52 mm × 52 mm × 0.7 mm) was used. Further, as a radical polymerization type ultraviolet curable resin, an ultraviolet curable resin SD2407 manufactured by Dainippon Ink Co., Ltd. is used, and the ultraviolet curable resin and butyl carbitol acetate as an organic solvent are diluted to a volume ratio of 1: 1 to obtain a resin. The material was prepared.

次に、未硬化樹脂膜Rを上向きにして基板Sをステージ10の枠体11上に設置し、位置決めピン11bにより未硬化樹脂膜Rの全領域をステージ10の空洞窓部11aに配置した。このとき、未硬化樹脂膜Rを形成してからステージ10に基板Sを設置するまでの時間は10秒程度とした。なお、予め紫外線照射機構15の直射ユニット15cを枠体11の下に配置すると共に、高さ調整手段12にて未硬化樹脂膜Rと基板Sとの接触面である固液接触面から直射ユニット15cまでの距離が2.5cmとなるように枠体11の高さを調整した。なお、紫外線照射機構15は、光源本体15aとしてHOYA CANDEO OPTRONICS社製の紫外線照射装置EX250(紫外線照射ランプ)を用い、直射ユニット15cとしてHOYA CANDEO OPTRONICS社製のHDI−SQを用い、それらを光ファイバー15bにて接続して構成した。   Next, the substrate S was placed on the frame 11 of the stage 10 with the uncured resin film R facing upward, and the entire region of the uncured resin film R was placed in the hollow window 11a of the stage 10 by the positioning pins 11b. At this time, the time from the formation of the uncured resin film R to the placement of the substrate S on the stage 10 was about 10 seconds. In addition, the direct irradiation unit 15c of the ultraviolet irradiation mechanism 15 is previously disposed below the frame body 11, and the direct adjustment unit is moved from the solid-liquid contact surface, which is the contact surface between the uncured resin film R and the substrate S, by the height adjusting unit 12. The height of the frame 11 was adjusted so that the distance to 15c was 2.5 cm. The ultraviolet irradiation mechanism 15 uses an ultraviolet irradiation device EX250 (ultraviolet irradiation lamp) manufactured by HOYA CANDEO OPTRONICS as the light source body 15a, and uses an HDI-SQ manufactured by HOYA CANDEO OPTRONICS as the direct irradiation unit 15c. Connected and configured.

基板Sをステージ10に載置した後、直ちに紫外線照射機構15により紫外線を30秒間照射し未硬化樹脂膜Rを硬化させて、凹凸表面を有する樹脂膜を形成した。このとき、基板S側から基板Sと未硬化樹脂膜Rとの固液接触面に向けて紫外線を照射すると、図4に示すように、直射ユニット15cに最も近い固液接触面R1の硬化性が最も高く、直射ユニット15cから最も遠い表面R2の硬化性が最も低くなる。さらに、未硬化樹脂膜Rに含まれるラジカル重合型紫外線硬化樹脂は、硬化反応が進行するために必要なラジカルが大気中の酸素と反応することにより硬化反応の進行が阻害され、表面R2の硬化性はさらに低下する。このように、未硬化樹脂膜Rにおいて、硬化性が極端に低い硬化性の分布を膜厚方向の表面R2に形成することにより、固液接触面R1の硬化反応が進行し収縮したときに、未硬化であり流動性を有する表面R2が引っ張られ、その結果、硬化した樹脂膜の表面に凹凸形状を形成することができる。   After placing the substrate S on the stage 10, the ultraviolet ray irradiation mechanism 15 immediately irradiated with ultraviolet rays for 30 seconds to cure the uncured resin film R to form a resin film having an uneven surface. At this time, when the ultraviolet light is irradiated from the substrate S side toward the solid-liquid contact surface between the substrate S and the uncured resin film R, as shown in FIG. 4, the curability of the solid-liquid contact surface R1 closest to the direct irradiation unit 15c. Is the highest, and the curability of the surface R2 farthest from the direct unit 15c is the lowest. Furthermore, the radical polymerization type UV curable resin contained in the uncured resin film R is such that the radical necessary for the progress of the curing reaction reacts with oxygen in the atmosphere to inhibit the progress of the curing reaction, and the surface R2 is cured. Sex is further reduced. In this way, in the uncured resin film R, by forming a curable distribution having extremely low curability on the surface R2 in the film thickness direction, when the curing reaction of the solid-liquid contact surface R1 proceeds and contracts, The surface R2 which is uncured and has fluidity is pulled, and as a result, an uneven shape can be formed on the surface of the cured resin film.

図5は基板上に形成された樹脂膜表面の凹凸の深さを説明する概略側断面図であり、図6は上記の方法によって得られた未硬化樹脂膜の膜厚と表面凹凸の深さとの関係を示し、図7は膜厚15μmの未硬化樹脂膜から得られた樹脂膜の表面凹凸の深さと幅を示している。なお、図5において矢印で示す部分、つまり樹脂膜の表面凹凸の最も深い部分と最も高い部分の差を本発明では表面凹凸の深さとした。   FIG. 5 is a schematic cross-sectional side view explaining the depth of unevenness on the surface of the resin film formed on the substrate. FIG. 6 shows the thickness of the uncured resin film and the depth of surface unevenness obtained by the above method. FIG. 7 shows the depth and width of the surface irregularities of a resin film obtained from an uncured resin film having a film thickness of 15 μm. In FIG. 5, the difference between the portion indicated by the arrow, that is, the deepest portion and the highest portion of the surface unevenness of the resin film is defined as the surface unevenness depth in the present invention.

図6に示すように、膜厚1μmの未硬化樹脂膜を用いた試料aの場合、紫外線照射後の樹脂膜の表面に凹凸は見られなかった。また、膜厚5μmおよび7μmの未硬化樹脂膜を用いた試料b、試料cの場合は極わずかに凹凸が確認された。一方、膜厚10μmの未硬化樹脂膜を用いた試料dの場合には、紫外線照射後の樹脂膜の表面形状がはっきりと凹凸であることがわかり、膜厚15μmの未硬化樹脂膜を用いた試料eの場合はさらに大きな凹凸であった。これは、未硬化樹脂膜の膜厚が大きいほど膜厚方向における硬化性の分布が大きくなるため、表面の凹凸形状R3(図5参照)を形成しやすいためと考えられる。つまり、未硬化樹脂膜の膜厚が小さい場合には、何らかの手段により硬化性の分布を大きくすることが必要であることが分かった。
このように、未硬化樹脂膜の膜厚を変えることにより任意の大きさの表面凹凸R3を硬化した樹脂膜に形成できることが分かり、特に未硬化樹脂膜の膜厚が10μm以上の場合には比較的大きな表面凹凸形状R3を形成できることが分かった。また、図7に示すように、膜厚15μmの未硬化樹脂膜から得られた樹脂膜は、深さが3μm程度、開口幅が6μ程度、ランダムなパターン形状の表面凹凸形状R3が得られることがわかった。なお、図6および図7における表面凹凸の深さおよび幅の測定は、キーエンス社製カラー3D形状測定顕微鏡VK−9500により行なった。
As shown in FIG. 6, in the case of sample a using an uncured resin film having a thickness of 1 μm, no irregularities were found on the surface of the resin film after ultraviolet irradiation. In addition, in the case of sample b and sample c using uncured resin films having a film thickness of 5 μm and 7 μm, slight unevenness was confirmed. On the other hand, in the case of sample d using an uncured resin film having a film thickness of 10 μm, it was found that the surface shape of the resin film after ultraviolet irradiation was clearly uneven, and an uncured resin film having a film thickness of 15 μm was used. In the case of sample e, the unevenness was even larger. This is presumably because the larger the thickness of the uncured resin film, the greater the distribution of curability in the film thickness direction, and the easier it is to form the surface irregular shape R3 (see FIG. 5). In other words, it was found that when the film thickness of the uncured resin film is small, it is necessary to increase the distribution of curability by some means.
Thus, it can be seen that by changing the film thickness of the uncured resin film, it is possible to form the surface unevenness R3 of any size on the cured resin film, especially when the film thickness of the uncured resin film is 10 μm or more. It was found that a large surface irregular shape R3 could be formed. Moreover, as shown in FIG. 7, the resin film obtained from the uncured resin film having a film thickness of 15 μm has a surface unevenness R3 having a random pattern shape with a depth of about 3 μm and an opening width of about 6 μm. I understood. The depth and width of the surface irregularities in FIGS. 6 and 7 were measured with a Keyence color 3D shape measurement microscope VK-9500.

このように、本発明によれば、現像や加熱などの後工程を行うことなく、短時間で表面に凹凸形状R3を有する樹脂膜を形成することができる。さらに、紫外線照射時にパターンを形成したフォトマスクが必要なく、現像や加熱のための設備も不要なため、コストを低減することができる。   Thus, according to the present invention, it is possible to form the resin film having the concavo-convex shape R3 on the surface in a short time without performing a post-process such as development or heating. Furthermore, a photomask having a pattern formed at the time of ultraviolet irradiation is not necessary, and facilities for development and heating are not necessary, so that the cost can be reduced.

なお、本実施形態1では、スピンコートにより基板S上に未硬化樹脂膜Rを形成したが、インクジェットにより均一な膜厚で樹脂材料を塗布して未硬化樹脂膜を形成した場合も同様の結果であった。また、本実施形態1では基板Sとしてガラス基板を用いたが、紫外線を透過する基板であればよいことを確認した。また、本実施形態1では、紫外線照射機構15の直射ユニット15cから未硬化樹脂Rの固液接触面R1までの距離を2.5cmとしたが、距離を変えることにより紫外線照射強度を変化させた場合でも結果は同様であることを確認した。   In the first embodiment, the uncured resin film R is formed on the substrate S by spin coating. However, the same result is obtained when an uncured resin film is formed by applying a resin material with a uniform film thickness by inkjet. Met. Moreover, although the glass substrate was used as the board | substrate S in this Embodiment 1, it confirmed that it should just be a board | substrate which permeate | transmits an ultraviolet-ray. In the first embodiment, the distance from the direct irradiation unit 15c of the ultraviolet irradiation mechanism 15 to the solid-liquid contact surface R1 of the uncured resin R is 2.5 cm, but the ultraviolet irradiation intensity is changed by changing the distance. Even in cases, the results were confirmed to be similar.

(実施形態2)
上記実施形態1では、ステージに載置した基板の下側から紫外線を照射する場合を例示したが、必ずしもこの構成である必要はなく、図8に示すように空洞窓部11aの位置で未硬化樹脂膜Rを下側に向けて基板Sを枠体11に設置し、上方から未硬化樹脂膜Rの固液接触面に向けて紫外線を照射してもよい。この場合、直射ユニット15cを水平に保持する保持部材を設け、ステージ10の高さ調節手段12により直射ユニット15cから固液接触面までの距離を所定距離に設定する。
この実施形態2によっても、実施形態1と同様に、短時間かつ低コストで表面凹凸形状を有する樹脂膜を得ることができる。
(Embodiment 2)
In the first embodiment, the case of irradiating ultraviolet rays from the lower side of the substrate placed on the stage is exemplified, but it is not always necessary to have this configuration, and as shown in FIG. 8, uncured at the position of the cavity window portion 11a. The substrate S may be installed on the frame 11 with the resin film R facing downward, and ultraviolet rays may be irradiated from above to the solid-liquid contact surface of the uncured resin film R. In this case, a holding member for horizontally holding the direct irradiation unit 15c is provided, and the distance from the direct irradiation unit 15c to the solid-liquid contact surface is set to a predetermined distance by the height adjusting means 12 of the stage 10.
According to the second embodiment, similarly to the first embodiment, a resin film having an uneven surface shape can be obtained in a short time and at a low cost.

(実施形態3)
実施形態3の樹脂膜形成装置は、図9に示すように、紫外線照射機構15は実施形態1と同じであるが、ステージ20が異なり、さらに酸素濃度調整手段27を備えている。なお、図9において、実施形態1と同様の要素には同一の符号を付している。
(Embodiment 3)
As shown in FIG. 9, the resin film forming apparatus of the third embodiment is the same as the first embodiment in the ultraviolet irradiation mechanism 15, but the stage 20 is different and an oxygen concentration adjusting means 27 is further provided. In FIG. 9, the same elements as those in the first embodiment are denoted by the same reference numerals.

ステージ20は、未硬化樹脂膜Rが形成された基板Sを出し入れ可能な開閉部を有する密閉容器21と、密閉容器21を高さ調整可能に支持する実施形態1と同様の高さ調整手段12とを備えている。密閉容器21は、全体が透光性材料(プラスチック、ガラス等)からなる四角形扁平型であり、その底壁の内面には実施形態1と同様の複数本の位置決めピン11bが設けられている。   The stage 20 has an airtight container 21 having an opening / closing part capable of taking in and out the substrate S on which the uncured resin film R is formed, and a height adjusting unit 12 similar to the first embodiment that supports the airtight container 21 so that the height can be adjusted. And. The sealed container 21 is a rectangular flat type made entirely of a translucent material (plastic, glass, etc.), and a plurality of positioning pins 11b similar to those in the first embodiment are provided on the inner surface of the bottom wall.

また、酸素濃度調整手段27は、酸素ガスボンベ27aと、窒素ガスボンベ27bと、各ガスボンベ27a、27bと密閉容器21とを接続するガス導入管28と、ガス導入管28に設けられた開閉弁28aと、密閉容器21内のガスを外部に排出するためのガス排出管29と、ガス排出管29に設けられた開閉弁29bとを備え、開閉弁28a、29aを開閉して密閉容器21内に窒素または酸素を給排気することにより容器21内の酸素量制御を行い、密閉容器21内を密閉して内部の酸素濃度を所定濃度(体積%)に調整することができる。   The oxygen concentration adjusting means 27 includes an oxygen gas cylinder 27a, a nitrogen gas cylinder 27b, a gas introduction pipe 28 connecting the gas cylinders 27a and 27b and the sealed container 21, and an on-off valve 28a provided in the gas introduction pipe 28. And a gas discharge pipe 29 for discharging the gas in the sealed container 21 to the outside, and an opening / closing valve 29b provided in the gas discharge pipe 29. The opening / closing valves 28a and 29a are opened and closed, and the nitrogen in the sealed container 21 is provided. Alternatively, the amount of oxygen in the container 21 can be controlled by supplying and exhausting oxygen, and the inside of the sealed container 21 can be sealed to adjust the internal oxygen concentration to a predetermined concentration (volume%).

次に、図9を参照しながら実施形態3の樹脂膜形成装置を用いた樹脂膜形成方法を説明する。
まず、感光性樹脂としてT&K TOKA社製のUVコートニスを用いたこと以外は実施形態1と同様に基板S上に膜厚10μmの未硬化樹脂膜Rを形成し、その基板Sを密閉容器21の内部に設置して密閉した。次に、酸素調整手段27にて密閉容器21内の酸素濃度を所定濃度に調整して雰囲気制御を行った後、紫外線照射機構15により紫外線照射を行い、凹凸表面を有する樹脂膜の試料を形成した。このとき、直射ユニット15cと固液接触面との距離は2.5cmである。
試料としては、酸素濃度が0%、約11%、約20%、約26%および約30%に変えた場合の5種類を作製した。
Next, a resin film forming method using the resin film forming apparatus of Embodiment 3 will be described with reference to FIG.
First, an uncured resin film R having a thickness of 10 μm is formed on the substrate S in the same manner as in the first embodiment except that a UV coat varnish manufactured by T & K TOKA is used as the photosensitive resin. Installed inside and sealed. Next, after adjusting the oxygen concentration in the sealed container 21 to a predetermined concentration by the oxygen adjusting means 27 and controlling the atmosphere, the ultraviolet irradiation mechanism 15 performs ultraviolet irradiation to form a resin film sample having an uneven surface. did. At this time, the distance between the direct irradiation unit 15c and the solid-liquid contact surface is 2.5 cm.
Five types of samples were prepared when the oxygen concentration was changed to 0%, about 11%, about 20%, about 26%, and about 30%.

これらの試料f〜jの樹脂膜の表面凹凸の深さと酸素濃度との関係を図10に示す。
酸素濃度を0体積%および11体積%として作製した試料fおよびgの場合、樹脂膜の表面に凹凸は確認できなかった。一方、酸素濃度を20体積%以上として作製した試料h、iおよびjの場合、樹脂膜表面にはっきりと凹凸が確認でき、酸素濃度を高くするほど凹凸形状が大きくなることが分かった。つまりこれは、未硬化樹脂膜Rの周囲の酸素濃度が高いほど、未硬化樹脂膜Rの表面におけるラジカル重合型紫外線硬化樹脂の硬化が酸素により阻害されて、未硬化樹脂膜Rの膜厚方向における硬化性の分布が顕著になることによると考えられる。これらの結果から、未硬化樹脂膜Rの周囲の酸素濃度を制御することで表面凹凸の大きさを制御できることが分かった。特に、酸素濃度を20体積%以上とすることで表面に容易に凹凸を形成することができることを確認した。
The relationship between the depth of the surface irregularities of the resin films of these samples f to j and the oxygen concentration is shown in FIG.
In the case of samples f and g produced with oxygen concentrations of 0% by volume and 11% by volume, irregularities could not be confirmed on the surface of the resin film. On the other hand, in the case of samples h, i, and j prepared with an oxygen concentration of 20% by volume or more, it was found that the unevenness was clearly confirmed on the resin film surface, and the uneven shape was increased as the oxygen concentration was increased. That is, as the oxygen concentration around the uncured resin film R is higher, the curing of the radical polymerization type ultraviolet curable resin on the surface of the uncured resin film R is inhibited by oxygen, and the film thickness direction of the uncured resin film R This is considered to be due to the remarkable distribution of curability. From these results, it was found that the size of the surface irregularities can be controlled by controlling the oxygen concentration around the uncured resin film R. In particular, it was confirmed that unevenness can be easily formed on the surface by setting the oxygen concentration to 20% by volume or more.

なお、本実施形態3では、ラジカル重合型紫外線硬化樹脂としてT&K TOKA社製のUVコートニスを用いたが、実施の形態1にて使用した大日本インキ社製の紫外線硬化樹脂SD2407でも同様の結果が得られた。また、本実施形態3では、ステージ20を密閉型ステージとして、未硬化樹脂膜Rの周囲の雰囲気を制御したが、樹脂膜形成装置全体を密閉して装置周囲の酸素制御を行うように構成してもよい。   In the third embodiment, UV coat varnish manufactured by T & K TOKA was used as the radical polymerization type UV curable resin, but the same result was obtained with the UV curable resin SD2407 manufactured by Dainippon Ink Co., Ltd. used in the first embodiment. Obtained. In Embodiment 3, the stage 20 is a sealed stage and the atmosphere around the uncured resin film R is controlled. However, the entire resin film forming apparatus is sealed to control oxygen around the apparatus. May be.

(実施形態4)
実施形態4では、ラジカル重合型紫外線硬化樹脂として、荒川化学社製UV硬化樹脂ビームセットEM−90(官能基数6)、ビームセットEM−92(官能基数4)、ビームセット550B(官能基数3)およびビームセット510(官能基数2)を用いたこと以外は実施形態1と同様の装置および方法にて基板上に樹脂膜を形成した試料を作製した。但し、ビームセットEM−90およびEM−92は希釈せず、ビームセット510およびビームセット550Bは荒川化学社製希釈剤ビームセット770により体積比1:1で希釈した。このとき、直射ユニットと固液接触面との距離は2cmである。
上記4種類の樹脂を用いた試料としては、未硬化樹脂膜の膜厚を1μm、5μm、7μmおよび10μmとし、合計16種類の試料を作製した。
(Embodiment 4)
In Embodiment 4, as a radical polymerization type ultraviolet curable resin, Arakawa Chemical's UV curable resin beam set EM-90 (functional group number 6), beam set EM-92 (functional group number 4), beam set 550B (functional group number 3). A sample in which a resin film was formed on a substrate was prepared by the same apparatus and method as in Embodiment 1 except that the beam set 510 (functional group number 2) was used. However, the beam sets EM-90 and EM-92 were not diluted, and the beam set 510 and the beam set 550B were diluted with a diluent beam set 770 manufactured by Arakawa Chemical Co. at a volume ratio of 1: 1. At this time, the distance between the direct irradiation unit and the solid-liquid contact surface is 2 cm.
As samples using the above four types of resins, the thickness of the uncured resin film was 1 μm, 5 μm, 7 μm, and 10 μm, and a total of 16 types of samples were produced.

上記4種類の樹脂を用いて作製した試料の樹脂膜の表面凹凸の深さと未硬化樹脂膜の膜厚との関係を図11に示す。なお、図11において、◆はビームセットEM−90(官能基数6)、□はビームセットEM−92(官能基数4)、×はビームセット550B(官能基数3)、△はビームセット510(官能基数2)を用いた試料を示している。
図11の結果から、未硬化樹脂膜に含有される紫外線硬化性樹脂の官能基数が多いほど3次元的に結合して硬化時の体積収縮が大きくなるため、表面凹凸の深さが深い表面凹凸形状を形成できることが分かった。特に、未硬化樹脂膜に含まれる紫外線硬化樹脂の官能基数が3以上の場合には、未硬化樹脂膜の体積収縮率が顕著に大きくなることにより、固液接触面側から進行する硬化・収縮に、表面がより強く引っ張られて表面凹凸形状を容易に形成できることが分かった。
FIG. 11 shows the relationship between the depth of the surface irregularities of the resin film of the sample prepared using the above four types of resins and the film thickness of the uncured resin film. In FIG. 11, ◆ is a beam set EM-90 (functional group number 6), □ is a beam set EM-92 (functional group number 4), X is a beam set 550B (functional group number 3), and Δ is a beam set 510 (functional group). Samples using radix 2) are shown.
From the results shown in FIG. 11, the larger the number of functional groups of the ultraviolet curable resin contained in the uncured resin film, the more the three-dimensional bonds and the volume shrinkage at the time of curing increase. It was found that a shape could be formed. In particular, when the number of functional groups of the ultraviolet curable resin contained in the uncured resin film is 3 or more, the volume shrinkage rate of the uncured resin film is significantly increased, so that the curing / shrinkage that proceeds from the solid-liquid contact surface side is performed. In addition, it was found that the surface was pulled more strongly and the surface uneven shape could be easily formed.

(実施形態5)
実施形態5では、ラジカル重合型紫外線硬化樹脂として、IJT社製のUVインク(シアン)を用いたこと以外は実施形態1と同様の装置および方法にて基板上に樹脂膜を形成した試料を作製した。但し、IJT社製UVインクは紫外線吸収効果を有するシアン顔料を含有しており、予め有機溶剤によって希釈されているため、本実施形態5ではUVインクを有機溶剤により希釈していない。このとき、直射ユニットと固液接触面との距離は2cmである。
上記UVインクを用いた試料としては、未硬化樹脂膜の膜厚を1μm、5μm、7μm、10μmおよび15μmとし、合計5種類の試料を作製した。
(Embodiment 5)
In Embodiment 5, a sample in which a resin film is formed on a substrate by the same apparatus and method as in Embodiment 1 except that IJT UV ink (cyan) was used as the radical polymerization type ultraviolet curable resin was prepared. did. However, since the UV ink manufactured by IJT contains a cyan pigment having an ultraviolet absorption effect and is diluted with an organic solvent in advance, in the fifth embodiment, the UV ink is not diluted with an organic solvent. At this time, the distance between the direct irradiation unit and the solid-liquid contact surface is 2 cm.
As samples using the UV ink, the thickness of the uncured resin film was 1 μm, 5 μm, 7 μm, 10 μm, and 15 μm, and a total of five types of samples were prepared.

上記5種類の試料k〜oの樹脂膜の表面凹凸の深さと未硬化樹脂膜の膜厚との関係を図12に示す。
図12の結果より、実施の形態1と同じく、未硬化樹脂膜の膜厚が大きいほど樹脂膜の表面に形成された表面凹凸の深さは深くなることが分かった。さらに、実施形態1の結果(図6参照)と比較して、未硬化樹脂膜が紫外線吸収効果を有する材料を含有する実施形態5の場合では、未硬化樹脂膜の膜厚が7μm(試料m)と小さい場合でも1μm以上の深さの表面凹凸を形成できることが分かった。
実施形態5の結果を図13を用いてさらに説明すると、未硬化樹脂膜Rが紫外線吸収効果を有する材料であるシアン顔料を含有することにより、紫外線は固液接触面R1側から未硬化樹脂膜Rの内部を透過する間にシアン顔料に吸収され、それによって表面R2への紫外線照射量が減少して表面R2の硬化性が低下する。よって、未硬化樹脂膜Rの膜厚方向に硬化性分布が形成される。
FIG. 12 shows the relationship between the depth of the surface irregularities of the resin films of the five types of samples k to o and the film thickness of the uncured resin film.
From the results of FIG. 12, it was found that the depth of the surface irregularities formed on the surface of the resin film becomes deeper as the film thickness of the uncured resin film is larger as in the first embodiment. Furthermore, compared with the result of Embodiment 1 (see FIG. 6), in the case of Embodiment 5 in which the uncured resin film contains a material having an ultraviolet absorption effect, the film thickness of the uncured resin film is 7 μm (sample m It was found that surface irregularities having a depth of 1 μm or more can be formed even in a small case.
The results of the fifth embodiment will be further described with reference to FIG. 13. When the uncured resin film R contains a cyan pigment which is a material having an ultraviolet absorption effect, the ultraviolet light is uncured from the solid-liquid contact surface R1 side. While passing through the inside of R, it is absorbed by the cyan pigment, thereby reducing the amount of ultraviolet irradiation to the surface R2 and lowering the curability of the surface R2. Therefore, a curable distribution is formed in the film thickness direction of the uncured resin film R.

なお、本実施形態5では、ラジカル重合型紫外線硬化樹脂としてIJT社製のUVインクを用いたが、実施形態1にて使用した大日本インキ社製の紫外線硬化樹脂SD2407および実施形態2で使用したT&K TOKA社製UVコートニスにシアン顔料を分散させた場合でも同様の結果が得られた。つまり、ラジカル重合型紫外線硬化樹脂に紫外線吸収材料もしくは紫外線吸収効果を有する材料を添加することにより、通常では表面凹凸を形成することができないもしくは小さな表面凹凸しか形成できない条件においても表面凹凸を形成できることが分かった。本実施形態5では、紫外線吸収効果を有する材料としてシアン顔料を含有するインクを用いたが、紫外線を吸収するならば他の色の顔料でもよい。紫外線の吸収量は顔料の色などにより異なるため、求める表面凹凸の大きさ、用いる紫外線硬化樹脂の硬化性や膜厚に応じて紫外線吸収効果を有する材料を選択すればよい。   In this Embodiment 5, UV ink manufactured by IJT was used as the radical polymerization type UV curable resin, but used in Dainippon Ink UV curable resin SD2407 and Embodiment 2 used in Embodiment 1. Similar results were obtained when the cyan pigment was dispersed in T & K TOKA's UV coat varnish. In other words, by adding an ultraviolet absorbing material or a material having an ultraviolet absorbing effect to a radical polymerization type ultraviolet curable resin, surface irregularities can be formed even under conditions where surface irregularities cannot be formed normally or only small surface irregularities can be formed. I understood. In the fifth embodiment, an ink containing a cyan pigment is used as a material having an ultraviolet absorption effect, but other color pigments may be used as long as they absorb ultraviolet rays. Since the amount of absorption of ultraviolet rays varies depending on the color of the pigment and the like, a material having an ultraviolet absorption effect may be selected according to the required surface irregularity, the curability of the ultraviolet curable resin to be used, and the film thickness.

(実施形態6)
実施形態5では、図14に示すように、基板S上に未硬化樹脂膜Rをディスペンサーを用いて連続的に変化する膜厚で形成したこと以外は実施形態1と同様の装置および方法にて基板上に樹脂膜を形成した試料を作製した。この未硬化樹脂膜Rの大きさは直径約300μm、膜厚は最大部で30μmである。試料としては、未硬化樹脂膜の膜厚を1μm、7μm、10μm、15μmおよび30μmとし、合計5種類の試料を作製した。
(Embodiment 6)
In the fifth embodiment, as shown in FIG. 14, the same apparatus and method as in the first embodiment except that the uncured resin film R is formed on the substrate S with a continuously changing film thickness using a dispenser. A sample in which a resin film was formed on a substrate was produced. The uncured resin film R has a diameter of about 300 μm and a maximum thickness of 30 μm. As samples, the film thickness of the uncured resin film was 1 μm, 7 μm, 10 μm, 15 μm, and 30 μm, and a total of five types of samples were produced.

上記5種類の試料p〜tの樹脂膜の表面凹凸の深さと未硬化樹脂膜の膜厚との関係を図15に示す。
図15の結果より、実施の形態1と同じく、同一の未硬化樹脂膜内においても、膜厚が大きい部分ほど形成された樹脂膜の表面凹凸の深さは深くなり、膜厚が小さい部分ほど形成された樹脂膜の表面凹凸の深さが小さくなることが分かった。これはつまり、膜厚が一定ではない未硬化樹脂膜Rでは、固液接触面R1と直射ユニット15cとの距離はどの位置でも同じであるが、表面R2と直射ユニット15cの距離は、未硬化樹脂膜R内で一定ではないため、膜厚が大きいほど硬化性の分布が大きくなることを示している。よって、同一未硬化樹脂膜R内で膜厚を連続的に変化させることにより、膜厚の変化に対応して大きさが異なる表面凹凸形状を形成できることが分かった。
FIG. 15 shows the relationship between the depth of the surface irregularities of the resin films of the five types of samples p to t and the film thickness of the uncured resin film.
From the result of FIG. 15, as in the first embodiment, even in the same uncured resin film, the depth of the surface unevenness of the formed resin film becomes deeper as the film thickness becomes larger, and the part where the film thickness becomes smaller It was found that the depth of the surface unevenness of the formed resin film was reduced. That is, in the uncured resin film R whose film thickness is not constant, the distance between the solid-liquid contact surface R1 and the direct irradiation unit 15c is the same at any position, but the distance between the surface R2 and the direct irradiation unit 15c is uncured. Since it is not constant in the resin film R, it indicates that the larger the film thickness, the greater the distribution of curability. Therefore, it was found that by continuously changing the film thickness within the same uncured resin film R, it is possible to form surface irregularities having different sizes corresponding to the change in the film thickness.

本実施形態6では、連続的に膜厚が変化する未硬化樹脂膜Rをディスペンサーにより形成したが、その他の不均一な膜厚を形成できる手段、例えばスポイトやピペットなどにより基板S上に樹脂材料を滴下して未硬化樹脂膜Rを形成しても良い。   In the sixth embodiment, the uncured resin film R whose film thickness continuously changes is formed by the dispenser. However, the resin material on the substrate S by other means capable of forming a non-uniform film thickness, such as a dropper or a pipette. May be dropped to form the uncured resin film R.

(実施形態7)
実施形態7では、実施形態1で形成した厚深さ3.02μm、幅2.31μmの表面凹凸を有する硬化後の樹脂膜を用いた。この樹脂膜に凹凸表面側から透過光を照射して観察したところ、良好な拡散性を示す光学フィルムであることが分かった。この樹脂膜に真空蒸着法によりアルミニウムを0.1μmの膜厚で成膜して拡散反射板を形成した。
(Embodiment 7)
In the seventh embodiment, the cured resin film having surface irregularities having a thickness of 3.02 μm and a width of 2.31 μm formed in the first embodiment is used. When this resin film was observed by irradiating transmitted light from the uneven surface side, it was found to be an optical film exhibiting good diffusibility. A diffusion reflector was formed by depositing aluminum with a thickness of 0.1 μm on this resin film by vacuum deposition.

この拡散反射板の反射特性、詳しくは1.5J/cm2の紫外線照射で得られた転写原型を用いた拡散反射板の真正面への反射強度(標準白色板に対する相対強度)の入射角度依存性を図16に示す。
図16から分かるように、実施形態7の拡散反射板は、入射光角度±20度の範囲で高い反射強度である。反射型液晶ディスプレイの拡散反射板に求められる入射光角度は±20度であることから、反射型液晶ディスプレイの拡散反射板として良好な反射特性を有していることが分かった。
このように、本発明の樹脂膜形成方法により表面凹凸を有する樹脂膜を用いて、光学フィルムや拡散反射板を形成した場合、拡散性の良好な光学フィルムもしくは反射特性の良好な反射板を低コストかつ短時間で作製できることが分かった。このような反射板は、例えば反射型液晶ディスプレイなどの拡散反射板等に適している。
Reflection characteristics of this diffuse reflector, more specifically, the incident angle dependence of the reflection intensity (relative intensity with respect to the standard white plate) directly in front of the diffuse reflector using the transfer prototype obtained by UV irradiation of 1.5 J / cm 2 Is shown in FIG.
As can be seen from FIG. 16, the diffusive reflector of Embodiment 7 has a high reflection intensity in the range of the incident light angle of ± 20 degrees. Since the incident light angle required for the diffuse reflection plate of the reflective liquid crystal display is ± 20 degrees, it was found that the diffuse reflection plate of the reflective liquid crystal display has good reflection characteristics.
Thus, when an optical film or a diffuse reflector is formed using a resin film having surface irregularities by the resin film formation method of the present invention, an optical film having good diffusibility or a reflector having good reflection characteristics is reduced. It was found that it can be produced at a low cost and in a short time. Such a reflector is suitable for a diffuse reflector such as a reflective liquid crystal display.

(他の実施形態)
1.本発明において、未硬化樹脂膜の形成に用いられるラジカル重合型紫外線硬化性樹脂は、複数種類を混合して用いてもよい。例えば、実施形態1、2、3および4のラジカル重合型紫外線硬化樹脂の2種以上を混合して用いてもよい。
2.また、このような混合樹脂を用いて未硬化樹脂膜を形成し、未硬化樹脂膜の周囲の雰囲気の酸素濃度を20体積%以上に制御して紫外線を照射するようにしてもよい。
3.また、このような混合樹脂を用いて不均一な膜厚で未硬化樹脂を形成してもよく、さらには不均一な膜厚の未硬化樹脂膜の周囲の雰囲気の酸素濃度を20体積%以上に制御して紫外線を照射するようにしてもよい。
4.また、混合樹脂を用いること、酸素濃度を制御することおよび未硬化樹脂の膜厚を不均一にすることの何れか1つ以上を組み合わせて形成した凹凸表面を有する樹脂膜を用い、その凹凸表面に金属膜を形成して拡散反射板を形成してもよい。
(Other embodiments)
1. In the present invention, the radical polymerization type ultraviolet curable resin used for forming the uncured resin film may be used by mixing a plurality of types. For example, two or more of the radical polymerization type ultraviolet curable resins of Embodiments 1, 2, 3, and 4 may be mixed and used.
2. Alternatively, an uncured resin film may be formed using such a mixed resin, and the oxygen concentration in the atmosphere around the uncured resin film may be controlled to 20% by volume or more to irradiate ultraviolet rays.
3. In addition, an uncured resin may be formed with a non-uniform film thickness using such a mixed resin, and the oxygen concentration in the atmosphere around the non-cured resin film with a non-uniform film thickness may be 20% by volume or more. You may make it irradiate an ultraviolet-ray by controlling to.
4). Also, using a resin film having an uneven surface formed by combining one or more of using a mixed resin, controlling the oxygen concentration, and making the film thickness of the uncured resin non-uniform, the uneven surface A diffusion reflection plate may be formed by forming a metal film.

本発明の実施形態1の樹脂膜の形成方法および装置を説明する概略斜視図である。It is a schematic perspective view explaining the formation method and apparatus of the resin film of Embodiment 1 of this invention. 図1の樹脂膜形成装置のステージの概略側面図である。It is a schematic side view of the stage of the resin film forming apparatus of FIG. 図1の樹脂膜形成装置のステージの平面図である。It is a top view of the stage of the resin film forming apparatus of FIG. 実施形態1における未硬化樹脂膜の硬化を説明する図である。It is a figure explaining hardening of the uncured resin film in Embodiment 1. 実施形態1における基板上に形成された樹脂膜表面の凹凸の深さを説明する概略側断面図である。3 is a schematic cross-sectional side view illustrating the depth of unevenness on the surface of a resin film formed on a substrate in Embodiment 1. FIG. 実施形態1の方法によって得られた未硬化樹脂膜の膜厚と表面凹凸の深さとの関係を示すグラフである。It is a graph which shows the relationship between the film thickness of the uncured resin film obtained by the method of Embodiment 1, and the depth of surface unevenness. 実施形態1における膜厚15μmの未硬化樹脂膜から得られた樹脂膜の表面凹凸の深さと幅を示している。The depth and width of the surface unevenness | corrugation of the resin film obtained from the 15-micrometer-thick uncured resin film in Embodiment 1 are shown. 本発明の実施形態2の樹脂膜の形成方法および装置を説明する概略斜視図である。It is a schematic perspective view explaining the formation method and apparatus of the resin film of Embodiment 2 of this invention. 本発明の実施形態3の樹脂膜の形成方法および装置を説明する概略斜視図である。It is a schematic perspective view explaining the formation method and apparatus of the resin film of Embodiment 3 of this invention. 実施形態3における試料の樹脂膜の表面凹凸の深さと酸素濃度との関係を示すグラフである。10 is a graph showing the relationship between the depth of surface irregularities of a resin film of a sample and the oxygen concentration in Embodiment 3. 実施形態4における試料の樹脂膜の表面凹凸の深さと未硬化樹脂膜の膜厚との関係を示すグラフである。It is a graph which shows the relationship between the depth of the surface unevenness | corrugation of the resin film of the sample in Embodiment 4, and the film thickness of an uncured resin film. 実施形態5における試料の樹脂膜の表面凹凸の深さと未硬化樹脂膜の膜厚との関係を示すグラフである。10 is a graph showing the relationship between the depth of surface irregularities of a resin film of a sample and the film thickness of an uncured resin film in Embodiment 5. 実施形態5における未硬化樹脂膜の硬化を説明する図である。It is a figure explaining hardening of the uncured resin film in Embodiment 5. 実施形態6における未硬化樹脂膜の硬化を説明する図である。It is a figure explaining hardening of the uncured resin film in Embodiment 6. 実施形態6における試料の樹脂膜の表面凹凸の深さと未硬化樹脂膜の膜厚との関係を示すグラフである。It is a graph which shows the relationship between the depth of the surface unevenness | corrugation of the resin film of the sample in Embodiment 6, and the film thickness of an uncured resin film. 本発明の樹脂膜形成方法により得られた拡散反射板の反射特性を示すグラフである。It is a graph which shows the reflective characteristic of the diffuse reflection board obtained by the resin film formation method of this invention.

符号の説明Explanation of symbols

10、20 ステージ
11 枠体
11a 空洞窓部
11b 位置決めピン
12 高さ調整手段
15 紫外線照射機構
15a 光源本体
15b 光ファイバー
15c 直射ユニット
21 密閉容器
27 酸素濃度調整手段
28 ガス導入管
29 ガス排出管
50 紫外線吸収剤
R 未硬化樹脂
R1 固液接触面
R2 表面
R3 表面凹凸
S 基板
10, 20 Stage 11 Frame 11a Cavity window portion 11b Positioning pin 12 Height adjusting means 15 Ultraviolet irradiation mechanism 15a Light source body 15b Optical fiber 15c Direct irradiation unit 21 Sealed container 27 Oxygen concentration adjusting means 28 Gas introduction pipe 29 Gas discharge pipe 50 Ultraviolet absorption Agent R Uncured resin R1 Solid-liquid contact surface R2 Surface R3 Surface irregularity S Substrate

Claims (11)

紫外線透過性の基板にラジカル重合型紫外線硬化性樹脂を含有する樹脂材料を塗布して未硬化樹脂膜を形成し、前記基板側から基板と未硬化樹脂膜との接触面に向けて紫外線を照射することにより未硬化樹脂膜を硬化して、表面に凹凸を有する下地用の樹脂膜を形成することを特徴とする樹脂膜形成方法。   A resin material containing a radical polymerization type ultraviolet curable resin is applied to an ultraviolet transmissive substrate to form an uncured resin film, and ultraviolet rays are irradiated from the substrate side toward the contact surface between the substrate and the uncured resin film. A resin film forming method, comprising: curing an uncured resin film to form an underlying resin film having irregularities on the surface. 未硬化樹脂膜の膜厚が10μm以上である請求項1に記載の樹脂膜形成方法。   The method for forming a resin film according to claim 1, wherein the film thickness of the uncured resin film is 10 μm or more. 紫外線を照射するに際して、未硬化樹脂膜の表面側における雰囲気中の酸素濃度を20体積%以上に調整する請求項1または2に記載の樹脂膜形成方法。   The resin film forming method according to claim 1 or 2, wherein the oxygen concentration in the atmosphere on the surface side of the uncured resin film is adjusted to 20% by volume or more when the ultraviolet rays are irradiated. ラジカル重合型紫外線硬化性樹脂が3官能モノマー以上の多官能モノマーを含有する請求項1〜3の何れか1つに記載の樹脂膜形成方法。   The method for forming a resin film according to any one of claims 1 to 3, wherein the radical polymerization type ultraviolet curable resin contains a polyfunctional monomer having three or more functional monomers. 樹脂材料が紫外線吸収材料を含有する請求項1〜4の何れか1つに記載の樹脂膜形成方法。   The resin film forming method according to claim 1, wherein the resin material contains an ultraviolet absorbing material. 未硬化樹脂膜が、不均一な膜厚にて基板上に形成される請求項1〜5の何れか1つに記載の樹脂膜形成方法。   The resin film forming method according to claim 1, wherein the uncured resin film is formed on the substrate with a non-uniform film thickness. ラジカル重合型紫外線硬化性樹脂を含有する未硬化樹脂膜を表面に有する紫外線透過性の基板を保持するステージと、前記基板側から基板と未硬化樹脂膜との接触面に向けて紫外線を照射するための紫外線照射機構とを備えたことを特徴とする樹脂膜形成装置。   A stage holding an ultraviolet transmissive substrate having an uncured resin film containing a radical polymerization type ultraviolet curable resin on its surface, and irradiating ultraviolet rays from the substrate side toward the contact surface between the substrate and the uncured resin film And an ultraviolet irradiation mechanism for the resin film forming apparatus. ステージは、基板を載置する部位に紫外線を透過させるための窓部を有する請求項7に記載の樹脂膜形成装置。   The resin film forming apparatus according to claim 7, wherein the stage has a window for transmitting ultraviolet rays to a portion on which the substrate is placed. ステージは、基板を載置する部位に紫外線透過性プレートを有する請求項7または8に記載の樹脂膜形成装置。   The resin film forming apparatus according to claim 7 or 8, wherein the stage has an ultraviolet transmissive plate at a portion on which the substrate is placed. ステージは、基板を出し入れ可能に収容し、基板を載置する部位が紫外線透過材料からなる密閉容器を有し、
さらに、前記密閉容器内の酸素濃度を調整するための酸素濃度調整手段を具備する請求項7に記載の樹脂膜形成装置。
The stage accommodates the substrate so that it can be taken in and out, and the part on which the substrate is placed has a sealed container made of an ultraviolet transmitting material,
Furthermore, the resin film formation apparatus of Claim 7 which comprises the oxygen concentration adjustment means for adjusting the oxygen concentration in the said airtight container.
請求項1〜6の何れか1つに記載の樹脂膜形成方法を用いて基板上に形成された凹凸表面を有する樹脂膜と、この樹脂膜の凹凸表面に形成された金属膜とを備えたことを特徴とする拡散反射板。   A resin film having an uneven surface formed on a substrate by using the resin film forming method according to claim 1, and a metal film formed on the uneven surface of the resin film. A diffuse reflector characterized by that.
JP2005188783A 2005-06-28 2005-06-28 Resin film forming apparatus, resin film forming method, and diffusion reflective plate obtained by same Pending JP2007010791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005188783A JP2007010791A (en) 2005-06-28 2005-06-28 Resin film forming apparatus, resin film forming method, and diffusion reflective plate obtained by same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005188783A JP2007010791A (en) 2005-06-28 2005-06-28 Resin film forming apparatus, resin film forming method, and diffusion reflective plate obtained by same

Publications (1)

Publication Number Publication Date
JP2007010791A true JP2007010791A (en) 2007-01-18

Family

ID=37749433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188783A Pending JP2007010791A (en) 2005-06-28 2005-06-28 Resin film forming apparatus, resin film forming method, and diffusion reflective plate obtained by same

Country Status (1)

Country Link
JP (1) JP2007010791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000092B1 (en) * 2008-12-12 2010-12-09 엘아이지에이디피 주식회사 Apparatus and method of organic thin film formation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001296411A (en) * 2000-04-17 2001-10-26 Matsushita Electric Ind Co Ltd Light reflecting plate, reflective liquid crystal display element and method for producing the same
JP2001337208A (en) * 2000-03-23 2001-12-07 Matsushita Electric Ind Co Ltd Rough body, reflecting plate, reflective liquid crystal display device, method for producing the same and apparatus therefor
JP2004004515A (en) * 2002-03-29 2004-01-08 Dainippon Printing Co Ltd Material for forming fine rugged pattern, method of forming fine rugged pattern, transfer foil, optical article, and stamper
JP2004205990A (en) * 2002-12-26 2004-07-22 Dainippon Printing Co Ltd Manufacturing method of fine rugged pattern having antireflection performance and antireflection article
JP2004347948A (en) * 2003-05-23 2004-12-09 Hitachi Chem Co Ltd Film with rugged surface, and energy-sensitive negative resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337208A (en) * 2000-03-23 2001-12-07 Matsushita Electric Ind Co Ltd Rough body, reflecting plate, reflective liquid crystal display device, method for producing the same and apparatus therefor
JP2001296411A (en) * 2000-04-17 2001-10-26 Matsushita Electric Ind Co Ltd Light reflecting plate, reflective liquid crystal display element and method for producing the same
JP2004004515A (en) * 2002-03-29 2004-01-08 Dainippon Printing Co Ltd Material for forming fine rugged pattern, method of forming fine rugged pattern, transfer foil, optical article, and stamper
JP2004205990A (en) * 2002-12-26 2004-07-22 Dainippon Printing Co Ltd Manufacturing method of fine rugged pattern having antireflection performance and antireflection article
JP2004347948A (en) * 2003-05-23 2004-12-09 Hitachi Chem Co Ltd Film with rugged surface, and energy-sensitive negative resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101000092B1 (en) * 2008-12-12 2010-12-09 엘아이지에이디피 주식회사 Apparatus and method of organic thin film formation

Similar Documents

Publication Publication Date Title
KR101670115B1 (en) Imprint apparatus and method of manufacturing article
TWI405033B (en) Method of forming pattern
WO2015054905A1 (en) Manufacturing method of light shield for curing frame adhesive
CN113126428A (en) Nano-imprinting method
JP2014195088A (en) Pattern forming apparatus by nano-imprint mold
CN104423088B (en) A kind of preparation method of color membrane substrates
WO2013183263A1 (en) Imprint device and template
US20130234371A1 (en) Imprint apparatus, and article manufacturing method using same
JP2011111553A (en) Curable composition for imprint, cured body, and method for producing the cured body
US9568843B2 (en) Exposure method and exposure device
JP2011066074A (en) Curable composition for imprint
JP2007010791A (en) Resin film forming apparatus, resin film forming method, and diffusion reflective plate obtained by same
JP5467422B2 (en) Method for producing composite
JP2012199329A (en) Etching method and imprint device
JP6083178B2 (en) Resist substrate manufacturing method, replica template manufacturing method, and nanoimprint lithography method
JP2010231001A (en) Method and device for manufacturing patterned body, method for manufacturing color filter, and inkjet printer
JP5095908B2 (en) Printing apparatus and printing method
TWI271554B (en) A method for forming color filters in flat panel displays by inkjetting
CN112114496B (en) Photosensitive resin, method for producing same, photosensitive resin composition, and colored spacer
US10083837B2 (en) Methods of forming patterns using imprint process
US8383328B2 (en) Method for producing optical part
JP4129091B2 (en) Pattern formation method
JP6783586B2 (en) Manufacturing method of 3D modeling equipment and 3D modeled objects
JP2013039731A (en) Method of forming uneven pattern
JP7263152B2 (en) Molding apparatus, article manufacturing method using molding apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928