[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007005474A - Power semiconductor module and its manufacturing method - Google Patents

Power semiconductor module and its manufacturing method Download PDF

Info

Publication number
JP2007005474A
JP2007005474A JP2005182242A JP2005182242A JP2007005474A JP 2007005474 A JP2007005474 A JP 2007005474A JP 2005182242 A JP2005182242 A JP 2005182242A JP 2005182242 A JP2005182242 A JP 2005182242A JP 2007005474 A JP2007005474 A JP 2007005474A
Authority
JP
Japan
Prior art keywords
conductive member
power semiconductor
semiconductor module
bonding
shaped conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005182242A
Other languages
Japanese (ja)
Other versions
JP4577509B2 (en
Inventor
Kenji Nakao
健司 中尾
Takayoshi Kuriyama
貴好 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005182242A priority Critical patent/JP4577509B2/en
Publication of JP2007005474A publication Critical patent/JP2007005474A/en
Application granted granted Critical
Publication of JP4577509B2 publication Critical patent/JP4577509B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/35Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/35Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/4005Shape
    • H01L2224/4009Loop shape
    • H01L2224/40091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8593Reshaping, e.g. for severing the wire, modifying the wedge or ball or the loop shape
    • H01L2224/85947Reshaping, e.g. for severing the wire, modifying the wedge or ball or the loop shape by mechanical means, e.g. "pull-and-cut", pressing, stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/2076Diameter ranges equal to or larger than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/30105Capacitance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To make small the inclination of a degradation curve for the bonded surface caused by a cold heat load, while attaining large current capacity for the electric wiring of a power semiconductor module. <P>SOLUTION: The current capacity is increased by securing the cross-sectional area required for wiring for the electrical connection between a semiconductor device 14 and a bus bar 16, in such a way that a belt-like conductive material 18 of a sectional square shape, whose thickness is 0.15 mm-0.6 mm and whose width is 0.84 mm or larger is carried out by ultrasonic bonding to the semiconductor device 14 arranged at a substrate 12. Since the shape of the conductive material is belt-like, increase in the flexural rigidity to the bending direction of a loop 18a can be prevented, while securing the required cross-sectional area. Thus, the heat stress, caused by the thermal expansion difference between the belt-like conductive material 18 and the electrode of the semiconductor device 14, can be absorbed fully by the flexibility of the loop 18a, and thus can prevent generation of wiring exfoliation in a bonded part 18b. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パワー半導体モジュールに関するものである。   The present invention relates to a power semiconductor module.

IGBTモジュール等のパワー半導体モジュールは、大電流を通電する必要があることから、基板に配置された半導体素子と、バスバー或いは基板との間を電気接続する配線には、可能な限り断面積の大きなアルミワイヤを用いることが望まれる。しかしながら、アルミワイヤの直径がφ600μm以上になると、曲げ剛性の増大によりループの形成が困難となることが、本発明者らによって確認されている。又、これより細いφ500μm〜φ400μmのアルミワイヤであっても、アルミワイヤと半導体素子の電極との熱膨張差に起因して発生する熱応力をループ自身の撓み性で吸収しきれず、その熱応力がアルミワイヤと半導体素子の電極との接合部に加わることとなる(例えば、特許文献1参照。)。したがって、冷熱負荷による接合面積の劣化曲線の傾きが、ワイヤボンドと比較して遥かに大きくなり、配線剥離を誘発し易いという問題がある。   Since power semiconductor modules such as IGBT modules need to pass a large current, the wiring that electrically connects a semiconductor element arranged on a substrate and a bus bar or a substrate has as large a cross-sectional area as possible. It is desirable to use an aluminum wire. However, the present inventors have confirmed that when the diameter of the aluminum wire is φ600 μm or more, it becomes difficult to form a loop due to an increase in bending rigidity. Moreover, even if the aluminum wire is smaller than φ500μm to φ400μm, the thermal stress generated due to the difference in thermal expansion between the aluminum wire and the electrode of the semiconductor element cannot be absorbed by the flexibility of the loop itself. Will be added to the joint between the aluminum wire and the electrode of the semiconductor element (see, for example, Patent Document 1). Therefore, there is a problem that the slope of the deterioration curve of the bonding area due to the cold load is much larger than that of the wire bond, and it is easy to induce wiring peeling.

特開2003−303845号公報JP 2003-303845 A

一方、アルミワイヤの断面積を増大させることなく使用する本数を増やすことにより、半導体素子とバスバー或いは基板との間を電気接続する配線の電流容量を増大させることも可能ではあるが、製造コストの増大を回避することが困難となるといった問題が生じる。
本発明は上記課題に鑑みてなされたものであり、その目的とするところは、パワー半導体モジュールの電気配線の大電流容量化を図りつつ、冷熱負荷による接合面積の劣化曲線の傾きを小さくすることを可能とし、パワー半導体モジュールの性能及び信頼性の向上を図ることにある。
On the other hand, it is possible to increase the current capacity of the wiring that electrically connects the semiconductor element and the bus bar or the substrate by increasing the number of aluminum wires used without increasing the cross-sectional area of the aluminum wire. There arises a problem that it is difficult to avoid the increase.
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to reduce the slope of the deterioration curve of the junction area due to the thermal load while increasing the current capacity of the electric wiring of the power semiconductor module. This is to improve the performance and reliability of the power semiconductor module.

上記課題を解決するための、本発明に係るパワー半導体モジュールは、基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材が超音波接合され、かつ、該帯状導電部材の少なくとも接合部の厚さが120μm以下となっていることを特徴とするものである。
本発明によれば、基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材が超音波接合されることで、半導体素子と、バスバー或いは基板との間を電気接続する配線に必要な断面積を確保し、導電部材の電流容量を増大させることができる。しかも、導電部材の形状が帯状であることにより、必要な断面積を確保しつつループの曲げ方向に対する曲げ剛性の増大を防ぐことができる。又、帯状導電部材の少なくとも接合部の厚さが120μm以下となっていることにより、接合部において冷熱負荷により発生する熱応力が緩和され、接合部の剥離の発生を回避することができる。
In order to solve the above problems, a power semiconductor module according to the present invention has a rectangular cross-section with a thickness of 0.15 mm to 0.6 mm and a width of 0.84 mm or more with respect to a semiconductor element disposed on a substrate. The conductive member is ultrasonically bonded, and the thickness of at least the bonding portion of the strip-shaped conductive member is 120 μm or less.
According to the present invention, a band-shaped conductive member having a square cross section having a thickness of 0.15 mm to 0.6 mm and a width of 0.84 mm or more is ultrasonically bonded to the semiconductor element disposed on the substrate. A cross-sectional area required for wiring for electrically connecting the semiconductor element and the bus bar or the substrate can be secured, and the current capacity of the conductive member can be increased. Moreover, since the shape of the conductive member is a band shape, it is possible to prevent an increase in bending rigidity with respect to the bending direction of the loop while ensuring a necessary cross-sectional area. In addition, since the thickness of at least the joint portion of the strip-shaped conductive member is 120 μm or less, the thermal stress generated by the cold load at the joint portion is relieved, and the occurrence of peeling of the joint portion can be avoided.

又、上記課題を解決するための、本発明に係るパワー半導体モジュールは、基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材が超音波接合されていることを特徴とするものである。
本発明によれば、基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材が超音波接合されることで、半導体素子と、バスバー或いは基板との間を電気接続する配線に必要な断面積を確保し、導電部材の電流容量を増大させることができる。しかも、導電部材の形状が帯状であることにより、必要な断面積を確保しつつループの曲げ方向に対する曲げ剛性の増大を防ぐことができる。
In order to solve the above problems, a power semiconductor module according to the present invention has a square cross section having a thickness of 0.15 mm to 0.6 mm and a width of 0.84 mm or more with respect to a semiconductor element disposed on a substrate. This band-shaped conductive member is ultrasonically bonded.
According to the present invention, a band-shaped conductive member having a square cross section having a thickness of 0.15 mm to 0.6 mm and a width of 0.84 mm or more is ultrasonically bonded to the semiconductor element disposed on the substrate. A cross-sectional area required for wiring for electrically connecting the semiconductor element and the bus bar or the substrate can be secured, and the current capacity of the conductive member can be increased. Moreover, since the shape of the conductive member is a band shape, it is possible to prevent an increase in bending rigidity with respect to the bending direction of the loop while ensuring a necessary cross-sectional area.

又、上記課題を解決するための、本発明に係るパワー半導体モジュールは、基板に配置された半導体素子に対し、少なくとも接合部の厚さが120μm以下の帯状導電部材が超音波接合されていることを特徴とするものである。
本発明によれば、帯状導電部材の少なくとも接合部の厚さが120μm以下となっていることにより、接合部において冷熱負荷により発生する熱応力が緩和され、接合部の剥離の発生を回避することができる。
In addition, in the power semiconductor module according to the present invention for solving the above-described problems, at least a band-shaped conductive member having a junction thickness of 120 μm or less is ultrasonically bonded to a semiconductor element disposed on a substrate. It is characterized by.
According to the present invention, since the thickness of at least the joining portion of the belt-like conductive member is 120 μm or less, the thermal stress generated by the cold load at the joining portion is relieved, and the occurrence of peeling of the joining portion is avoided. Can do.

なお、前記接合部の超音波接合時の接合面積として0.80mm2以上を確保することにより、接合部において冷熱負荷により発生する熱応力に対し、長時間にわたり耐え得る接合状態を確保することが可能となる。 In addition, by securing 0.80 mm 2 or more as a bonding area at the time of ultrasonic bonding of the bonded portion, it is possible to ensure a bonded state that can withstand a thermal stress generated by a cold load at the bonded portion for a long time. It becomes possible.

又、本発明において、前記接合部の結晶方位角差の平均値が0.6°以下となるように、超音波接合後に熱処理がなされていることとすれば、超音波接合時に接合部に生じる残留応力が緩和され、接合部において冷熱負荷により発生する熱応力に対し、長時間にわたり耐え得る接合状態を得ることが可能となる。
又、前記接合部の結晶方位角差の平均値が0.6°以下となるように、超音波接合後に所定時間放置されていることとすれば、超音波接合時に接合部に生じる残留応力が緩和され、接合部において冷熱負荷により発生する熱応力に対し、長時間にわたり耐え得る接合状態を得ることが可能となる。
さらに、前記帯状導電部材に、6.25kgf/mm2以下の引っ張り強度を有する材料が用られることで、超音波接合時に接合部に生じる残留応力が緩和され、接合部において冷熱負荷により発生する熱応力に対し、長時間にわたり耐え得る接合状態を得ることが可能となる。
Further, in the present invention, if the heat treatment is performed after the ultrasonic bonding so that the average value of the crystal orientation angle difference of the bonded portion is 0.6 ° or less, it occurs in the bonded portion during the ultrasonic bonding. Residual stress is relaxed, and it becomes possible to obtain a bonded state that can withstand a thermal stress generated by a cold load at the bonded portion over a long period of time.
Also, if the ultrasonic welding is allowed to stand for a predetermined time so that the average value of the crystal orientation angle difference of the joint is 0.6 ° or less, the residual stress generated in the joint during ultrasonic joining is It is possible to obtain a bonded state that is relaxed and can withstand a thermal stress generated by a cold load at the bonded portion over a long period of time.
Furthermore, since a material having a tensile strength of 6.25 kgf / mm 2 or less is used for the band-shaped conductive member, residual stress generated in the bonded portion during ultrasonic bonding is relieved, and heat generated by a cold load at the bonded portion. It becomes possible to obtain a bonded state that can withstand stress over a long period of time.

又、前記帯状導電部材の、前記接合部の近傍に位置するネック部に、くびれ部が形成されていることとすれば、帯状導電部材のループ部に生ずる熱伸縮を、ネック部の積極的な変形を促すことにより吸収し、接合部を剥離させる方向へと熱応力が作用することを回避することができる。
又、前記ネック部に60°〜120°の角度が与えられていることとすれば、帯状導電部材のループ部に生ずる熱伸縮に伴う熱応力が、接合部に対する直角方向成分により多く配分され、接合部を剥離させる方向へと熱応力が作用することを回避することができる。
Further, if a constricted portion is formed in the neck portion of the belt-like conductive member located near the joint portion, the thermal expansion and contraction that occurs in the loop portion of the belt-like conductive member is prevented. It is possible to avoid the thermal stress acting in the direction of absorbing and promoting the deformation by promoting the deformation.
Further, if an angle of 60 ° to 120 ° is given to the neck portion, thermal stress accompanying thermal expansion and contraction generated in the loop portion of the strip-shaped conductive member is more distributed to the component perpendicular to the joint portion, It is possible to avoid the thermal stress from acting in the direction in which the joint is peeled off.

又、上記課題を解決するための、本発明に係るパワー半導体モジュールの製造方法は、基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材を超音波接合し、かつ、該帯状導電部材の少なくとも接合部の厚さが120μm以下とすることを特徴とするものである。
又、上記課題を解決するための、本発明に係るパワー半導体モジュールの製造方法は、基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材を超音波接合することを特徴とするものである。
又、上記課題を解決するための、本発明に係るパワー半導体モジュールの製造方法は、基板に配置された半導体素子に対し、少なくとも接合部の厚さが120μm以下の帯状導電部材を超音波接合することを特徴とするものである。
Moreover, the manufacturing method of the power semiconductor module which concerns on this invention for solving the said subject is 0.15 mm-0.6 mm in thickness with respect to the semiconductor element arrange | positioned at a board | substrate, and width is 0.84 mm or more. A band-shaped conductive member having a square cross section is ultrasonically bonded, and the thickness of at least the bonding portion of the band-shaped conductive member is 120 μm or less.
Moreover, the manufacturing method of the power semiconductor module which concerns on this invention for solving the said subject is 0.15 mm-0.6 mm in thickness with respect to the semiconductor element arrange | positioned at a board | substrate, and width is 0.84 mm or more. A band-shaped conductive member having a certain square cross section is ultrasonically bonded.
Moreover, the manufacturing method of the power semiconductor module which concerns on this invention for solving the said subject ultrasonically joins the strip | belt-shaped electrically-conductive member whose thickness of a junction part is 120 micrometers or less with respect to the semiconductor element arrange | positioned at the board | substrate. It is characterized by this.

さらに、前記接合部の超音波接合時の接合面積を0.80mm2以上確保することが望ましい。
又、前記接合部の結晶方位角差の平均値が0.6°以下となるように、超音波接合後に熱処理を施すこととしても良い。
又、前記接合部の結晶方位角差の平均値が0.6°以下となるように、超音波接合後に所定時間放置することとしても良い。
Furthermore, it is desirable to secure a bonding area of 0.80 mm 2 or more during ultrasonic bonding of the bonded portion.
Further, heat treatment may be performed after ultrasonic bonding so that the average value of the crystal orientation angle difference of the bonded portion is 0.6 ° or less.
Further, it may be allowed to stand for a predetermined time after ultrasonic bonding so that the average value of the crystal orientation angle difference of the bonded portion is 0.6 ° or less.

又、前記帯状導電部材に、6.25kgf/mm2以下の引っ張り強度を有する材料を用いることが望ましい。
又、前記帯状導電部材の、前記接合部の近傍に位置するネック部に、くびれ部を形成することが望ましい。
さらに、前記ネック部に60°〜120°の角度を与ることが望ましい。
Further, it is desirable to use a material having a tensile strength of 6.25 kgf / mm 2 or less for the strip-shaped conductive member.
Moreover, it is desirable to form a constricted part in the neck part located in the vicinity of the said junction part of the said strip | belt-shaped electrically-conductive member.
Furthermore, it is desirable to give the neck portion an angle of 60 ° to 120 °.

本発明はこのように構成したので、パワー半導体モジュールの電気配線の大電流容量化を可能とし、なおかつ、冷熱負荷による接合面積の劣化曲線の傾きを小さくて、パワー半導体モジュールの性能及び信頼性の向上を図ることが可能となる。   Since the present invention is configured as described above, it is possible to increase the current capacity of the electric wiring of the power semiconductor module, and to reduce the slope of the deterioration curve of the junction area due to the thermal load, thereby reducing the performance and reliability of the power semiconductor module. It is possible to improve.

以下、本発明の実施の形態を添付図面に基づいて説明する。なお、従来技術と同一部分、若しくは相当する部分については同一符号で示し、詳しい説明を省略する。
本発明の実施の形態に係るパワー半導体モジュール10は、図1に示すように、基板12に配置された半導体素子14と、バスバー(或いは基板)16との間を電気接続する配線に、帯状導電部材18を用いている。帯状導電部材18は、アルミ製であり、その断面は角形、六角、八角等の多角形ないし楕円形をなしている(本説明では、断面角形の帯状導電部材を中心に説明する)。又、帯状導電部材18は6.25kgf/mm2以下の引っ張り強度を有する材料により構成されている。そして、帯状導電部材18は半導体素子14の電極に超音波接合されている。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, the same part as a prior art, or a part corresponding to it is shown with the same code | symbol and detailed description is abbreviate | omitted.
As shown in FIG. 1, the power semiconductor module 10 according to the embodiment of the present invention has a band-like conductive structure for wiring that electrically connects a semiconductor element 14 disposed on a substrate 12 and a bus bar (or substrate) 16. The member 18 is used. The strip-shaped conductive member 18 is made of aluminum, and its cross section has a polygonal or elliptical shape such as a square, hexagon, or octagon (in this description, the strip-shaped conductive member having a square cross section will be mainly described). The band-shaped conductive member 18 is made of a material having a tensile strength of 6.25 kgf / mm 2 or less. The band-shaped conductive member 18 is ultrasonically bonded to the electrode of the semiconductor element 14.

帯状導電部材18は、図2(a)、(b)に示されるように、ループ部18aの先端が半導体素子14に直接的に超音波接合される接合部18bとなっており、接合部18bの近傍には、接合部18bとループ部18aとの境界部分として、折れ曲がった形状のネック部18cが形成されている。以下の説明において、「接合部の厚さ」は図2(b)に符号tで示す寸法を表し、「ネック部の角度」は図2(b)に符号θで示す角度を表している。さらに、図3の上段には接合部18bの平面図を、同図中段には接合部18bの断面視図を、同図下段には接合部18bの透過視図(超音波探傷により接合部のみ抽出して示している。)を夫々示している。そして、本説明において、接合部18bの接合面積Sは、図3下段の寸法線X、Yで囲まれた部分に表れた接合部分の面積を意味するものである。   As shown in FIGS. 2A and 2B, the strip-shaped conductive member 18 is a joint 18b in which the tip of the loop portion 18a is directly ultrasonically joined to the semiconductor element 14, and the joint 18b. A bent neck portion 18c is formed as a boundary portion between the joint portion 18b and the loop portion 18a. In the following description, “joint thickness” represents the dimension indicated by the symbol t in FIG. 2B, and “neck angle” represents the angle indicated by the symbol θ in FIG. 2B. 3 is a plan view of the joint 18b in the upper part, a cross-sectional view of the joint 18b in the middle part of the figure, and a perspective view of the joint 18b in the lower part of the figure (only the joint by ultrasonic flaw detection). (Extracted and shown.) In the present description, the bonding area S of the bonding portion 18b means the area of the bonding portion that appears in the portion surrounded by the dimension lines X and Y in the lower part of FIG.

ところで、帯状導電部材18は、厚さTが0.6mm以下(本実施の形態では、下限値も定め、厚さTを0.15mm〜0.6mmとしている。)、幅Wが0.84mm以上に形成されている。実際には、T/W=1/10程度までの偏平度を得ることが可能である。又、接合部18bの、超音波接合時の接合面積を0.80mm2以上確保している。
一方、帯状導電部材18の少なくとも接合部18bの厚さtは、120μm以下、好ましくは、図4(a)に示されるようにt=1/2T程度とされている。この、接合部18bの厚さtは、図4(b)に示されるように、ボンダツール20による超音波接合作業時の、ボンド荷重Fによって調整されるものである。又、図4(b)のようにボンダツール20の先端部形状に凹凸を持たせた場合、接合部18bは図3の上段にも示されるようにその凹凸形状が転写されたものとなるが、このとき最も薄い部分の厚さがtであれば良い。
By the way, the strip-shaped conductive member 18 has a thickness T of 0.6 mm or less (in this embodiment, a lower limit is also set, and the thickness T is set to 0.15 mm to 0.6 mm), and a width W is 0.84 mm. It is formed as described above. Actually, it is possible to obtain flatness up to about T / W = 1/10. Further, the bonding area of the bonding portion 18b at the time of ultrasonic bonding is ensured to be 0.80 mm 2 or more.
On the other hand, the thickness t of at least the joint 18b of the strip-shaped conductive member 18 is 120 μm or less, and preferably t = 1 / 2T as shown in FIG. The thickness t of the joint portion 18b is adjusted by the bond load F during the ultrasonic joining operation by the bonder tool 20, as shown in FIG. Further, when the bonder tool 20 has an uneven shape as shown in FIG. 4B, the joint 18b has the uneven shape transferred as shown in the upper part of FIG. At this time, the thickness of the thinnest portion may be t.

又、帯状導電部材18の接合部18bを半導体素子14の電極に超音波接合した後、EBSP(後方散乱電子解析パターン)による歪分布解析で算出される、接合部の結晶方位角差の平均値が0.6°以下となるように、超音波接合後に熱処理が行われる。この熱処理は、250℃以上の温度で10分以上行われることが望ましい。
又、帯状導電部材18の接合部18bを半導体素子14の電極に超音波接合した後、同結晶方位角差の平均値が0.6°以下となるように、超音波接合後に所定時間放置することとしても良い。この場合の放置時間は、概ね1週間〜1ヶ月程度であるが、放置によりかかるコストと、同結晶方位角差の平均値との兼ね合いで決定される。
In addition, the average value of the crystal orientation angle difference of the joint calculated by the strain distribution analysis by EBSP (Backscattered Electron Analysis Pattern) after ultrasonically joining the joint 18b of the strip-shaped conductive member 18 to the electrode of the semiconductor element 14 Heat treatment is performed after ultrasonic bonding so that the angle is 0.6 ° or less. This heat treatment is desirably performed at a temperature of 250 ° C. or more for 10 minutes or more.
Also, after ultrasonically bonding the joining portion 18b of the strip-like conductive member 18 to the electrode of the semiconductor element 14, it is allowed to stand for a predetermined time after the ultrasonic bonding so that the average value of the crystal azimuth difference is 0.6 ° or less. It's also good. In this case, the standing time is approximately one week to one month, but is determined by a balance between the cost required for the leaving and the average value of the difference in crystal orientation angle.

又、図5に示されるように、帯状導電部材18のネック部18cに、くびれ部18dを形成することが望ましい。このくびれ部18dは、図6に示すように、くびれ部18dとなる凹部が、1箇所ないし複数箇所設けられた帯状導電部材を超音波接合することで、形成することが可能である。又、凹部を備えない帯状導電部材18を超音波接合した後に、ネック部18cをエッチングすることによって、くびれ部18dを形成することも可能である。
さらに、図5のごとく帯状導電部材18の厚さT(図2参照)を薄くすることによりくびれ部18dを形成するのみならず、帯状導電部材18の幅W(図3参照)を狭くすることにより、くびれ部を形成することとしても良く、厚さ及び幅の何れも減少させることによりくびれ部を形成しても良い。又、ネック部18cにミシン目のような半切断線を形成したものも、くびれ部に含まれる。何れの場合も、帯状導電部材18のネック部18cに、ループ部18aよりも曲げ剛性を意図的に低下させる目的でくびれ部を形成する。
Further, as shown in FIG. 5, it is desirable to form a constricted portion 18 d at the neck portion 18 c of the belt-like conductive member 18. As shown in FIG. 6, the constricted portion 18d can be formed by ultrasonically bonding a band-shaped conductive member in which a concave portion to be the constricted portion 18d is provided at one or a plurality of locations. It is also possible to form the constricted portion 18d by etching the neck portion 18c after ultrasonically bonding the strip-shaped conductive member 18 having no recess.
Further, as shown in FIG. 5, not only the constricted portion 18d is formed by reducing the thickness T (see FIG. 2) of the strip-shaped conductive member 18, but also the width W (see FIG. 3) of the strip-shaped conductive member 18 is narrowed. Thus, the constricted portion may be formed, or the constricted portion may be formed by reducing both the thickness and the width. Further, the constricted portion includes a half cut line such as a perforation formed in the neck portion 18c. In any case, a constricted portion is formed in the neck portion 18c of the strip-shaped conductive member 18 for the purpose of intentionally lowering the bending rigidity than the loop portion 18a.

さらに、帯状導電部材18のネック部18cの角度θ(図2参照)として、60°〜120°の角度を与えることが望ましい。図7(a)には、ネック部18cに角度θ=90°を与えた場合が示されている。かかるネック部18cの角度θは、ボンダーの作動パラメータ(ループトップ位置、打点間距離、ボンダツール軌跡)を調整することにより、半導体素子14に帯状導電部材18の接合部18bを超音波接合する際に与えることが可能である。
又、図8に示されるように、半導体素子14に突起14aを形成し、帯状導電部材18の接合部18bを半導体素子14の電極に超音波接合する際に、ネック部18cが突起14aに当接して強制的に曲げられるようにすることとしても、ネック部18cに必要な角度θを与えることが可能である。後者の場合には、接合部18bと突起14aとの距離、突起14aの突起の高さや形状によって、ネック部18cの角度θを設定することが可能である。
Furthermore, it is desirable to give an angle of 60 ° to 120 ° as the angle θ (see FIG. 2) of the neck portion 18c of the strip-shaped conductive member 18. FIG. 7A shows a case where an angle θ = 90 ° is given to the neck portion 18c. The angle θ of the neck portion 18c is determined when the bonding portion 18b of the strip-shaped conductive member 18 is ultrasonically bonded to the semiconductor element 14 by adjusting the operating parameters of the bonder (loop top position, inter-spotting distance, bonder tool locus). It is possible to give
Further, as shown in FIG. 8, when the projection 14a is formed on the semiconductor element 14 and the joining portion 18b of the strip-like conductive member 18 is ultrasonically joined to the electrode of the semiconductor element 14, the neck portion 18c contacts the projection 14a. It is possible to give the necessary angle θ to the neck portion 18c even if it is forced to bend in contact. In the latter case, the angle θ of the neck portion 18c can be set according to the distance between the joint portion 18b and the protrusion 14a and the height and shape of the protrusion of the protrusion 14a.

上記構成を有する本発明の実施の形態によれば、次のような作用効果を得ることが可能である。まず、基板12に配置された半導体素子14に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材18が超音波接合されることで、半導体素子と、バスバー(或いは基板)16との間を電気接続する配線に必要な断面積を確保し、電流容量を増大させることができる。なお、厚さが0.6mmを越えると、接合部18bの厚さtを120μm以下とするために必要なボンド荷重がより大きくなり、帯状導電部材18の接合対象である半導体素子14を破壊してしまう虞がある。この点、厚さが0.6mm以下であれば、半導体素子14に悪影響を与えるようなボンド荷重を与えることなく、接合部18bの厚さtを120μm以下とすることができる。
しかも、導電部材の形状は、断面が角形、六角、八角等の多角形ないし楕円形の帯状であることにより、必要な断面積を確保しつつループ部18aの曲げ方向に対する曲げ剛性の増大を防ぐことができる。よって、帯状導電部材18と半導体素子14の電極との熱膨張差に起因して発生する熱応力を、ループ部18aの撓み性で十分に吸収することが可能となり、熱応力が接合部18bに加わることが無くなり、配線剥離の発生を防ぐことが可能となる。
According to the embodiment of the present invention having the above-described configuration, the following operational effects can be obtained. First, the semiconductor element 14 disposed on the substrate 12 is ultrasonically bonded with a band-shaped conductive member 18 having a square cross section having a thickness of 0.15 mm to 0.6 mm and a width of 0.84 mm or more. The cross-sectional area required for the wiring that electrically connects the element and the bus bar (or substrate) 16 can be secured, and the current capacity can be increased. If the thickness exceeds 0.6 mm, the bond load necessary to make the thickness t of the bonding portion 18b 120 μm or less becomes larger, and the semiconductor element 14 that is the bonding target of the strip-shaped conductive member 18 is destroyed. There is a risk that. In this respect, if the thickness is 0.6 mm or less, the thickness t of the bonding portion 18 b can be 120 μm or less without giving a bond load that adversely affects the semiconductor element 14.
In addition, the shape of the conductive member is a polygonal or elliptical band such as a square, hexagon, or octagon in cross section, thereby preventing an increase in bending rigidity in the bending direction of the loop portion 18a while ensuring a necessary cross-sectional area. be able to. Therefore, the thermal stress generated due to the difference in thermal expansion between the strip-shaped conductive member 18 and the electrode of the semiconductor element 14 can be sufficiently absorbed by the flexibility of the loop portion 18a, and the thermal stress is absorbed in the joint portion 18b. It is possible to prevent the occurrence of wiring peeling.

又、帯状導電部材18の少なくとも接合部18bの厚さtが120μm以下となっていることにより、接合部18bにおいて冷熱負荷により発生する熱応力が緩和され、接合部の剥離の発生を回避することができる。図9には、帯状導電部材18の厚さT=200μmであるとき、接合部18bの厚さtを様々に変化させることによる、冷熱サイクルNと接合部18bの接合面積Sとの関係が示されている。図9から明らかなように、119.6μm≦t≦179.6μmの範囲では、冷熱サイクルNが4000サイクルを越えると、接合部18bの接合面積Sはほぼ0にまで縮小してしまうが、t=69.7μmの場合には、冷熱サイクルNが4000サイクルを越えても、接合面積Sは0.2mm2以上保持されていることがわかる。 Further, since the thickness t of at least the joint portion 18b of the strip-shaped conductive member 18 is 120 μm or less, the thermal stress generated by the cold load at the joint portion 18b is relieved, and the occurrence of peeling of the joint portion is avoided. Can do. FIG. 9 shows the relationship between the cooling cycle N and the bonding area S of the bonding portion 18b by variously changing the thickness t of the bonding portion 18b when the thickness T of the strip-shaped conductive member 18 is 200 μm. Has been. As is apparent from FIG. 9, in the range of 119.6 μm ≦ t ≦ 179.6 μm, when the cooling cycle N exceeds 4000 cycles, the bonding area S of the bonding portion 18b is reduced to almost zero. In the case of 69.7 μm, it can be seen that the bonding area S is maintained at 0.2 mm 2 or more even when the thermal cycle N exceeds 4000 cycles.

又、図10には、厚さT=200μmの帯状導電部材18が、夫々、0回(Cy0)、1500回(Cy1500)、3000回(Cy3000)、4500回(Cy4500)の冷熱サイクルNを受けた際の、接合部18bの厚さtと接合部18bの接合面積Sとの関係が示されている。図10からは、冷熱サイクルNを4500回受けた場合であっても、接合部18bの厚さt≦120μmであれば、接合部18bの接合面積Sは0とならないことが解る。又、t=1/2T、すなわちt=100μm程度であれば、冷熱サイクルNを4500回受けた場合であっても、接合部18bには十分な接合面積が確保されていることが理解される。 In FIG. 10, the strip-shaped conductive member 18 having a thickness T = 200 μm is cooled by 0 times (Cy 0 ), 1500 times (Cy 1500 ), 3000 times (Cy 3000 ), and 4500 times (Cy 4500 ). The relationship between the thickness t of the joint 18b and the joint area S of the joint 18b when subjected to the cycle N is shown. From FIG. 10, it can be seen that even when the cooling cycle N is received 4500 times, the bonding area S of the bonding portion 18b does not become zero if the thickness t ≦ 120 μm of the bonding portion 18b. Further, if t = 1 / 2T, that is, t = about 100 μm, it is understood that a sufficient bonding area is secured in the bonding portion 18b even when the cooling cycle N is received 4500 times. .

又、図9からは、帯状導電部材18の接合部18bの、超音波接合時の接合面積として、S=0.80mm2以上を確保することにより、接合部において冷熱負荷により発生する熱応力に対し、比較的長時間(冷熱サイクルNを3000回以上)にわたり耐え得る接合状態を得ることができることが理解される。
なお、円筒形のアルミワイヤにボンド荷重を付与して超音波接合した場合、直径を様々に変化させても、超音波接合時の接合部の接合面積は、最大でも0.50mm2程度しか確保することができない。すなわち、帯状導電部材18の接合部18bの接合面積S=0.80mm2以上は、帯状導電部材18が接合前の状態から偏平形状をなしていることにより、容易に実現することが可能となる。しかも、超音波接合の際に、接合部18bの接合面積を拡大するために、ボンダツールにより帯状導電部材18に付与するボンド荷重Fを過大にする必要もなく、半導体素子14に無理な荷重を付与することもない。
Further, from FIG. 9, by securing S = 0.80 mm 2 or more as the bonding area at the time of ultrasonic bonding of the bonding portion 18b of the belt-shaped conductive member 18, the thermal stress generated by the cold load at the bonding portion is reduced. On the other hand, it is understood that a bonded state that can withstand a relatively long time (cooling cycle N is 3000 times or more) can be obtained.
Note that when ultrasonic bonding is performed by applying a bond load to a cylindrical aluminum wire, the bonding area of the bonded portion during ultrasonic bonding is only secured at most 0.50 mm 2 even if the diameter is varied. Can not do it. That is, the joining area S = 0.80 mm 2 or more of the joining portion 18b of the strip-shaped conductive member 18 can be easily realized by forming the strip-shaped conductive member 18 in a flat shape from the state before joining. . Moreover, it is not necessary to excessively increase the bond load F applied to the band-shaped conductive member 18 by the bonder tool in order to increase the bonding area of the bonding portion 18b during ultrasonic bonding, and an excessive load is applied to the semiconductor element 14. It is not granted.

又、本発明の実施の形態において、帯状導電部材18の接合部18bの、結晶方位角差の平均値が0.6°以下となるように、超音波接合後に熱処理を行うことが望ましい。又、接合部18bの結晶方位角差の平均値が0.6°以下となるように、超音波接合後に所定時間放置することとしても良い。図11には、接合部18bの結晶方位角差の平均値を0.6°にした場合の、冷熱サイクルNと接合部18bの接合面積Sとの関係が曲線Aで、接合部18bの結晶方位角差の平均値が、超音波接合直後の状態(未処理)にある場合の、同関係を曲線Bで示されている。図11から明らかなように、接合部18bの結晶方位角差の平均値が0.6°以下となるよう処理して後、パワー半導体モジュール10を用いることで、超音波接合時に接合部に生じる残留応力が緩和され、接合部において冷熱負荷により発生する熱応力に対し、長時間にわたり耐え得る接合状態を得ることが可能となることが理解される。   In the embodiment of the present invention, it is desirable to perform heat treatment after the ultrasonic bonding so that the average value of the crystal orientation angle difference of the bonding portion 18b of the strip-shaped conductive member 18 is 0.6 ° or less. Moreover, it is good also as leaving for predetermined time after ultrasonic joining so that the average value of the crystal orientation angle difference of the junction part 18b may be 0.6 degrees or less. In FIG. 11, the relationship between the thermal cycle N and the bonding area S of the bonding portion 18b when the average value of the crystal orientation angle difference of the bonding portion 18b is 0.6 ° is a curve A, and the crystal of the bonding portion 18b The same relationship is shown by a curve B when the average value of the azimuth difference is in the state immediately after ultrasonic bonding (unprocessed). As apparent from FIG. 11, after the processing is performed so that the average value of the crystal orientation angle difference of the joint 18 b is 0.6 ° or less, the power semiconductor module 10 is used so that the joint is generated at the time of ultrasonic joining. It is understood that the residual stress is relaxed, and it is possible to obtain a bonded state that can withstand a thermal stress generated by a cold load at the bonded portion over a long period of time.

又、本発明の実施の形態では、帯状導電部材18に、6.25kgf/mm2以下の引っ張り強度を有する材料が用られることが望ましい。図12には、帯状導電部材18に用いられる材料の引っ張り強度が、6.25kgf/mm2の場合の冷熱サイクルNと接合部18bの接合面積Sとの関係が曲線Cで、同値が6.8kgf/mm2の場合の関係が曲線Dで示されている。曲線Cは、冷熱サイクルが4000サイクルを越えても、接合部18bの接合面積Sが0.2mm2程度確保されていることがわかる。このように、帯状導電部材18に、6.25kgf/mm2以下の引っ張り強度を有する材料が用られることで、超音波接合時に接合部に生じる残留応力が緩和され、接合部において冷熱負荷により発生する熱応力に対し、長時間にわたり耐え得る接合状態を得ることが可能となる。 In the embodiment of the present invention, it is desirable to use a material having a tensile strength of 6.25 kgf / mm 2 or less for the strip-like conductive member 18. In FIG. 12, when the tensile strength of the material used for the strip-like conductive member 18 is 6.25 kgf / mm 2 , the relationship between the thermal cycle N and the joint area S of the joint 18b is a curve C, and the equivalent value is 6. The relationship in the case of 8 kgf / mm 2 is shown by curve D. Curve C shows that the bonding area S of the bonding portion 18b is secured to about 0.2 mm 2 even if the cooling and heating cycle exceeds 4000 cycles. As described above, the material having a tensile strength of 6.25 kgf / mm 2 or less is used for the strip-shaped conductive member 18, so that residual stress generated in the bonded portion at the time of ultrasonic bonding is relieved and generated by a cold load at the bonded portion. It is possible to obtain a bonded state that can withstand the thermal stress that occurs over a long period of time.

又、本発明の実施の形態では、帯状導電部材18の接合部18bの近傍に位置するネック部18cに、ループ部18aよりも曲げ剛性を意図的に低下させたくびれ部18dが形成されることが望ましい。図13には、ネック部18cの最小厚さが各々76.3μmと141.8μmの場合における、冷熱サイクルNと接合部18bの接合面積Sとの関係が示されている。この図から明らかなように、ネック部18cの最小厚さが各々76.3μmの場合には、冷熱サイクルが4000サイクルを越えても、接合部18bの接合面積Sが0.2mm2程度確保されているが、ネック部18cの最小厚さが各々141.8μmの場合には、冷熱サイクルが1500サイクルを越えると、接合部18bは剥離することとなる。このように、帯状導電部材18の接合部18bの近傍に位置するネック部18cに、くびれ部18dが形成されることで、帯状導電部材18のループ部18aに生ずる熱伸縮を、ネック部18cの変形を積極的に促すことにより吸収し、接合部18bを剥離させる方向へと熱応力が作用することを回避することが可能となる。 Further, in the embodiment of the present invention, a neck portion 18d whose bending rigidity is intentionally lower than that of the loop portion 18a is formed in the neck portion 18c located in the vicinity of the joint portion 18b of the belt-like conductive member 18. Is desirable. FIG. 13 shows the relationship between the thermal cycle N and the bonding area S of the bonding portion 18b when the minimum thickness of the neck portion 18c is 76.3 μm and 141.8 μm, respectively. As is apparent from this figure, when the minimum thickness of the neck portion 18c is 76.3 μm, even if the thermal cycle exceeds 4000 cycles, the joint area S of the joint portion 18b is secured to about 0.2 mm 2. However, when the minimum thickness of the neck portion 18c is 141.8 μm, the joint portion 18b is peeled off when the cooling / heating cycle exceeds 1500 cycles. In this way, the neck portion 18d is formed in the neck portion 18c located in the vicinity of the joint portion 18b of the strip-shaped conductive member 18, so that the thermal expansion and contraction generated in the loop portion 18a of the strip-shaped conductive member 18 is reduced. It is possible to avoid the thermal stress from acting in the direction in which the joint 18b is peeled off by positively promoting the deformation.

さらに、本発明の実施の形態では、帯状導電部材18のネック部18cに60°〜120°の角度が与えられていることが望ましい。前述のごとく、図7(a)は、ネック部18cに角度θ=90°を与えた場合であるが、帯状導電部材18の熱変形の前後(符号18が変形前、18’が変形後を示す。図7(b)も同じ。)によるネック部18cの角度変化はほとんど生じない。一方、図7(b)はネック部18cに角度θ=30°を与えた場合を示しているが、帯状導電部材18の熱変形の前後でのネック部18cの角度変化が顕著に表れ、接合部18bの剥離を引き起こす大きな要因となることがわかる。
本発明者らによれば、帯状導電部材18のネック部18cに、熱変形の前後でのネック部18cの角度変化を回避することが可能な角度、具体的には60°〜120°の角度を与えることにより、帯状導電部材18のループ部18aに生ずる熱伸縮に伴う熱応力が、接合部18bに対する直角方向成分により多く配分され、接合部18bを剥離させる方向へと熱応力が作用することを回避することができることが明らかとなった。
Furthermore, in the embodiment of the present invention, it is desirable that an angle of 60 ° to 120 ° is given to the neck portion 18c of the strip-like conductive member 18. As described above, FIG. 7A shows the case where the angle θ = 90 ° is given to the neck portion 18c. Before and after thermal deformation of the strip-shaped conductive member 18 (reference numeral 18 is before deformation, 18 ′ is after deformation). The angle change of the neck part 18c by FIG.7 (b) is also hardly produced. On the other hand, FIG. 7B shows a case where an angle θ = 30 ° is given to the neck portion 18c. However, the change in the angle of the neck portion 18c before and after thermal deformation of the belt-like conductive member 18 appears remarkably. It turns out that it becomes a big factor which causes peeling of the part 18b.
According to the present inventors, the neck portion 18c of the strip-shaped conductive member 18 is an angle that can avoid the change in the angle of the neck portion 18c before and after thermal deformation, specifically, an angle of 60 ° to 120 °. The thermal stress accompanying thermal expansion and contraction generated in the loop portion 18a of the strip-shaped conductive member 18 is more distributed to the component perpendicular to the joint portion 18b, and the thermal stress acts in the direction in which the joint portion 18b is peeled off. It became clear that can be avoided.

以上の理由から、本発明の実施の形態によれば、冷熱負荷による接合面積の劣化曲線(図9、図11〜図13)の傾きを小さくすることができる。したがって、図14(a)に示されるように、アルミワイヤ22と、本発明の実施の形態に係る帯状導電部材18とに、同一のボンド荷重Fを加えた場合において、半導体素子14の電極部に生じる酸化防止膜の破壊が、図14(b)に符号Eで示されるように、帯状導電部材18において起こり難く、接合強度が低くなる傾向であるにもかかわらず、それを打消し、冷熱負荷による接合面積の劣化曲線の傾きを小さくするものである。よって、パワー半導体モジュールの性能及び信頼性の向上を図ることが可能となる。
上記の各作用効果は、帯状導電部材18の断面が、角形、六角、八角等の多角形ないし楕円形の、何れの形状をなしている場合にも得られるものである。
For the above reasons, according to the embodiment of the present invention, it is possible to reduce the slope of the deterioration curve (FIGS. 9 and 11 to 13) of the junction area due to the cooling load. Therefore, as shown in FIG. 14A, when the same bond load F is applied to the aluminum wire 22 and the strip-like conductive member 18 according to the embodiment of the present invention, the electrode portion of the semiconductor element 14 As shown by the symbol E in FIG. 14B, the breakdown of the antioxidant film hardly occurs in the strip-like conductive member 18 and cancels it even though the bonding strength tends to be low. This is to reduce the slope of the deterioration curve of the junction area due to the load. Therefore, it is possible to improve the performance and reliability of the power semiconductor module.
Each of the above effects can be obtained when the cross-section of the strip-shaped conductive member 18 has any shape such as a polygon such as a square, a hexagon, and an octagon, or an ellipse.

本発明の実施の形態に係るパワー半導体モジュールの斜視図である。It is a perspective view of a power semiconductor module concerning an embodiment of the invention. (a)は、図1に示すパワー半導体モジュールの、帯状導電部材のループ部、接合部及びネック部を示す側面図であり、(b)は、(a)の接合部の拡大図である。(A) is a side view which shows the loop part of a strip | belt-shaped electrically-conductive member, a junction part, and a neck part of the power semiconductor module shown in FIG. 1, (b) is an enlarged view of the junction part of (a). 上段には、図2に示す接合部の平面図を、中段には接合部の断面視図を、下段には接合部の透過視図を夫々示している。The upper part shows a plan view of the joint part shown in FIG. 2, the middle part shows a sectional view of the joint part, and the lower part shows a perspective view of the joint part. (a)は、本発明の実施の形態に係る帯状導電部材の接合部を示す模式図であり、(b)は、ボンダツールにより接合部を形成した場合を示す模式図である。(A) is a schematic diagram which shows the junction part of the strip | belt-shaped electrically-conductive member which concerns on embodiment of this invention, (b) is a schematic diagram which shows the case where a junction part is formed with the bonder tool. 本発明の実施の形態に係る帯状導電部材のネック部に、くびれ部を形成した例を示す模式図である。It is a schematic diagram which shows the example which formed the constriction part in the neck part of the strip | belt-shaped electrically-conductive member which concerns on embodiment of this invention. 本発明の実施の形態に係る、くびれ部となる凹部が、1箇所ないし複数箇所設けられた帯状導電部材を示す模式図である。It is a schematic diagram which shows the strip | belt-shaped electrically-conductive member in which the recessed part used as the constriction part based on embodiment of this invention was provided in one place or multiple places. (a)は、本発明の実施の形態に係る帯状導電部材のネック部に角度θ=90°を与えた場合の、帯状導電部材の熱変形の前後の状態を示す模式図であり、(b)は、本発明の実施の形態に係る帯状導電部材のネック部に角度θ=30°を与えた場合の、帯状導電部材の熱変形の前後の状態を示す模式図である。(A) is a schematic diagram which shows the state before and behind the thermal deformation of a strip | belt-shaped electrically-conductive member when angle (theta) = 90 degree is given to the neck part of the strip | belt-shaped electrically-conductive member which concerns on embodiment of this invention, (b) FIG. 4B is a schematic diagram showing states before and after thermal deformation of the band-shaped conductive member when an angle θ = 30 ° is given to the neck portion of the band-shaped conductive member according to the embodiment of the present invention. 本発明の実施の形態に係る、半導体素子に突起を形成し、帯状導電部材の接合部を半導体素子の電極に超音波接合する際に、ネック部が突起に当接して強制的に曲げられるようにすることで、ネック部に必要な角度を与えた例を示す模式図である。According to the embodiment of the present invention, when a protrusion is formed on a semiconductor element and the joining portion of the belt-like conductive member is ultrasonically joined to the electrode of the semiconductor element, the neck portion is brought into contact with the protrusion so as to be forcibly bent. It is a schematic diagram which shows the example which gave the required angle to the neck part by doing. 本発明の実施の形態に係る帯状導電部材の、冷熱負荷による接合面積の劣化曲線である。It is a degradation curve of the joining area by the cold load of the strip | belt-shaped electrically-conductive member which concerns on embodiment of this invention. 本発明の実施の形態に係る帯状導電部材の、冷熱負荷を受けた際の接合部の厚さとその接合面積との関係を示す曲線である。It is a curve which shows the relationship between the thickness of the junction part at the time of receiving the thermal load of the strip | belt-shaped electrically-conductive member which concerns on embodiment of this invention, and its joining area. 本発明の実施の形態に係る帯状導電部材の、冷熱負荷による接合面積の劣化曲線である。It is a degradation curve of the joining area by the cold load of the strip | belt-shaped electrically-conductive member which concerns on embodiment of this invention. 本発明の実施の形態に係る帯状導電部材の、冷熱負荷による接合面積の劣化曲線である。It is a degradation curve of the joining area by the cold load of the strip | belt-shaped electrically-conductive member which concerns on embodiment of this invention. 本発明の実施の形態に係る帯状導電部材の、冷熱負荷による接合面積の劣化曲線である。It is a degradation curve of the joining area by the cold load of the strip | belt-shaped electrically-conductive member which concerns on embodiment of this invention. 本発明の実施の形態に係る帯状導電部材を用いた場合の不利な点を説明するものであり、(a)はボンド荷重付与前の状態を、(b)はボンド荷重付与後の状態を示す模式図である。It demonstrates the disadvantage at the time of using the strip | belt-shaped electrically-conductive member which concerns on embodiment of this invention, (a) shows the state before bond load provision, (b) shows the state after bond load provision. It is a schematic diagram.

符号の説明Explanation of symbols

10:パワー半導体モジュール、12:基板、14:半導体素子、16:バスバー、18:帯状導電部材、18a:ループ部、18b:接合部、18c:ネック部、18d:くびれ部
10: power semiconductor module, 12: substrate, 14: semiconductor element, 16: bus bar, 18: strip-shaped conductive member, 18a: loop portion, 18b: joint portion, 18c: neck portion, 18d: constricted portion

Claims (18)

基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材が超音波接合され、かつ、該帯状導電部材の少なくとも接合部の厚さが120μm以下となっていることを特徴とするパワー半導体モジュール。 A band-shaped conductive member having a square cross section having a thickness of 0.15 mm to 0.6 mm and a width of 0.84 mm or more is ultrasonically bonded to the semiconductor element disposed on the substrate, and at least the band-shaped conductive member is bonded. A power semiconductor module, wherein the thickness of the portion is 120 μm or less. 基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材が超音波接合されていることを特徴とするパワー半導体モジュール。 A power semiconductor module characterized in that a strip-shaped conductive member having a square cross section having a thickness of 0.15 mm to 0.6 mm and a width of 0.84 mm or more is ultrasonically bonded to a semiconductor element disposed on a substrate. . 基板に配置された半導体素子に対し、少なくとも接合部の厚さが120μm以下の帯状導電部材が超音波接合されていることを特徴とするパワー半導体モジュール。 A power semiconductor module, wherein at least a band-shaped conductive member having a bonding portion of 120 μm or less is ultrasonically bonded to a semiconductor element disposed on a substrate. 前記接合部の超音波接合時の接合面積が0.80mm2以上であることを特徴とする請求項1から3のいずれか1項記載のパワー半導体モジュール。 4. The power semiconductor module according to claim 1, wherein a bonding area of the bonding portion at the time of ultrasonic bonding is 0.80 mm 2 or more. 5. 前記接合部の結晶方位角差の平均値が0.6°以下となるように、超音波接合後に熱処理がなされていることを特徴とする請求項1から4のいずれか1項記載のパワー半導体モジュール。 5. The power semiconductor according to claim 1, wherein heat treatment is performed after ultrasonic bonding so that an average value of a crystal orientation angle difference of the bonding portion is 0.6 ° or less. module. 前記接合部の結晶方位角差の平均値が0.6°以下となるように、超音波接合後に所定時間放置されていることを特徴とする請求項1から5のいずれか1項記載のパワー半導体モジュール。 The power according to any one of claims 1 to 5, wherein the power is left for a predetermined time after ultrasonic bonding so that an average value of crystal orientation angle differences of the bonding portion is 0.6 ° or less. Semiconductor module. 前記帯状導電部材に、6.25kgf/mm2以下の引っ張り強度を有する材料が用いられていることを特徴とする請求項1から6のいずれか1項記載のパワー半導体モジュール。 7. The power semiconductor module according to claim 1, wherein a material having a tensile strength of 6.25 kgf / mm 2 or less is used for the band-shaped conductive member. 前記帯状導電部材の、前記接合部の近傍に位置するネック部に、くびれ部が形成されていることを特徴とする請求項1から7のいずれか1項記載のパワー半導体モジュール。 The power semiconductor module according to any one of claims 1 to 7, wherein a constricted portion is formed in a neck portion of the strip-shaped conductive member located in the vicinity of the joint portion. 前記ネック部に60°〜120°の角度が与えられていることを特徴とする請求項1から8のいずれか1項記載のパワー半導体モジュール。 The power semiconductor module according to claim 1, wherein an angle of 60 ° to 120 ° is given to the neck portion. 基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材を超音波接合し、かつ、該帯状導電部材の少なくとも接合部の厚さが120μm以下とすることを特徴とするパワー半導体モジュールの製造方法。 A band-shaped conductive member having a square section with a thickness of 0.15 mm to 0.6 mm and a width of 0.84 mm or more is ultrasonically bonded to the semiconductor element disposed on the substrate, and at least the band-shaped conductive member is bonded. A method for manufacturing a power semiconductor module, wherein the thickness of the portion is 120 μm or less. 基板に配置された半導体素子に対し、厚さが0.15mm〜0.6mm、幅が0.84mm以上である断面角形の帯状導電部材を超音波接合することを特徴とするパワー半導体モジュールの製造方法。 Manufacturing of a power semiconductor module characterized by ultrasonically bonding a band-shaped conductive member having a square section with a thickness of 0.15 mm to 0.6 mm and a width of 0.84 mm or more to a semiconductor element disposed on a substrate Method. 基板に配置された半導体素子に対し、少なくとも接合部の厚さが120μm以下の帯状導電部材を超音波接合することを特徴とするパワー半導体モジュールの製造方法。 A method of manufacturing a power semiconductor module, comprising ultrasonically bonding a strip-shaped conductive member having a bonding portion thickness of 120 μm or less to a semiconductor element disposed on a substrate. 前記接合部の超音波接合時の接合面積を0.80mm2以上確保することを特徴とする請求項9から12のいずれか1項記載のパワー半導体モジュールの製造方法。 The method for manufacturing a power semiconductor module according to any one of claims 9 to 12, wherein a bonding area of 0.80 mm 2 or more during ultrasonic bonding of the bonding portion is ensured. 前記接合部の結晶方位角差の平均値が0.6°以下となるように、超音波接合後に熱処理を施すことを特徴とする請求項9から13のいずれか1項記載のパワー半導体モジュールの製造方法。 The power semiconductor module according to any one of claims 9 to 13, wherein heat treatment is performed after ultrasonic bonding so that an average value of a crystal orientation angle difference of the bonding portion is 0.6 ° or less. Production method. 前記接合部の結晶方位角差の平均値が0.6°以下となるように、超音波接合後に所定時間放置することを特徴とする請求項9から14のいずれか1項記載のパワー半導体モジュールの製造方法。 The power semiconductor module according to any one of claims 9 to 14, wherein the power semiconductor module is left for a predetermined time after ultrasonic bonding so that an average value of a crystal orientation angle difference of the bonding portion is 0.6 ° or less. Manufacturing method. 前記帯状導電部材に、6.25kgf/mm2以下の引っ張り強度を有する材料を用いることを特徴とする請求項9から15のいずれか1項記載のパワー半導体モジュールの製造方法。 The method for manufacturing a power semiconductor module according to claim 9, wherein a material having a tensile strength of 6.25 kgf / mm 2 or less is used for the strip-shaped conductive member. 前記帯状導電部材の、前記接合部の近傍に位置するネック部に、くびれ部を形成することを特徴とする請求項9から16のいずれか1項記載のパワー半導体モジュールの製造方法。 The method for manufacturing a power semiconductor module according to any one of claims 9 to 16, wherein a constricted portion is formed in a neck portion of the strip-shaped conductive member located in the vicinity of the joint portion. 前記ネック部に60°〜120°の角度を与ることを特徴とする請求項9から17のいずれか1項記載のパワー半導体モジュール。
The power semiconductor module according to claim 9, wherein an angle of 60 ° to 120 ° is given to the neck portion.
JP2005182242A 2005-06-22 2005-06-22 Power semiconductor module and manufacturing method thereof Expired - Fee Related JP4577509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005182242A JP4577509B2 (en) 2005-06-22 2005-06-22 Power semiconductor module and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005182242A JP4577509B2 (en) 2005-06-22 2005-06-22 Power semiconductor module and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007005474A true JP2007005474A (en) 2007-01-11
JP4577509B2 JP4577509B2 (en) 2010-11-10

Family

ID=37690810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005182242A Expired - Fee Related JP4577509B2 (en) 2005-06-22 2005-06-22 Power semiconductor module and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4577509B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270418A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Power semiconductor module and method of wiring the same
JP2012039018A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Electronic apparatus and method of manufacturing the same
JP2013102233A (en) * 2013-02-25 2013-05-23 Renesas Electronics Corp Semiconductor device
EP2099121A3 (en) * 2008-03-04 2015-03-11 Kabushiki Kaisha Toyota Jidoshokki Power converter apparatus
JP2015053425A (en) * 2013-09-09 2015-03-19 三菱電機株式会社 Semiconductor device
WO2019075289A1 (en) * 2017-10-13 2019-04-18 Kulicke And Soffa Industries, Inc. Conductive terminals, busbars, and methods of preparing the same, and methods of assembling related power modules
US10882134B2 (en) 2017-04-04 2021-01-05 Kulicke And Soffa Industries, Inc. Ultrasonic welding systems and methods of using the same
US11285561B2 (en) 2018-11-28 2022-03-29 Kulicke And Soffa Industries, Inc. Ultrasonic welding systems and methods of using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775743U (en) * 1980-10-27 1982-05-11
JPS5948947A (en) * 1982-09-14 1984-03-21 Toshiba Corp Semiconductor device
JPH02224348A (en) * 1989-02-27 1990-09-06 Fuji Electric Co Ltd Semiconductor device
JPH0574832A (en) * 1991-09-13 1993-03-26 Hitachi Ltd Semiconductor device
JPH06326160A (en) * 1993-05-10 1994-11-25 Nippon Steel Corp High-frequency hybrid integrated circuit
JPH11330134A (en) * 1998-05-12 1999-11-30 Hitachi Ltd Wire-bonding method and device, and semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5775743U (en) * 1980-10-27 1982-05-11
JPS5948947A (en) * 1982-09-14 1984-03-21 Toshiba Corp Semiconductor device
JPH02224348A (en) * 1989-02-27 1990-09-06 Fuji Electric Co Ltd Semiconductor device
JPH0574832A (en) * 1991-09-13 1993-03-26 Hitachi Ltd Semiconductor device
JPH06326160A (en) * 1993-05-10 1994-11-25 Nippon Steel Corp High-frequency hybrid integrated circuit
JPH11330134A (en) * 1998-05-12 1999-11-30 Hitachi Ltd Wire-bonding method and device, and semiconductor device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270418A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Power semiconductor module and method of wiring the same
EP2099121A3 (en) * 2008-03-04 2015-03-11 Kabushiki Kaisha Toyota Jidoshokki Power converter apparatus
JP2012039018A (en) * 2010-08-11 2012-02-23 Hitachi Ltd Electronic apparatus and method of manufacturing the same
JP2013102233A (en) * 2013-02-25 2013-05-23 Renesas Electronics Corp Semiconductor device
JP2015053425A (en) * 2013-09-09 2015-03-19 三菱電機株式会社 Semiconductor device
US10882134B2 (en) 2017-04-04 2021-01-05 Kulicke And Soffa Industries, Inc. Ultrasonic welding systems and methods of using the same
US11364565B2 (en) 2017-04-04 2022-06-21 Kulicke And Soffa Industries, Inc. Ultrasonic welding systems and methods of using the same
WO2019075289A1 (en) * 2017-10-13 2019-04-18 Kulicke And Soffa Industries, Inc. Conductive terminals, busbars, and methods of preparing the same, and methods of assembling related power modules
CN111201683A (en) * 2017-10-13 2020-05-26 库利克和索夫工业公司 Conductive terminal, bus bar, manufacturing method thereof and method for assembling related power module
US11285561B2 (en) 2018-11-28 2022-03-29 Kulicke And Soffa Industries, Inc. Ultrasonic welding systems and methods of using the same
US11504800B2 (en) 2018-11-28 2022-11-22 Kulicke And Soffa Industries, Inc. Ultrasonic welding systems and methods of using the same
US11958124B2 (en) 2018-11-28 2024-04-16 Kulicke And Soffa Industries, Inc. Ultrasonic welding systems and methods of using the same

Also Published As

Publication number Publication date
JP4577509B2 (en) 2010-11-10

Similar Documents

Publication Publication Date Title
US8395262B2 (en) Semiconductor device and method for manufacturing the same
CN107615464B (en) Method for manufacturing power semiconductor device and power semiconductor device
US7709947B2 (en) Semiconductor device having semiconductor element with back electrode on insulating substrate
US5698898A (en) Semiconductor apparatus with a multiple element electrode structure
JP2009158787A (en) Power semiconductor device
JP4577509B2 (en) Power semiconductor module and manufacturing method thereof
JP5884752B2 (en) Ultrasonic bonding apparatus and semiconductor device manufacturing method
JP2007201247A (en) High withstand voltage semiconductor device
JP2005203474A (en) Semiconductor device
JP6834815B2 (en) Semiconductor module
US20040251528A1 (en) Electric power semiconductor device
JP4967277B2 (en) Semiconductor device and manufacturing method thereof
JP2007194270A (en) Bonding ribbon and bonding method using the same
JP4645276B2 (en) Semiconductor device
JP2006135270A (en) Semiconductor device and its manufacturing method
JP4870204B2 (en) Power semiconductor module
JP7230419B2 (en) Semiconductor device, method for manufacturing semiconductor device
JP4485995B2 (en) Power semiconductor module
JP5602703B2 (en) Power semiconductor module
JP5145168B2 (en) Semiconductor device
JP5830958B2 (en) Semiconductor module
JP4992302B2 (en) Power semiconductor module
JP4329187B2 (en) Semiconductor element
JP2006303375A (en) Power converting device and method for manufacturing the same
JP2006196765A (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4577509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees