[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007003034A - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
JP2007003034A
JP2007003034A JP2005180768A JP2005180768A JP2007003034A JP 2007003034 A JP2007003034 A JP 2007003034A JP 2005180768 A JP2005180768 A JP 2005180768A JP 2005180768 A JP2005180768 A JP 2005180768A JP 2007003034 A JP2007003034 A JP 2007003034A
Authority
JP
Japan
Prior art keywords
heat
surface portion
wick
working fluid
opening end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005180768A
Other languages
Japanese (ja)
Other versions
JP4648106B2 (en
Inventor
Masataka Mochizuki
正孝 望月
Nuyen Tan
ニューエン タン
Vijit Wuttijumnong
ウティジュモング ビジット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005180768A priority Critical patent/JP4648106B2/en
Publication of JP2007003034A publication Critical patent/JP2007003034A/en
Application granted granted Critical
Publication of JP4648106B2 publication Critical patent/JP4648106B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve structural strength and cooling performance of a closed container. <P>SOLUTION: A plurality of heat pipes 4 transporting heat as latent heat of working fluid 3 are arranged in the closed container 2 in an uprising state, a plurality of flat fins 5 are arranged in parallel with each other at prescribed intervals at closed end portions 4A of the heat pipes 4, a support 8 is mounted for supporting a wick 7A (wick 7B) mounted on an inner surface of at least one of an upper surface portion 2B and a lower surface portion 2A opposite to each other in the closed container 2, between the upper surface portion 2B and the lower surface portion 2A, hole portions 10 penetrating through opening end portions 4B of the heat pipes 4 are formed on the upper surface portion 2B, the hole portions 10 are held by the opening end portions 4B, and the opening end portions 4B of the heat pipes 4 are connected with the wick 7A (wick 7B) at an upper surface portion 2B side or a lower surface portion 2A side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、入熱もしくは放熱の状態に応じて蒸発もしくは凝縮する凝縮性の流体が作動流体として中空平板状の密閉容器の内部に封入されるとともに、その作動流体で湿潤することにより毛細管圧力を発生させるウイックが密閉容器の内部に設けられている冷却装置に関するものである。   In the present invention, a condensable fluid that evaporates or condenses according to the state of heat input or heat dissipation is enclosed as a working fluid inside a hollow flat airtight container, and the capillary pressure is reduced by wetting with the working fluid. The present invention relates to a cooling device in which a wick to be generated is provided inside a sealed container.

従来、作動流体の潜熱として熱を輸送するヒートパイプやヒートシンクを備えた冷却装置が広く知られている。この種の冷却装置では、蒸発して気相となった作動流体が低温・低圧側の凝縮部に流動することにより熱を輸送し、その熱輸送の後、ヒートパイプの内部に設けられたウイックによる毛細管圧力によって、凝縮した液相の作動流体を蒸発部(入熱部)に還流させている。   Conventionally, a cooling device including a heat pipe or a heat sink that transports heat as latent heat of a working fluid is widely known. In this type of cooling device, the working fluid evaporated into a vapor phase transports heat by flowing to the condensing part on the low temperature / low pressure side, and after the heat transport, a wick provided inside the heat pipe. The condensed liquid phase working fluid is recirculated to the evaporation section (heat input section) by the capillary pressure due to.

そのウイックは、要は、毛細管圧力を生じさせるためのものであるから、作動流体とのいわゆる濡れ性が良好であり、かつ液相の作動流体の液面に形成されるメニスカスでの実効毛細管半径が可及的に小さくなるものであることが好ましい。一般には、多孔質焼結体(多孔質体)や極細線束などがウイックとして採用されている。これらのウイックのうち、多孔質焼結体を使用したウイックは、その多孔質焼結体とは別の他の構造体を使用したウイックと比べてその空孔の開口面積が小さいので、発生させ得る毛細管圧力、すなわち液相の作動流体に対するポンプ力が大きい。また、このウイックはシート状に形成できるので、最近注目されている平板型などのベーパーチャンバーと称されるヒートパイプに採用されている。   The wick is, in essence, for generating capillary pressure, so that the so-called wettability with the working fluid is good, and the effective capillary radius at the meniscus formed on the liquid surface of the liquid-phase working fluid. Is preferably as small as possible. In general, porous sintered bodies (porous bodies), ultrafine wire bundles, and the like are employed as wicks. Among these wicks, the wick using a porous sintered body has a smaller opening area than the wick using another structure different from the porous sintered body, so it is generated. The capillary pressure to be obtained, that is, the pumping force for the liquid phase working fluid is large. Further, since this wick can be formed in a sheet shape, it has been adopted in a heat pipe called a vapor chamber such as a flat plate type which has been attracting attention recently.

このヒートパイプは、中空平板構造のコンテナ(密閉容器)によって密閉された空間部を形成し、その空間部に空気などの非凝縮性ガスを脱気した状態で凝縮性の流体を作動流体として封入したものである。この種のヒートパイプは、表面が平坦になるので、熱交換対象物との接触面積が広くなり、その結果、熱伝達性能あるいは熱交換性能が向上し、また冷却のための手段として使用する場合には、広い放熱面積を確保することができるなどの利点がある。   This heat pipe forms a space sealed by a hollow flat plate container (sealed container), and a non-condensable gas such as air is degassed in the space as a working fluid. It is a thing. Since this type of heat pipe has a flat surface, the contact area with the heat exchange object is widened. As a result, heat transfer performance or heat exchange performance is improved, and when used as a means for cooling. Has an advantage that a large heat radiation area can be secured.

その反面、ヒートパイプは、空間部に凝縮性の流体のみを封入した構成であるから、外部から入熱のない非動作状態あるいは冷却状態では作動流体が凝縮するために、空間部の内部が高真空状態になる。また反対に外部から多量に入熱があると、作動流体が蒸発してその容積を増大させるから、空間部の内部圧力が高くなる。そのため、平板型ヒートパイプにあっては、上面や下面の表面積が広い部分の剛性が低いために、非動作時や製造時にこの上面や下面が窪んだり、あるいは反対に動作時に上面や下面が膨らむなどの変形が生じることがある。   On the other hand, since the heat pipe has a configuration in which only a condensable fluid is sealed in the space portion, the working fluid is condensed in a non-operating state or a cooling state without heat input from the outside, so that the space portion has a high interior. It becomes a vacuum state. On the other hand, if there is a large amount of heat input from the outside, the working fluid evaporates and increases its volume, so that the internal pressure in the space increases. For this reason, in flat heat pipes, the rigidity of the parts with large surface areas on the upper and lower surfaces is low, so that the upper and lower surfaces are recessed during non-operation and manufacturing, or conversely, the upper and lower surfaces expand during operation. Deformation may occur.

このような不都合を解消するために、特許文献1に記載された発明では、上端部が開口した薄い容器の内部に、複数の支柱(柱状部)を一体に立設するとともに、ウイックとして機能する多孔質膜を、その容器の内部に溶射により形成し、さらにその容器の開口部を密閉した後、内部の空気などの気体を真空脱気するとともに、水などの凝縮性の流体を作動流体として封入したヒートパイプを提案している。   In order to eliminate such inconvenience, in the invention described in Patent Document 1, a plurality of support columns (columnar portions) are erected integrally in a thin container having an open upper end portion, and function as a wick. A porous film is formed inside the container by thermal spraying, and after the opening of the container is sealed, the air such as air is vacuum degassed and a condensable fluid such as water is used as a working fluid. A sealed heat pipe is proposed.

また、ヒートパイプの外周面と平板状フィン(放熱フィン)の表面とから熱を大気に放散する構造のヒートシンクが知られており、このヒートシンクの一例が特許文献2に記載されている。   Further, a heat sink having a structure that dissipates heat to the atmosphere from the outer peripheral surface of the heat pipe and the surface of the flat fin (radiation fin) is known, and an example of this heat sink is described in Patent Document 2.

この特許文献2に記載されたヒートシンクは、ベース部に支柱などの伝熱部材を立設し、その伝熱部材に平板状フィンを取り付けた構造のタワー型ヒートシンクであり、平板状フィンを伝熱部材に嵌合させ、多数の平板状フィンを設けることができるので、その枚数や放熱面積の制約が少ない。なお、放熱量をさらに増大させるためには、平板状フィンに向けて送風する強制冷却をおこなうことが好ましい。例えば、筐体の内部にタワー型ヒートシンクを取り付けた場合には、各平板状フィンの間の空隙部に送り込むための送風機(ファン)が筐体の内部の所定の位置、あるいはタワー型ヒートシンクにおける平板状フィンの配列方向に対してほぼ垂直な方向に冷却空気を流入もしくは流出させる位置に取り付けられることになる。
特開平11−287578号公報 特開平7−263601号公報
The heat sink described in Patent Document 2 is a tower-type heat sink having a structure in which a heat transfer member such as a support is erected on a base portion and a flat fin is attached to the heat transfer member. Since a large number of flat fins can be provided by being fitted to the member, there are few restrictions on the number and the heat radiation area. In order to further increase the heat radiation amount, it is preferable to perform forced cooling by blowing air toward the flat fins. For example, when a tower-type heat sink is attached to the inside of the housing, a blower (fan) for feeding into the gap between the flat fins is located at a predetermined position inside the housing or a flat plate in the tower-type heat sink. It is attached at a position where cooling air flows in or out in a direction substantially perpendicular to the arrangement direction of the fins.
JP-A-11-287578 Japanese Patent Laid-Open No. 7-263601

ところで、このようなヒートパイプやヒートシンクを備えた冷却装置では、面積の広い下面部と上面部とを、複数の支柱が連結した構造となるので、内圧が低下することによる下面部あるいは上面部の窪み変形や、動作時に内圧が高くなることによる下面部あるいは上面部の膨らみ変形を防止することができる。しかしながら、それらの支柱に連結されている下面部と上面部とは、薄い平板部で構成され、剛性が低いために、CPUなどの電子素子を含む電子部品をヒートパイプに搭載あるいは密着させる際の押圧力によって、これらの上面部や下面部の中央部が変形するおそれがあった。   By the way, in such a cooling device including a heat pipe or a heat sink, a lower surface portion and an upper surface portion having a large area are connected to each other by a plurality of support columns, and therefore the lower surface portion or the upper surface portion due to a decrease in internal pressure. It is possible to prevent depression deformation and bulge deformation of the lower surface portion or the upper surface portion due to an increase in internal pressure during operation. However, the lower surface portion and the upper surface portion connected to these columns are formed of a thin flat plate portion and have low rigidity, and therefore, when an electronic component including an electronic element such as a CPU is mounted on or closely adhered to a heat pipe. There is a possibility that the central portion of these upper surface portion and lower surface portion is deformed by the pressing force.

また、密閉容器の上面部もしくは下面部のうち、支柱が接合されている部分は支柱を介した熱伝導のみが生じるので、作動流体の蒸発・凝縮による熱輸送の用をなさなくなる。例えば、昨今の小型化の要請で、放熱されるべき電子部品が更に小さいチップとして構成されて支柱の断面積程度に小さくなった場合には、そのチップから上面部もしくは下面部を介して支柱に熱が伝達されるので、作動流体による熱の伝達が阻害されてしまう。そのため、装置全体として、熱輸送能力もしくは放熱性能などの冷却性能が劣るものとなっていた。   Further, in the upper surface portion or the lower surface portion of the sealed container, only the heat conduction through the support column occurs at the portion where the support column is joined, so that the heat transport by the evaporation / condensation of the working fluid is not used. For example, due to the recent demand for miniaturization, when an electronic component to be radiated is configured as a smaller chip and becomes as small as the cross-sectional area of the column, the chip is transferred from the chip to the column via the upper surface or the lower surface. Since heat is transferred, heat transfer by the working fluid is hindered. For this reason, the entire apparatus has poor cooling performance such as heat transport capability or heat dissipation performance.

さらに、上述したタワー型ヒートシンクではベース部上に多数の平板状フィンが配置されているので、放熱面積を増加することができる。しかしながら、配置スペースが限られた電子機器などの筐体の内部でタワー型ヒートシンクを配置した場合には、その筐体の内部に在る各電子部品の配置に制約される。そのため、冷却性能上、必要なスペースを確保することができないおそれがあった。しかも、この問題を解決するためにタワー型ヒートシンク全体をコンパクト化(小型化)すると、平板状フィンやベース部もコンパクトにせざるを得なくなる。そのため、ヒートシンクの剛性が低下したり、冷却性能を担保することができないおそれもあった。   Furthermore, in the tower type heat sink described above, a large number of flat fins are arranged on the base portion, so that the heat radiation area can be increased. However, when a tower-type heat sink is disposed inside a housing such as an electronic device having a limited space for placement, the placement of electronic components within the housing is limited. Therefore, there is a possibility that a necessary space cannot be ensured in terms of cooling performance. Moreover, if the entire tower type heat sink is made compact in order to solve this problem, the flat fins and the base part must be made compact. For this reason, there is a possibility that the rigidity of the heat sink is lowered or the cooling performance cannot be ensured.

この発明は上記の技術的課題に着目してなされたものであり、密閉容器の構造強度や冷却性能を向上させることのできる冷却装置を提供することを目的とするものである。   The present invention has been made by paying attention to the above technical problem, and an object of the present invention is to provide a cooling device capable of improving the structural strength and cooling performance of a sealed container.

上記の目的を達成するために、請求項1の発明は、入熱もしくは放熱の状態に応じて蒸発もしくは凝縮する凝縮性の流体が作動流体として中空平板状の密閉容器の内部に封入されるとともに、その作動流体で湿潤することにより毛細管圧力を発生させるウイックが前記密閉容器の内部に設けられている冷却装置であって、前記密閉容器に、作動流体の潜熱として熱を輸送する複数のヒートパイプが起立した状態で配置され、そのヒートパイプの閉口端部に複数の平板状フィンが所定の間隔をあけて互いに平行に配列され、前記密閉容器における互いに対向する上面部および下面部の少なくとも一方の内面に設けられた前記ウイックを前記上面部と前記下面部との間で支持する支柱が配置され、前記上面部に前記ヒートパイプの開口端部を貫通させる孔部が形成され、その孔部がヒートパイプの開口端部によって保持されるとともに、前記上面部側もしくは前記下面部側の前記ウイックに前記ヒートパイプの開口端部が接合されていることを特徴とする冷却装置である。   In order to achieve the above object, the invention of claim 1 is characterized in that a condensable fluid that evaporates or condenses in accordance with the state of heat input or heat dissipation is enclosed as a working fluid inside a hollow flat airtight container. A cooling device in which a wick that generates capillary pressure by being wetted by the working fluid is provided inside the sealed container, and a plurality of heat pipes that transport heat to the sealed container as latent heat of the working fluid Are arranged in a standing state, and a plurality of flat fins are arranged in parallel with each other at a predetermined interval at the closed end of the heat pipe, and at least one of the upper surface portion and the lower surface portion facing each other in the sealed container A support for supporting the wick provided on the inner surface between the upper surface portion and the lower surface portion is disposed, and the opening end portion of the heat pipe penetrates the upper surface portion. A hole is formed, the hole is held by the opening end of the heat pipe, and the opening end of the heat pipe is joined to the wick on the upper surface side or the lower surface side. The cooling device is characterized.

また、請求項2の発明は、請求項1の発明における前記ヒートパイプの開口端部が前記孔部に熱授受可能に接合されていることを特徴とする装置である。   The invention of claim 2 is an apparatus characterized in that the opening end portion of the heat pipe in the invention of claim 1 is joined to the hole portion so as to be able to transfer heat.

請求項1の発明によれば、支柱によって、ウイックを上面部と下面部との間で支持し、その上面部に形成された孔部がヒートパイプの開口端部によって保持されるとともに、上面部側もしくは下面部側のウイックにヒートパイプの開口端部が接合されているので、ウイックを密閉容器の内部に確実に固定することができる。また、この構造では、密閉容器における曲げモーメントが大きくなる所定の箇所での剛性が高くなるので、例えば電子部品を密着させる際に密閉容器に押圧力が加わった場合でも、密閉容器の変形を確実に防ぐことができる。そのため、密閉容器の剛性を低下させることなく、装置全体をコンパクト化することができる。さらに、ウイックにはヒートパイプの開口端部が複数接合されているので、ヒートパイプの開口端部とウイックとの接合部分の内面側に在る液相の作動流体を多量に蒸発させることができる。そのため、装置全体として作動流体の循環流動が促進されるので、冷却性能を向上させることができる。   According to the first aspect of the present invention, the wick supports the wick between the upper surface portion and the lower surface portion, and the hole formed in the upper surface portion is held by the open end portion of the heat pipe, and the upper surface portion. Since the opening end of the heat pipe is joined to the wick on the side or the lower surface side, the wick can be reliably fixed inside the sealed container. Also, with this structure, the rigidity at a predetermined location where the bending moment in the sealed container increases is increased, so that even when a pressing force is applied to the sealed container, for example, when the electronic components are brought into close contact, the deformation of the sealed container is ensured. Can be prevented. Therefore, the entire apparatus can be made compact without reducing the rigidity of the sealed container. Furthermore, since a plurality of open end portions of the heat pipe are joined to the wick, a large amount of liquid-phase working fluid can be evaporated on the inner surface side of the joint portion between the open end portion of the heat pipe and the wick. . Therefore, since the circulating flow of the working fluid is promoted as the entire apparatus, the cooling performance can be improved.

また、請求項2の発明によれば、ヒートパイプの開口端部が上面部の孔部に熱授受可能に接合されているので、密閉容器本体の熱をヒートパイプに効率良く輸送することができる。そのため、装置全体の熱容量が大きくなるので、更に冷却性能を向上させることができる。   According to the invention of claim 2, since the opening end portion of the heat pipe is joined to the hole portion of the upper surface portion so as to be able to transfer heat, the heat of the sealed container body can be efficiently transported to the heat pipe. . Therefore, since the heat capacity of the entire apparatus is increased, the cooling performance can be further improved.

以下、本発明を実施した最良の形態について説明する。この発明による冷却装置は、入熱もしくは放熱の状態に応じて蒸発もしくは凝縮する凝縮性の流体が作動流体として中空平板状の密閉容器の内部に封入されるとともに、その作動流体で湿潤することにより毛細管圧力を発生させるウイックが密閉容器の内部に設けられた構造となっている。より具体的には、図1に示すように冷却装置1において、密閉容器2(平板型ヒートパイプの一種であるベーパーチャンバー)には作動流体3の潜熱として熱を輸送する複数の円筒状のヒートパイプ4が起立した状態で配置されており、そのヒートパイプ4の閉口端部4Aには複数の平板状のフィン(放熱フィン)5が所定の間隔をあけて互いに平行に配列されている。また、密閉容器2の内部には、密閉容器2における(下面部2Aもしくは上面部2Bの厚さ方向で)互いに対向する下面部2Aおよび上面部2Bの各内面に設けられた各ウイック7A,7Bを、下面部2Aと上面部2Bとの間で支持する支柱8が配置されている。   The best mode for carrying out the present invention will be described below. In the cooling device according to the present invention, a condensable fluid that evaporates or condenses in accordance with a state of heat input or heat dissipation is enclosed as a working fluid in a hollow flat airtight container and wetted with the working fluid. A wick for generating capillary pressure is provided inside the sealed container. More specifically, as shown in FIG. 1, in the cooling device 1, a plurality of cylindrical heats that transport heat as latent heat of the working fluid 3 to the sealed container 2 (a vapor chamber that is a kind of flat plate heat pipe). The pipe 4 is arranged in an upright state, and a plurality of flat fins (radiating fins) 5 are arranged in parallel to each other at a closed end 4A of the heat pipe 4 at a predetermined interval. Further, inside the sealed container 2, the wicks 7A and 7B provided on the inner surfaces of the lower surface portion 2A and the upper surface portion 2B facing each other (in the thickness direction of the lower surface portion 2A or the upper surface portion 2B) in the sealed container 2 are provided. Is disposed between the lower surface portion 2A and the upper surface portion 2B.

密閉容器2は、銅などの熱伝導率の高い金属によって薄い直方体となっており、密閉容器2の下面部2Aおよび上面部2Bが長方形状に形成されている。下面部2A側および上面部2B側の各ウイック7A,7Bにはヒートパイプ4の開口端部4Bが接合されている。下面部2Aには所定の電子部品11が取り付けられており、一方上面部2Bには開口端部4Bを貫通させる孔部10が形成されている。この孔部10は、開口端部4Bに熱授受可能に接合されており、開口端部4Bによって保持されている。また、孔部10は上面部2Bにおける曲げモーメントが大きくなる箇所に形成されており、その箇所での剛性が高くなっている。例えば、下面部2Aに電子部品11を密着させる際に下面部2Aに押圧力が加わった場合でも、下面部2Aの変形を確実に防ぐことができる。その結果、密閉容器2の剛性を低下させることなく、冷却装置1全体をコンパクト化することができる。   The sealed container 2 is a thin rectangular parallelepiped made of a metal having high thermal conductivity such as copper, and the lower surface portion 2A and the upper surface portion 2B of the sealed container 2 are formed in a rectangular shape. An open end 4B of the heat pipe 4 is joined to each wick 7A, 7B on the lower surface 2A side and the upper surface 2B side. A predetermined electronic component 11 is attached to the lower surface portion 2A, and a hole 10 is formed in the upper surface portion 2B so as to penetrate the opening end portion 4B. The hole 10 is joined to the opening end 4B so as to be able to transfer heat and is held by the opening end 4B. Further, the hole 10 is formed at a location where the bending moment in the upper surface portion 2B increases, and the rigidity at that location is high. For example, even when a pressing force is applied to the lower surface portion 2A when the electronic component 11 is brought into close contact with the lower surface portion 2A, the deformation of the lower surface portion 2A can be reliably prevented. As a result, the entire cooling device 1 can be made compact without reducing the rigidity of the sealed container 2.

ここで、下面部2Aに取り付けられたウイック7Aについて説明する。液相の作動流体3によってウイック7Aが湿潤すると、下面部2A側のウイック7Aで、メニスカスが生じ、かつそのメニスカスにおける実効毛細管半径に反比例した毛細管圧力が生じる。ウイック7Aは、その実効毛細管半径が小さくなるように形成されており、例えば微粒子(一例として粒径が25〜100μmの銅粒子)を素材とした多孔質焼結体や網状体(一例として#200メッシュ)などによって構成されている。   Here, the wick 7A attached to the lower surface portion 2A will be described. When the wick 7A is wetted by the liquid-phase working fluid 3, a meniscus is generated in the wick 7A on the lower surface portion 2A side, and a capillary pressure inversely proportional to the effective capillary radius at the meniscus is generated. The wick 7A is formed so that its effective capillary radius is small. For example, a porous sintered body or a net-like body (as an example, # 200) made of fine particles (as an example, copper particles having a particle size of 25 to 100 μm) is used. Mesh).

また、上面部2Bに取り付けられたウイック7Bには、凝縮して浸透した液相の作動流体3が流動する、いわゆる流路が形成されており、その流路は液相の作動流体3の流動が円滑に生じるように形成されている。また、ウイック7Bは、その流路となる空隙部分が可及的に広い開口面積をもつか、あるいは可及的に直線状に繋がる形状に形成されており、例えば相対的に粗い目の網状体(一例として#100メッシュ)や素材粒子の径がウイック7Aより相対的に大きい(一例として粒径が75〜250μmの銅粒子)多孔質焼結体、もしくは細溝(一例として0.1mm幅×0.1mm深さ)などによって構成されている。すなわちこの具体例では、ウイック7Aは大きい毛細管圧力を生じるように構成され、ウイック7Bは液相の作動流体3に対する流動抵抗が小さくなるように構成されている。   The wick 7B attached to the upper surface portion 2B is formed with a so-called flow path in which the liquid-phase working fluid 3 that has condensed and permeated flows, and the flow path of the liquid-phase working fluid 3 flows. Is formed smoothly. Further, the wick 7B is formed in a shape in which a gap portion serving as a flow path has as wide an opening area as possible or is connected as linearly as possible. (As an example, # 100 mesh) or a material particle having a relatively larger diameter than the wick 7A (as an example, a copper particle having a particle size of 75 to 250 μm), a porous sintered body, or a narrow groove (as an example, 0.1 mm width × 0.1 mm depth). That is, in this specific example, the wick 7A is configured to generate a large capillary pressure, and the wick 7B is configured to have a low flow resistance with respect to the liquid-phase working fluid 3.

さらに、支柱8は、円柱状に伸びたコラム状の構造であり、その両端面は平坦になっている。なお、支柱8の高さは、下面部2Aと上面部2Bとの間の幅と同じ寸法に設定されている。この支柱8は密閉容器2と同じ材料を用いて形成することができ、プレスによる鍛造成形(加工)や鋳造など、適宜の方法で形成してもよい。   Furthermore, the support | pillar 8 is a column-shaped structure extended in the column shape, and the both end surfaces are flat. In addition, the height of the support | pillar 8 is set to the same dimension as the width | variety between the lower surface part 2A and the upper surface part 2B. This support | pillar 8 can be formed using the same material as the airtight container 2, and may be formed by appropriate methods, such as forge molding (processing) and casting by a press.

つぎにこの発明における冷却装置の作用について具体的に説明する。まず、電子部品11で発生した熱が下面部2Aに伝達される。したがって、下面部2Aが冷却装置1の入熱部となる。ついで、下面部2Aに伝達された熱がウイック7Aに浸透している液相の作動流体3に伝達されてその作動流体3が蒸発する。この状態では、開口端部4Bとウイック7Aとの接合部分の内面側に在る液相の作動流体3が蒸発する。   Next, the operation of the cooling device in the present invention will be specifically described. First, heat generated in the electronic component 11 is transmitted to the lower surface portion 2A. Therefore, the lower surface portion 2 </ b> A becomes a heat input portion of the cooling device 1. Next, the heat transmitted to the lower surface portion 2A is transmitted to the liquid-phase working fluid 3 penetrating the wick 7A, and the working fluid 3 evaporates. In this state, the liquid-phase working fluid 3 on the inner surface side of the joint portion between the opening end 4B and the wick 7A evaporates.

一方、下面部2Aから上面部2Bに移動した熱は、温度差のある上昇方向へ伝達される。開口端部4Bと上面部2Bの孔部10とが熱授受可能に接合されているので、上面部2Bの熱は、ヒートパイプ4を経由して各平板状フィン5に伝達される。このヒートパイプ4は密閉容器2に複数配置されているので、広い放熱面積を確保することができる。そのため、冷却装置1全体の熱容量が大きくなる。   On the other hand, the heat transferred from the lower surface portion 2A to the upper surface portion 2B is transmitted in the rising direction with a temperature difference. Since the opening end portion 4B and the hole portion 10 of the upper surface portion 2B are joined so as to be able to transfer heat, the heat of the upper surface portion 2B is transmitted to the flat fins 5 via the heat pipes 4. Since a plurality of the heat pipes 4 are arranged in the sealed container 2, a wide heat radiation area can be secured. Therefore, the heat capacity of the entire cooling device 1 is increased.

続いて、図示しない送風ファンからヒートパイプ4の閉口端部4Aに向けて送風が行われた場合には、熱が伝達された開口端部4Bの内面側の熱が放出される。この閉口端部4Aで放熱が生じていることにより、閉口端部4Aの内部の圧力が低くなる。そのため、ヒートパイプ4の内部に在る蒸気がその内部の温度および圧力の低い箇所に移動(開口端部4Bの内面側に発生した蒸気が開口端部4Bとウイック7Aとの接合部分の内面側に流動)する。   Subsequently, when air is blown from a blower fan (not shown) toward the closed end portion 4A of the heat pipe 4, heat on the inner surface side of the open end portion 4B to which heat is transmitted is released. Since heat is generated at the closed end 4A, the pressure inside the closed end 4A is reduced. Therefore, the steam inside the heat pipe 4 moves to a place where the temperature and pressure inside the heat pipe 4 are low (the steam generated on the inner surface side of the opening end 4B is the inner surface side of the joint portion between the opening end 4B and the wick 7A) To flow).

このように閉口端部4Aおよび上面部2Bの熱が外部に奪われることにより、開口端部4Bとウイック7Aとの接合部分の内面側および密閉容器2の内部(下面部2Aと上面部2Bとの間の空隙部)に在る気相の作動流体3が凝縮して液化する。この密閉容器2の内部に在る液化した作動流体3がウイック7Bに浸透する。ウイック7Aで液相の作動流体3が蒸発することにより、そのウイック7Aにおけるメニスカスが下がるので、その実効毛細管半径に応じた毛細管圧力によって液相の作動流体3を引き上げるポンプ力が生じる。   Thus, the heat of the closed end portion 4A and the upper surface portion 2B is taken to the outside, so that the inner surface side of the joint portion between the open end portion 4B and the wick 7A and the inside of the sealed container 2 (the lower surface portion 2A and the upper surface portion 2B) The gas-phase working fluid 3 existing in the space between the two is condensed and liquefied. The liquefied working fluid 3 present in the sealed container 2 penetrates into the wick 7B. When the liquid-phase working fluid 3 evaporates in the wick 7A, the meniscus in the wick 7A is lowered, so that a pumping force for pulling up the liquid-phase working fluid 3 by the capillary pressure corresponding to the effective capillary radius is generated.

そして、各ウイック7A,7Bの内部に形成されている流路が連通し、かつ液相の作動流体3によって満たされていることにより、密閉容器2の内部に在る液化した作動流体3がウイック7Aのポンプ力によって下面部2A側に吸引される。こうして、作動流体3が蒸発と凝縮とを繰り返してヒートパイプ4の内部を循環流動することにより、作動流体3の潜熱として熱が輸送される。   And since the flow path formed inside each wick 7A, 7B is connected and filled with the working fluid 3 of the liquid phase, the liquefied working fluid 3 existing inside the sealed container 2 is wicked. It is sucked to the lower surface portion 2A side by the pumping force of 7A. Thus, heat is transported as latent heat of the working fluid 3 as the working fluid 3 circulates and flows inside the heat pipe 4 by repeating evaporation and condensation.

なお、この具体例では、ウイック7Aに開口端部4Bが複数接合されているので、開口端部4Bとウイック7Aとの接合部分の内面側に在る液相の作動流体3を多量に蒸発させることができる。そのため、冷却装置1全体として、作動流体3の循環流動が促進されるので、冷却性能を向上させることができる。   In this specific example, since a plurality of opening end portions 4B are joined to the wick 7A, a large amount of the liquid-phase working fluid 3 on the inner surface side of the joining portion between the opening end portion 4B and the wick 7A is evaporated. be able to. Therefore, since the circulating flow of the working fluid 3 is promoted as the entire cooling device 1, the cooling performance can be improved.

なお、上述の具体例では、各ウイック7A,7Bは、密閉容器2における互いに対向する下面部2Aおよび上面部2Bの各内面にそれぞれ設けられているが、この発明のウイックは、この具体例に限定されない。要は、作動流体で湿潤することにより毛細管圧力を発生させるウイックが、密閉容器の内部に設けられていればよく、例えば、ウイックが、下面部および上面部の少なくとも一方の内面に設けられていてもよい。   In the above-described specific example, the wicks 7A and 7B are provided on the inner surfaces of the lower surface portion 2A and the upper surface portion 2B facing each other in the sealed container 2, respectively, but the wick of the present invention is in this specific example. It is not limited. In short, it is sufficient that a wick that generates capillary pressure by being wetted with the working fluid is provided inside the sealed container. For example, the wick is provided on at least one inner surface of the lower surface portion and the upper surface portion. Also good.

この発明における冷却装置の一具体例を示す模式的断面図である。It is typical sectional drawing which shows one specific example of the cooling device in this invention.

符号の説明Explanation of symbols

1…冷却装置、 2…密閉容器、 2A…下面部、 2B…上面部、 3…作動流体、 4…ヒートパイプ、 4A…閉口端部、 4B…開口端部、 5…平板状フィン、 7A,7B…ウイック、 8…支柱、 10…孔部、 11…電子部品。   DESCRIPTION OF SYMBOLS 1 ... Cooling device, 2 ... Airtight container, 2A ... Lower surface part, 2B ... Upper surface part, 3 ... Working fluid, 4 ... Heat pipe, 4A ... Closed end part, 4B ... Opening end part, 5 ... Flat plate fin, 7A, 7B ... Wick, 8 ... Support, 10 ... Hole, 11 ... Electronic component.

Claims (2)

入熱もしくは放熱の状態に応じて蒸発もしくは凝縮する凝縮性の流体が作動流体として中空平板状の密閉容器の内部に封入されるとともに、その作動流体で湿潤することにより毛細管圧力を発生させるウイックが前記密閉容器の内部に設けられている冷却装置であって、
前記密閉容器に、作動流体の潜熱として熱を輸送する複数のヒートパイプが起立した状態で配置され、そのヒートパイプの閉口端部に複数の平板状フィンが所定の間隔をあけて互いに平行に配列され、前記密閉容器における互いに対向する上面部および下面部の少なくとも一方の内面に設けられた前記ウイックを前記上面部と前記下面部との間で支持する支柱が配置され、前記上面部に前記ヒートパイプの開口端部を貫通させる孔部が形成され、その孔部がヒートパイプの開口端部によって保持されるとともに、前記上面部側もしくは前記下面部側の前記ウイックに前記ヒートパイプの開口端部が接合されていることを特徴とする冷却装置。
A condensable fluid that evaporates or condenses depending on the state of heat input or heat dissipation is enclosed as a working fluid inside a hollow flat airtight container, and a wick that generates capillary pressure by being moistened with the working fluid. A cooling device provided inside the sealed container,
A plurality of heat pipes that transport heat as latent heat of the working fluid are arranged in an upright state in the closed container, and a plurality of plate-like fins are arranged in parallel to each other at a closed end of the heat pipe at a predetermined interval. A support column that supports the wick provided between at least one of the upper surface portion and the lower surface portion facing each other in the sealed container is disposed between the upper surface portion and the lower surface portion, and the heat is disposed on the upper surface portion. A hole that penetrates the opening end of the pipe is formed, the hole is held by the opening end of the heat pipe, and the opening end of the heat pipe is formed on the wick on the upper surface side or the lower surface side. The cooling device characterized by being joined.
前記ヒートパイプの開口端部が前記孔部に熱授受可能に接合されていることを特徴とする請求項1に記載の冷却装置。   The cooling device according to claim 1, wherein an opening end portion of the heat pipe is joined to the hole portion so as to be able to transfer heat.
JP2005180768A 2005-06-21 2005-06-21 Cooling system Expired - Fee Related JP4648106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005180768A JP4648106B2 (en) 2005-06-21 2005-06-21 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005180768A JP4648106B2 (en) 2005-06-21 2005-06-21 Cooling system

Publications (2)

Publication Number Publication Date
JP2007003034A true JP2007003034A (en) 2007-01-11
JP4648106B2 JP4648106B2 (en) 2011-03-09

Family

ID=37688841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005180768A Expired - Fee Related JP4648106B2 (en) 2005-06-21 2005-06-21 Cooling system

Country Status (1)

Country Link
JP (1) JP4648106B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088135A1 (en) * 2008-01-07 2009-07-16 Sangcheol Lee Heat dissipating device using heat pipe
WO2018030478A1 (en) * 2016-08-10 2018-02-15 古河電気工業株式会社 Vapor chamber
CN107771003A (en) * 2016-08-17 2018-03-06 奇鋐科技股份有限公司 Radiating subassembly
JP2020085430A (en) * 2018-11-30 2020-06-04 古河電気工業株式会社 Heat sink
US10760855B2 (en) 2018-11-30 2020-09-01 Furukawa Electric Co., Ltd. Heat sink

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116647A (en) * 1973-03-12 1974-11-07
JPH01193591A (en) * 1987-11-12 1989-08-03 Stirling Thermal Motors Inc Heat pipe system
JP2002062067A (en) * 2000-08-21 2002-02-28 Fujikura Ltd Flat plate type heat pipe
JP2003336976A (en) * 2002-05-17 2003-11-28 Furukawa Electric Co Ltd:The Heat sink and mounting structure therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116647A (en) * 1973-03-12 1974-11-07
JPH01193591A (en) * 1987-11-12 1989-08-03 Stirling Thermal Motors Inc Heat pipe system
JP2002062067A (en) * 2000-08-21 2002-02-28 Fujikura Ltd Flat plate type heat pipe
JP2003336976A (en) * 2002-05-17 2003-11-28 Furukawa Electric Co Ltd:The Heat sink and mounting structure therefor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009088135A1 (en) * 2008-01-07 2009-07-16 Sangcheol Lee Heat dissipating device using heat pipe
WO2018030478A1 (en) * 2016-08-10 2018-02-15 古河電気工業株式会社 Vapor chamber
CN107771003A (en) * 2016-08-17 2018-03-06 奇鋐科技股份有限公司 Radiating subassembly
JP2020085430A (en) * 2018-11-30 2020-06-04 古河電気工業株式会社 Heat sink
WO2020110973A1 (en) * 2018-11-30 2020-06-04 古河電気工業株式会社 Heat sink
US10760855B2 (en) 2018-11-30 2020-09-01 Furukawa Electric Co., Ltd. Heat sink

Also Published As

Publication number Publication date
JP4648106B2 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP5789684B2 (en) Vapor chamber
JP6623296B2 (en) Vapor chamber
JP4354270B2 (en) Vapor chamber
JP5759606B1 (en) heat pipe
US20110000649A1 (en) Heat sink device
US20140318167A1 (en) Evaporator, cooling device, and electronic apparatus
EP2713132A1 (en) A vapor-based heat transfer apparatus
US20130020053A1 (en) Low-profile heat-spreading liquid chamber using boiling
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
JP6827362B2 (en) heat pipe
JP4516676B2 (en) Flat plate heat pipe
JP2007263427A (en) Loop type heat pipe
JP2014062658A (en) Cooling module and loop type heat pipe
JP4297908B2 (en) Cooling device and electronic device
JP2004245550A (en) Heat pipe superior in circulating characteristic
JP5370074B2 (en) Loop type heat pipe and electronic device equipped with the same
JP4648106B2 (en) Cooling system
JP2004218887A (en) Cooling device of electronic element
JP2000049266A (en) Boiling cooler
JP2010025407A (en) Heat pipe container and heat pipe
CN220776319U (en) Heat diffusion device and electronic apparatus
JP2009024996A (en) Method of manufacturing heat pipe
JPH09303979A (en) Heat pipe
JP2006284020A (en) Heat pipe
JP5300394B2 (en) Micro loop heat pipe evaporator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees