[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4516676B2 - Flat plate heat pipe - Google Patents

Flat plate heat pipe Download PDF

Info

Publication number
JP4516676B2
JP4516676B2 JP2000250248A JP2000250248A JP4516676B2 JP 4516676 B2 JP4516676 B2 JP 4516676B2 JP 2000250248 A JP2000250248 A JP 2000250248A JP 2000250248 A JP2000250248 A JP 2000250248A JP 4516676 B2 JP4516676 B2 JP 4516676B2
Authority
JP
Japan
Prior art keywords
flat plate
flat
container
heat pipe
porous sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000250248A
Other languages
Japanese (ja)
Other versions
JP2002062067A (en
Inventor
正孝 望月
耕一 益子
明弘 高宮
勝夫 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2000250248A priority Critical patent/JP4516676B2/en
Publication of JP2002062067A publication Critical patent/JP2002062067A/en
Application granted granted Critical
Publication of JP4516676B2 publication Critical patent/JP4516676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、作動流体の蒸発潜熱として熱を輸送するヒートパイプに関し、特に平板型密閉容器の内部に設けられている支柱が多孔質材からなる平板型ヒートパイプに関するものである。
【0002】
【従来の技術】
平板型ヒートパイプは、中空平板構造のコンテナによって密閉された空間部を形成し、その空間部に空気などの非凝縮性ガスを脱気した状態で凝縮性の流体を作動流体として封入したものである。この種のヒートパイプは、表面が平坦になるので、熱交換対象物との接触面積が広くなり、その結果、熱伝達性能あるいは熱交換性能が向上し、また冷却のための手段として使用する場合には、広い放熱面積を確保することができるなどの利点がある。
【0003】
その反面、平板型ヒートパイプは、密閉空間部に凝縮性の流体のみを封入した構成であるから、外部から入熱のない非動作状態あるいは冷却状態では、作動流体が凝縮するために、密閉空間部の内部が高真空状態になる。また反対に外部から多量に入熱があると、作動流体が蒸発してその容積を増大させるから、密閉空間部の内部圧力が高くなる。そのため、平板型ヒートパイプにあっては、上面や下面の面積の広い部分の剛性が低いために、非動作時や製造時にこの上面部分や下面部分が窪む変形が生じたり、あるいは反対に動作時に上面部分や下面部分が膨らむなどの変形が生じることがある。
【0004】
このような不都合を解消するために、特開平11−287578号公報に記載された発明では、上端部が開口した薄い容器の内部に、複数の柱状部を一体に立設するとともに、ウイックとして機能する多孔質膜が、その容器の内部に溶射により形成され、さらにその容器の開口部を密閉した後、内部の空気などの気体を真空脱気するとともに、水などの凝縮性の流体を作動流体として封入した平板状のヒートパイプを提案している。
【0005】
【発明が解決しようとする課題】
上記の公報に記載された平板状のヒートパイプでは、面積の広い底面部分と上面部分とを、複数の柱状部が連結した構造となるので、内圧が低下することによる底面部分あるいは上面部分の窪み変形や、動作時に内圧が高くなることによる底面部分あるいは上面部分の膨らみ変形を防止することができる。しかしながら、上記の平板状のヒートパイプでは、内部に複数の柱状部を有する薄い容器の内面に、ウイックとして機能する多孔質膜を溶射することによって形成する構成であるから、製造作業工程が複雑になるのみならず、材料歩留まりの悪い作業が余儀なくされ、結局、平板状ヒートパイプの生産性が悪く、製造コストが高くならざるを得ない。それに加え、溶射することにより柱状部の外周表面および容器の内面に確実かつ均一に多孔質層を形成することが困難であり、その結果、作動流体の還流性能が悪くなるという不都合があった。
【0006】
この発明は、上記の技術的課題に着目してなされたものであり、作動流体の還流性能がよく、かつ生産性が高く、そのために低コスト化することのできる平板型ヒートパイプを提供することを目的とするものである。
【0007】
【課題を解決するための手段およびその作用】
上記の目的を達成するために、この発明は、作動流体を封入するコンテナ(密閉容器)が、所定の形状の多孔質シートからなるウィックと、上下平板材を連結する多孔質材から形成された支柱とを備えていることを特徴とするものである。具体的には、請求項1の発明は、熱伝導性の良好な金属からなる平板型密閉容器と、該平板型密閉容器の内面に設けられたウィック材と、前記平板型密閉容器の厚さ方向で対向する平板部同士の間に設けられた支柱と、前記平板型密閉容器の内部に封入された凝縮性のある作動流体とを備えた平板型ヒートパイプにおいて、前記ウィック材は、前記平板型密閉容器と同材質の微粒子を焼結して形成された多孔質シートであり、前記平板型密閉容器を形成する底壁部の前記支柱が設けられていない箇所の全面に設けられ、前記支柱は、前記平板型密閉容器と同材質の微粒子を焼結して形成された多孔質材であり、両端面が平坦に形成され、該両端面が前記平板型密閉容器の厚さ方向で対向する平板部に連結されて設けられ、前記平板型密閉容器を形成する該平板型密閉容器と同材質の上蓋体は、その内面側には前記多孔質シートが設けられていない薄板状に形成されていることを特徴とするものである。
【0008】
したがって、請求項1の発明では、平板型の容器の内面に所定の形状に形成されている多孔質シートがウィックとして機能するとともに、上下平板部材を連結する支柱も、多孔質材から形成されることによりウィックとして機能する。このように、請求項1の発明では、作動流体を還流させる機能が、多孔質シートだけでなく、支柱においても生じるので、作動流体の還流性能が向上する。また、このような差動流体の還流性能を生じさせる部材を、シートあるいは軸部材として予め用意し、これを平板型容器に組み付ければよいので、平板型ヒートパイプの製造作業性が向上し、ひいては安価な平板型ヒートパイプを多量生産することが可能となる。
【0009】
【発明の実施の形態】
つぎに、図面を参照してこの発明の平板型ヒートパイプの一具体例を説明する。先ず、容器(コンテナ)1の構造について説明すると、図1において、上蓋体2は、銅などの熱伝導性の良好な金属からなる薄板であって、図に示す例では、長方形状に形成されている。また、この上蓋体2と同じ材質の本体部3が設けられている。
【0010】
この本体部3は、上蓋体2の形状を合わせた矩形状の平板体からなる底壁部4と、その底壁部4の四つの辺(縁部)からそれぞれ立ち上がる平板状の側壁部5とによって構成されている凹断面形状の部材である。各側壁部5は、高さが一定となっていて、底壁部4の長さおよび幅のいずれよりも小さく設定されている。すなわち、本体部3は、その深さ以上の開口幅を有している。
【0011】
また、底壁部4の内面に多孔質シート6が取り付けられている。この多孔質シート6は、本体部3の内部の構造に合わせた形状に形成されており、すなわち、全体としては本体部の底部の内面積と同じ大きさを有する長方形状を成し、また、支柱7の輪郭に合わせて切除した形状の貫通孔8が形成されている。
【0012】
支柱7は、一例として円柱状に伸びたコラム状の構造であり、本体部3の内部の深さ(すなわち、上蓋体2と底壁部4との間の高さ)と同じに設定されている。また、支柱7の両方の先端面9は、平坦面に形成されている。
【0013】
多孔質シート6と支柱7とが金属あるいはセラミックスなどの微粒子を焼結して構成されている。多孔質シート6は、毛細管圧力を生じさせて後述する作動流体を流動させるウィックとして機能する多孔質層を形成するためのものであって、支柱7は、作動流体の還流性能が向上するとともに、容器1の非動作時あるいは動作時における容器の変形を防止するためのものである。
【0014】
この発明に係る平板型ヒートパイプの容器1は、上記の各部材を固着して一体化することにより構成される。すなわち、本体部3の底壁部4の内面に多孔質シート6を載せ、また多孔質シート6の貫通孔8に支柱7を挿入して固着する。これは、例えば、本体部3が銅製であり、また多孔質シート6と支柱7とが銅微粒子を焼結して構成されている場合には、多孔質シート6を底壁部4の内面に載せ、また支柱7を多孔質シート6に形成されている貫通孔8に挿入した状態で所定温度まで加熱することにより、三者を焼結により固着して一体化することができる。
【0015】
ついで、本体部3における開口部に上蓋体2を載せる。支柱7の高さが本体部3の内部の深さ(すなわち、上蓋体2と底壁部4との間の高さ)と同じに設定され、また支柱7の先端面9が平坦面であるので、支柱7の先端面9が上蓋体2の内面に密着する。そして、これら上蓋体2と本体部3と支柱7とを、溶接やロウ付け、接着剤などの適宜の手段で接合する。
【0016】
こうして構成した容器1の縦断側面図と一部切り欠いた平面図とを図2および図3に示してある。そして、図3に示すように、容器1の側面を構成している側壁部5の所定箇所の内部に連通する細径管(ノズル)10が取り付けられている。このノズル10が容器1の内部をヒートパイプ化するために利用されている。具体的には、ノズル10を介して容器1の内部から空気などの非凝縮性ガスが排気され、かつ水などの凝縮性の作動流体が封入される。その後、ノズル10が閉じられる。このような非凝縮性ガスの排気およびその後の作動流体に封入のための方法としては、例えば、加熱追出法、真空ポンプ法、ガス液化法などの従来知られた方法を採用することができる。こうして、平板型ヒートパイプ11が完成される。したがって、この平板型ヒートパイプ11の内面の一部が、容器1の内部の大きさに合わせた多孔質シート6によって被覆されているとともに、非動作時および動作時における上蓋体2と底壁部4との接近し合う方向への変形を阻止する支柱7が取り付けられている。
【0017】
上述したこの発明に係る平板型ヒートパイプ11では、底壁部4の内面に取り付けた多孔質シート6がウイックとして機能し、液相の作動流体を保持する。したがって、例えば、底壁部4の外部を加熱部としてそこにCPU(図示せず)などの発熱体を取り付け、かつ上蓋体2を放熱部とすれば、作動流体がその発熱体の熱によって加熱されて蒸発し、その蒸気が放熱部としての上蓋体2の内側に流動し、かつ外部に放熱して凝縮する。すなわち、作動流体が主にその潜熱として熱を輸送する。また、凝縮して液化した作動流体は、その一部分が底壁部4の内面に向かって滴下し、他の部分が支柱7を介して発熱部とする底壁部4側に還流する。これと同時に、ウイックによる毛細管作用により、作動流体がその底壁部4の全面に分散させられる。
【0018】
このように、この発明に係る上述の平板型ヒートパイプによれば、動作中に作動流体の蒸気は、放熱部(本例では上蓋体)で冷却され、その自重で発熱部(本例では底壁部)に滴下すると同時に、多孔質材からなる支柱を介して還流することもできるので、作動流体の還流性能が向上する。また、その製造段階で溶射工程の必要がないので、生産性が向上する。
【0019】
なお、上記の具体例では、長方形状の平板型ヒートパイプの例を示したが、この発明は、上記の具体例に限定されないのであって、正方形状などの適宜の形状の平板型ヒートパイプにも適用することができる。また、この発明では、多孔質シートを固着することにより多孔質層を形成することに加えて、細溝などのウイックとして機能する構造を容器の内面の一部に形成しておくこととしてもよい。また、多孔質シートや多孔質層あるいはウイックは、いずれかの容器の内面に設けられた構成であってもよい。さらに、支柱の形状が円柱形状に限定されることなく、楕円形状などのウィックとして機能するとともに、容器の支えとなる多孔質材からなるものであればよい。
【0020】
【発明の効果】
以上説明したように、この発明によれば、平板型の容器の内面に取り付けられている所定の形状の多孔質シートがウィックとして機能するとともに、上下平板部材を連結する支柱が、多孔質材から形成されることによりウィックとして機能し、このように、この発明では、作動流体を還流させる作用が、多孔質シートだけでなく、多孔質材からなる支柱においても生じるので、作動流体の還流性能が向上する。そしてまた、多孔質シートと多孔質支柱とを採用していることにより、これらの部材を予め用意しておき、これを容器の組み付けることにより平板型のヒートパイプ用容器を製造できるので、平板型ヒートパイプの製造作業性が向上し、ひいては安価な平板型ヒートパイプを多量生産することが可能となる。
【図面の簡単な説明】
【図1】 この発明に係る平板型ヒートパイプの一例における容器を分解して示す斜視図である。
【図2】 この発明に係る平板型ヒートパイプの一例を示す縦断側面図である。
【図3】 この発明に係る平板型ヒートパイプの一部を破断して示す平面図である。
【符号の説明】
1…容器、 2…上蓋体、 3…本体部、 4…底壁部、 6…多孔質シート、 7…支柱。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pipe that transports heat as the latent heat of vaporization of a working fluid, and more particularly to a flat plate heat pipe in which a support provided inside a flat plate type closed container is made of a porous material.
[0002]
[Prior art]
A flat plate heat pipe is formed by forming a space sealed by a container with a hollow plate structure and enclosing a condensable fluid as a working fluid in a state where non-condensable gas such as air is deaerated in the space. is there. Since this type of heat pipe has a flat surface, the contact area with the heat exchange object is widened. As a result, heat transfer performance or heat exchange performance is improved, and when used as a means for cooling. Has an advantage that a large heat radiation area can be secured.
[0003]
On the other hand, the flat plate heat pipe has a structure in which only a condensable fluid is sealed in a sealed space portion. Therefore, the working fluid is condensed in a non-operating state or a cooled state without heat input from the outside. The inside of the part is in a high vacuum state. On the other hand, if there is a large amount of heat input from the outside, the working fluid evaporates and increases its volume, so the internal pressure of the sealed space increases. For this reason, in flat plate heat pipes, the rigidity of the wide area of the upper and lower surfaces is low, so that the upper and lower surfaces of the flat heat pipe are deformed when they are not operating or manufactured, or they operate in the opposite direction. Sometimes deformation such as swelling of the upper surface portion and the lower surface portion may occur.
[0004]
In order to eliminate such an inconvenience, in the invention described in Japanese Patent Application Laid-Open No. 11-287578, a plurality of columnar portions are integrally erected inside a thin container having an open upper end and function as a wick. A porous film is formed inside the container by thermal spraying, and after the opening of the container is sealed, gas such as air inside is vacuum degassed and condensable fluid such as water is used as working fluid. We propose a flat heat pipe sealed as
[0005]
[Problems to be solved by the invention]
The flat heat pipe described in the above publication has a structure in which a plurality of columnar portions are connected to a bottom surface portion and a top surface portion having a large area. Therefore, a depression in the bottom surface portion or the top surface portion due to a decrease in internal pressure. It is possible to prevent deformation and bulging deformation of the bottom surface portion or the top surface portion due to an increase in internal pressure during operation. However, the flat plate-shaped heat pipe is formed by spraying a porous film functioning as a wick on the inner surface of a thin container having a plurality of columnar portions therein, so that the manufacturing process is complicated. In addition to this, work with a low material yield is unavoidable, and eventually, the productivity of the flat plate heat pipe is poor and the manufacturing cost is inevitably high. In addition, it is difficult to reliably and uniformly form a porous layer on the outer peripheral surface of the columnar portion and the inner surface of the container by spraying, and as a result, there is a disadvantage that the reflux performance of the working fluid is deteriorated.
[0006]
The present invention has been made paying attention to the above technical problem, and provides a flat plate heat pipe that has a good working fluid recirculation performance and a high productivity, which can reduce the cost. It is intended.
[0007]
[Means for Solving the Problem and Action]
In order to achieve the above object, according to the present invention, a container (sealed container) for enclosing a working fluid is formed of a wick made of a porous sheet having a predetermined shape and a porous material connecting upper and lower flat plate members. It is provided with a support | pillar. Specifically, the invention of claim 1 is a flat plate type airtight container made of a metal having good thermal conductivity, a wick material provided on the inner surface of the flat plate type airtight container, and a thickness of the flat plate type airtight container. In a flat plate type heat pipe comprising a column provided between flat plate portions facing each other in a direction and a condensable working fluid sealed inside the flat plate type airtight container, the wick material is the flat plate A porous sheet formed by sintering fine particles of the same material as the mold closed container, and is provided on the entire surface of the bottom wall portion where the flat form sealed container is not provided with the strut, Is a porous material formed by sintering fine particles of the same material as the flat airtight container, both end surfaces are formed flat, and the both end surfaces are opposed in the thickness direction of the flat airtight container. provided to be connected to the flat plate portion, prior SL-plate sealed container Lid body of the plate sealed container of the same material you formed, on the inner surface of its a be shall and characterized by being formed of a thin plate of the porous sheet is not provided.
[0008]
Therefore, in the first aspect of the invention, the porous sheet formed in a predetermined shape on the inner surface of the flat plate-type container functions as a wick, and the struts connecting the upper and lower flat plate members are also formed from the porous material. It functions as a wick. Thus, according to the first aspect of the present invention, the function of returning the working fluid occurs not only in the porous sheet but also in the support column, so that the return performance of the working fluid is improved. Further, the member causing the reflux performance of such differential fluid, prepared in advance as a sheet or the shaft member, which since it Kumitsukere a flat type container, improves the workability when producing flat-plate heat pipe As a result, inexpensive flat plate heat pipes can be mass-produced.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, a specific example of the flat plate type heat pipe of the present invention will be described with reference to the drawings. First, the structure of the container (container) 1 will be described. In FIG. 1, the upper lid 2 is a thin plate made of a metal having good thermal conductivity such as copper, and in the example shown in the figure, it is formed in a rectangular shape. ing. A main body 3 made of the same material as that of the upper lid 2 is provided.
[0010]
The main body 3 includes a bottom wall portion 4 formed of a rectangular flat plate having the shape of the upper lid 2, and a flat side wall portion 5 rising from four sides (edge portions) of the bottom wall portion 4. It is the member of the concave cross-sectional shape comprised by these. Each side wall 5 has a constant height and is set smaller than both the length and width of the bottom wall 4. That is, the main body 3 has an opening width that is greater than or equal to the depth thereof.
[0011]
A porous sheet 6 is attached to the inner surface of the bottom wall portion 4. This porous sheet 6 is formed in a shape that matches the internal structure of the main body 3, that is, as a whole, has a rectangular shape having the same size as the inner area of the bottom of the main body, A through-hole 8 having a shape cut in accordance with the outline of the column 7 is formed.
[0012]
Strut 7 is a structure of a column shape extending in a cylindrical shape as an example, the internal depth of the body portion 3 (i.e., the height between the upper lid 2 and the bottom wall portion 4) and set to the same Has been. Moreover, both the front end surfaces 9 of the support | pillar 7 are formed in the flat surface.
[0013]
The porous sheet 6 and the column 7 are configured by sintering fine particles such as metal or ceramics. The porous sheet 6 is for forming a porous layer that functions as a wick for generating a capillary pressure to flow a working fluid, which will be described later, and the support column 7 improves the return performance of the working fluid, This is to prevent deformation of the container when the container 1 is not operating or operating.
[0014]
A flat plate heat pipe container 1 according to the present invention is configured by fixing and integrating the above-described members. That is, the porous sheet 6 is placed on the inner surface of the bottom wall portion 4 of the main body 3, and the support column 7 is inserted into and fixed to the through hole 8 of the porous sheet 6. For example, when the main body 3 is made of copper and the porous sheet 6 and the support column 7 are formed by sintering copper fine particles, the porous sheet 6 is placed on the inner surface of the bottom wall 4. The three members can be fixed and integrated by sintering by mounting and heating the column 7 to a predetermined temperature in a state where the column 7 is inserted into the through hole 8 formed in the porous sheet 6.
[0015]
Next, the upper lid 2 is placed on the opening in the main body 3. The height of the column 7 the depth of the main body portion 3 (i.e., the height between the upper lid 2 and the bottom wall portion 4) is a set to the same, also the distal end surface 9 of the column 7 with the flat surface Therefore, the front end surface 9 of the support column 7 is in close contact with the inner surface of the upper lid 2. Then, the upper lid body 2, the main body portion 3, and the support column 7 are joined by appropriate means such as welding, brazing, or adhesive.
[0016]
A longitudinal side view and a partially cutaway plan view of the container 1 constructed in this way are shown in FIGS. Then, as shown in FIG. 3, the small diameter tube communicating with the inner portion of the predetermined箇office side wall portion 5 constituting a side surface of the container 1 (nozzle) 10 is attached. This nozzle 10 is used to make the inside of the container 1 into a heat pipe. Specifically, non-condensable gas such as air is exhausted from the inside of the container 1 through the nozzle 10 and condensable working fluid such as water is enclosed. Thereafter, the nozzle 10 is closed. As a method for exhausting such non-condensable gas and subsequently enclosing it in the working fluid, for example, a conventionally known method such as a heat extraction method, a vacuum pump method, or a gas liquefaction method can be employed. . Thus, the flat plate heat pipe 11 is completed. Therefore, a part of the inner surface of the flat plate heat pipe 11 is covered with the porous sheet 6 that matches the size of the inside of the container 1, and the upper lid 2 and the bottom wall portion when not operating and when operating. A support column 7 is attached to prevent deformation in the direction of approaching 4.
[0017]
In the flat plate type heat pipe 11 according to the present invention described above, the porous sheet 6 attached to the inner surface of the bottom wall portion 4 functions as a wick, and holds the liquid-phase working fluid. Therefore, for example, if a heating element such as a CPU (not shown) is attached to the outside of the bottom wall 4 as a heating unit and the upper lid 2 is a heat dissipation unit, the working fluid is heated by the heat of the heating element. Then, it evaporates, and the vapor flows inside the upper lid 2 as a heat radiating part, and dissipates heat to the outside to condense. That is, the working fluid transports heat mainly as its latent heat. Further, a part of the condensed and liquefied working fluid drops toward the inner surface of the bottom wall portion 4, and the other portion returns to the bottom wall portion 4 side serving as a heat generating portion via the support column 7. At the same time, the working fluid is dispersed over the entire surface of the bottom wall 4 by the capillary action of the wick.
[0018]
Thus, according to the above-described flat plate type heat pipe according to the present invention, the vapor of the working fluid is cooled by the heat radiating part (in this example, the upper lid) during operation, and the heat generating part (in this example, the bottom) is cooled by its own weight. At the same time as dropping to the wall part), it can also be refluxed via a support column made of a porous material, so that the working fluid reflux performance is improved. In addition, since there is no need for a thermal spraying process at the manufacturing stage, productivity is improved.
[0019]
In the above specific example, an example of a rectangular flat plate heat pipe is shown. However, the present invention is not limited to the above specific example, and the flat plate heat pipe of an appropriate shape such as a square shape is used. Can also be applied. In this invention, in addition to forming the porous layer by fixing the porous sheet, a structure functioning as a wick such as a narrow groove may be formed on a part of the inner surface of the container. . Moreover, the structure provided in the inner surface of either container may be sufficient as a porous sheet, a porous layer, or a wick. Furthermore, the shape of the support column is not limited to a cylindrical shape, and may be any material that functions as a wick such as an elliptical shape and is made of a porous material that supports the container.
[0020]
【The invention's effect】
As described above, according to the present invention, the porous sheet having a predetermined shape attached to the inner surface of the flat container functions as a wick, and the struts connecting the upper and lower flat plate members are made of the porous material. In this invention, the action of refluxing the working fluid occurs not only in the porous sheet but also in the support column made of the porous material. improves. Also, by adopting a porous sheet and a porous support column, these members are prepared in advance, and a flat heat pipe container can be manufactured by assembling the container. Manufacturing workability of the heat pipe is improved, and as a result, an inexpensive flat plate heat pipe can be mass-produced.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a container in an example of a flat plate heat pipe according to the present invention.
FIG. 2 is a longitudinal side view showing an example of a flat plate type heat pipe according to the present invention.
FIG. 3 is a plan view showing a part of the flat plate type heat pipe according to the present invention in a cutaway manner.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container, 2 ... Upper cover body, 3 ... Main-body part, 4 ... Bottom wall part, 6 ... Porous sheet, 7 ... Support | pillar.

Claims (1)

熱伝導性の良好な金属からなる平板型密閉容器と、
該平板型密閉容器の内面に設けられたウィック材と、
前記平板型密閉容器の厚さ方向で対向する平板部同士の間に設けられた支柱と、
前記平板型密閉容器の内部に封入された凝縮性のある作動流体と
を備えた平板型ヒートパイプにおいて、
前記ウィック材は、前記平板型密閉容器と同材質の微粒子を焼結して形成された多孔質シートであり、前記平板型密閉容器を形成する底壁部の前記支柱が設けられていない箇所の全面に設けられ、
前記支柱は、前記平板型密閉容器と同材質の微粒子を焼結して形成された多孔質材であり、両端面が平坦に形成され、該両端面が前記平板型密閉容器の厚さ方向で対向する平板部に連結されて設けられ、
記平板型密閉容器を形成する該平板型密閉容器と同材質の上蓋体は、その内面側には前記多孔質シートが設けられていない薄板状に形成されている
ことを特徴とする平板型ヒートパイプ。
A flat sealed container made of a metal with good thermal conductivity;
A wick material provided on the inner surface of the flat type closed container;
A support provided between the flat plate portions facing each other in the thickness direction of the flat plate-type airtight container;
A condensable working fluid enclosed in the flat-type airtight container;
In a flat plate heat pipe with
The wick material is a porous sheet formed by sintering fine particles of the same material as that of the flat plate-type closed container, and the portion of the bottom wall portion that forms the flat plate-type closed container is not provided with the column. Provided on the entire surface,
The support column is a porous material formed by sintering fine particles of the same material as that of the flat type closed container, both end surfaces are formed flat, and the both end surfaces are in the thickness direction of the flat plate type closed container. It is provided connected to the opposing flat plate part,
Lid body before Symbol same material as the flat plate sealed container that form a flat sealed container is on the inner surface of its, characterized in that it is formed of a thin plate of the porous sheet is not provided Flat plate heat pipe.
JP2000250248A 2000-08-21 2000-08-21 Flat plate heat pipe Expired - Lifetime JP4516676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000250248A JP4516676B2 (en) 2000-08-21 2000-08-21 Flat plate heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000250248A JP4516676B2 (en) 2000-08-21 2000-08-21 Flat plate heat pipe

Publications (2)

Publication Number Publication Date
JP2002062067A JP2002062067A (en) 2002-02-28
JP4516676B2 true JP4516676B2 (en) 2010-08-04

Family

ID=18739856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000250248A Expired - Lifetime JP4516676B2 (en) 2000-08-21 2000-08-21 Flat plate heat pipe

Country Status (1)

Country Link
JP (1) JP4516676B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192279A1 (en) * 2013-05-29 2014-12-04 日本電気株式会社 Cooling device and method for manufacturing same

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040011509A1 (en) * 2002-05-15 2004-01-22 Wing Ming Siu Vapor augmented heatsink with multi-wick structure
KR100454268B1 (en) * 2002-08-14 2004-10-26 엘지전선 주식회사 Heat Diffuser
US6782942B1 (en) * 2003-05-01 2004-08-31 Chin-Wen Wang Tabular heat pipe structure having support bodies
US6901994B1 (en) * 2004-01-05 2005-06-07 Industrial Technology Research Institute Flat heat pipe provided with means to enhance heat transfer thereof
JP2005300038A (en) * 2004-04-13 2005-10-27 Sony Corp Heat transport device, process for manufacturing the heat transport device and electronic device
US7032652B2 (en) * 2004-07-06 2006-04-25 Augux Co., Ltd. Structure of heat conductive plate
KR100698462B1 (en) * 2005-01-06 2007-03-23 (주)셀시아테크놀러지스한국 Flat panel type heat transfer device using hydrophilic wick, manufacturing method thereof and chip set comprising the same
JP4648106B2 (en) * 2005-06-21 2011-03-09 株式会社フジクラ Cooling system
JP2007064523A (en) * 2005-08-30 2007-03-15 Furukawa Electric Co Ltd:The Pressure-welded flat heat pipe, manufacturing equipment, and its manufacturing method
SG142174A1 (en) * 2006-10-11 2008-05-28 Iplato Pte Ltd Method for heat transfer and device therefor
JPWO2009063703A1 (en) * 2007-11-15 2011-03-31 日本電気株式会社 Boiling cooler
KR101044351B1 (en) * 2010-05-26 2011-06-29 김선기 Heat cooler
JP5757194B2 (en) * 2011-08-23 2015-07-29 トヨタ自動車株式会社 Flat heat pipe
JP2015102269A (en) * 2013-11-22 2015-06-04 富士通株式会社 Heat pipe, heat pipe production method and electronic apparatus
JP6462771B2 (en) 2017-06-01 2019-01-30 古河電気工業株式会社 Flat type heat pipe
JP6951267B2 (en) * 2018-01-22 2021-10-20 新光電気工業株式会社 Heat pipe and its manufacturing method
JP2020193784A (en) * 2019-05-29 2020-12-03 東芝ホームテクノ株式会社 Sheet-like heat pipe
CN110567304A (en) * 2019-10-15 2019-12-13 联德精密材料(中国)股份有限公司 Thin capillary structure supporting temperature equalizing plate
CN113532171A (en) * 2020-04-22 2021-10-22 华为技术有限公司 Temperature-uniforming plate and electronic equipment
WO2022025261A1 (en) * 2020-07-31 2022-02-03 日本電産株式会社 Heat conduction member
WO2022025258A1 (en) * 2020-07-31 2022-02-03 日本電産株式会社 Heat conduction member
JP7233584B1 (en) 2022-02-28 2023-03-06 古河電気工業株式会社 vapor chamber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116647A (en) * 1973-03-12 1974-11-07
JPH10185468A (en) * 1996-12-20 1998-07-14 Akutoronikusu Kk Plate heat pipe for inter-plane thermal diffusion coupling with maximal area ration

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49116647A (en) * 1973-03-12 1974-11-07
JPH10185468A (en) * 1996-12-20 1998-07-14 Akutoronikusu Kk Plate heat pipe for inter-plane thermal diffusion coupling with maximal area ration

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192279A1 (en) * 2013-05-29 2014-12-04 日本電気株式会社 Cooling device and method for manufacturing same

Also Published As

Publication number Publication date
JP2002062067A (en) 2002-02-28

Similar Documents

Publication Publication Date Title
JP4516676B2 (en) Flat plate heat pipe
KR100775013B1 (en) Flat type heat transfer device
US7066240B2 (en) Integrated circuit heat pipe heat spreader with through mounting holes
JP2004238672A (en) Method for manufacturing plate-type heat pipe
JP3659844B2 (en) Flat heat pipe
US20050173098A1 (en) Three dimensional vapor chamber
US20080202729A1 (en) Heat sink
JP2002039693A (en) Flat type heat pipe
JPH10267571A (en) Plate type heat pipe and cooling structure using the same
KR102407157B1 (en) Vapor chamber with efficient heat dissipation
JPH11183067A (en) Plate-shaped heat pipe
JP2001339026A (en) Plate-shaped heat pipe
JP2002062072A (en) Flat plate type heat pipe and manufacturing method thereof
JP2002062071A (en) Flat plate type heat pipe
JP3645674B2 (en) Heat pipe heat sink, integrated circuit package and central processing unit using the same
JP7233584B1 (en) vapor chamber
JP5300394B2 (en) Micro loop heat pipe evaporator
JP2001336888A (en) Laminated flat plate type heat pipe
JP4648106B2 (en) Cooling system
JP2002022380A (en) Flat plate shaped heat pipe equipped with emboss wick
JP2002062068A (en) Flat plate type heat pipe
JPH1123167A (en) Planar heat pipe
JP3086493U (en) Heat dissipation device
JPH10185466A (en) Heat pipe type heat sink
JP3953741B2 (en) Boiling cooler and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100517

R151 Written notification of patent or utility model registration

Ref document number: 4516676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term