[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007084891A - Method for forming plating film for wiring board - Google Patents

Method for forming plating film for wiring board Download PDF

Info

Publication number
JP2007084891A
JP2007084891A JP2005276870A JP2005276870A JP2007084891A JP 2007084891 A JP2007084891 A JP 2007084891A JP 2005276870 A JP2005276870 A JP 2005276870A JP 2005276870 A JP2005276870 A JP 2005276870A JP 2007084891 A JP2007084891 A JP 2007084891A
Authority
JP
Japan
Prior art keywords
plating
film
wiring
additive
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005276870A
Other languages
Japanese (ja)
Inventor
Shoichi Miyahara
昭一 宮原
Kazuaki Karasawa
一明 柄澤
Hiroyuki Fukuda
裕幸 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2005276870A priority Critical patent/JP2007084891A/en
Publication of JP2007084891A publication Critical patent/JP2007084891A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a wiring layer or a via in which the generation of voids in a plating layer is suppressed when copper electroplating is performed to a trench or a via hole with a high aspect ratio formed at an insulating layer. <P>SOLUTION: A film containing an additive accelerating electroplating is selectively formed on the bottom face part of a trench or a via hole, and then, copper electroplating is performed. The plating acceleration additive-containing film at the bottom face part is formed by performing aeration as an opening board for plating formation is dipped into a plating acceleration additive-containing solution, so as to remove bubbles in the opening part, and thereafter performing a spin rinsing process and drying treatment. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は配線基板のメッキ膜形成方法に関し、特に微細でアスペクト比の高い配線用溝(トレンチ)や配線接続孔(ビア)などの銅配線を基板上の絶縁層に形成するとき、配線中に空孔(ボイド)の発生を効果的に抑制できる銅電気(電解)メッキ方法に関する。   The present invention relates to a method for forming a plating film on a wiring board, and in particular, when copper wiring such as wiring grooves (trench) and wiring connection holes (vias) having a fine and high aspect ratio is formed in an insulating layer on the board, The present invention relates to a copper electroplating method that can effectively suppress the generation of voids.

銅の電気(電解)メッキ法は、生成されるメッキ膜の電気的特性やコストパフォーマンスなどが優れているため、従来、エレクトロニクス製品において多岐にわたって利用されている。特に近年は、ダマシンプロセスと呼ばれる、半導体集積回路形成基板や高密度多層配線基板あるいはハードディスクドライブのヘッド部品基板といった各種配線基板に、微細な配線パターンを銅電気メッキによって形成する技術が注目されている。   The electroplating method of copper is widely used in electronic products because of the excellent electrical characteristics and cost performance of the plated film produced. Particularly in recent years, a technique called a damascene process, which forms a fine wiring pattern by copper electroplating on various wiring boards such as a semiconductor integrated circuit forming board, a high-density multilayer wiring board, or a head component board of a hard disk drive, has attracted attention. .

ダマシンプロセスの例を、図6の基板断面図を用いて説明する。例えばデバイスが形成されているといった下部構造を有する半導体基板などの基板101上に形成された、例えば層間絶縁膜などの絶縁膜102に、配線用溝(トレンチ)や配線接続孔(ビア孔)を開口する。次いで配線材料の拡散を防止するためのバリア層と配線材料のメッキ成長を容易化するためのシード層からなる積層膜104を、溝や孔の内部を含めて絶縁膜102上に形成する。そして、一般に、硫酸/硫酸銅溶液に添加材として高分子性界面活性剤(表面部メッキ抑制効果用)、硫酸含有不飽和有機化合物(孔部内メッキ促進効果用)およびハロゲンイオン(前記各効果増強用)を適量加えたものからなるメッキ液を用い、電気メッキにより、例えば、銅の配線材料を溝や孔に埋め込んだ後、絶縁層102の上にできた銅の膜を化学機械研磨(CMP;Chemical Mechanical Polishing)を行うことにより除去、平坦化し、絶縁膜102内に例えば銅のビア103を形成する。   An example of the damascene process will be described with reference to the substrate cross-sectional view of FIG. For example, a wiring trench (trench) or a wiring connection hole (via hole) is formed in an insulating film 102 such as an interlayer insulating film formed on a substrate 101 such as a semiconductor substrate having a lower structure in which a device is formed. Open. Next, a laminated film 104 including a barrier layer for preventing the diffusion of the wiring material and a seed layer for facilitating the plating growth of the wiring material is formed on the insulating film 102 including the inside of the groove and the hole. In general, as a additive to sulfuric acid / copper sulfate solution, a polymeric surfactant (for surface plating suppression effect), a sulfuric acid-containing unsaturated organic compound (for hole plating promotion effect), and halogen ions (enhance each of the above effects) For example, after embedding a copper wiring material in a groove or a hole by electroplating using a plating solution made of a suitable amount of an additive, a copper film formed on the insulating layer 102 is subjected to chemical mechanical polishing (CMP). ; Removal and planarization by performing chemical mechanical polishing, and, for example, a copper via 103 is formed in the insulating film 102.

本来、銅などの電気メッキは、上述の、孔や溝への埋め込みなどのような段差のある基板に対して、メッキ金属埋め込み性能が良好とされ、また電気メッキ液に含まれる有機添加剤の濃度調整などによって、段差の平坦化も行われる。   Originally, electroplating of copper or the like has good plating metal embedding performance with respect to a substrate having a step such as embedding in a hole or groove as described above, and an organic additive contained in the electroplating solution. The level difference is also flattened by adjusting the density.

しかし、半導体装置などの小型化・高機能化などに伴い、配線やビアが微細化・高密度化するに従って、溝の幅やビア孔の径が小さく、かつアスペクト比(溝の深さ・ビア孔の深さに対する溝の幅・ビア孔径の比)が高くなる。このようなアスペクト比の高い溝や孔など凹部への銅電気メッキによる膜形成(すなわち銅の埋め込み・充填)に際し、溝や孔の内部に空孔(ボイド)が発生しやすくなるといった問題が生じている。   However, with the miniaturization and high functionality of semiconductor devices, etc., as the wiring and vias become finer and denser, the groove width and via hole diameter become smaller and the aspect ratio (groove depth / via The ratio of the groove width / via hole diameter to the hole depth) increases. When forming a film by copper electroplating in a recess such as a groove or hole having a high aspect ratio (that is, filling and filling with copper), there is a problem that voids are likely to be generated inside the groove or hole. ing.

そのようなボイドが発生する理由について図7を用いて説明する。図7の(a)、(b)は何れもダマシンプロセスにおける銅電気メッキの実施工程における基板断面図である。図7(a)は、基板101上に形成された絶縁膜102に高アスペクト比でビア孔106が形成され、前記絶縁膜102上および前記ビア孔106の内部にバリア層とシード層からなる積層膜104が形成されている。ここに銅電気メッキにより銅メッキ層105を析出・成長していく。積層膜104上に析出・成長する銅メッキ層105は、ビア孔106中では、図中の矢印Aで示したように、その底面部のみならず側面からも析出・成長する。各面内での成長が均質では無いこともあって、ビア孔106内部が完全に埋め込まれる前に側面から析出・成長した銅メッキ膜同士が接触してしまい、結果として、図7(b)に示すように、ビア103の埋め込み銅の中に、空孔(ボイド)107が形成されてしまう。このような、埋め込み銅中のボイド107の発生は、溝や孔のアスペクト比が高いほど顕著に現れやすく、配線抵抗の増大や、ひいては断線障害を引き起こす要因ともなる。   The reason why such a void occurs will be described with reference to FIG. FIGS. 7A and 7B are cross-sectional views of the substrate in the copper electroplating process in the damascene process. In FIG. 7A, a via hole 106 is formed in a high aspect ratio in an insulating film 102 formed on a substrate 101, and a laminate composed of a barrier layer and a seed layer is formed on the insulating film 102 and in the via hole 106. A film 104 is formed. Here, a copper plating layer 105 is deposited and grown by copper electroplating. The copper plating layer 105 deposited / grown on the laminated film 104 is deposited / grown in the via hole 106 not only from the bottom but also from the side as shown by the arrow A in the figure. Since the growth in each surface is not uniform, the copper plating films deposited and grown from the side surface before the inside of the via hole 106 is completely filled are brought into contact with each other. As a result, FIG. As shown in FIG. 2, a void 107 is formed in the buried copper of the via 103. The generation of such voids 107 in the buried copper is more likely to occur as the aspect ratio of the grooves and holes is higher, and causes an increase in wiring resistance and eventually a disconnection failure.

これまで、この様なボイドの発生を避けるために、各種提案がなされている。例えば、溝や孔の底面に向けてエネルギービームを照射して、底面のメッキ付着性を向上させる方法(特許文献1)、銅をメッキ成膜後に、全体を高圧ガス雰囲気下で加熱して気孔(空孔)を含まない配線膜を形成する方法(特許文献2)、特定の試験片を用いて電気化学的にモニターし、電気銅メッキ液の促進剤や抑制剤などの濃度制御を行って均一な銅メッキ膜を形成する方法(特許文献3)、あるいは、メッキ液組成に関して、硫酸含有不飽和有機化合物を使用せずに一定量のポリマー成分とハロゲンイオンを添加剤として含有させることでボイドの無いメッキ埋め込み層を形成する方法(特許文献4)などが提案されている。
特開平11−87276号公報 特開2000−200789号公報 特開2002−368384号公報 特開2003−321792号公報
Until now, various proposals have been made to avoid the generation of such voids. For example, a method for improving the adhesion of plating on the bottom surface by irradiating an energy beam toward the bottom surface of a groove or hole (Patent Document 1). After forming a copper plating film, the whole is heated in a high-pressure gas atmosphere to form pores. A method of forming a wiring film that does not contain (vacancy) (Patent Document 2), electrochemically monitoring using a specific test piece, and controlling the concentration of an accelerator or inhibitor of an electrolytic copper plating solution A method for forming a uniform copper plating film (Patent Document 3), or a plating solution composition containing a certain amount of polymer components and halogen ions as additives without using a sulfuric acid-containing unsaturated organic compound. There has been proposed a method of forming a plated buried layer without any problem (Patent Document 4).
JP-A-11-87276 JP 2000-200809 A JP 2002-368384 A JP 2003-321792 A

しかし、提案されている上記のような方法は、その方法を適用するための特別な装置や、または多くの処理プロセス工程が必要となる点(特許文献1〜3の方法)や、またメッキ液組成中の添加剤を、消費されていくメッキ工程中にその成分比などを維持・制御することの困難である点は依然存在することなどから、歩留りを高くできないといった課題が存在する(特許文献4の方法)。   However, the proposed method as described above is a special apparatus for applying the method, a point that many processing steps are required (the method of Patent Documents 1 to 3), and a plating solution. There is still a problem that the yield cannot be increased because there is still a point that it is difficult to maintain and control the component ratio of the additive in the composition during the plating process in which it is consumed (Patent Document) Method 4).

そこで本発明の課題は、通常の半導体製造プロセスに用いられる装置を用いることができ、また容易に実施可能であり、高アスペクト比の溝やビア孔への電気銅メッキによるボイド発生を抑制することができる銅メッキ膜形成方法を提供することにある。   Therefore, an object of the present invention is to use an apparatus used in a normal semiconductor manufacturing process, and can be easily implemented, and suppresses generation of voids due to electrolytic copper plating in a high aspect ratio groove or via hole. It is an object of the present invention to provide a method for forming a copper plating film that can be used.

本発明の目的は、基板上の絶縁膜に、配線用溝または/および配線接続孔を形成する第1の工程と、前記絶縁膜上ならびに、前記配線用溝または/および配線接続孔に、バリア膜を形成する第2の工程と、前記バリア膜が形成された前記配線用溝または/および配線接続孔に、メッキ促進添加剤を含むメッキ促進添加剤含有膜を堆積する第3の工程と、前記メッキ促進添加剤含有膜が堆積された前記配線用溝または/および配線接続孔に、銅膜または銅合金膜をメッキによって充填する第4の工程を有すことを特徴とする配線基板のメッキ膜形成方法、によって可能となる。   An object of the present invention is to provide a first step of forming a wiring groove or / and a wiring connection hole in an insulating film on a substrate, and a barrier on the insulating film and the wiring groove or / and the wiring connection hole. A second step of forming a film; a third step of depositing a plating accelerating additive-containing film containing a plating accelerating additive in the wiring groove or / and the wiring connecting hole in which the barrier film is formed; Plating a wiring board, characterized by having a fourth step of filling a copper film or a copper alloy film by plating into the wiring groove or / and wiring connection hole where the plating promoting additive-containing film is deposited. This is made possible by the film forming method.

また、前記メッキ促進添加剤は、3−メルカプト−1−プロパンスルホン酸ナトリウム、または2−メルカプトエタンスルホン酸ナトリウム、またはビス−(3−スルフォプロピル)−ジスルフォイドであることを特徴とする。   The plating promoting additive is sodium 3-mercapto-1-propanesulfonate, sodium 2-mercaptoethanesulfonate, or bis- (3-sulfopropyl) -disulfide.

また、前記第3の工程は、前記メッキ促進添加剤含有膜が、前記バリア膜が形成された前記配線用溝または/および配線接続孔の底面部に選択的に堆積される工程であることを特徴とする。   Further, the third step is a step in which the plating promoting additive-containing film is selectively deposited on the wiring groove or / and the bottom surface of the wiring connection hole in which the barrier film is formed. Features.

また、前記第3の工程は、前記第2の工程の後に、前記バリア膜が形成された基板を、容器中の前記メッキ促進添加剤を含む溶液に浸漬し、かつ前記容器を排気可能なチャンバ内に入れて減圧し、そして前記バリア膜が形成された基板を前記溶液から取り出す第5の工程と、前記バリア膜が形成された基板に付着した前記溶液中の溶媒を除去する第6の工程を有すことを特徴とする。   The third step is a chamber in which the substrate on which the barrier film is formed is immersed in a solution containing the plating accelerating additive in a container and the container is evacuated after the second step. A fifth step of removing the substrate on which the barrier film is formed from the solution, and a sixth step of removing the solvent in the solution adhering to the substrate on which the barrier film is formed. It is characterized by having.

さらに、前記第3の工程は、前記第5の工程の後に、さらにスピン・リンス法により前記溶液を前記底面部に選択的に残留させる第7の工程を有することを特徴とする。   Further, the third step further includes a seventh step of selectively leaving the solution on the bottom surface by a spin-rinse method after the fifth step.

上記の方法を適用することで、基板上に形成された配線用溝または/および配線接続孔などの開口部内に銅電気メッキ法によって銅を埋め込むとき、開口部底面部にメッキ促進添加剤含有膜があるために、電気メッキ工程の初期段階において、メッキ促進添加剤含有膜が溶解して、その近傍のメッキ液中の促進添加剤濃度が高くなり、底面部での銅メッキ膜の析出速度が他の部分より相対的に高くなる。この効果によって、従来、特に高アスペクト比の溝や孔においてみられた、溝や孔内部にボイド(空孔)の発生する問題を解決できる。また、この方法は、半導体製造プロセスに通常用いられる装置で行え、比較的容易に実施できる。   By applying the above method, when copper is embedded in an opening such as a wiring groove or / and a wiring connection hole formed on the substrate by a copper electroplating method, a film containing a plating accelerating additive is formed on the bottom of the opening Therefore, in the initial stage of the electroplating process, the plating promoting additive-containing film dissolves, the concentration of the promoting additive in the plating solution in the vicinity thereof increases, and the deposition rate of the copper plating film on the bottom surface portion increases. It is relatively higher than other parts. This effect can solve the problem that voids (holes) are generated inside the grooves and holes, which has been conventionally observed in grooves and holes having a high aspect ratio. Further, this method can be performed with an apparatus usually used in a semiconductor manufacturing process, and can be performed relatively easily.

以下に、本発明の実施の形態を、添付図を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

(実施の形態)
図1から図5は、本発明の実施の形態を説明する工程断面図である。図1において、例えばMOSトラジスタなどの下部構造を有する半導体基板などの基板1上に、例えば、CVD法、スパッタ法、塗布法などにより、SiO2、SiN、SiONや低誘電体膜などからなる、層間絶縁膜などを構成する絶縁膜2を形成する。次いで、レジストを塗布し、フォトリソグラフィによる露光・現像を行ってレジストパターンを形成後、公知のドライエッチングを用いて、この絶縁膜2に、トレンチ(配線用溝)やビア孔(配線接続孔)3を開口形成する。図1には、ビア孔3の形状を有する開口部が2個分配置されているが、この開口部はトレンチやビア孔を任意に配置したり、あるいはビア孔の上部にトレンチが形成された構造を有し、例えば、デュアルダマシンプロセスを用いてビアと配線層が一体的形成されるような開口形状のものを配置してもよい。そして、この上にスパッタ法を用いて、Ti、TiN、Ta、TaN、WNなどの単層、またはそれらを組み合わせた2層以上の層からなる、配線材料Cuの拡散を防ぐためのバリア層を形成し、また配線材料となるCuのメッキ成長を容易にするCuのシード層を形成、これらの膜からなる積層膜4を形成し、バリア層などを形成したバリア膜積層基板を得る。
(Embodiment)
1 to 5 are process cross-sectional views for explaining an embodiment of the present invention. In FIG. 1, an interlayer made of SiO2, SiN, SiON, a low dielectric film or the like is formed on a substrate 1 such as a semiconductor substrate having a lower structure such as a MOS transistor by, for example, a CVD method, a sputtering method, or a coating method. An insulating film 2 constituting an insulating film or the like is formed. Next, after applying a resist and performing exposure and development by photolithography to form a resist pattern, a trench (wiring groove) or a via hole (wiring connection hole) is formed in this insulating film 2 using known dry etching. 3 is opened. In FIG. 1, two openings having the shape of the via hole 3 are arranged. In this opening, a trench and a via hole are arbitrarily arranged, or a trench is formed above the via hole. For example, an opening having a structure in which a via and a wiring layer are integrally formed using a dual damascene process may be disposed. Then, a barrier layer for preventing the diffusion of the wiring material Cu, which is composed of a single layer of Ti, TiN, Ta, TaN, WN or the like, or two or more layers that are a combination thereof, is formed thereon by using a sputtering method. Then, a Cu seed layer that facilitates the plating growth of Cu as a wiring material is formed, and a laminated film 4 made of these films is formed to obtain a barrier film laminated substrate on which a barrier layer and the like are formed.

次に、純水中に、メッキ促進添加剤である、3−メルカプト−1−プロパンスルホン酸を5重量%加えてメッキ促進添加剤水溶液を作成し、容器に入れたメッキ促進添加剤水溶液中に、先述のバリア膜積層基板を浸漬する。このとき、図2の(a)に示すように、特にアスペクト比が高い溝やビア孔の場合には、メッキ促進添加剤水溶液5がバリア膜積層基板のビア孔3などの開口部の内部まで入り込まず、ビア孔3中に気泡6が内在することとなる。気泡6を除去するために、バリア膜積層基板を浸漬している容器を、排気可能なチャンバ内に入れて減圧することにより、図2(b)に示す様に、気泡6を除去し、ビア孔3の開口部の底面部までメッキ促進添加剤水溶液5が確実に入り込むようにする。   Next, 5% by weight of 3-mercapto-1-propanesulfonic acid, which is a plating accelerating additive, is added to pure water to prepare a plating accelerating additive aqueous solution. Then, the aforementioned barrier film laminated substrate is immersed. At this time, as shown in FIG. 2A, in the case of a groove or via hole having a particularly high aspect ratio, the plating accelerating additive aqueous solution 5 reaches the inside of the opening such as the via hole 3 of the barrier film laminated substrate. The air bubbles 6 are inherently present in the via hole 3 without entering. In order to remove the bubbles 6, the container in which the barrier film laminated substrate is immersed is placed in a chamber that can be evacuated and decompressed, thereby removing the bubbles 6 as shown in FIG. The plating promoting additive aqueous solution 5 is surely entered into the bottom surface of the opening of the hole 3.

次いで、開口部内の気泡を除去した溶液中の基板を取り出して、これを、フォトレジスト膜のコーティングなどに用いられるスピンコータのウエハ(基板)載置台に設置し、この基板に、例えば回転速度1000rpmで1分間の回転を加えた。この回転操作により、図3(a)に示すように、ビア孔3の底面部にメッキ促進添加剤水溶液5を残留させ、基板表面やトレンチやビア穴の内部の表面近傍に付着したメッキ促進添加剤水溶液5を飛散させるようにすることができる。このような、基板などを溶液に浸漬した後、スピニングによって基板に不必要に付着した溶液を除去する方法を、スピン・リンス法、またはスピン・リンシングと称する。   Next, the substrate in the solution from which bubbles in the opening have been removed is taken out and placed on a wafer (substrate) mounting table of a spin coater used for coating a photoresist film or the like. A 1 minute rotation was applied. By this rotation operation, as shown in FIG. 3A, the plating promoting additive aqueous solution 5 remains on the bottom surface of the via hole 3, and the plating promoting additive adhering to the vicinity of the substrate surface, the surface inside the trench or via hole is adhered. The aqueous agent solution 5 can be scattered. Such a method of immersing the substrate or the like in the solution and then removing the solution unnecessarily adhered to the substrate by spinning is called a spin rinse method or spin rinsing.

そして、このスピン・リンス法を施し、ビア孔3の底面部にメッキ促進添加剤水溶液5が残留した基板を恒温槽に入れ、例えば、80℃、2分の乾燥を行うことで溶媒(この場合は純水)を蒸発させ、図3(b)に示すように、ビア孔3の底面部に選択的にメッキ促進添加剤(この場合は、3−メルカプト−1−プロパンスルホン酸)が析出したメッキ促進添加剤含有膜7を形成する。   Then, this spin rinsing method is applied, and the substrate in which the plating promoting additive aqueous solution 5 remains on the bottom surface of the via hole 3 is placed in a thermostatic bath and dried at, for example, 80 ° C. for 2 minutes to obtain a solvent (in this case 3), the plating promoting additive (in this case, 3-mercapto-1-propanesulfonic acid) was selectively deposited on the bottom surface of the via hole 3 as shown in FIG. A plating promoting additive-containing film 7 is formed.

このように、溶液を使用してスピン・リンス法の実施と加熱乾燥を行う上記の方法は、いずれも半導体製造プロセスにおいて通常、頻繁に利用される装置を用いており、かつ容易に適用できる方法である。   As described above, the above-mentioned methods for performing the spin-rinse method using a solution and heat-drying are both methods that use an apparatus that is usually frequently used in a semiconductor manufacturing process and can be easily applied. It is.

次に基板を室温に戻した後、公知の銅電気メッキ液、電気メッキ装置を用いて銅電気メッキを行う。銅電気メッキ実施開始後の初期段階において、ビア孔3の底面部に形成されたメッキ促進添加剤含有膜7が溶解し、ビア孔3の底面部付近のメッキ液中のメッキ促進添加剤濃度が相対的に高くなる。その結果、図4(a)において、矢印Bで図示するように、ビア孔3の底面部付近からの銅メッキ膜8の析出速度が、ビア孔3の側面部のそれよりも速くなって、一定厚さで底面部からの銅メッキ膜8の成長が先行する。その後、通常の銅メッキ膜8が析出・成長が継続しておこなわれるようになる。こうして、特にアスペクト比の高いビア孔の深い個所に形成されやすいボイドの発生が抑えられ、図4(b)で示したように、ビア9にボイドの無い銅メッキ膜8を得ることができた。   Next, after returning a board | substrate to room temperature, copper electroplating is performed using a well-known copper electroplating liquid and an electroplating apparatus. In an initial stage after the start of copper electroplating, the plating promoting additive-containing film 7 formed on the bottom surface of the via hole 3 is dissolved, and the concentration of the plating promoting additive in the plating solution near the bottom surface of the via hole 3 is reduced. Relatively high. As a result, as illustrated by arrow B in FIG. 4A, the deposition rate of the copper plating film 8 from the vicinity of the bottom surface portion of the via hole 3 becomes faster than that of the side surface portion of the via hole 3, Growth of the copper plating film 8 from the bottom surface precedes with a constant thickness. Thereafter, the normal copper plating film 8 is continuously deposited and grown. In this way, generation of voids that are likely to be formed in deep portions of via holes having a particularly high aspect ratio was suppressed, and as shown in FIG. 4B, a copper plating film 8 having no voids in the vias 9 could be obtained. .

そして、公知の化学機械研磨(CMP;Chemical Mechanical Polishing)を行うことにより、絶縁層2の上にできた銅メッキ膜8を除去、平坦化し、図5に示すように、絶縁膜2内に、ボイドの無い、銅で完全に埋め込まれた、いわゆるスーパーフィリングされたビア9が形成できた。   Then, by performing well-known chemical mechanical polishing (CMP), the copper plating film 8 formed on the insulating layer 2 is removed and planarized. As shown in FIG. A so-called superfilled via 9 completely free of voids and completely filled with copper could be formed.

上記の方法による実験は、例えば、絶縁膜厚2をおよそ1μm、ビア孔3の径あるいは配線用溝をおよそ200nm〜300nmに形成し、従って、アスペクト比3.3〜5.0といった高アスペクト比を有する開口部を用いて行ったが、何れもスーパーフィリングの状況で形成されたことを確認した。   The experiment by the above method is, for example, that the insulating film thickness 2 is about 1 μm, the diameter of the via hole 3 or the wiring groove is about 200 nm to 300 nm, and accordingly, the aspect ratio is 3.3 to 5.0. It was confirmed that each of the openings was formed in a superfilling situation.

以上のように、本発明の方法は、特にアスペクト比の高い溝や孔に、電気銅メッキによる銅を埋め込むプロセスにおいて、内部にボイド(空孔)の発生が効果的に抑制された配線やビアを、特別な装置を使うこと無く、比較的容易に形成可能である。   As described above, the method of the present invention is particularly effective in the process of embedding copper by electrolytic copper plating in a groove or hole having a high aspect ratio, in which the generation of voids (holes) is effectively suppressed. Can be formed relatively easily without using a special apparatus.

上述の実施例においては、メッキ促進添加剤として、3−メルカプト−1−プロパンスルホン酸ナトリウムを用いた例を述べたが、それに変えて、2−メルカプトエタンスルホン酸ナトリウム、または、ビス−(3−スルフォプロピル)−ジスルフォイドを用いた場合でも、本発明の方法の適用によって、同様な効果的な結果を得ることができた。   In the above-described embodiment, an example in which sodium 3-mercapto-1-propanesulfonate is used as a plating accelerating additive has been described. Instead, sodium 2-mercaptoethanesulfonate or bis- (3 Even when -sulfopropyl) -disulfide was used, the same effective results could be obtained by applying the method of the present invention.

また、上述の実施例においては、銅に関する配線形成について述べたが、銅合金においても、本発明の方法の適用によって、同様な効果を得ることが可能である。   Further, in the above-described embodiments, the wiring formation related to copper has been described. However, the same effect can be obtained even in a copper alloy by applying the method of the present invention.

また、上記実施例は、基本的に、いわゆるシングルダマシンのプロセスの適用の場合について述べたが、ビアと配線を同時に形成する、いわゆるデュアルダマシンのプロセスにおいても適用できることは言うまでも無い。   In addition, although the above embodiment has basically been described in the case of applying a so-called single damascene process, it goes without saying that it can also be applied to a so-called dual damascene process in which vias and wirings are formed simultaneously.

さらに、メッキ促進添加剤の溶媒として、純水を適用した例を述べたが、これには限られず、有機溶媒(例えば、エチルアルコール、メチルアルコール、イソプロリルアルコールなどのアルコール類、もしくはこれらの水溶液)を適用することも可能である。ただし、メッキ促進添加剤含有膜を形成する際、これら有機の溶媒を高温で蒸発させて乾燥させるときなどにおいて、火気の注意を要する。純水を使用する場合はこの点では簡便であり、とりたてての注意は必要無い。   Furthermore, although the example which applied pure water as a solvent of a plating acceleration additive was described, it is not restricted to this, Organic solvents (For example, alcohols, such as ethyl alcohol, methyl alcohol, isopropylol alcohol, or these aqueous solution) ) Can also be applied. However, when forming the plating accelerating additive-containing film, attention should be paid to fire when the organic solvent is evaporated at a high temperature and dried. When pure water is used, it is simple in this respect and no special attention is required.

溶媒の完全な蒸発が困難な場合や結果として不十分な場合、メッキ促進添加剤含有膜中に溶媒が一部残留しているケースがあり得る。使用される銅電気メッキ液の溶媒成分が水であることから、これと同じ純水をメッキ促進添加剤溶液の溶媒に用いることで、仮にメッキ促進添加剤含有膜中に水成分が残ったとしても、その後に行われるメッキ液を用いた電気メッキのプロセスにおいては、特に不都合が生じることは無いというメリットがある。   When complete evaporation of the solvent is difficult or as a result is insufficient, there may be a case where a part of the solvent remains in the plating accelerating additive-containing film. Since the solvent component of the copper electroplating solution used is water, if the same pure water is used as the solvent for the plating acceleration additive solution, the water component remains in the plating acceleration additive-containing film. However, in the electroplating process using the plating solution performed thereafter, there is an advantage that no particular inconvenience occurs.

そのメッキ促進添加剤を含む溶液の濃度は、上述の5重量%に限られず、開口した溝の幅や孔の径、またアスペクト比、銅を適性に埋め込むための適切なメッキ促進添加剤含有膜厚、またメッキ液の構成などにより、適宜その濃度を変えて行うことができる。またスピン・リンス法における回転速度や回転時間についても、上述の数値に限られず、メッキ膜形成上の各種条件に応じて、適宜変えて行うことも可能である。   The concentration of the solution containing the plating accelerating additive is not limited to the above-mentioned 5% by weight, and an appropriate film containing a plating accelerating additive for appropriately embedding the width of the groove, the diameter of the groove, the aspect ratio, and copper. The concentration can be changed as appropriate depending on the thickness and the composition of the plating solution. Further, the rotation speed and the rotation time in the spin / rinse method are not limited to the above-mentioned numerical values, and can be appropriately changed according to various conditions in forming the plating film.

以上の実施例を含む実施の形態に関し、更に以下の付記を開示する。   Regarding the embodiment including the above examples, the following additional notes are disclosed.

(付記1)基板上の絶縁膜に、配線用溝または/および配線接続孔を形成する第1の工程と、
前記絶縁膜上ならびに、前記配線用溝または/および配線接続孔に、バリア膜を形成する第2の工程と、
前記バリア膜が形成された前記配線用溝または/および配線接続孔に、メッキ促進添加剤を含むメッキ促進添加剤含有膜を堆積する第3の工程と、
前記メッキ促進添加剤含有膜が堆積された前記配線用溝または/および配線接続孔に、銅膜または銅合金膜をメッキによって充填する第4の工程を有すことを特徴とする配線基板のメッキ膜形成方法。
(Appendix 1) a first step of forming a wiring groove or / and a wiring connection hole in an insulating film on a substrate;
A second step of forming a barrier film on the insulating film and in the wiring groove or / and the wiring connection hole;
A third step of depositing a plating accelerating additive-containing film containing a plating accelerating additive in the wiring groove or / and the wiring connecting hole in which the barrier film is formed;
Plating a wiring board, characterized by having a fourth step of filling a copper film or a copper alloy film by plating into the wiring groove or / and wiring connection hole where the plating promoting additive-containing film is deposited. Film forming method.

(付記2)前記メッキ促進添加剤は、3−メルカプト−1−プロパンスルホン酸ナトリウム、または2−メルカプトエタンスルホン酸ナトリウム、またはビス−(3−スルフォプロピル)−ジスルフォイドであることを特徴とする付記1記載の配線基板のメッキ膜形成方法。   (Appendix 2) The plating accelerator additive is sodium 3-mercapto-1-propanesulfonate, sodium 2-mercaptoethanesulfonate, or bis- (3-sulfopropyl) -disulfide. The method for forming a plating film on a wiring board according to appendix 1.

(付記3)前記第3の工程は、前記メッキ促進添加剤含有膜が、前記バリア膜が形成された前記配線用溝または/および配線接続孔の底面部に選択的に堆積される工程であることを特徴とする付記1または2記載の配線基板のメッキ膜形成方法。   (Additional remark 3) The said 3rd process is a process in which the said plating acceleration additive containing film | membrane is selectively deposited in the bottom face part of the said groove | channel for wiring and / or wiring connection hole in which the said barrier film was formed. The method for forming a plating film on a wiring board according to appendix 1 or 2, wherein:

(付記4)前記第3の工程は、前記第2の工程の後に、前記バリア膜が形成された基板を、容器中の前記メッキ促進添加剤を含む溶液に浸漬し、かつ前記容器を排気可能なチャンバ内に入れて減圧し、そして前記バリア膜が形成された基板を前記溶液から取り出す第5の工程と、前記バリア膜が形成された基板に付着した前記溶液中の溶媒を除去する第6の工程を有すことを特徴とする付記1ないし3のいずれかに記載の配線基板のメッキ膜形成方法。   (Additional remark 4) The said 3rd process can immerse the board | substrate with which the said barrier film was formed in the solution containing the said plating acceleration additive in a container after the said 2nd process, and can exhaust the said container A fifth step of removing the substrate on which the barrier film is formed from the solution, and a sixth step of removing the solvent in the solution adhering to the substrate on which the barrier film is formed. The method for forming a plating film on a wiring board according to any one of appendices 1 to 3, further comprising the steps of:

(付記5)前記第3の工程は、前記第5の工程の後に、さらにスピン・リンス法により前記溶液を前記底面部に選択的に残留させる第7の工程を有することを特徴とする付記4記載の配線基板のメッキ膜形成方法。   (Additional remark 5) The said 3rd process has the 7th process which selectively leaves the said solution on the said bottom face part by the spin rinse method after the said 5th process, The additional remark 4 characterized by the above-mentioned. A method for forming a plating film on a wiring board as described.

(付記6)前記第2の工程において、さらにシード膜を形成することを特徴とする付記1ないし5のいずれかに記載の配線基板のメッキ膜形成方法。   (Additional remark 6) The plating film formation method of the wiring board in any one of Additional remark 1 thru | or 5 which forms a seed film | membrane in said 2nd process further.

(付記7)前記溶液の溶媒は、純水であることを特徴とする付記4または5記載の配線基板のメッキ膜形成方法。   (Additional remark 7) The solvent of the said solution is a pure water, The plating film formation method of the wiring board of Additional remark 4 or 5 characterized by the above-mentioned.

(付記8)前記配線用溝または/および配線接続孔は、高アスペクト比を有していることを特徴とする付記1記載の配線基板のメッキ膜形成方法。   (Supplementary note 8) The method for forming a plating film on a wiring board according to supplementary note 1, wherein the wiring groove and / or the wiring connection hole has a high aspect ratio.

本発明の実施の形態を説明するために工程断面図(その1)Process sectional drawing for demonstrating embodiment of this invention (the 1) 本発明の実施の形態を説明するために工程断面図(その2)Process sectional drawing for demonstrating embodiment of this invention (the 2) 本発明の実施の形態を説明するために工程断面図(その3)Process sectional drawing for demonstrating embodiment of this invention (the 3) 本発明の実施の形態を説明するために工程断面図(その4)Process sectional drawing in order to demonstrate embodiment of this invention (the 4) 本発明の実施の形態を説明するために工程断面図(その5)Process sectional drawing in order to demonstrate embodiment of this invention (the 5) ダマシンプロセスを説明するための基板断面図Substrate cross-sectional view for explaining the damascene process 配線中でのボイド発生を説明するための図Diagram for explaining void generation in wiring

符号の説明Explanation of symbols

1、101 基板
2、102 絶縁層
3、106 ビア孔
4、104 積層膜(バリア層およびシード層)
5 メッキ促進添加剤水溶液
6 気泡
7 メッキ促進添加剤含有膜
8、105 銅メッキ膜
9、103 ビア
1, 101 Substrate 2, 102 Insulating layer 3, 106 Via hole 4, 104 Laminated film (barrier layer and seed layer)
5 Plating accelerating additive aqueous solution 6 Air bubbles 7 Plating accelerating additive containing film 8, 105 Copper plating film 9, 103 Via

Claims (5)

基板上の絶縁膜に、配線用溝または/および配線接続孔を形成する第1の工程と、
前記絶縁膜上ならびに、前記配線用溝または/および配線接続孔に、バリア膜を形成する第2の工程と、
前記バリア膜が形成された前記配線用溝または/および配線接続孔に、メッキ促進添加剤を含むメッキ促進添加剤含有膜を堆積する第3の工程と、
前記メッキ促進添加剤含有膜が堆積された前記配線用溝または/および配線接続孔に、銅膜または銅合金膜をメッキによって充填する第4の工程を有すことを特徴とする配線基板のメッキ膜形成方法。
A first step of forming a wiring groove or / and a wiring connection hole in an insulating film on the substrate;
A second step of forming a barrier film on the insulating film and in the wiring groove or / and the wiring connection hole;
A third step of depositing a plating accelerating additive-containing film containing a plating accelerating additive in the wiring groove or / and the wiring connecting hole in which the barrier film is formed;
Plating a wiring board, characterized by having a fourth step of filling a copper film or a copper alloy film by plating into the wiring groove or / and wiring connection hole where the plating promoting additive-containing film is deposited. Film forming method.
前記メッキ促進添加剤は、3−メルカプト−1−プロパンスルホン酸ナトリウム、または2−メルカプトエタンスルホン酸ナトリウム、またはビス−(3−スルフォプロピル)−ジスルフォイドであることを特徴とする請求項1記載の配線基板のメッキ膜形成方法。   The plating promoting additive is sodium 3-mercapto-1-propanesulfonate, sodium 2-mercaptoethanesulfonate, or bis- (3-sulfopropyl) -disulfide. For forming a plating film on a wiring board. 前記第3の工程は、前記メッキ促進添加剤含有膜が、前記バリア膜が形成された前記配線用溝または/および配線接続孔の底面部に選択的に堆積される工程であることを特徴とする請求項1または2記載の配線基板のメッキ膜形成方法。   The third step is a step in which the plating accelerating additive-containing film is selectively deposited on a bottom surface portion of the wiring groove or / and the wiring connection hole in which the barrier film is formed. The method for forming a plating film on a wiring board according to claim 1 or 2. 前記第3の工程は、前記第2の工程の後に、前記バリア膜が形成された基板を、容器中の前記メッキ促進添加剤を含む溶液に浸漬し、かつ前記容器を排気可能なチャンバ内に入れて減圧し、そして前記バリア膜が形成された基板を前記溶液から取り出す第5の工程と、前記バリア膜が形成された基板に付着した前記溶液中の溶媒を除去する第6の工程を有すことを特徴とする請求項1ないし3のいずれかに記載の配線基板のメッキ膜形成方法。   In the third step, after the second step, the substrate on which the barrier film is formed is immersed in a solution containing the plating accelerating additive in a container, and the container is evacuated in a chamber that can be evacuated. And a fifth step of removing the substrate on which the barrier film is formed from the solution and a sixth step of removing the solvent in the solution adhering to the substrate on which the barrier film is formed. The method for forming a plating film on a wiring board according to any one of claims 1 to 3. 前記第3の工程は、前記第5の工程の後に、さらにスピン・リンス法により前記溶液を前記底面部に選択的に残留させる第7の工程を有することを特徴とする請求項4記載の配線基板のメッキ膜形成方法。   5. The wiring according to claim 4, wherein the third step further includes a seventh step of selectively leaving the solution on the bottom surface by a spin-rinse method after the fifth step. A method for forming a plating film on a substrate.
JP2005276870A 2005-09-22 2005-09-22 Method for forming plating film for wiring board Withdrawn JP2007084891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005276870A JP2007084891A (en) 2005-09-22 2005-09-22 Method for forming plating film for wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005276870A JP2007084891A (en) 2005-09-22 2005-09-22 Method for forming plating film for wiring board

Publications (1)

Publication Number Publication Date
JP2007084891A true JP2007084891A (en) 2007-04-05

Family

ID=37972169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005276870A Withdrawn JP2007084891A (en) 2005-09-22 2005-09-22 Method for forming plating film for wiring board

Country Status (1)

Country Link
JP (1) JP2007084891A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228124A (en) * 2008-02-26 2009-10-08 Shinko Electric Ind Co Ltd Method of filling through-hole
JP2013044035A (en) * 2011-08-25 2013-03-04 Ishihara Chem Co Ltd Method of filling copper, and electronic component using the same
CN115986006A (en) * 2022-12-28 2023-04-18 通威太阳能(成都)有限公司 Solar cell and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009228124A (en) * 2008-02-26 2009-10-08 Shinko Electric Ind Co Ltd Method of filling through-hole
JP2013044035A (en) * 2011-08-25 2013-03-04 Ishihara Chem Co Ltd Method of filling copper, and electronic component using the same
CN115986006A (en) * 2022-12-28 2023-04-18 通威太阳能(成都)有限公司 Solar cell and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5409801B2 (en) Bottom-up plating by delaying the progress of plating with organic surface passivation
TWI443224B (en) Method of forming a metal layer over a patterned dielectric by wet chemical deposition including an electroless and a powered phase
JP2004342750A (en) Method of manufacturing electronic device
JP2009277905A (en) Method of manufacturing wiring board
JP2009076615A (en) Method of manufacturing semiconductor device
US7037822B2 (en) Method of forming metal line in semiconductor device
TWI412631B (en) Copper plating solution for embedding ULSI (Ultra Large-Scale Integration) micro copper wiring
US20070184652A1 (en) Method for preparing a metal feature surface prior to electroless metal deposition
KR20030079745A (en) Method and apparatus for forming fine circuit interconnects
US8652966B2 (en) Semiconductor device manufacturing method and semiconductor device
CN106486415B (en) Method for manufacturing interconnection structure
JPWO2005038088A1 (en) Electroless copper plating solution and method of manufacturing wiring board using the same
JP3836252B2 (en) Substrate plating method
JP2007084891A (en) Method for forming plating film for wiring board
JP2003229482A (en) Method for forming copper wiring in semiconductor element
JP2010080525A (en) Method of manufacturing semiconductor device
JP4309873B2 (en) Manufacturing method of electronic device
JP3715975B2 (en) Manufacturing method of multilayer wiring structure
US20080132062A1 (en) Method of manufacturing semiconductor device
JP2002275639A5 (en)
JP2009004807A (en) Method of manufacturing semiconductor device and apparatus for manufacturing the semiconductor device
JP2006131961A (en) Plating method and device for substrate
JP2008088521A (en) Method for filling vias having different depths with plating
JP3904328B2 (en) Substrate plating method
KR20050115143A (en) Method of manufacturing inductor in a semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202