JP2007079533A - 光学樹脂フィルム、これを用いた偏光板および液晶表示装置 - Google Patents
光学樹脂フィルム、これを用いた偏光板および液晶表示装置 Download PDFInfo
- Publication number
- JP2007079533A JP2007079533A JP2006066459A JP2006066459A JP2007079533A JP 2007079533 A JP2007079533 A JP 2007079533A JP 2006066459 A JP2006066459 A JP 2006066459A JP 2006066459 A JP2006066459 A JP 2006066459A JP 2007079533 A JP2007079533 A JP 2007079533A
- Authority
- JP
- Japan
- Prior art keywords
- group
- film
- carbon atoms
- mass
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polarising Elements (AREA)
- Liquid Crystal (AREA)
Abstract
【解決手段】下記式(A)〜(D)のレターデーションを満たし、フィルムの幅手方向の面内レターデーション(Re)の変動係数が5%以下であり、かつ厚み方向のレターデーション(Rth)の変動係数が10%以下である光学樹脂フィルム、これを用いた偏光板および液晶表示装置。(A)0.1<Re(450)/Re(550)<0.95、(B)1.03<Re(650)/Re(550)<1.93、(C)0.4<(Re/Rth(450))/(Re/Rth(550))<0.95、(D)1.05<(Re/Rth(650)/(Re/Rth(550))<1.9
【選択図】なし
Description
一般に液晶表示装置は液晶セル、光学補償シート、偏光子から構成される。光学補償シートは画像着色を解消したり、視野角を拡大するために用いられており、延伸した複屈折フィルムや透明フィルムに液晶を塗布したフィルムが使用されている。例えば、特許文献1ではディスコティック液晶をトリアセチルセルロースフィルム上に塗布し配向させて固定化した光学補償シートをTNモードの液晶セルに適用し、視野角を広げる技術が開示されている。しかしながら、大画面で様々な角度から見ることが想定されるテレビ用途の液晶表示装置は視野角依存性に対する要求が厳しく、前述のような手法をもってしても要求を満足することはできていない。そのため、IPS(In−Plane Switching)モード、OCB(Optically Compensatory Bend)モード、VA(Vertically Aligned)モードなど、TNモードとは異なる液晶表示装置が研究されている。特にVAモードはコントラストが高く、比較的製造の歩留まりが高いことからTV用の液晶表示装置として着目されている。
しかしながらこれらの方法はある波長域(例えば550nm付近の緑光)に対して光漏れを低減しているのみであり、それ以外の波長域(例えば450nm付近の青光、650nm付近の赤光)に対する光漏れは考慮していない。このため例えば黒表示をして斜めから観察すると、青色や赤色に着色するいわゆるカラーシフトの問題が解決されていなかった。
(1)下記式(A)〜(D)のレターデーションを満たし、フィルムの幅手方向の面内レターデーション(Re)の変動係数が5%以下であり、かつ厚み方向のレターデーション(Rth)の変動係数が10%以下であることを特徴とする光学樹脂フィルム。
(A)0.1<Re(450)/Re(550)<0.95
(B)1.03<Re(650)/Re(550)<1.93
(C)0.4<(Re/Rth(450))/(Re/Rth(550))<0.95
(D)1.05<(Re/Rth(650)/(Re/Rth(550))<1.9
(式中、Re(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値であり、Rth(λ)は、波長λnmの光に対する該フィルムの厚み方向のレターデーション値であり、Re/Rth(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値と厚み方向のレターデーション値の比である(単位:nm)。)
(2)前記光学樹脂フィルムがセルロースアシレートフィルムからなることを特徴とする前記(1)に記載の光学樹脂フィルム。
(3)可塑剤、紫外線吸収剤、剥離促進剤、染料およびマット剤からなる群から選択された1種以上を含有することを特徴とする前記(1)または(2)に記載の光学樹脂フィルム。
(4)棒状化合物または円盤状化合物からなるレターデーション発現剤を1種以上含有することを特徴とする前記(1)〜(3)のいずれかに記載の光学樹脂フィルム。
(5)ポリビニルアルコールを有する偏光子の両面に保護膜を設けてなる偏光板であって、前記保護膜の少なくとも一方が、前記(1)〜(4)のいずれかに記載の光学樹脂フィルムであることを特徴とする偏光板。
(6)前記保護膜の一方の表面に、ハードコート層、防眩層および反射防止層から選択された少なくとも一層を設けたことを特徴とする前記(5)に記載の偏光板。
(7)少なくとも一方の保護膜の上に光学異方性層を設けたことを特徴とする前記(5)または(6)に記載の偏光板。
(8)前記(5)〜(7)のいずれかに記載の偏光板を備えてなることを特徴とする液晶表示装置。
示時に、液晶が基板面に対して垂直配向する液晶層を有する液晶セル3と、該液晶セル3を挟持し、且つ互いの透過軸方向(図1では縞線で示した)を直交させて配置された偏光板1及び偏光板2とを有する。図1中、光は、偏光板1側から入射するものとする。電圧無印加時に、法線方向、即ち、z軸方向に進む光が入射した場合、偏光板1を通過した光は、直線偏光状態を維持したまま、液晶セル3を通過し、偏光板2において完全に遮光される。その結果、コントラストの高い画像を表示できる。
(A)0.1<Re(450)/Re(550)<0.95
(B)1.03<Re(650)/Re(550)<1.93
(C)0.4<(Re/Rth(450))/(Re/Rth(550))<0.95
(D)1.05<(Re/Rth(650)/(Re/Rth(550))<1.9
の関係を満たしている。
本発明は、前記光学特性を有する光学補償フィルムを用いることによって、斜め方向に入射したR、G、B各波長の光について、各波長ごとに異なった遅相軸及びレターデーションで光学補償することを可能としている。その結果、従来の液晶表示装置と比較して、黒表示の視角コントラストを格段に向上されるとともに、さらに黒表示の視角方向における色づきも格段に軽減される。ここで、本明細書においては、R、G、Bの波長として、Rは波長650nm、Gは波長550nm、Bは波長450nmを用いた。R、G、Bの波長は必ずしもこの波長で代表されるものではないが、本発明の効果を奏する光学特性を規定するのに適当な波長であると考えられる。
の結果、斜め方向から光が入射し、液晶層の斜め方向のレターデーションの影響を受け、且つ偏光板1と偏光板2の見かけの透過軸がずれているという2つの要因がある場合であっても、一の光学補償フィルムによる完全な補償を可能とし、コントラストの低下を軽減している。R、G、Bで可視光全領域を代表させてフィルムのパラメータを決めれば、可視光全領域でほぼ完全な補償をすることができるということになる。
本発明の光学補償フィルムは、液晶表示装置、特にVAモードの液晶表示装置の視野角コントラストの拡大、及び視野角に依存した色ずれの軽減に寄与する。本発明の光学補償フィルムは、観察者側の偏光板と液晶セルとの間に配置しても、背面側の偏光板と液晶セルとの間に配置してもよいし、双方に配置してもよい。例えば、独立の部材として液晶表示装置内部に組み込むこともできるし、また、偏光子を保護する保護膜に、前記光学特性を付与して光学補償フィルムとしても機能させて、偏光板の一部材として、液晶表示装置内部に組み込むこともできる。
(A)0.1<Re(450)/Re(550)<0.95
(B)1.03<Re(650)/Re(550)<1.93
(C)0.4<(Re/Rth(450))/(Re/Rth(550))<0.95
(D)1.05<(Re/Rth(650)/(Re/Rth(550))<1.9
の関係を満たしている。
好ましくは、
(A)0.3<Re(450)/Re(550)<0.9
(B)1.05<Re(650)/Re(550)<1.8
(C)0.6<(Re/Rth(450))/(Re/Rth(550))<0.8
(D)1.2<(Re/Rth(650)/(Re/Rth(550))<1.7
である。
なお、R、G、BそれぞれにおけるRe/Rthは、いずれも0.1〜0.8の範囲であるのが好ましい。
率nx、nyおよびnzを有する。この3つの値が、光学補償フィルムの固有の屈折率であり、これらの値とフィルムの厚さd1とで、Rth及びReが決まる。従って、原料、その配合量、製造条件などを選択し、これらの値を所望の範囲に調整することで、上記光学特性を満足する光学補償フィルムを作製することができる。nx、ny及びnzは波長によって異なるので、Rth及びReも波長によって異なる。前記光学補償フィルムは、この特徴を利用することによって作製することができる。
本発明においては、光学補償フィルムの幅手方向の面内レターデーション(Re)の変動係数が5%以下であり、さらに好ましくは3%以下、より好ましくは2%以下である。なおかつ、厚み方向のレターデーション(Rth)の変動係数は10%以下、より好ましくは8%以下、さらに好ましくは5%以下である。
自動複屈折計KOBRA21ADH(王子計測器(株)製)を用いて25℃60%RHの環境下で波長590nmにおいて試料の幅手方向に1cm間隔で3次元複屈折率測定を行う。得られたRe,Rthについて下記式で変動係数(CV)を求めた。
変動係数(CV)=標準偏差/レターデーション平均値×100
自動複屈折計KOBRA21ADH(王子計測器(株)製)を用いて25℃60%RHの環境下で波長450nm,550nm,650nmにおいて3次元複屈折測定を行った。それぞれ得られた値をRe(450)、Re(550),Re(650)とした。
本発明のフィルムの製造時においては、以下の、製造方法1または製造方法2を採用することが好ましい。
また、製造方法1及び製造方法2を兼ね備えた製造方法も好ましい。
本発明に好ましい製造方法1及び製造方法2については以下に詳細には述べる。
本発明による幅手方向のレターデーションのばらつきが小さいフィルムを作成するためにはフィルム延伸プロセスでの乾燥条件を制御することが重要である。延伸プロセスでは通常テンターを使用する。
また、本発明者らは鋭意検討の結果、フィルムを延伸する延伸工程と収縮させる収縮工程とを含むことを特徴とする製造方法により、上記好ましい光学物性を有する光学フィルムが得られることを見出した。
本発明のフィルムに使用可能なポリマーとしては、例えば、後述のセルロースアシレートが好適であるが、セルロースアシレートに限定されず、光学フィルムとして使用可能なポリマー全般に適用可能で、セルロースアシレートと同様な効果が見込める。
これらの光学フィルムとして使用可能なポリマーとしては、例えばポリカーボネート共重合体や、環状オレフィン構造を有する重合体樹脂が挙げられる。またこれらのポリマーを用いた場合環境変化耐性の良いフィルムが得られることがある。
としては、例えば上記式(Z)で表わされる繰り返し単位と上記式(B)で表わされる繰り返し単位とからなる異なる組成比のポリカーボネート共重合体のブレンド体がよく、上記式(Z)の含有率はポリカーボネート共重合体全体の80〜30mol%が好ましく、より好ましくは75〜35mol%であり、さらに好ましくは70〜40mol%である。
ポリカーボネート共重合体の質量平均分子量は、1,000〜1,000,000、好ましくは5,000〜500,000である。その他の高分子化合物の質量平均分子量は、500〜100,000、好ましくは1,000〜50,000である。
ノルボルネン系付加(共)重合体は、特開平10−7732号、特表2002−504184号、US2004229157A1号あるいはWO2004/070463A1号等に開示されている。ノルボルネン系多環状不飽和化合物同士を付加重合する事によって得られる。また、必要に応じ、ノルボルネン系多環状不飽和化合物と、エチレン、プロピレン、ブテン、ブタジエン、イソプレンのような共役ジエン;エチリデンノルボルネンのような非共役ジエン;アクリロニトリル、アクリル酸、メタアクリル酸、無水マレイン酸、アクリル酸エステル、メタクリル酸エステル、マレイミド、酢酸ビニル、塩化ビニルなどの線状ジエン化合物とを付加重合することもできる。このノルボルネン系付加(共)重合体は、三井化学(株)よりアペルの商品名で発売されており、ガラス転移温度(Tg)の異なる例えばAPL8008T(Tg70℃)、APL6013T(Tg125℃)あるいはAPL6015T(Tg145℃)などのグレードがある。ポリプラスチック(株)よりTOPAS8007、同6013、同6015などのペレットが発売されている。更に、Ferrania社よりAppear3000が発売されている。
次に本発明で有用なセルロースアシレートについて説明する。
セルロースを構成するβ−1,4結合しているグルコース単位は、2位、3位および6位に遊離の水酸基を有している。セルロースアシレートはこれらの水酸基の一部または全部を炭素数2以上のアシル基によりエステル化した重合体(ポリマー)である。アシル置換度は、2位、3位および6位それぞれについてセルロースの水酸基がエステル化している割合(100%のエステル化は置換度1)を意味する。
全アシル置換度、すなわちDS2+DS3+DS6は2.00〜3.00が好ましく、より好ましくは2.20〜2.90であり、特に好ましくは2.40〜2.82である。またDS6/(DS2+DS3+DS6)は0.315以上が好ましく、より好ましくは、0.32以上、最も好ましくは、0.325以上である。
ここでDS2はグルコース単位の2位の水酸基のアシル化による置換度(以下「2位のアシル置換度」とも言う)であり、DS3は3位の水酸基のアシル化による置換度(以下「3位のアシル置換度」とも言う)でありDS6は6位の水酸基のアシル化による置換度(以下「6位のアシル置換度」とも言う)である。
セルロースアシレートの合成方法の基本的な原理は、右田他、木材化学180〜190頁(共立出版、1968年)に記載されている。代表的な合成方法は、カルボン酸無水物−酢酸−硫酸触媒による液相酢化法である。
前記セルロースアシレートを得るには、具体的には、綿花リンタや木材パルプ等のセルロース原料を適当量の酢酸で前処理した後、予め冷却したカルボン酸化混液に投入してエ
ステル化し、完全セルロースアシレート(2位、3位および6位のアシル置換度の合計が、ほぼ3.00)を合成する。上記カルボン酸化混液は、一般に溶媒としての酢酸、エステル化剤としての無水カルボン酸および触媒としての硫酸を含む。無水カルボン酸は、これと反応するセルロースおよび系内に存在する水分の合計よりも、化学量論的に過剰量で使用することが普通である。エステル化反応終了後に、系内に残存している過剰の無水カルボン酸の加水分解およびエステル化触媒の一部の中和のために、中和剤(例えば、カルシウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩または酸化物)の水溶液を添加する。次に、得られた完全セルロースアシレートを少量の酢化反応触媒(一般には、残存する硫酸)の存在下で、50〜90℃に保つことによりケン化熟成し、所望のアシル置換度および重合度を有するセルロースアシレートまで変化させる。所望のセルロースアシレートが得られた時点で、系内に残存している触媒を前記のような中和剤を用いて完全に中和するか、あるいは中和することなく水または希硫酸中にセルロースアシレート溶液を投入(あるいは、セルロースアシレート溶液中に、水または希硫酸を投入)してセルロースアシレートを分離し、洗浄および安定化処理を行う等して、前記の特定のセルロースアシレートを得ることができる。
前記セルロースアシレートは、粒子状で使用することが好ましい。使用する粒子の90質量%以上は、0.5〜5mmの粒子径を有することが好ましい。また、使用する粒子の50質量%以上が1〜4mmの粒子径を有することが好ましい。セルロースアシレート粒子は、なるべく球形に近い形状を有することが好ましい。
本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度で、好ましくは200〜700、より好ましくは250〜550、更に好ましくは250〜400であり、特に好ましくは250〜350である。平均重合度は、宇田らの極限粘度法(宇田和夫、斉藤秀夫、「繊維学会誌」、1962年、第18巻第1号、105〜120頁)により測定できる。更に特開平9−95538号公報に詳細に記載されている。
前記セルロースアシレートの原料綿や合成方法は、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.7−12に詳細に記載されている原料綿や合成方法を採用できる。
ができる。
本発明において前記セルロースアシレート溶液等の樹脂溶液に用いることができる添加剤としては、例えば、可塑剤、紫外線吸収剤、劣化防止剤、レターデーション(光学異方性)発現剤、レターデーション(光学異方性)減少剤、微粒子、染料、剥離促進剤、赤外吸収剤などを挙げることができる。本発明においては、レターデーション発現剤を用いるのが好ましい。また、可塑剤、紫外線吸収剤、剥離促進剤、染料及びマット剤の少なくとも1種以上を用いるのが好ましい。
それらは固体でもよく油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例えば20℃以下と20℃以上の紫外線吸収剤を混合して用いたり、同様に可塑剤を混合して用いることができ、例えば特開2001−151901号公報などに記載されている。
剥離促進剤としてはクエン酸のエチルエステル類が例として挙げられる。さらに赤外吸収剤としては例えば特開平2001−194522号公報に記載されている。
本発明で用いられる染料は好ましくは下記一般式(I)または(II)で表される化合物である。
一般式(I)
一般式(II)
さらに添加剤については、発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.16以降に詳細に記載されているものを適宜用いることができる。
本発明では光学異方性を大きく発現させ、好ましいレターデーション値を実現するため、レターデーション発現剤を用いるのが好ましい。
レターデーション発現剤とは、セルロースアシレート等を含むポリマー成分100質量部に対して1質量部の添加により、Rthの値をフィルム膜厚1ミクロンあたり0.11以上上昇させるものである。より好ましくはフィルム膜厚1ミクロンあたり0.2以上、さらに好ましくはフィルム膜厚1ミクロンあたり0.3以上レターデーションを上昇させるものである。
本発明において用いることができるレターデーション発現剤としては、棒状又は円盤状化合物からなるものを挙げることができる。
上記棒状又は円盤状化合物としては、少なくとも二つの芳香族環を有する化合物を用い
ることができる。
棒状化合物からなるレターデーション発現剤の添加量は、セルロースアシレートを含むポリマー成分100質量部に対して0.1乃至30質量部であることが好ましく、0.5乃至20質量部であることがさらに好ましい。
円盤状のレターデーション発現剤は、前記セルロースアシレートを含むポリマー成分100質量部に対して、0.05乃至30質量部の範囲で使用することが好ましく、0.1乃至20質量部の範囲で使用することがより好ましく、0.2乃至15質量部の範囲で使用することがさらに好ましく、0.5乃至10質量部の範囲で使用することが最も好ましい。
円盤状化合物はRthレターデーション発現性において棒状化合物よりも優れているため、特に大きなRthレターデーションを必要とする場合には好ましく使用される。
二種類以上のレターデーション発現剤を併用してもよい。
棒状または円盤状化合物からなる前記レターデーション発現剤は、250乃至400nmの波長領域に最大吸収を有することが好ましく、可視領域に実質的に吸収を有していないことが好ましい。
本明細書において、「芳香族環」は、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。
芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。
芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子および硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環および1,3,5−トリアジン環が含まれる。
芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピラジン環および1,3,5−トリアジン環が好ましく、特に1,3,5−トリアジン環が好ましく用いられる。具体的には例えば特開2001−166144号公報に開示の化合物が円盤状化合物として好ましく用いられる。
二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合および(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a)〜(c)のいずれでもよい。
c1:−CO−O−
c2:−CO−NH−
c3:−アルキレン−O−
c4:−NH−CO−NH−
c5:−NH−CO−O−
c6:−O−CO−O−
c7:−O−アルキレン−O−
c8:−CO−アルケニレン−
c9:−CO−アルケニレン−NH−
c10:−CO−アルケニレン−O−
c11:−アルキレン−CO−O−アルキレン−O−CO−アルキレン−
c12:−O−アルキレン−CO−O−アルキレン−O−CO−アルキレン−O−
c13:−O−CO−アルキレン−CO−O−
c14:−NH−CO−アルケニレン−
c15:−O−CO−アルケニレン−
置換基の例には、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、ニトロ基、スルホ基、カルバモイル基、スルファモイル基、ウレイド基、アルキル基、アルケニル基、アルキニル基、脂肪族アシル基、脂肪族アシルオキシ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アルキルスルホニル基、脂肪族アミド基、脂肪族スルホンアミド基、脂肪族置換アミノ基、脂肪族置換カルバモイル基、脂肪族置換スルファモイル基、脂肪族置換ウレイド基および非芳香族性複素環基が含まれる。
アルケニル基の炭素原子数は、2乃至8であることが好ましい。環状アルケニル基よりも鎖状アルケニル基の方が好ましく、直鎖状アルケニル基が特に好ましい。アルケニル基は、さらに置換基を有していてもよい。アルケニル基の例には、ビニル基、アリル基および1−ヘキセニル基が含まれる。
アルキニル基の炭素原子数は、2乃至8であることが好ましい。環状アルキケニル基よりも鎖状アルキニル基の方が好ましく、直鎖状アルキニル基が特に好ましい。アルキニル基は、さらに置換基を有していてもよい。アルキニル基の例には、エチニル基、1−ブチ
ニル基および1−ヘキシニル基が含まれる。
脂肪族アシルオキシ基の炭素原子数は、1乃至10であることが好ましい。脂肪族アシルオキシ基の例には、アセトキシ基が含まれる。
アルコキシ基の炭素原子数は、1乃至8であることが好ましい。アルコキシ基は、さらに置換基(例、アルコキシ基)を有していてもよい。アルコキシ基の(置換アルコキシ基を含む)例には、メトキシ基、エトキシ基、ブトキシ基およびメトキシエトキシ基が含まれる。
アルコキシカルボニル基の炭素原子数は、2乃至10であることが好ましい。アルコキシカルボニル基の例には、メトキシカルボニル基およびエトキシカルボニル基が含まれる。
アルコキシカルボニルアミノ基の炭素原子数は、2乃至10であることが好ましい。アルコキシカルボニルアミノ基の例には、メトキシカルボニルアミノ基およびエトキシカルボニルアミノ基が含まれる。
アルキルスルホニル基の炭素原子数は、1乃至8であることが好ましい。アルキルスルホニル基の例には、メタンスルホニル基およびエタンスルホニル基が含まれる。
脂肪族アミド基の炭素原子数は、1乃至10であることが好ましい。脂肪族アミド基の例には、アセトアミド基が含まれる。
脂肪族スルホンアミド基の炭素原子数は、1乃至8であることが好ましい。脂肪族スルホンアミド基の例には、メタンスルホンアミド基、ブタンスルホンアミド基およびn−オクタンスルホンアミド基が含まれる。
脂肪族置換アミノ基の炭素原子数は、1乃至10であることが好ましい。脂肪族置換アミノ基の例には、ジメチルアミノ基、ジエチルアミノ基および2−カルボキシエチルアミノ基が含まれる。
脂肪族置換カルバモイル基の炭素原子数は、2乃至10であることが好ましい。脂肪族置換カルバモイル基の例には、メチルカルバモイル基およびジエチルカルバモイル基が含まれる。
脂肪族置換スルファモイル基の炭素原子数は、1乃至8であることが好ましい。脂肪族置換スルファモイル基の例には、メチルスルファモイル基およびジエチルスルファモイル基が含まれる。
脂肪族置換ウレイド基の炭素原子数は、2乃至10であることが好ましい。脂肪族置換ウレイド基の例には、メチルウレイド基が含まれる。
非芳香族性複素環基の例には、ピペリジノ基およびモルホリノ基が含まれる。
円盤状化合物からなるレターデーション発現剤の分子量は、300乃至800であることが好ましい
本明細書において、芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基を含む。
アリール基および置換アリール基の方が、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基よりも好ましい。芳香族性へテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性へテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子または硫黄原子が好ましく、窒素原子または硫黄原子がさらに好ましい。
芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環およびピラジン環が好ましく、ベンゼン環が特に好ましい。
よびアルキル基が好ましい。
アルキルアミノ基、アルコキシカルボニル基、アルコキシ基およびアルキルチオ基のアルキル部分とアルキル基とは、さらに置換基を有していてもよい。アルキル部分およびアルキル基の置換基の例には、ハロゲン原子、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アリールチオ基、アルキルスルホニル基、アミド基および非芳香族性複素環基が含まれる。アルキル部分およびアルキル基の置換基としては、ハロゲン原子、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基およびアルコキシ基が好ましい。
アルキレン基は、環状構造を有していてもよい。環状アルキレン基としては、シクロヘキシレンが好ましく、1,4−シクロへキシレンが特に好ましい。鎖状アルキレン基としては、直鎖状アルキレン基の方が分岐を有するアルキレン基よりも好ましい。
アルキレン基の炭素原子数は、1乃至20であることが好ましく、より好ましくは1乃至15であり、さらに好ましくは1乃至10であり、さらに好ましくは1乃至8であり、最も好ましくは1乃至6である。
アルケニレン基およびアルキニレン基の炭素原子数は、好ましくは2乃至10であり、より好ましくは2乃至8であり、さらに好ましくは2乃至6であり、さらに好ましくは2乃至4であり、最も好ましくは2(ビニレンまたはエチニレン)である。
アリーレン基は、炭素原子数は6乃至20であることが好ましく、より好ましくは6乃至16であり、さらに好ましくは6乃至12である。
棒状化合物は、文献記載の方法により合成できる。文献としては、Mol.Cryst.Liq.Cryst.,53巻,229ページ(1979年)、同89巻,93ページ(1982年)、同145巻,111ページ(1987年)、同170巻,43ページ(1989年)、J.Am.Chem.Soc.,113巻,1349ページ(1991年)、同118巻,5346ページ(1996年)、同92巻,1582ページ(1970年)、J.Org.Chem.,40巻,420ページ(1975年)、Tetrahedron,48巻,16号,3437ページ(1992年)を挙げることができる。
また、本発明においては下記一般式(A)で表される棒状化合物を用いることがさらに好ましい。以下に一般式(A)で表される化合物について説明する。
R1、R2、R3、R4およびR5のうち少なくとも1つは電子供与性基を表す。好ましくはR1、R3またはR5のうちの1つが電子供与性基であり、R3が電子供与性基であることがより好ましい。
電子供与性基とはHammetのσp値が0以下のものを表し、Chem.Rev.,91,165(1991)記載のHammetのσp値が0以下のものが好ましく適用でき、より好ましくは−0.85〜0のものが用いられる。例えば、アルキル基、アルコキシ基、アミノ基、水酸基などが挙げられる。
電子供与性基として好ましくはアルキル基、アルコキシ基であり、より好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6特に好ましくは炭素数1〜4である。)である。
好ましくは水素原子、アルキル基(好ましくは炭素数1〜4より好ましくはメチル基である。)、アルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6特に好ましくは炭素数1〜4)である。特に好ましくは水素原子、メチル基、メトキシ基である。
一般式(A)のR8として好ましくは炭素数1〜4のアルキル基、炭素数2〜6のアルキニル基、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数2〜12のアリールオキシ基であり、より好ましくは、炭素数6〜12のアリール基、炭素数1〜12のアルコキシ基、炭素数6〜12のアリールオキシ基であり、更に好ましくは炭素数1〜12のアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4である。)であり、特に好ましくは、メトキシ基、エトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基である。
一般式(I−A)
一般式(I−A)中、R1、R2、R4、R5、R6、R7、R8、R9およびR10はそれぞれ一般式(A)におけるそれらと同義であり、また好ましい範囲も同様である。
一般式(I−B)
一般式(I−B)中、R11は一般式(I−A)におけるそれらと同義であり、また好ましい範囲も同様である。
R1、R2、R4、およびR5がすべて水素原子の場合にはXとして好ましくはアルキル基、アルキニル基、アリール基、アルコキシ基、アリールオキシ基であり、より好ましくは、アリール基、アルコキシ基、アリールオキシ基であり、更に好ましくはアルコキシ基(好ましくは炭素数1〜12、より好ましくは炭素数1〜8、更に好ましくは炭素数1〜6、特に好ましくは炭素数1〜4である。)であり、特に好ましくは、メトキシ基、メトキシ基、n−プロポキシ基、iso−プロポキシ基、n−ブトキシ基である。
一般式(I−C)
一般式(I−D)
R22は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
一般式(I−E)
は炭素数1〜4のアルキル基である。)、好ましくはR4、およびR5が−OR13で表される基であり、より好ましくはR4が−OR13で表される基である。
R13は炭素数1〜4のアルキル基を表し、好ましくは炭素数1〜3のアルキル基であり、より好ましくはエチル基、メチル基であり、更に好ましくはメチル基である。
置換基Tとしては例えばアルキル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメチル、エチル、iso−プロピル、tert−ブチル、n−オクチル、n−デシル、n−ヘキサデシル、シクロプロピル、シクロペンチル、シクロヘキシルなどが挙げられる。)、アルケニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばビニル、アリル、2−ブテニル、3−ペンテニルなどが挙げられる。)、アルキニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜12、特に好ましくは炭素数2〜8であり、例えばプロパルギル、3−ペンチニルなどが挙げられる。)、アリール基(好ましくは炭素数6〜30、より好ましくは炭素数6〜20、特に好ましくは炭素数6〜12であり、例えばフェニル、p−メチルフェニル、ナフチルなどが挙げられる。)、置換又は未置換のアミノ基(好ましくは炭素数0〜20、より好ましくは炭素数0〜10、特に好ましくは炭素数0〜6であり、例えばアミノ、メチルアミノ、ジメチルアミノ、ジエチルアミノ、ジベンジルアミノなどが挙げられる。)、アルコキシ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜12、特に好ましくは炭素数1〜8であり、例えばメトキシ、エトキシ、ブトキシなどが挙げられる。)、アリールオキシ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルオキシ、2−ナフチルオキシなどが挙げられる。)、アシル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばアセチル、ベンゾイル、ホルミル、ピバロイルなどが挙げられる。)、アルコキシカルボニル基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニル、エトキシカルボニルなどが挙げられる。)、アリールオキシカルボニル基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜10であり、例えばフェニルオキシカルボニルなどが挙げられる。)、アシルオキシ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセトキシ、ベンゾイルオキシなどが挙げられる。)、アシルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜10であり、例えばアセチルアミノ、ベンゾイルアミノなどが挙げられる。)、アルコキシカルボニルアミノ基(好ましくは炭素数2〜20、より好ましくは炭素数2〜16、特に好ましくは炭素数2〜12であり、例えばメトキシカルボニルアミノなどが挙げられる。)、アリールオキシカルボニルアミノ基(好ましくは炭素数7〜20、より好ましくは炭素数7〜16、特に好ましくは炭素数7〜12であり、例えばフェニルオキシカルボニルアミノなどが挙げられる。)、スルホニルアミノ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルホニルアミノ、ベンゼンスルホニルアミノなどが挙げられる。)、スルファモイル基(好ましくは炭素数0〜20、より好ましくは炭素数0〜16、特に好ましくは炭素数0〜12であり、例えばスルファモイル、メチルスルファモイル、ジメチルスルファモイル、フェニルスルファモイルなどが挙げられる。)、カルバモイル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばカルバモイル、メチルカルバモイル、ジエチルカルバモイル、フェニルカルバモイルなどが挙げられる。)、アルキルチオ基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメチルチオ、エチルチオなどが挙げられる。)、アリールチオ基(好ましくは炭素数6〜20、より好ましくは炭素数6〜16、特に好ましくは炭素数6〜12であり、例えばフェニルチオなどが挙げられる。)、スルホニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメシル、トシルなどが挙げられる。)、スルフィニル基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばメタンスルフィニル、ベンゼンスルフィニルなどが挙げられる。)、ウレイド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばウレイド、メチルウレイド、フェニルウレイドなどが挙げられる。)、リン酸アミド基(好ましくは炭素数1〜20、より好ましくは炭素数1〜16、特に好ましくは炭素数1〜12であり、例えばジエチルリン酸アミド、フェニルリン酸アミドなどが挙げられる。)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子)、シアノ基、スルホ基、カルボキシル基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、ヘテロ環基(好ましくは炭素数1〜30、より好ましくは1〜12であり、ヘテロ原子としては、例えば窒素原子、酸素原子、硫黄原子、具体的には例えばイミダゾリル、ピリジル、キノリル、フリル、ピペリジル、モルホリノ、ベンゾオキサゾリル、ベンズイミダゾリル、ベンズチアゾリルなどが挙げられる。)、シリル基(好ましくは、炭素数3〜40、より好ましくは炭素数3〜30、特に好ましくは、炭素数3〜24であり、例えば、トリメチルシリル、トリフェニルシリルなどが挙げられる)などが挙げられる。これらの置換基は更に置換されてもよい。
製造プロセス等を考慮すると置換安息香酸を酸ハロゲン化物に官能基変換した後、フェノールと縮合する方法が好ましい。
本反応には塩基を用いないのが好ましく、塩基を用いる場合には有機塩基、無機塩基のどちらでもよく、好ましくは有機塩基であり、ピリジン、3級アルキルアミン(好ましくはトリエチルアミン、エチルジイソプルピルアミンなどが挙げられる)である。
本発明に関するセルロースアシレートフィルム等の光学樹脂フィルムには、マット剤として微粒子を加えることが好ましい。本発明に使用される微粒子としては、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成珪酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。微粒子はケイ素を含むものが濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。二酸化珪素の微粒子は、1次平均粒子径が20nm以下であり、かつ見かけ比重が70g/リットル以上であるものが好ましい。1次粒子の平均径が5〜16nmと小さいものがフィルムのヘイズを下げることができより好ましい。見かけ比重は90〜200g/リットル以上が好ましく、100〜200g/リットル以上がさらに好ましい。見かけ比重が大きい程、高濃度の分散液を作ることが可能になり、ヘイズ、凝集物が良化するため好ましい。
前記二酸化珪素微粒子を用いる場合の使用量は、セルロースアシレートを含むポリマー成分100質量部に対して0.01〜0.3質量部とするのが好ましい。
1次、2次粒子径はフィルム中の粒子を走査型電子顕微鏡で観察し、粒子に外接する円の直径をもって粒径とする。また、場所を変えて粒子200個を観察し、その平均値をもって平均粒子径とする。
次に、本発明のフィルムに使用される樹脂の例として、セルロースアシレートが溶解される前記有機溶媒について記述する。
本発明における良溶媒とは25℃において溶媒100gに5g以上のセルロースを溶解する溶媒とする。一方本発明における貧溶媒とは25℃において溶媒100gに5g未満
のセルロースアシレートを溶解する溶媒とする。
(塩素系溶媒)
本発明に関するセルロースアシレートの溶液を作製するに際しては、主溶媒として塩素系有機溶媒が好ましく用いられる。本発明においては、セルロースアシレートが溶解し流延,製膜できる範囲において、その目的が達成できる限りはその塩素系有機溶媒の種類は特に限定されない。これらの塩素系有機溶媒は、好ましくはジクロロメタン、クロロホルムである。特にジクロロメタンが好ましい。また、塩素系有機溶媒以外の有機溶媒を混合することも特に問題ない。その場合は、ジクロロメタンは有機溶媒全体量中少なくとも50質量%使用することが必要である。本発明で塩素系有機溶剤と併用される他の有機溶媒について以下に記す。すなわち、好ましい他の有機溶媒としては、炭素原子数が3〜12のエステル、ケトン、エーテル、アルコール、炭化水素などから選ばれる溶媒が好ましい。エステル、ケトン、エーテルおよびアルコールは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを二つ以上有する化合物も溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を同時に有していてもよい。二種類以上の官能基を有する溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテート等が挙げられる。炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノンおよびメチルシクロヘキサノン等が挙げられる。炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトール等が挙げられる。二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノール等が挙げられる。
塩素系有機溶媒と他の有機溶媒との組合せ例としては以下の組成を挙げることができるが、これらに限定されるものではない。
・ジクロロメタン/アセトン/メタノール/プロパノール(80/10/5/5、質量部)、
・ジクロロメタン/メタノール/ブタノール/シクロヘキサン(80/10/5/5、質量部)、
・ジクロロメタン/メチルエチルケトン/メタノール/ブタノール(80/10/5/5、質量部)、
・ジクロロメタン/アセトン/メチルエチルケトン/エタノール/イソプロパノール(75/8/5/5/7、質量部)、
・ジクロロメタン/シクロペンタノン/メタノール/イソプロパノール(80/7/5/8、質量部)、
・ジクロロメタン/酢酸メチル/ブタノール(80/10/10、質量部)、
・ジクロロメタン/シクロヘキサノン/メタノール/ヘキサン(70/20/5/5、質量部)、
・ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール(50/20/20/5/5、質量部)、
・ジクロロメタン/1、3ジオキソラン/メタノール/エタノール(70/20/5/5、質量部)、
・ジクロロメタン/ジオキサン/アセトン/メタノール/エタノール(60/20/10/5/5、質量部)、
・ジクロロメタン/アセトン/シクロペンタノン/エタノール/イソブタノール/シクロヘキサン(65/10/10/5/5/5、質量部)、
・ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール(70/10/10/5/5、質量部)、
・ジクロロメタン/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン(65/10/10/5/5/5、質量部)、
・ジクロロメタン/アセト酢酸メチル/メタノール/エタノール(65/20/10/5、質量部)、
・ジクロロメタン/シクロペンタノン/エタノール/ブタノール(65/20/10/5、質量部)、
などを挙げることができる。
次に、本発明に関するセルロースアシレートの溶液を作製するに際して好ましく用いられる非塩素系有機溶媒について記載する。本発明においては、セルロースアシレートが溶解し流延,製膜できる範囲において、その目的が達成できる限りは非塩素系有機溶媒は特に限定されない。本発明で用いられる非塩素系有機溶媒は、炭素原子数が3〜12のエステル、ケトン、エーテルから選ばれる溶媒が好ましい。エステル、ケトンおよび、エーテルは、環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、−O−、−CO−および−COO−)のいずれかを2つ以上有する化合物も、主溶媒として用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい。2種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。炭素原子数が3〜12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルアセテートおよびペンチルアセテートが挙げられる。炭素原子数が3〜12のケトン類の例には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノンおよびメチルシクロヘキサノンが挙げられる。炭素原子数が3〜12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキシエタン、1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、アニソールおよびフェネトールが挙げられる。二種類以上の官能基を有する有機溶媒の例には、2−エトキシエチルアセテート、2−メトキシエタノールおよび2−ブトキシエタノールが挙げられる。
しては、前記非塩素系有機溶媒を主溶媒とする混合溶媒が好ましく、互いに異なる3種類以上の溶媒の混合溶媒であって、第1の溶媒が酢酸メチル、酢酸エチル、蟻酸メチル、蟻酸エチル、アセトン、ジオキソラン、ジオキサンから選ばれる少なくとも一種あるいは或いはそれらの混合液であり、第2の溶媒が炭素原子数が4〜7のケトン類またはアセト酢酸エステルから選ばれ、第3の溶媒として炭素数が1〜10のアルコールまたは炭化水素、より好ましくは炭素数1〜8のアルコールから選ばれる、混合溶媒である。なお第1の溶媒が、2種以上の溶媒の混合液である場合は、第2の溶媒がなくてもよい。第1の溶媒は、さらに好ましくは酢酸メチル、アセトン、蟻酸メチル、蟻酸エチルあるいはこれらの混合物であり、第2の溶媒は、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、アセチル酢酸メチルが好ましく、これらの混合溶媒であってもよい。
・酢酸メチル/アセトン/メタノール/エタノール/プロパノール(75/10/5/5/5、質量部)、
・酢酸メチル/アセトン/メタノール/ブタノール/シクロヘキサン(75/10/5/5/5、質量部)、
・酢酸メチル/アセトン/エタノール/ブタノール(81/8/7/4、質量部)、
・酢酸メチル/アセトン/エタノール/ブタノール(82/10/4/4、質量部)、
・酢酸メチル/アセトン/エタノール/ブタノール(80/10/4/6、質量部)、
・酢酸メチル/メチルエチルケトン/メタノール/ブタノール(80/10/5/5、質
量部)、
・酢酸メチル/アセトン/メチルエチルケトン/エタノール/イソプロパノール(75/8/5/5/7、質量部)、
・酢酸メチル/シクロペンタノン/メタノール/イソプロパノール(80/7/5/8、質量部)、
・酢酸メチル/アセトン/ブタノール(85/10/5、質量部)、
・酢酸メチル/シクロペンタノン/アセトン/メタノール/ブタノール(60/15/14/5/6、質量部)、
・酢酸メチル/シクロヘキサノン/メタノール/ヘキサン(70/20/5/5、質量部)、
・酢酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール(50/20/20/5/5、質量部)、
・酢酸メチル/1、3−ジオキソラン/メタノール/エタノール(70/20/5/5、質量部)、
・酢酸メチル/ジオキサン/アセトン/メタノール/エタノール(60/20/10/5/5、質量部)、
・酢酸メチル/アセトン/シクロペンタノン/エタノール/イソブタノール/シクロヘキサン(65/10/10/5/5/5、質量部)、
・ギ酸メチル/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン(65/10/10/5/5/5、質量部)、
・アセトン/アセト酢酸メチル/メタノール/エタノール(65/20/10/5、質量部)、
・アセトン/シクロペンタノン/エタノール/ブタノール(65/20/10/5、質量部)、
・アセトン/1,3−ジオキソラン/エタノール/ブタノール(65/20/10/5、質量部)、
・1、3−ジオキソラン/シクロヘキサノン/メチルエチルケトン/メタノール/ブタノール(55/20/10/5/5/5、質量部)、
などをあげることができる。
更に下記の方法で調整したセルロースアシレート溶液を用いることもできる。
・酢酸メチル/アセトン/エタノール/ブタノール(81/8/7/4、質量部)でセルロースアシレート溶液を作製しろ過・濃縮後に2質量部のブタノールを追加添加する方法
・酢酸メチル/アセトン/エタノール/ブタノール(84/10/4/2、質量部)でセルロースアシレート溶液を作製しろ過・濃縮後に4質量部のブタノールを追加添加する方法
・酢酸メチル/アセトン/エタノール(84/10/6、質量部)でセルロースアシレート溶液を作製しろ過・濃縮後に5質量部のブタノールを追加添加する方法
本発明に用いるドープには、上記本発明の非塩素系有機溶媒以外に、ジクロロメタンを本発明の全有機溶媒量の10質量%以下含有させてもよい。
セルロースアシレートの溶液は、前記有機溶媒にセルロースアシレートを10〜30質量%の濃度で溶解させた溶液であるのが製膜流延適性の点で好ましく、より好ましくは13〜27質量%であり、特に好ましくは15〜25質量%である。これらの濃度にセルロースアシレートを実施する方法は、溶解する段階で所定の濃度になるように実施してもよく、また予め低濃度溶液(例えば9〜14質量%)として作製した後に後述する濃縮工程で所定の高濃度溶液に調整してもよい。さらに、予め高濃度のセルロースアシレート溶液とした後に、種々の添加物を添加することで所定の低濃度のセルロースアシレート溶液としてもよく、いずれの方法でも本発明に関するセルロースアシレート溶液濃度になるように実施されれば特に問題ない。
まず、セルロースアシレートをドープに使用する溶剤に溶かし、0.1質量%、0.2質量%、0.3質量%、0.4質量%の溶液を調製する。なお、秤量は吸湿を防ぐためセルロースアシレートは120℃で2時間乾燥したものを用い、25℃,10%RHで行う。溶解方法は、ドープ溶解時に採用した方法(常温溶解法、冷却溶解法、高温溶解法)に従って実施する。続いてこれらの溶液、および溶剤を0.2μmのテフロン製フィルターで濾過する。そして、ろ過した溶液を静的光散乱を、光散乱測定装置(大塚電子(株)製DLS−700)を用い、25℃に於いて30度から140度まで10度間隔で測定する。得られたデータをBERRYプロット法にて解析する。なお、この解析に必要な屈折率はアッベ屈折系で求めた溶剤の値を用い、屈折率の濃度勾配(dn/dc)は、示差屈折計(大塚電子(株)製DRM−1021)を用い、光散乱測定に用いた溶剤、溶液を用いて測定する。
次に本発明に係る樹脂溶液の例として、セルロースアシレート溶液(ドープ)の調製について述べる。セルロースアシレートの溶解方法は特に限定されず、室温でもよくさらには冷却溶解法あるいは高温溶解方法、さらにはこれらの組み合わせで実施される。これらに関しては、例えば特開平5−163301号、特開昭61−106628号、特開昭58−127737号、特開平9−95544号、特開平10−95854号、特開平10−45950号、特開2000−53784号、特開平11−322946号、さらに特開平11−322947号、特開平2−276830号、特開2000−273239号、特開平11−71463号、特開平04−259511号、特開2000−273184号、特開平11−323017号、特開平11−302388号各公報などにセルロースアシレート溶液の調製法が記載されている。以上記載したこれらのセルロースアシレートの有機溶媒への溶解方法は、本発明においても適宜本発明の範囲であればこれらの技術を適用できるものである。これらの詳細は、特に非塩素系溶媒系については発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.22−25に詳細に記載されている方法で実施される。さらに本発明に関するセルロースアシレートのドープ溶液は、溶液濃縮,ろ過が通常実施され、同様に発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.25に詳細に記載されている。なお、高温度で溶解する場合は、使用する有機溶媒の沸点以上の場合がほとんどであり、その場合は加圧状態で用いられる。
あることが、流延しやすく好ましい。試料溶液1mLをレオメーター(CLS 500)に直径4cm/2°のSteel Cone(共にTA Instruments社製)を用いて測定する。測定条件はOscillation Step/Temperature Rampで40℃〜−10℃の範囲を2℃/分で可変して測定し、40℃の静的非ニュートン粘度n*(Pa・s)および−5℃の貯蔵弾性率G’(Pa)を求める。尚、試料溶液は予め測定開始温度にて液温一定となるまで保温した後に測定を開始する。本発明では、40℃での粘度が1〜400Pa・sであり、15℃での動的貯蔵弾性率が500Pa以上であるのが好ましく、より好ましくは40℃での粘度が10〜200Pa・sで、15℃での動的貯蔵弾性率が100〜100万である。さらには低温での動的貯蔵弾性率が大きいほど好ましく、例えば流延支持体が−5℃の場合は動的貯蔵弾性率が−5℃で1万〜100万Paであることが好ましく、支持体が−50℃の場合は−50℃での動的貯蔵弾性率が1万〜500万Paが好ましい。
本発明に関する光学樹脂フィルム、例えばセルロースアシレートフィルムは、前記セルロースアシレート溶液を用いて製膜を行うことにより得ることができる。製膜方法及び設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープを加圧型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離
点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて乾燥装置のロール群で搬送し乾燥を終了して巻き取り機で所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。電子ディスプレイ用機能性保護膜に用いる溶液流延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置が付加されることが多い。以下に各製造工程について簡単に述べるが、これらに限定されるものではない。
セルロースアシレート溶液を、金属支持体としての平滑なバンド上或いはドラム上に単層液として流延してもよいし、2層以上の複数のセルロースアシレート液を流延してもよい。複数のセルロースアシレート溶液を流延する場合、金属支持体の進行方向に間隔を置いて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層させながらフィルムを作製してもよく、例えば特開昭61−158414号、特開平1−122419号、および特開平11−198285号の各公報などに記載の方法が適応できる。また、2つの流延口からセルロースアシレート溶液を流延することによってフィルム化することでもよく、例えば特公昭60−27562号、特開昭61−94724号、特開昭61−947245号、特開昭61−104813号、特開昭61−158413号、および特開平6−134933号の各公報に記載の方法で実施できる。また、特開昭56−162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度のセルロースアシレート溶液で包み込み、その高、低粘度のセルロースアシレート溶液を同時に押出すセルロースアシレートフィルム流延方法でもよい。更に又、特開昭61−94724号および特開昭61−94725号の各公報に記載の外側の溶液が内側の溶液よりも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。或いはまた2個の流延口を用いて、第一の流延口により金属支持体に成型したフィルムを剥離し、金属支持体面に接していた側に第二の流延を行なうことでより、フィルムを作製することでもよく、例えば特公昭44−20235号公報に記載されている方法である。流延するセルロースアシレート溶液は同一の溶液でもよいし、異なるセルロースアシレート溶液でもよく特に限定されない。複数のセルロースアシレート層に機能を持たせるために、その機能に応じたセルロースアシレート溶液を、それぞれの流延口から押出せばよい。さらにセルロースアシレート溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アンチハレーション層、UV吸収層、偏光層など)を同時に流延することも実施しうる。
ことにより、高粘度の溶液を同時に金属支持体上に押出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができる。共流延の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜厚の1〜50%であることが好ましく、より好ましくは2〜30%の厚さである。ここで、3層以上の共流延の場合は金属支持体に接した層と空気側に接した層のトータル膜厚を外側の厚さと定義する。共流延の場合、前述の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なるセルロースアシレート溶液を共流延して、積層構造のセルロースアシレートフィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のセルロースアシレートフィルムを作ることができる。例えば、マット剤は、スキン層に多く、又はスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア層に多くいれることができ、コア層のみにいれてもよい。又、コア層とスキン層で可塑剤、紫外線吸収剤の種類を変更することもでき、例えばスキン層に低揮発性の可塑剤及び紫外線吸収剤の少なくともいずれかを含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に優れた紫外線吸収剤を添加することもできる。また、剥離促進剤を金属支持体側のスキン層のみ含有させることも好ましい態様である。また、冷却ドラム法で金属支持体を冷却して溶液をゲル化させるために、スキン層に貧溶媒であるアルコールをコア層より多く添加することも好ましい。スキン層とコア層のTgが異なっていても良く、スキン層のTgよりコア層のTgが低いことが好ましい。又、流延時のセルロースアシレートを含む溶液の粘度もスキン層とコア層で異なっていても良く、スキン層の粘度がコア層の粘度よりも小さいことが好ましいが、コア層の粘度がスキン層の粘度より小さくてもよい。
溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押し出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節するドクターブレードによる方法、或いは逆回転するロールで調節するリバースロールコーターによる方法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやTダイタイプ等があるがいずれも好ましく用いることができる。また、ここで挙げた方法以外にも従来知られているセルローストリアセテート溶液を流延製膜する種々の方法で実施でき、用いる溶媒の沸点等の違いを考慮して各条件を設定することによりそれぞれの公報に記載の内容と同様の効果が得られる。本発明に関するセルロースアシレートフィルムを製造するのに使用されるエンドレスに走行する金属支持体としては、表面がクロムメッキによって鏡面仕上げされたドラムや表面研磨によって鏡面仕上げされたステンレスベルト(バンドといってもよい)が用いられる。本発明に関するセルロースアシレートフィルムの製造に用いられる加圧ダイは、金属支持体の上方に1基或いは2基以上の設置でもよい。好ましくは1基又は2基である。2基以上設置する場合には流延するドープ量をそれぞれのダイに種々な割合にわけてもよく、複数の精密定量ギヤアポンプからそれぞれの割合でダイにドープを送液してもよい。流延に用いられるセルロースアシレート溶液の温度は、−10〜55℃が好ましくより好ましくは25〜50℃である。その場合、工程のすべてが同一でもよく、あるいは工程の各所で異なっていてもよい。異なる場合は、流延直前で所望の温度であればよい。
セルロースアシレートフィルムの製造に係わる金属支持体上におけるドープの乾燥は、一般的には金属支持体(ドラム或いはベルト)の表面側、つまり金属支持体上にあるウェブの表面から熱風を当てる方法、ドラム或いはベルトの裏面から熱風を当てる方法、温度コントロールした液体をベルトやドラムのドープ流延面の反対側である裏面から接触させて、伝熱によりドラム或いはベルトを加熱し表面温度をコントロールする液体伝熱方法などがあるが、裏面液体伝熱方式が好ましい。流延される前の金属支持体の表面温度はドープに用いられている溶媒の沸点以下であれば何度でもよい。しかし乾燥を促進するために
は、また金属支持体上での流動性を失わせるためには、使用される溶媒の内の最も沸点の低い溶媒の沸点より1〜10℃低い温度に設定することが好ましい。尚、流延ドープを冷却して乾燥することなく剥ぎ取る場合はこの限りではない。
前述の本発明に好ましい製造方法1に係わる延伸工程を図11および12を用いて説明する。
図11において工程Aでは図示されていないフィルム搬送工程D0から搬送されてきたフィルムを把持する工程であり、次の工程Bにおいて、図12に示すような延伸角度でフィルムが幅手方向(フィルムの進行方向と直行する方向)に延伸され、工程Cにおいては延伸が終了し、フィルムが把持されたまま搬送される工程であり、フィルムを緩和する場合もある。
工程B開始時の残留溶媒量としては90質量%〜5質量%に調整することが好ましく、さらに好ましくは90質量%〜10質量%に調整することが好ましく、最も好ましくは40質量%〜10質量%に調整することが好ましい。
延伸工程には好ましい良溶媒及び貧溶媒の比率が存在する。工程A,B,C各終了時点でのそれぞれの残留貧溶媒質量/(残留良溶媒質量+残留貧溶媒質量)×100%が95質量%〜15質量(%)が好ましい。更に95質量%〜25質量%が好ましく、95質量%〜30質量%が最も好ましい。また、工程A,B,C終了時点でのそれぞれの残留貧溶媒質量/(残留良溶媒質量+残留貧溶媒質量)×100%は同一であっても異なっていても良い。
延伸工程において、フィルムの厚みむらを小さくするために工程Bでは軟らかい状態で
延伸を行い、工程A,Cは工程Bに比較してベースが硬い状態であることが好ましい。蒸気条件は具体的にはフィルム温度およびフィルム残留溶媒量をコントロールすることで達成できる。
各工程での雰囲気温度としてはフィルム残留溶媒量にも影響されるが、工程Aで30〜40℃、工程B,Cでは30〜140℃が好ましい。具体的には工程B終了時のフィルム残留溶媒量が工程B開始時のフィルム残留溶媒量の0.4〜0.8の範囲にあるとき工程Bの雰囲気温度は110℃〜140℃であることが好ましい。工程B終了時のフィルム残量溶媒量が工程B開始時のフィルム残留溶媒量の0.4〜0.8の範囲にあるとき工程B開始時のフィルム温度は30℃〜140℃であり、工程B終了時のフィルム温度は70℃〜140℃の範囲であることが好ましい。
また、延伸速度は一定で行っても良いし、変化させても良いが、50%/min〜500%/minが好ましく、さらに好ましくは100%/min〜400%/min、200%/min〜300%/minが最も好ましい。
フィルムの延伸は、縦あるいは横だけの一軸延伸でもよく同時あるいは逐次2軸延伸でもよい。光学フィルムの複屈折は幅方向の屈折率が長さ方向の屈折率よりも大きくなることが好ましい。従って幅方向により多く延伸することが好ましい。また、延伸処理は製膜工程の途中で行ってもよいし、製膜して巻き取った原反を延伸処理しても良い。
一方、光学フィルムの透過率は、85%以上であることが好ましく、90%以上であることがさらに好ましい。本発明の延伸方法を適用することで同じ材料を使用しても、より高い透過率の光学フィルムを得ることが出来る。本発明者によれば、非常に高温で延伸することでポリマー材料中の不純物等が揮発し、フィルム中での散乱因子が減少するものと推定している。
セルロースアシレートは、グルコピラノース環からなる主鎖とアシル基からなる側鎖で形成されている。セルロースアシレートからなるフィルムを延伸すると主鎖が延伸方向に向き、Reを発現する。本発明者らは、鋭意研究の末、Tgが140℃のセルロースアシレートの場合、165℃〜240℃という非常に高温で延伸することで、450nmにおけるReが減少し、650nmにおけるReが上昇することを突き止めた。
また、同高温延伸後のセルロースアシレートフィルムには、結晶化に由来すると考えられるX線回折のピークが現れており、結晶化により主鎖と側鎖の配向状態が変化し、Reの波長依存性が変化したと推定している。
一方、液晶表示装置の色ずれを改良するには、Rthを制御することも重要である。このRthを制御する方法としては、後述の液晶層を塗設する方法、もしくは添加剤を使用する方法等が好ましく使用される。
前述のように本発明者らは鋭意検討の結果、フィルムを延伸する延伸工程と収縮させる収縮工程とを含むことを特徴とする製造方法により、上記好ましい光学物性を有する光学フィルムが得られることを見出した。
この場合、フィルムの搬送方向にフィルムを延伸することとなるが、フィルムの搬送方向に延伸する方法としては、フィルムの搬送ローラーの速度を調節して、フィルムの剥ぎ取り速度よりもフィルムの巻き取り速度の方を速くする方法が好ましく用いられる。
この場合、フィルムの巾をテンターで保持しながら搬送して、テンターの巾を徐々に狭めることでフィルムを延伸方向と略直交して収縮させることが出来る。
なお、本発明でいう延伸率とは、延伸方向における延伸前のフィルムの長さに対する延伸後のフィルムの長さの延びた割合を意味し、収縮率とは、収縮方向における収縮前のフ
ィルムの長さに対する収縮後のフィルムの収縮した長さの割合を意味する。
容器 ステンレス製密封容器 70μl
測定モード Modulated DSC
走査温度域 −50〜200℃
昇温速度 2℃/分
降温速度 20℃/分
昇温時振幅 ±1℃
振幅周期 80秒
延伸工程後もしくは収縮工程後にさらに熱処理を行ってもよい。熱処理温度は光学フィルムのガラス転移温度より20℃低い値から10℃高い温度で行うことが好ましく、熱処理時間は1秒間乃至300時間であることが好ましい。また、加熱方法はゾーン加熱であっても、赤外線ヒータを用いた部分加熱であっても良い。工程の途中または最後にフィルムの両端をスリットしても良い。これらのスリット屑は回収し原料として再利用することが好ましい。
本発明のフィルムの製造においては、以下に記載する技術を適宜使用することができる。
持しながらウェブを乾燥させる際に、乾燥ガス吹き出し方法、吹き出し角度、風速分布、風速、風量、温度差、風量差、上下吹き出し風量比、高比熱乾燥ガスの使用等を適度にコントロールすることで、溶液流延法による速度を上げたり、ウェブ幅を広げたりする時の平面性等の品質低下防止を確保する技術が開示されている。
また、特開平11−077822号公報には、ムラ発生を防ぐために、延伸した熱可塑性樹脂フィルムを延伸工程後、熱緩和工程においてフィルムの幅方向に温度勾配を設けて熱処理する発明が記載されている。
込ます直前のピンをダクト型冷却器でのドープのゲル化温度+15°C以下に冷却する発明が記載されている。
ルムの製造装置において、テンター入口前に、ウェブ幅手方向のたるみ抑制装置を有する発明が記載されている。なお、さらに好ましい態様として、たるみ抑制装置が幅手方向に広がる角度が2〜60゜の方向範囲で回転する回転ローラーであること、ウェブの上部に吸気装置を有すること、ウェブの下から送風出来る送風機を有すること、等も開示されている。
0−239403号公報には、剥離時の残留溶媒率Xとテンターに導入する時の残留溶媒率Yの関係を0.3X≦Y≦0.9Xの範囲として製膜を行うことが開示されている。
以下に、本発明の光学樹脂フィルムの好ましい物性について、セルロースアシレートフィルムを例として説明する。
乾燥後得られる本発明に関するセルロースアシレートフィルムの膜厚は、使用目的によって異なり、通常5から500μmの範囲であることが好ましく、更に20〜300μmの範囲が好ましく、特に30〜150μmの範囲が好ましい。また、光学用として特にVA液晶表示装置用としては40〜110μmであることが好ましい。フィルム厚さの調製は、所望の厚さになるように、ドープ中に含まれる固形分濃度、ダイの口金のスリット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。以上のようにして得られたセルロースアシレートフィルムの幅は0.5〜3mが好ましく、より好ましくは0.6〜2.5m、さらに好ましくは0.8〜2.2mである。長さは1ロールあたり100〜10000mで巻き取るのが好ましく、より好ましくは500〜7000mであり、さらに好ましくは1000〜6000mである。巻き取る際、少なくとも片端にナーリングを付与するのが好ましく、幅は3mm〜50mmが好ましく、より好ましくは5mm〜30mm、高さは0.5〜500μmが好ましく、より好ましくは1〜200μmである。これは片押しであっても両押しであっても良い。
本明細書において、Re(λ)、Rth(λ)は各々、波長λにおける面内のリターデーションおよび厚さ方向のリターデーションを表す。Re(λ)はKOBRA 21ADH(王子計測機器(株)製)において波長λnmの光をフィルム法線方向に入射させて測定される。Rth(λ)は前記Re(λ)を、面内の遅相軸(KOBRA 21ADHにより判断される)を傾斜軸(回転軸)としてフィルム法線方向に対して−50度から+50度まで10度ステップで各々その傾斜した方向から波長λnmの光を入射させて11点測定し、その測定されたレタデーション値と平均屈折率の仮定値及び入力された膜厚値を基にKOBRA 21ADHが算出する。ここで平均屈折率の仮定値は ポリマーハンドブック(JOHN WILEY&SONS,INC)、各種光学フィルムのカタログの値を使用することができる。平均屈折率の値が既知でないものについてはアッベ屈折計で測定することができる。主な光学フィルムの平均屈折率の値を以下に例示する: セルロースアシレート(1.48)、シクロオレフィンポリマー(1.52)、ポリカーボネート(1.59)、ポリメチルメタクリレート(1.49)、ポリスチレン(1.59)である。これら平均屈折率の仮定値と膜厚を入力することで、KOBRA 21ADHはnx、ny、nzを算出する。この算出されたnx,ny,nzよりNz=(nx−nz)/(nx−ny)が更に算出される。
2枚型の場合、Reは20乃至100nmが好ましく、30乃至70nmがさらに好ましい。Rthについては70乃至300nmが好ましく、100乃至200nmがさらに好ましい。
1枚型の場合、Reは30乃至150nmが好ましく、40乃至100nmがさらに好ましい。Rthについては100乃至400nmが好ましく、150乃至250nmがさらに好ましい。
また、本発明に関するセルロースアシレートフィルムは、25℃80%RHにおける平衡含水率が3.2%以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
含水率の測定法は、本発明に関するセルロースアシレートフィルム試料7mm×35mmを水分測定器、試料乾燥装置(CA−03、VA−05、共に三菱化学(株))にてカールフィッシャー法で測定する。水分量(g)を試料質量(g)で除して算出する。
セルロースアシレートフィルムの膜厚が厚ければ透湿度は小さくなり、膜厚が薄ければ透湿度は大きくなる。そこでどのような膜厚のサンプルでも基準を80μmに設け換算する必要がある。膜厚の換算は、(80μm換算の透湿度=実測の透湿度×実測の膜厚μm/80μm)として求める。
透湿度の測定法は、「高分子の物性II」(高分子実験講座4 共立出版)の285頁〜294頁:蒸気透過量の測定(質量法、温度計法、蒸気圧法、吸着量法)に記載の方法を適用することができる。
ガラス転移温度の測定は、本発明に関するセルロースアシレートフィルム試料(未延伸)5mm×30mmを、25℃60%RHで2時間以上調湿した後に動的粘弾性測定装置(バイブロン:DVA−225(アイティー計測制御(株)製))で、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃〜200℃、周波数1Hzで測定し、縦軸に対数軸で貯蔵弾性率、横軸に線形軸で温度(℃)をとった時に、貯蔵弾性率が固体領域からガラス転移領域へ移行する際に見受けられる貯蔵弾性率の急激な減少を固体領域で直線1を引き、ガラス転移領域で直線2を引いたときの直線1と直線2の交点を、昇温時に貯蔵弾性率が急激に減少しフィルムが軟化し始める温度であり、ガラス転移領域に移行し始める温度であるため、ガラス転移温度Tg(動的粘弾性)とした。
また、本発明に関するセルロースアシレートフィルムは、ヘイズが0.01〜2%であるのが、好ましい。ここで、ヘイズは、以下のようにして測定できる。
ヘイズの測定は、本発明に関するセルロースアシレートフィルム試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM−2DP、スガ試験機)でJIS K−6714に従って測定する。
また、本発明に関するセルロースアシレートフィルムは、80℃、90%RHの条件下に48時間静置した場合の質量変化が、0〜5%であるのが、好ましい。
また、本発明に関するセルロースアシレートフィルムは、60℃、95%RHの条件下に24時間静置した場合の寸度変化および90℃、5%RHの条件下に24時間静置した場合の寸度変化が、いずれも0〜5%であるのが、好ましい。
光弾性係数が、50×10-13cm2/dyne以下であるのが、液晶表示装置の経時による色味変化を少なくする上で好ましい。
具体的な測定方法としては、セルロースアシレートフィルム試料10mm×100mmの長軸方向に対して引っ張り応力をかけ、その際のレターデーションをエリプソメーター(M150、日本分光(株))で測定し、応力に対するレターデーションの変化量から光弾性係数を算出する。
本発明の光学樹脂フィルムは、その上に光学異方性層を設け、例えば偏光板の保護膜として用いることができる。光学異方性層は、該フィルム上に配向層と光学異方性層をこの順に有したものが好ましい。
合性モノマー、光重合開始剤)を溶剤に溶解した溶液を配向層上に塗布し、乾燥し、次いでディスコティックネマチック相形成温度まで加熱した後、UV光の照射等により重合させ、さらに冷却することにより得られる。本発明に用いるディスコティック液晶性化合物のディスコティックネマティック液晶相−固相転移温度としては、70〜300℃が好ましく、特に70〜170℃が好ましい。
光学異方性層の厚さは、0.1〜10μmであることが好ましく、0.5〜5μmであることがさらに好ましい。
さらには、光学異方性層は、選択反射の波長域が350nm以下であるコレステリック液晶の配向固化層であっても良い。コレステリック液晶としては、例えば特開平3−67219号公報や特開平3−140921号公報、特開平5−61039号公報や特開平6−186534号公報、特開平9−133810号公報などに記載された、前記の選択反射特性を示す適宜なものを用いうる。配向固化層の安定性等の点より好ましく用いうるものは、例えばコレステリック液晶ポリマーやカイラル剤配合のネマチック液晶ポリマー、光や熱等による重合処理で斯かる液晶ポリマーを形成する化合物などからなるコレステリック液晶層を形成しうるものである。
この場合の光学異方性層は、例えば支持基材上にコレステリック液晶をコーティングする方法などにより形成することができる。その場合、位相差の制御等を目的に必要に応じて、同種又は異種のコレステリック液晶を重ね塗りする方式なども採ることができる。コーティング処理には、例えばグラビア方式やダイ方式、ディッピング方式などの適宜な方式を採ることができる。前記の支持基材にはTACフィルム、又はその他のポリマーフィルムなどの適宜なものを用いうる。
さらに光の照射で配向機能が生じる配向膜などもあげられる。一方、延伸フィルム上に液晶をコーティングして配向させる方式(特開平3−9325号公報)、電場や磁場等の印加下に液晶を配向させる方式などもなどもあげられる。なお液晶の配向状態は、可及的に均一であることが好ましく、またその配向状態で固定された固化層であることが好ましい。
本発明に関する光学樹脂フィルム、例えばセルロースアシレートフィルムの偏光子への貼り合せ方は、偏光子の透過軸と本発明に関するセルロースアシレートフィルムの遅相軸を一致させるように貼り合せることが好ましい。
なお、偏光板クロスニコル下で作製した偏光板は、本発明に関するセルロースアシレートフィルムの遅相軸と偏光子の吸収軸(透過軸と直交する軸)との直交精度が1°より大きいと、偏光板クロスニコル下での偏光度性能が低下して光抜けが生じ、液晶セルと組み合わせた場合に、十分な黒レベルやコントラストが得られない為、本発明に関するセルロースアシレートフィルムの主屈折率nxの方向と偏光板の透過軸の方向とは、そのずれが1°以内、好ましくは0.5°以内であることが好ましい。
本発明に関する光学樹脂フィルム、例えばセルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、下塗層およびバック層)との接着の向上を達成することができる。表面処理としては、例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、10-3〜20Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報公技番号2001−1745号(2001年3月15日発行、発明協会)p.30−32に詳細に記載されている。なお、近年注目されている大気圧でのプラズマ処理は、例えば10〜1000Kev下で20〜500Kgyの照射エネルギーが用いられ、より好ましくは30〜500Kev下で20〜300Kgyの照射エネルギーが用いられる。これらの中でも特に好ましくは、アルカリ鹸化処理でありセルロースアシレートフィルムの表面処理としては極めて有効である。
図7は、本発明の偏光板の一例の断面構造を模式的に示す図である(説明のために液晶セル用ガラスも示した)。図7において、偏光子71の両面に保護膜72および73が設けられ、これらのうちの少なくとも一方が本発明の光学樹脂フィルムを有する。この偏光板70が、粘着剤層74を介して液晶セル用ガラス75上に貼りあわされる。また図8は、本発明の偏光板の別の例の断面構造を模式的に示す図である。図8の形態は、図7の偏光板上に、前記のような機能性膜81が設けられている。
なお、各層はそれぞれ別個の層として設ける必要はなく、例えば、防眩層を、反射防止層やハードコート層にその機能を持たせることにより、例えば反射防止層を反射防止層及び防眩層として機能させることにより設けても良い。
本発明では、保護膜上に少なくとも光散乱層と低屈折率層がこの順で積層されてなる反射防止層又は保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層が好適に用いられる。以下にそれらの好ましい例を記載する。
光散乱層には、マット粒子が分散されているのが好ましく、光散乱層のマット粒子以外の部分の素材の屈折率は1.50〜2.00の範囲にあることが好ましく、低屈折率層の屈折率は1.20〜1.49の範囲にあることが好ましい。本発明において光散乱層は、防眩性とハードコート性を兼ね備えており、1層でもよいし、複数層、例えば2層〜4層で構成されていてもよい。
ルとなり、好ましい。またC光源下での透過光のb*値が0〜3とすることで、表示装置に適用した際の白表示の黄色味が低減され、好ましい。また、面光源上と本発明の反射防止フィルムの間に120μm×40μmの格子を挿入してフィルム上で輝度分布を測定した際の輝度分布の標準偏差が20以下であると、高精細パネルに本発明のフィルムを適用したときのギラツキが低減され、好ましい。
本発明で用いることができる低屈折率層の屈折率は、好ましくは1.20〜1.49であり、更に好ましくは1.30〜1.44の範囲にある。さらに、低屈折率層は下記式を満たすことが低反射率化の点で好ましい。
(m/4)λ×0.7<n1d1<(m/4)λ×1.3
式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚(nm)である。また、λは波長であり、500〜550nmの範囲の値である。
低屈折率層は、低屈折率バインダーとして、含フッ素ポリマーを含むことが好ましい。フッ素ポリマーとしては動摩擦係数0.03〜0.20、水に対する接触角90〜120°、純水の滑落角が70°以下の熱または電離放射線により架橋する含フッ素ポリマーが好ましい。本発明の偏光板を画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなり好ましく、引張り試験機で測定した場合に500gf以下が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。また、微小硬度計で測定した表面硬度が高いほど、傷がつき難く、0.3GPa以上が好ましく、0.5GPa以上がより好ましい。
合によって得られる構成単位、カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得られる構成単位、これらの構成単位に高分子反応によって(メタ)アクリルロイル基等の架橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用させる等の手法で導入できる)が挙げられる。
光散乱層は、表面散乱および内部散乱の少なくともいずれかによる光拡散性と、フィルムの耐擦傷性を向上するためのハードコート性をフィルムに付与する目的で形成される。従って、ハードコート性を付与するためのバインダー、光拡散性を付与するためのマット粒子、および必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィラーを含んで形成される。また、このような光散乱層を設けることにより、該光散乱層が防眩層としても機能し、偏光板が防眩層を有することになる。
従って、エチレン性不飽和基を有するモノマー、光ラジカル開始剤あるいは熱ラジカル開始剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を保護膜上に塗布後電離放射線または熱による重合反応により硬化して反射防止膜を形成することができる。これらの光ラジカル開始剤等は公知のものを使用することができる。
架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。
これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋構造を形成することができる。
上記マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架
橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好ましい。マット粒子の形状は、球状あるいは不定形のいずれも使用できる。
マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。
光散乱層に用いられる無機フィラーの具体例としては、TiO2、ZrO2、Al2O3、In2O3、ZnO、SnO2、Sb2O3、ITOとSiO2等が挙げられる。TiO2およびZrO2が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理又はチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。
これらの無機フィラーの添加量は、光散乱層の全質量の10〜90%であることが好ましく、より好ましくは20〜80%であり、特に好ましくは30〜75%である。
なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。
について述べる。
保護膜上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成から成る反射防止層は、以下の関係を満足する屈折率を有する様に設計される。
高屈折率層の屈折率>中屈折率層の屈折率>保護膜の屈折率>低屈折率層の屈折率
また、保護膜と中屈折率層の間に、ハードコート層を設けてもよい。更には、中屈折率ハードコート層、高屈折率層及び低屈折率層からなってもよい。
例えば、特開平8−122504号公報、同8−110401号公報、同10−300902号公報、特開2002−243906号公報、特開2000−111706号公報等に記載の反射防止層が挙げられる。
また、各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例、特開平10−206603号公報、特開2002−243906号公報等)等が挙げられる。
反射防止層のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また、膜の強度は、JIS K5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。
反射防止膜の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物微粒子及びマトリックスバインダーを少なくとも含有する硬化膜から成る。
高屈折率の無機化合物微粒子としては、屈折率1.65以上の無機化合物が挙げられ、好ましくは屈折率1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。
このような微粒子とするには、粒子表面が表面処理剤で処理されること(例えば、シランカップリング剤等:特開平11−295503号公報、同11−153703号公報、特開2000−9908号公報、アニオン性化合物或は有機金属カップリング剤:特開2001−310432号公報等)、高屈折率粒子をコアとしたコアシェル構造とすること(特開2001−166104号公報等)、特定の分散剤併用(例、特開平11−153703号公報、米国特許第6210858号明細書、特開2002−277609号公報等)等挙げられる。
マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。
更に好ましい材料としては、ラジカル重合性及びカチオン重合性の少なくともいずれかの重合性基を2個以上有する多官能性化合物含有組成物、加水分解性基を含有する有機金属化合物を含有する組成物、及びその部分縮合体を含有する組成物から選ばれる少なくとも1種の組成物が挙げられる。
例えば、特開2000−47004号公報、同2001−315242号公報、同2001−31871号公報、同2001−296401号公報等に記載の化合物が挙げられる。
高屈折率層の屈折率は、1.70〜2.20であることが好ましい。高屈折率層の厚さは、5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、1.50〜1.70であることが好ましい。また、厚さは5nm〜10μmであることが好ましく、10nm〜1μmであることがさらに好ましい。
低屈折率層は、高屈折率層の上に順次積層して成る。低屈折率層の屈折率は1.20〜1.55であることが好ましい。より好ましくは1.30〜1.50である。
低屈折率層は、耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等から成る薄膜層の手段を適用できる。
また、含フッ素化合物はフッ素原子を35〜80質量%の範囲で含む架橋性若しくは重合性の官能基を含む化合物が好ましい。
例えば、特開平9−222503号公報段落番号[0018]〜[0026]、同11−38202号公報段落番号[0019]〜[0030]、特開2001−40284号公報段落番号[0027]〜[0028]、特開2000−284102号公報等に記載の化合物が挙げられる。
含フッ素化合物の屈折率は1.35〜1.50であることが好ましい。より好ましくは1.36〜1.47である。
シリコーン化合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン(例、サイラプレーン(チッソ(株)製等)、両末端にシラノール基含有のポリシロキサン(特開平11−258403号公報等)等が挙げられる。
架橋又は重合性基を有する含フッ素ポリマー及びシロキサンポリマーの少なくともいずれかの架橋又は重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布と同時または塗布後に光照射や加熱することにより低屈折率層を形成することが好ましい。
又、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も好ましい。
例えば、ポリフルオロアルキル基含有シラン化合物またはその部分加水分解縮合物(特開昭58−142958号公報、同58−147483号公報、同58−147484号公報、特開平9−157582号公報、同11−106704号公報記載等記載の化合物)、フッ素含有長鎖基であるポリ「パーフルオロアルキルエーテル」基を含有するシリル化合物(特開2000−117902号公報、同2001−48590号公報、同2002−53804号公報記載の化合物等)等が挙げられる。
低屈折率層は、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム,フッ化カルシウム,フッ化バリウム)等の一次粒子平均径が1〜150nmの低屈折率無機化合物、特開平11−3820号公報の段落番号[0020]〜[0038]に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活性剤等を含有することができる。
低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良い。安価に製造できる点で、塗布法が好ましい。
低屈折率層の膜厚は、30〜200nmであることが好ましく、50〜150nmであることがさらに好ましく、60〜120nmであることが最も好ましい。
ハードコート層は、反射防止層を設けた保護膜に物理強度を付与するために、保護膜の表面に設ける。特に、透明支持体と前記高屈折率層の間に設けることが好ましい。ハードコート層は、光及び/又は熱の硬化性化合物の架橋反応、又は、重合反応により形成されることが好ましい。硬化性化合物における硬化性官能基としては、光重合性官能基が好ましい。又加水分解性官能基含有の有機金属化合物や有機アルコキシシリル化合物も好ましい。
これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。
ハードコート層の具体的な構成組成物としては、例えば、特開2002−144913号公報、同2000−9908号公報、国際公開第00/46617号パンフレット等記載のものが挙げられる。
高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが好ましい。
ハードコート層は、平均粒径0.2〜10μmの粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層を兼ねることもできる。
ハードコート層の膜厚は、用途により適切に設計することができる。ハードコート層の膜厚は、0.2〜10μmであることが好ましく、より好ましくは0.5〜7μmである。
ハードコート層の強度は、JIS K5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。又、JIS K5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。
さらに、前方散乱層、プライマー層、帯電防止層、下塗り層や保護層等を設けてもよい。
帯電防止層を設ける場合には体積抵抗率が10-8(Ωcm-3)以下の導電性を付与することが好ましい。吸湿性物質や水溶性無機塩、ある種の界面活性剤、カチオンポリマー、アニオンポリマー、コロイダルシリカ等の使用により10-8(Ωcm-3)の体積抵抗率の付与は可能であるが、温湿度依存性が大きく、低湿では十分な導電性を確保できない問題がある。そのため、導電性層素材としては金属酸化物が好ましい。金属酸化物には着色しているものがあるが、これらの金属酸化物を導電性層素材として用いるとフィルム全体が着色してしまい好ましくない。着色のない金属酸化物を形成する金属としてZn,Ti,Sn,Al,In,Si,Mg,Ba,Mo,W,又はVをあげることができ、これらを主成分とした金属酸化物を用いることが好ましい。具体的な例としては、ZnO,TiO2,SnO2,Al2O3,In2O3,SiO2,MgO,BaO,MoO3,WO3,V2O5等、あるいはこれらの複合酸化物がよく、特にZnO,TiO2,及びSnO2が好ましい。異種原子を含む例としては、例えばZnOに対してはAl,In等の添加物、SnO2に対してはSb,Nb,ハロゲン元素等の添加、またTiO2に対してはNb,Ta等の添加が効果的である。更にまた、特公昭59−6235号公報に記載の如く、他の結晶性金属粒子あるいは繊維状物(例えば酸化チタン)に上記の金属酸化物を付着させた素材を使用しても良い。尚、体積抵抗値と表面抵抗値は別の物性値であり単純に比較することはできないが、体積抵抗値で10-8(Ωcm-3)以下の導電性を確保するためには、該導電層が概ね10-10(Ω/□)以下の表面抵抗値を有していればよく更に好ましくは10-8(Ω/□)である。導電層の表面抵抗値は帯電防止層を最表層としたときの値として測定されることが必要であり、本特許に記載の積層フィルムを形成する途中の段階で測定することができる。
本発明の偏光板は、液晶表示装置に有利に用いられる。本発明の偏光板は、様々な表示モードの液晶セルに用いることができる。TN(Twisted Nematic)、IPS(In−Plane Switching)、FLC(Ferroelectric
Liquid Crystal)、AFLC(Anti−ferroelectric
Liquid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA
(Vertically Aligned)およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。このうち、VAモードに好ましく用いることができる。
VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2−176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n−ASMモード、CPAモード)の液晶セル(日本液晶討論会の予稿集58〜59(1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。
VAモードの液晶表示装置としては、液晶セル(VAモードセル)およびその両側に配置された二枚の偏光板からなるものが挙げられる。液晶セルは、二枚の電極基板の間に液晶を担持している。
図9および10に、本発明の液晶表示装置の構成例を示す。
図9において、偏光子71の両面に保護膜72および73が設けられ、これらのうちの少なくとも一方が本発明の光学樹脂フィルムを有する。本発明の光学樹脂フィルムは、液晶セル側に設けられるのが好ましい。また、保護膜72上(観察者側)には、機能性膜81が設けられている。この偏光板70が、粘着剤層74を介して液晶セル用ガラス92上に貼りあわされている。液晶セル90は、液晶層91を液晶セル用ガラス92および93で挟み込んで形成され、光源側の液晶セル用ガラス93には、粘着剤層74’を介して偏光板70’が貼りあわされている。偏光板70’は、偏光子71’の両面に保護膜72’および73’が設けられてなる。本発明では、偏光板70または偏光板70’のいずれかまたは両方に本発明の光学樹脂フィルムを有していればよい。
図10は、さらに具体的に本発明の液晶表示装置を説明している。図10において、液晶表示装置は、液晶層107とそれを挟む上側基板106および下側基板108からなる液晶セルを有する。上側基板106および下側基板108は液晶面に配向処理が施してある。液晶セルを挟持して偏光膜101および201が配置されている。偏光膜101および201それぞれの透過軸102および202を、互いに直交に、かつ液晶セルの液晶層107の配向方向と45度の角度に配置している。偏光膜101および201と液晶セルとの間には、本発明の光学樹脂フィルム103aおよび203aと光学異方性層105および109がそれぞれ配置されている。
光学樹脂フィルム103aおよび203aは、その面内遅相軸104aおよび204aが、それぞれに隣接する偏光膜101および201の透過軸102および202の方向と平行に配置されている。
(セルロースアシレートフィルムの作製)
リンターパルプからのセルロース100質量部とセルロースに対して100質量部の氷酢酸を室温にて均一に攪拌混合した混合物を、無水酢酸245質量部、酢酸365質量部および触媒の硫酸15質量部の反応釜中の冷却した混合液中に投入し、47℃で60分間、酢化反応を行った。酢化反応終了時に45.5質量部の加水分解および中和のための酢酸マグネシウム水溶液(30質量%)を加え、過剰に存在する無水酢酸の加水分解と硫酸の中和を行った。その後、反応液を60℃まで昇温しながら、約12.8質量部の熟成のための酢酸マグネシウム水溶液(30質量%)を添加した。その後、水を添加した後、70℃で40分間熟成反応を行った。熟成反応終了後、約20質量部の反応終了後の酢酸マグネシウム水溶液(30質量%)を加え、硫酸を完全に中和して反応を停止した。反応終了後、大過剰の水で沈殿、洗浄、乾燥を行った。
下記の組成物をミキシングタンクに投入し、加熱しながら攪拌して、各成分を溶解し、セルローストリアセテート(トリアセチルセルロース:TAC)溶液を調製した。このとき、同時にセルロースアシレート100質量部に対して微粒子であるマット剤(AEROSIL R972、日本エアロジル(株)製)0.05質量部および下記紫外線吸収剤1を0.3質量部、紫外線吸収剤2を0.7質量部投入し、ドープを完成させた。
────────────────────────────────────────
セルロースアセテート(置換度2.81 酢化度60.2%) 100質量部
トリフェニルホスフェート(可塑剤) 6.5質量部
ビフェニルジフェニルホスフェート(可塑剤) 5.2質量部
メチレンクロライド(第1溶媒) 500質量部
メタノール(第2溶媒) 80質量部
下記のレターデーション上昇剤(λmax=230nm) 1.0質量部
─────────────────────────────────────
上述のドープをダイからステンレスベルト上にドープ温度30℃で幅1.6mで流延した。ステンレスベルトの裏面から25℃の温度の温水を接触させて温度制御されたステンレスベルト上で1分間乾燥した後、更にステンレスベルトの裏面に15℃の冷水を接触させて15秒間把持した後、ステンレスベルトから剥離した。
また、把持工程および延伸工程での平均乾燥速度と緩和工程での平均乾燥速度の比が3.1になるように乾燥条件を調節した。
フィルムNo.1の作成において、延伸温度および紫外線吸収剤を変更することによって表1に示す光学性能のフィルムを作成した。
厚み75μm、重合度2400のポリビニルアルコール(PVA)フィルムを30℃の温水で40秒間膨潤させた後、ヨウ素濃度0.06質量%、ヨウ化カリウム6質量%の水溶液中に30℃で60秒浸漬して染色し、次いでホウ酸濃度4質量%、ヨウ化カリウム3質量%の水溶液中に40℃で60秒浸漬している間に、縦方向が元の長さの5.0倍にな
るように延伸した。その後、50℃で4分間乾燥させて、偏光子を得た。
前記のように鹸化処理を行ったセルロースアシレートフイルム1乃至3と富士写真フイルム(株)製「TD80U」を前記の偏光子フイルムを挟むようにポリビニールアルコール系接着剤を用いて張り合わせ、さらに70℃で30分間加熱した。この後、幅方向から3cm、カッターにて耳きりをし、有効幅1000mm、長さ50mのロール形態の偏光板1乃至3を作製した。
(アクリル系ポリマー溶液の作製)
n−ブチルアクリレート(n−BA)75質量部、メチルアクリレート(MA)20質量部、2−ヒドロキシアクリレート(2−HEA)5質量部、酢酸エチル100質量部およびアゾビスイソブチロニトリル(AIBN)0.2質量部を反応容器に入れ、この反応容器内の空気を窒素ガスで置換した後、撹拌下に窒素雰囲気中で、この反応容器を60℃に昇温させ、4時間反応させた。4時間後、トルエン100質量部、α−メチルスチレンダイマー5質量部およびAIBN2質量部を加え、90℃に昇温し、さらに4時間反応させた。反応後、酢酸エチルで希釈し、固形分20%のアクリルポリマー溶液を得た。ポリマー溶液の固形分100質量部にイソシアネート系架橋剤(商品名:コロネートL、日本ポリウレタン(株)製)1.0質量部を添加し、よく撹拌して粘着剤組成物を得た。
上記で作製した偏光板1〜3に粘着剤を塗工する。
上記アクリルポリマー溶液を含有する粘着剤組成物を剥離処理したポリエステルフィルム上に25μmの粘着剤層を形成し、それを偏光板(セル側保護フィルム上)に転写し、温度23℃,湿度65%の条件で7日間熟成させて粘着剤付偏光板1〜3を作製した。さらにその粘着剤層の上にセパレートフィルムを貼り付けた。セルと反対側の保護フィルム上にはプロテクトフィルムを貼り付けた。
得られた粘着剤付偏光板1を41cm×30cmの大きさで切り出して(辺に対して偏光板の吸収軸が平行になるように切り出した)、プロテクトフィルムを剥離して、25℃60%RHの雰囲気下で48時間調湿した。
(VAパネルへの実装)
VAモードの液晶TV(LC−20C5、シャープ(株)製)の表裏の偏光板および位相差板を剥し、裏側に実施例で作製・調湿した偏光板1〜3、表側に視野角補償板のない市販の偏光板(HLC2−5618、サンリッツ(株)製)を、ラミネーターロールを用いて貼り付け液晶パネルを作成した。
この際、視認側の偏光板の吸収軸をパネル水平方向に、バックライト側の偏光板の吸収軸をパネル鉛直方向となり、粘着材面が液晶セル側となるように配置した。
色ずれ:方位角0度でのΔCu'v';u'v'(極角60°)-u'v'(極角0°)と方位角180度でのΔCu'v':u'v'(極角60°)-u'v'(極角0°)の和(u'v':CIELAB空間における色座標)。
実施例1のフィルム作成において、表2のように乾燥条件を変化させ、面内のRe,Rth分布を変化させたフィルムを作成した。実施例1と同様に色ずれを評価し、表2に示した。
実施例1で作製したフィルムのバンド面側に、1.0Nの水酸化カリウム溶液(溶媒:水/イソプロピルアルコール/プロピレングリコール=69.2質量部/15質量部/15.8質量部)を10cc/m2塗布し、約40℃の状態で30秒間保持した後、アルカリ液を掻き取り、純水で水洗し、エアーナイフで水滴を削除した。その後、100℃で15秒間乾燥した。これらのフィルムの純水に対する接触角を求めたところ、42°であった。
No.1〜3のフィルム上に、下記の組成の配向膜塗布液を#16のワイヤーバーコーターで28ml/m2塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥し、配向膜を作製した。
────────────────────────────────────────
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
クエン酸エステル(三協化学製 AS3) 0.35質量部
────────────────────────────────────────
配向膜上に、下記の組成のディスコティック液晶を含む塗布液を#2.8のワイヤーバーを391回転でフィルムの搬送方向と同じ方向に回転させて、20m/分で搬送されているフィルムの配向膜面に連続的に塗布した。
────────────────────────────────────────
下記のディスコティック液晶性化合物 33.2質量%
下記化合物(円盤面を5度以内に配向させるための添加剤) 0.1質量%
エチレンオキサイド変成トリメチロールプロパントリアクリレート
(V#360、大阪有機化学(株)製) 3.2質量%
増感剤(カヤキュアーDETX、日本化薬(株)製) 0.4質量%
光重合開始剤(イルガキュアー907、チバガイギー社製) 1.1質量%
メチルエチルケトン 62.0質量%
────────────────────────────────────────
なお、ディスコティック液晶化合物の円盤面と透明ポリマーフィルム面との角度は、0度であった。
これらのフィルムを実施例1同様にして液晶表示装置に装着し、色ずれを評価した。結果を表3に示す。
光学異方性層を有するフィルムにおいても本発明の効果は顕著であった。
[反射防止機能付き保護膜の作製(フィルム25)]
(光散乱層用塗布液の調製)
ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(PETA、日本化薬(株)製)50gをトルエン38.5gで希釈した。更に、重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)を2g添加し、混合攪拌した。この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.51であった。
さらにこの溶液にポリトロン分散機にて10000rpmで20分分散した平均粒径3.5μmの架橋ポリスチレン粒子(屈折率1.60、SX−350、綜研化学(株)製)の30%トルエン分散液を1.7gおよび平均粒径3.5μmの架橋アクリル−スチレン粒子(屈折率1.55、綜研化学(株)製)の30%トルエン分散液を13.3g加え、最後に、フッ素系表面改質剤(FP−1)0.75g、シランカップリング剤(KBM−5103、信越化学工業(株)製)を10gを加え、完成液とした。
上記混合液を孔径30μmのポリプロピレン製フィルターでろ過して光散乱層の塗布液を調製した。
まず初めに、次のようにしてゾル液aを調製した。攪拌機、還流冷却器を備えた反応器、メチルエチルケトン120部、アクリロイルオキシプロピルトリメトキシシラン(KBM5103、信越化学工業(株)製)100部、ジイソプロポキシアルミニウムエチルアセトアセテート3部を加え混合したのち、イオン交換水30部を加え、60℃で4時間反応させたのち、室温まで冷却し、ゾル液aを得た。質量平均分子量は1600であり、オリゴマー成分以上の成分のうち、分子量が1000〜20000の成分は100%であった。また、ガスクロマトグラフィー分析から、原料のアクリロイルオキシプロピルトリメトキシシランは全く残存していなかった。
屈折率1.42の熱架橋性含フッ素ポリマー(JN−7228、固形分濃度6%、JSR(株)製)13g、シリカゾル(シリカ、MEK−STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製)1.3g、上記ゾル液a0.6gおよびメチルエチルケトン5g、シクロヘキサノン0.6gを添加、攪拌の後、孔径1μmのポリプロピレン製フィルターでろ過して、低屈折率層用塗布液を調製した。
80μmの厚さのトリアセチルセルロースフィルム(フジタックTD80U、富士写真フィルム(株)製)をロール形態で巻き出して、上記の機能層(光散乱層)用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度30m/分の条件で塗布し、60℃で150秒乾燥の後、さらに窒素パージ下で160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量250mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ6μmの機能層を形成し、巻き取った。
該機能層(光散乱層)を塗設したトリアセチルセルロースフィルムを再び巻き出してその光散乱層側に、該調製した低屈折率層用塗布液を線数180本/インチ、深度40μmのグラビアパターンを有する直径50mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数30rpm、搬送速度15m/分の条件で塗布し、120℃で150秒乾燥の後、更に140℃で8分乾燥させてから窒素パージ下で240W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量900mJ/cm2の紫外線を照射し、厚さ100nmの低屈折率層を形成し、巻き取り、反射防止機能付き保護膜(フィルム25)を作製した。
(ハードコート層用塗布液の調製)
トリメチロールプロパントリアクリレート(TMPTA、日本化薬(株)製)750.0質量部に、質量平均分子量3000のポリ(グリシジルメタクリレート)270.0質量部、メチルエチルケトン730.0g、シクロヘキサノン500.0g及び光重合開始剤(イルガキュア184、日本チバガイギー(株)製)50.0gを添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過してハードコート層用の塗布液を調製した。
二酸化チタン微粒子としては、コバルトを含有し、かつ水酸化アルミニウムと水酸化ジルコニウムを用いて表面処理を施した二酸化チタン微粒子(MPT−129、石原産業(株)製)を使用した。
この粒子257.1gに、下記分散剤38.6g、およびシクロヘキサノン704.3gを添加してダイノミルにより分散し、質量平均径70nmの二酸化チタン分散液を調製した。
上記の二酸化チタン分散液88.9gに、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA)58.4g、光重合開始剤(イルガキュア907)3.1g、光増感剤(カヤキュアーDETX、日本化薬(株)製)1.1g、メチルエチルケトン482.4gおよびシクロヘキサノン1869.8gを添加して攪拌した。十分に攪拌ののち、孔径0.4μmのポリプロピレン製フィルターで濾過して中屈折率層用塗布液を調製した。
上記の二酸化チタン分散液586.8gに、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物(DPHA、日本化薬(株)製)47.9g、光重合開始剤(イルガキュア907、日本チバガイギー(株)製)4.0g、光増感剤(カヤキュア−DETX、日本化薬(株)製)1.3g、メチルエチルケトン455.8g、およびシクロヘキサノン1427.8gを添加して攪拌した。孔径0.4μmのポリプロピレン製フィルターで濾過して高屈折率層用の塗布液を調製した。
下記共重合体(P−1)をメチルイソブチルケトンに7質量%の濃度になるように溶解し、末端メタクリレート基含有シリコーン樹脂X−22−164C(信越化学(株)製)を固形分に対して3%、光ラジカル発生剤イルガキュア907(商品名)を固形分に対して5質量%添加し、低屈折率層用塗布液を調製した。
膜厚80μmのトリアセチルセルロースフィルム(フジタックTD80U、富士写真フィルム(株)製)上に、ハードコート層用塗布液をグラビアコーターを用いて塗布した。100℃で乾燥した後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら160W/cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400mW/cm2、照射量300mJ/cm2の紫外線を照射して塗布層を硬化させ、厚さ8μmのハードコート層を形成した。
ハードコート層の上に、中屈折率層用塗布液、高屈折率層用塗布液、低屈折率層用塗布液を3つの塗布ステーションを有するグラビアコーターを用いて連続して塗布した。
用いて、照度600mW/cm2、照射量600mJ/cm2の照射量とした。
硬化後の高屈折率層は屈折率1.905、膜厚107nm、低屈折率層は屈折率1.440、膜厚85nmであった。このようにして、反射防止層付き透明保護膜(フィルム26)を作製した。
ハードコート層および反射防止層を有する保護膜を用いた場合でも、本発明の効果は顕著であった。
(セルロースアシレートフィルムの製膜)
(1)セルロースアシレート
原料のセルロースに、触媒として硫酸を添加し、さらにアシル置換基の原料となる無水カルボン酸を添加してアシル化反応を行い、その後、中和、ケン化熟成することによって調製した。この時、触媒量、無水カルボン酸の種類、量、中和剤の添加量、水添加量、反応温度、熟成温度を調整することで、アシル基の種類、置換度、嵩比重、重合度の異なるセルロースアシレートを調製した。さらにこのセルロースアシレートの低分子量成分をア
セトンで洗浄し除去した。
上記のようにして調製したセルロースアシレートのうち、アセチル基置換度2.79、
DS6/(DS2+DS3+DS6)=0.322のセルロースアシレートを用い、以下のドープ調製を行った。
<1−1> セルロースアシレート溶液
下記組成物をミキシングタンクに投入し、攪拌して各成分を溶解し、更に90℃に約10分間加熱した後、平均孔径34μmのろ紙および平均孔径10μmの焼結金属フィルターでろ過した。
セルロースアシレート溶液
―――――――――――――――――――――――――――――――――
セルロースアシレート 100.0質量部
トリフェニルフォスフェイト 8.0質量部
ビフェニルジフェニルフォスフェイト 4.0質量部
メチレンクロライド 403.0質量部
メタノール 65.0質量部
―――――――――――――――――――――――――――――――――
次に上記方法で作製したセルロースアシレート溶液を含む下記組成物を分散機に投入し、マット剤分散液を調製した。
マット剤分散液
――――――――――――――――――――――――――――――――――
平均粒径16nmのシリカ粒子
(aerosil R972 日本アエロジル(株)製 2.0質量部
メチレンクロライド 72.4質量部
メタノール 10.8質量部
セルロースアシレート溶液 10.3質量部
――――――――――――――――――――――――――――――――――
次に上記方法で作製したセルロースアシレート溶液を含む下記組成物をミキシングタンクに投入し、加熱しながら攪拌して溶解し、レターデーション発現剤溶液Aを調製した。
レターデーション発現剤溶液
―――――――――――――――――――――――――――――――――
レターデーション発現剤A 15.0質量部
メチレンクロライド 58.3質量部
メタノール 8.7質量部
セルロースアシレート溶液 12.8質量部
―――――――――――――――――――――――――――――――――
量のレターデーション発現剤溶液を混合し、製膜用ドープを調製した。
レターデーション発現剤A
上述のドープをガラス板流延装置を用いて流延した。給気温度70℃の温風で6分間乾燥し、ガラス板から剥ぎ取ったフィルムを枠に固定し、給気温度100℃の温風で10分間、給気温度140℃の温風で20分間乾燥し、膜厚100μmのセルロースアシレートフィルムを製造した。
このフィルムを、2軸延伸試験装置((株)東洋精機製作所製)にて4辺を把持し、表5の条件で延伸および収縮工程を行った。延伸および収縮工程の共通条件として、これらの工程前に各例での指定給気温度で2分間の予備加熱を行った後、この給気温度にてTD方向へ延伸およびMD方向へ緩和を行った。これらの工程の終了後にクリップで把持したまま5分間、送風冷却を行った。表中のMDとはガラス板流延時の流延方向を指し、TDとはそれと直行する幅方向を指す。これらのフィルムをフィルム51〜55とする。
このフィルムの波長450、550、650nmにおけるRe、Rthを、先に述べた方法に従い、KOBRA 21ADH(王子計測機器(株)製)にて測定した。
結果を表4に示す。表4からReの変動係数が5%以下かつRthの変動係数が10%以下である本発明のセルロースアシレートは、延伸工程と収縮工程の両方を含む方法で作成することにより実現できることがわかる。また、このとき本発明の要件である式(A)〜(D)を満たしていることがわかる。
実施例5で作製したセルロースアシレートフィルム51〜55に、1.0Nの水酸化カリウム溶液(溶媒:水/イソプロピルアルコール/プロピレングリコール=69.2質量部/15質量部/15.8質量部)を10cc/m2塗布し、約40℃の状態で30秒間保持した後、アルカリ液を掻き取り、純水で水洗し、エアーナイフで水滴を削除した。その後、100℃で18秒間乾燥した。
アルカリ処理面の純水に対する接触角を測定したところ、40°であった。
該アルカリ処理面に、下記の組成の配向膜塗布液を#16のワイヤーバーコーターで2
8ml/m2塗布した。60℃の温風で60秒、さらに90℃の温風で150秒乾燥し、配向膜を形成した。
配向膜塗布液組成
────────────────────────────────────────
下記の変性ポリビニルアルコール 10質量部
水 371質量部
メタノール 119質量部
グルタルアルデヒド(架橋剤) 0.5質量部
クエン酸エステル(AS3、三協化学(株)製) 0.35質量部
────────────────────────────────────────
配向膜を形成した透明支持体を速度20m/分で搬送し、長手方向に対して45°にラビング処理されるようにラビングロール(300mm直径)を設定し、650rpmで回転させて、透明支持体の配向膜設置表面にラビング処理を施した。ラビングロールと透明支持体の接触長は、18mmとなるように設定した。
102Kgのメチルエチルケトンに、下記円盤状液晶性化合物35.03Kg、エチレンオキサイド変成トリメチロールプロパントリアクリレート(V#360、大阪有機化学(株)製)4.35Kg、セルロースアセテートブチレート(CAB531−1、イーストマンケミカル社製)0.35Kg、光重合開始剤(イルガキュアー907、チバガイギー社製)1.31Kg、増感剤(カヤキュアーDETX、日本化薬(株)製)0.47Kgを溶解した。溶液に、フルオロ脂肪族基含有共重合体(メガファックF780 大日本インキ(株)製)0.1Kgを加え、塗布液を調製した。塗布液を、#3.2のワイヤーバーを391回転でフィルムの搬送方向と同じ方向に回転させて、20m/分で搬送されている透明支持体の配向膜面に連続的に塗布した。
作製したロール状光学補償フィルムの一部を切り取り、サンプルとして用いて、光学特性を測定した。波長546nmで測定した光学異方性層のReレターデーション値は35nmであった。また、光学異方性層中の円盤状液晶性化合物の円盤面と支持体面との角度(傾斜角)は、層の深さ方向で連続的に変化し、平均で28゜であった。さらに、サンプルから光学異方性層のみを剥離し、光学異方性層の分子対称軸の平均方向を測定したところ、光学補償フィルムの長手方向に対して、45°となっていた。
これらのセルロースアシレートフィルム試料を実施例1同様に偏光板加工した。
<液晶表示装置での実装評価>
(ベンド配向液晶セルの作製)
ITO電極付きのガラス基板に、ポリイミド膜を配向膜として設け、配向膜にラビング処理を行った。得られた二枚のガラス基板をラビング方向が平行となる配置で向かい合わせ、セルギャップを4.7μmに設定した。セルギャップにΔnが0.1396の液晶性化合物(ZLI1132、メルク社製)を注入し、ベンド配向液晶セルを作製した。
作製したベンド配向セルを挟むように作製した偏光板を二枚貼り付けた。作成したフィイルムが液晶セル側にくるように貼り付けた。また液晶セルのラビング方向とそれに対面する光学異方性層のラビング方向とが反平行となるように配置した。
液晶セルに55Hzの矩形波電圧を印加した。白表示2V、黒表示5Vのノーマリーホワイトモードとした。正面における透過率が最も小さくなる電圧すなわち黒電圧を印加し、そのときの正面の色と方位角0°〜90°、極角60°方向視野角における色ずれΔxを求めた。結果を表5に示す。ただし下記のようにランク分けして示した。
○ 0.02未満
○△ 0.02〜0.04
△ 0.04〜0.06
× 0.06以上
3 液晶セル
4 光学補償フィルム
70 偏光板
71,101 偏光子
72,73,103a 保護膜
81 機能性膜
102 吸収軸
104a 面内遅相軸
105 光学補償フィルム
105a 面内遅相軸
106 上側基板
107 液晶層
108 下側基板
109 光学補償フィルム
109a 面内遅相軸
203a 保護膜
204a 面内遅相軸
Claims (8)
- 下記式(A)〜(D)のレターデーションを満たし、フィルムの幅手方向の面内レターデーション(Re)の変動係数が5%以下であり、かつ厚み方向のレターデーション(Rth)の変動係数が10%以下であることを特徴とする光学樹脂フィルム。
(A)0.1<Re(450)/Re(550)<0.95
(B)1.03<Re(650)/Re(550)<1.93
(C)0.4<(Re/Rth(450))/(Re/Rth(550))<0.95
(D)1.05<(Re/Rth(650)/(Re/Rth(550))<1.9
(式中、Re(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値であり、Rth(λ)は、波長λnmの光に対する該フィルムの厚み方向のレターデーション値であり、Re/Rth(λ)は、波長λnmの光に対する該フィルムの面内レターデーション値と厚み方向のレターデーション値の比である(単位:nm)。) - 前記光学樹脂フィルムがセルロースアシレートフィルムからなることを特徴とする請求項1に記載の光学樹脂フィルム。
- 可塑剤、紫外線吸収剤、剥離促進剤、染料およびマット剤からなる群から選択された1種以上を含有することを特徴とする請求項1または2に記載の光学樹脂フィルム。
- 棒状化合物または円盤状化合物からなるレターデーション発現剤を1種以上含有することを特徴とする請求項1〜3のいずれかに記載の光学樹脂フィルム。
- ポリビニルアルコールを有する偏光子の両面に保護膜を設けてなる偏光板であって、前記保護膜の少なくとも一方が、請求項1〜4のいずれかに記載の光学樹脂フィルムであることを特徴とする偏光板。
- 前記保護膜の一方の表面に、ハードコート層、防眩層および反射防止層から選択された少なくとも一層を設けたことを特徴とする請求項5に記載の偏光板。
- 少なくとも一方の保護膜の上に光学異方性層を設けたことを特徴とする請求項5または6に記載の偏光板。
- 請求項5〜7のいずれかに記載の偏光板を備えてなることを特徴とする液晶表示装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006066459A JP2007079533A (ja) | 2005-08-17 | 2006-03-10 | 光学樹脂フィルム、これを用いた偏光板および液晶表示装置 |
US11/504,690 US7583342B2 (en) | 2005-08-17 | 2006-08-16 | Optical resin film and polarizing film and liquid crystal display device using the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005236753 | 2005-08-17 | ||
JP2006066459A JP2007079533A (ja) | 2005-08-17 | 2006-03-10 | 光学樹脂フィルム、これを用いた偏光板および液晶表示装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007079533A true JP2007079533A (ja) | 2007-03-29 |
Family
ID=37803566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006066459A Pending JP2007079533A (ja) | 2005-08-17 | 2006-03-10 | 光学樹脂フィルム、これを用いた偏光板および液晶表示装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US7583342B2 (ja) |
JP (1) | JP2007079533A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012103689A (ja) * | 2010-10-14 | 2012-05-31 | Fujifilm Corp | 光学フィルム、偏光板、及び画像表示装置 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200811492A (en) * | 2006-07-12 | 2008-03-01 | Nitto Denko Corp | Polarizing plate with optical compensation layer, method of producing the same, and liquid crystal panel, liquid crystal display, and image display including the same |
KR101528149B1 (ko) * | 2007-09-21 | 2015-06-11 | 스미또모 가가꾸 가부시키가이샤 | 위상차 필름의 제조 방법 |
JP2010020269A (ja) * | 2007-09-28 | 2010-01-28 | Fujifilm Corp | 液晶表示装置 |
WO2009067290A1 (en) * | 2007-11-20 | 2009-05-28 | Dow Global Technologies Inc. | Optical compensation film |
EP2259129A4 (en) * | 2008-03-31 | 2011-10-26 | Toppan Printing Co Ltd | RETARDATION PLATE, SEMI-PERMANENT LIQUID CRYSTAL DISPLAY ARRANGEMENT AND METHOD FOR PRODUCING A RETARDING PLATE |
JP4888853B2 (ja) | 2009-11-12 | 2012-02-29 | 学校法人慶應義塾 | 液晶表示装置の視認性改善方法、及びそれを用いた液晶表示装置 |
US10156661B2 (en) | 2010-05-28 | 2018-12-18 | 3M Innovative Properties Company | Light redirecting film and display system incorporating same |
US9798189B2 (en) | 2010-06-22 | 2017-10-24 | Toyobo Co., Ltd. | Liquid crystal display device, polarizer and protective film |
CN103443666B (zh) * | 2011-03-28 | 2016-06-29 | 木本股份有限公司 | 光学设备用遮光材料及其制造方法 |
CN103547961B (zh) | 2011-05-18 | 2017-07-14 | 东洋纺株式会社 | 液晶显示装置、偏光板和偏振片保护膜 |
KR101833582B1 (ko) | 2011-05-18 | 2018-02-28 | 도요보 가부시키가이샤 | 3차원 화상표시 대응 액정표시장치에 적합한 편광판 및 액정표시장치 |
JP5304939B1 (ja) | 2012-05-31 | 2013-10-02 | 大日本印刷株式会社 | 光学積層体、偏光板、偏光板の製造方法、画像表示装置、画像表示装置の製造方法及び画像表示装置の視認性改善方法 |
KR101372932B1 (ko) * | 2013-04-30 | 2014-03-12 | 한국생산기술연구원 | 펄스 uv를 이용한 광배향 장치 |
WO2015002353A1 (ko) | 2013-07-02 | 2015-01-08 | 한국생산기술연구원 | 편광 펄스 uv를 이용한 광배향 방법 및 패턴드 리타더 제조방법 |
CN104345372B (zh) * | 2013-08-09 | 2018-04-10 | 住友化学株式会社 | 光学膜 |
KR102682359B1 (ko) * | 2018-07-09 | 2024-07-05 | 에스케이마이크로웍스 주식회사 | 광학 다층 필름, 이를 포함하는 광학 부품 및 표시 장치 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001081957A1 (fr) * | 2000-04-25 | 2001-11-01 | Teijin Limited | Film optique |
JP2003279729A (ja) * | 2002-03-20 | 2003-10-02 | Konica Corp | 位相差フィルム及びその製造方法、偏光板、液晶表示装置及び光学補償フィルム |
JP2005157038A (ja) * | 2003-11-27 | 2005-06-16 | Konica Minolta Opto Inc | 偏光板及び表示装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2595156B1 (fr) | 1986-02-28 | 1988-04-29 | Commissariat Energie Atomique | Cellule a cristal liquide utilisant l'effet de birefringence controlee electriquement et procedes de fabrication de la cellule et d'un milieu uniaxe d'anisotropie optique negative, utilisable dans celle-ci |
JP3027805B2 (ja) | 1996-09-30 | 2000-04-04 | 富士通株式会社 | 液晶表示装置 |
JP3330574B2 (ja) | 1996-09-30 | 2002-09-30 | 富士通株式会社 | 液晶表示装置 |
TWI245147B (en) | 2000-06-19 | 2005-12-11 | Nitto Denko Corp | Polarizing plate and liquid crystal display using the same |
US7099082B2 (en) * | 2001-08-29 | 2006-08-29 | Fuji Photo Film Co., Ltd. | Method for producing optical compensating film, optical compensating film, circularly polarizing plate, and liquid crystal display |
JP4214705B2 (ja) | 2002-03-20 | 2009-01-28 | 東レ株式会社 | 位相差フィルム及び円偏光板 |
KR100618153B1 (ko) | 2003-02-06 | 2006-08-29 | 주식회사 엘지화학 | 편광막의 보호필름, 편광판 및 이의 제조방법 |
-
2006
- 2006-03-10 JP JP2006066459A patent/JP2007079533A/ja active Pending
- 2006-08-16 US US11/504,690 patent/US7583342B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001081957A1 (fr) * | 2000-04-25 | 2001-11-01 | Teijin Limited | Film optique |
JP2003279729A (ja) * | 2002-03-20 | 2003-10-02 | Konica Corp | 位相差フィルム及びその製造方法、偏光板、液晶表示装置及び光学補償フィルム |
JP2005157038A (ja) * | 2003-11-27 | 2005-06-16 | Konica Minolta Opto Inc | 偏光板及び表示装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012103689A (ja) * | 2010-10-14 | 2012-05-31 | Fujifilm Corp | 光学フィルム、偏光板、及び画像表示装置 |
Also Published As
Publication number | Publication date |
---|---|
US7583342B2 (en) | 2009-09-01 |
US20070046864A1 (en) | 2007-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4856989B2 (ja) | 光学樹脂フィルム、これを用いた偏光板および液晶表示装置 | |
JP2007079533A (ja) | 光学樹脂フィルム、これを用いた偏光板および液晶表示装置 | |
JP2006330390A (ja) | 偏光板及びこれを用いた液晶表示装置 | |
JP2007538269A (ja) | 偏光板及び液晶表示装置 | |
JP2006308936A (ja) | 偏光板および液晶表示装置 | |
JP2008003126A (ja) | 偏光板、液晶表示装置及び偏光板用保護膜の製造方法 | |
JP4802067B2 (ja) | 偏光板及びこれを用いた液晶表示装置 | |
JP2007261189A (ja) | セルロースアシレートフィルムの製造方法、偏光板および液晶表示装置 | |
JP5016834B2 (ja) | 光学フィルム、これを用いた偏光板および液晶表示装置 | |
JP2008505195A (ja) | 光学用セルロースアシレートフィルム、偏光板及び液晶表示装置 | |
JP2007292944A (ja) | 液晶表示装置 | |
JP2007119717A (ja) | セルロースアシレートフィルム、偏光板及び液晶表示装置 | |
JP2007264287A (ja) | 光学フィルム、偏光板および液晶表示装置 | |
JP2007304287A (ja) | 光学フィルム、これを用いた偏光板および液晶表示装置 | |
JP5010883B2 (ja) | 液晶表示装置 | |
JP2006091369A (ja) | 偏光板及び液晶表示装置 | |
JP2006126585A (ja) | 粘着剤付偏光板及び液晶表示装置 | |
JP2006091374A (ja) | 偏光板及び液晶表示装置 | |
JP2007517234A (ja) | 偏光板及び液晶表示装置 | |
JP4699783B2 (ja) | セルロースアシレートフィルム、偏光板および液晶表示装置 | |
JP2006257380A (ja) | セルロースエステルフィルムの製造方法、セルロースエステルフィルム、偏光板及び液晶表示装置 | |
JP2008052262A (ja) | 光学フィルム、光学フィルムの製造方法、偏光板および液晶表示装置 | |
JP2005331773A (ja) | 光学補償シート、偏光板、及び液晶表示装置 | |
JP2007264259A (ja) | 光学フィルム、偏光板および液晶表示装置 | |
JP2006243132A (ja) | 偏光板及び液晶表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070413 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071109 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071116 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20071126 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080710 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100609 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100813 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101102 |