[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007073544A - 固体撮像装置およびその製造方法 - Google Patents

固体撮像装置およびその製造方法 Download PDF

Info

Publication number
JP2007073544A
JP2007073544A JP2005255328A JP2005255328A JP2007073544A JP 2007073544 A JP2007073544 A JP 2007073544A JP 2005255328 A JP2005255328 A JP 2005255328A JP 2005255328 A JP2005255328 A JP 2005255328A JP 2007073544 A JP2007073544 A JP 2007073544A
Authority
JP
Japan
Prior art keywords
region
transistor
pixel
imaging device
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005255328A
Other languages
English (en)
Inventor
Emi Kanezaki
恵美 金崎
Mikiya Uchida
幹也 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005255328A priority Critical patent/JP2007073544A/ja
Publication of JP2007073544A publication Critical patent/JP2007073544A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

【課題】従来よりもバックバイアス効果を抑制でき、且つ、ソースフォロア回路の線形性の向上やダイナミックレンジの拡大を図り得る固体撮像装置、及びその製造方法を提供する。
【解決手段】半導体基板21上の画素領域Aに、受光素子と第1のトランジスタとを備える画素セルが設けられ、周辺回路領域Bに、第2のトランジスタを備える周辺回路が設けられ、第2のトランジスタのソースドレイン領域29の導電型が第1のトランジスタのソースドレイン領域29の導電型と同一である固体撮像装置の製造方法において、周辺回路領域B内の第2のトランジスタの形成領域に第1のイオン注入を行い、第2のトランジスタの形成領域及び画素領域A内の第1のトランジスタの形成領域A2に、第2のイオン注入を行なう。これにより、画素領域Aには、周辺回路Bのウェル(半導体領域24A)よりも不純物濃度が低い、ウェル(半導体領域26)が形成される。
【選択図】 図1

Description

本発明は、固体撮像装置、特には、MOS型固体撮像装置、及びその製造方法に関する。
近年、増幅型MOSトランジスタを備えた固体撮像装置(MOS型固体撮像装置)は、高感度等の点から注目されている。MOS型固体撮像装置は、画素毎にフォトダイオードとMOSトランジスタとを備え、フォトダイードによって検出された信号をMOSトランジスタによって増幅する。
従来からのMOS型固体撮像装置について、図4〜図10を用いて説明する。図4は、従来からのMOS型固体撮像装置の概略構成を示す平面図である。図4に示すように、MOS型固体撮像装置90は、半導体基板7上の画素領域200に、複数の画素セル(図5参照)を備えている。また、画素領域の周辺領域(周辺回路領域)201及び202には、画素セルを駆動するための周辺回路が備えられている。
図5は、従来からのMOS型固体撮像装置の回路構成の一例を示す回路図である。図5に示すように、MOS型固体撮像装置90は、半導体基板7上の画素領域200において、複数の画素セル96を備えている。複数の画素セル96は、半導体基板7上にマトリックス状に配置されている。各画素セル96は、フォトダイオード3と、転送トランジスタ4と、増幅トランジスタ14と、リセットトランジスタ15と、垂直選択トランジスタ16とを備えている。
フォトダイオード3は、入射光を信号電荷に変換し、これを蓄積する。転送トランジスタ4、増幅トランジスタ14、リセットトランジスタ15、垂直選択トランジスタ16は、フォトダイオード3に蓄積された信号電荷の読み出しに用いられる。
具体的には、転送トランジスタ4は、フォトダイオード3に蓄積された信号電荷の読み出しを行なう。増幅トランジスタ14は、転送トランジスタ4によって読み出された信号電荷を増幅し、これを出力する。リセットトランジスタ15は、フォトダイオード3に蓄積されている信号電荷をリセットする。
また、固体撮像装置90は、半導体基板7上の周辺回路領域において、垂直駆動回路12と、水平駆動回路13と、負荷トランジスタ群17と、行信号蓄積部18とを備えている。垂直駆動回路12は、複数のリセットトランジスタ制御線111を介して、水平ライン毎に、リセットトランジスタ15のゲートに接続されている。各リセットトランジスタ制御線111は、一定の間隔を於いて、水平方向に沿って互いに平行に配置されている。
また、垂直駆動回路12は、複数の転送トランジスタ制御線131を介して、水平ライン毎に、転送トランジスタ4にも接続されている。各転送トランジスタ制御線131も、一定の間隔を於いて、水平方向に沿って互いに平行に配置されている。
更に、垂直駆動回路12は、複数の垂直選択トランジスタ制御線121を介して、水平ライン毎に、垂直選択トランジスタ16にも接続されている。垂直駆動回路12は、垂直選択トランジスタ制御線121を介して、信号を読み出す行を選択する。各垂直選択トランジスタ制御線121も、リセットトランジスタ制御線111と同様に、一定の間隔を於いて、水平方向に沿って互いに平行に配置されている。
水平駆動回路13は、行信号蓄積部18に接続されている。行信号蓄積部18は、1行分の信号を取り込むためのスイッチングトランジスタを備えている。行信号蓄積部18と負荷トランジスタ群17とは、垂直信号線161を介して接続されている。また、行信号蓄積部18及び負荷トランジスタ群17は、垂直信号線161を介して、垂直ライン毎に、垂直選択トランジスタ16のソースに接続されている。
次に、図6を用いて、図5に示した固体撮像装置の動作について説明する。図6は、図5に示した従来の固体撮像装置の動作を説明するためのタイミングチャートである。なお、以下の説明においては、適宜図5を参酌する。
図6に示すように、先ず、垂直駆動回路12から、選択された行の垂直選択トランジスタ制御線121に、ハイレベルの行選択パルス101−1が印加される。これにより、選択された行の垂直選択トランジスタ16がオンとなる。このとき、選択された行の増幅トランジスタ14と負荷トランジスタ群17とによってソースフォロア回路が構成される。
次に、行選択パルス101−1がハイレベルの間に、選択された行のリセットトランジスタ制御線111に、ハイレベルのリセットパルス102−1が印加される。これにより、選択された行の増幅トランジスタ14のゲートと接続された浮遊拡散層(後述の図7において示す半導体領域154)の電位がリセットされる。
次に、行選択パルス101−1がハイレベルの間に、選択された行の転送トランジスタ制御線131に、ハイレベルの転送パルス103−1が印加される。これにより、フォトダイオード3に蓄積された信号電荷が浮遊拡散層へと転送される。
また、ハイレベルの転送パルス103−1が印加されると、浮遊拡散層に接続された増幅トランジスタ14のゲート電圧は、浮遊拡散層の電位と等しくなり、このゲート電圧と実質的に等しい電圧が垂直信号線161に現れる。そして、フォトダイオード3に蓄積された信号電荷に基づく信号が、行信号蓄積部18へと転送される。
その後、垂直駆動回路12が次ぎの行を選択するまでの間に、水平駆動回路13から、各垂直信号線161へと、順に、ハイレベルの列選択パルス106−1−x、106−2−x、・・・106−m−x(mは自然数、xは1〜n(自然数)のいずれかである。)が出力される。このとき、行信号蓄積部18は、それへと転送された信号を、1行分毎に、出力信号107−1、107−2、・・・107−nとして取り出す。
次に、図7及び図8を用いて、図5に示した固体撮像装置の具体的構成について説明する。図7は、図5に示した従来の固体撮像装置の一部分を拡大して示す平面図である。図8は、図5に示した従来の固体撮像装置の一部分を拡大して示す断面図である。図8に示す断面は、図7中に示された切断線A−B−C−Dに沿って切断された断面である。なお、図7においては半導体基板の図示を省略している。
図7に示すように、フォトダイオード3は、半導体基板7(図8参照)に設けられたn型の半導体領域151を備えている。半導体基板7において、隣り合う半導体領域151の間には、素子分離部92が形成されている。また、水平方向においてフォトダイード3の半導体領域151に隣接する領域には、素子分離部91を介して、複数のn型の半導体領域5a〜5cが形成されている。半導体領域5a〜5cは垂直方向に配列されている。更に、垂直方向において半導体領域151に隣接する領域には、n型の半導体領域154が形成されている。
また、隣り合う半導体領域5aと半導体領域5bとの間、半導体領域5bと半導体領域5cとの間の領域には、ゲート絶縁膜156(図8参照)を介してゲート電極153a及び153bがそれぞれ形成されている。更に、半導体領域151と半導体領域154との間には、水平方向に延びるゲート電極152がゲート絶縁膜(図示せず)を介して形成されている。ゲート電極152は、転送トランジスタ制御線131(図5参照)としても機能している。
図7及び図8の例においては、ゲート電極152と、半導体領域154と、半導体領域151と、ゲート絶縁膜(図示せず)とによって、転送トランジスタ4が構成されている。転送トランジスタ4は、フォトダイオード3の半導体領域151をソース領域として利用している。また、ゲート電極153aと、半導体領域5a及び5bと、ゲート絶縁膜156とでリセットトランジスタ15が構成され、ゲート電極153bと、半導体領域5b及び5cと、ゲート絶縁膜156とで増幅トランジスタ14が構成されている。リセットトランジスタ15と増幅トランジスタ14は半導体領域15bを共用している。
また、図7において、155は配線である。配線155は、コンタクト156を介して、半導体領域154、半導体領域5a、ゲート電極153bに接続されている。
ところで、図7及び図8に示したように、画素セルには素子分離部が形成されるが、近年のMOS型固体撮像装置における画素の微細化に伴い、素子分離部は、多くの場合、半導体基板に溝を形成するSTI(Shallow Trench Isolation)法を用いて形成される。
しかし、STI法によって形成された素子分離部(以下「STI素子分離部」という。)においては、素子分離部の近傍で結晶欠陥やストレス欠陥が発生するという問題がある。具体的には、MOS型固定撮像装置において結晶欠陥が発生すると、再生画面上において、出力が大きく、白色の点欠陥、いわゆる白キズが観測される。その数は、STIの形成方法や固体撮像装置の規模によるが、数個から数千個にのぼる。また、MOS型固体撮像装置においてストレス欠陥が発生すると、STIストレス欠陥層が素子分離部からフォトダイオードへ流れるリーク電流を生じさせるため、再生画面上において、小さな不均一なムラが観測される。
このような欠陥のうち、前者の結晶欠陥による局所的な点欠陥(白キズ)については、最近のデジタル技術の進歩によって補正することができるようになっており、大きな問題ではなくなってきている。但し、後者のSTIストレス欠陥層による小さな不均一なムラについては、デジタル処理による補正が困難である。これは、画面全体にわたって発生するムラを補正するために大容量のメモリが必要になり、補正するためのシステムのコストが大きくかかるからである。
そのため、STI素子分離部の形成領域に、MOSトランジスタのソースドレイン領域の導電型と反対の導電型の不純物を導入して、STIリークストッパを設けることが提案されている(例えば、特許文献1参照。)。特許文献1には、素子分離部の側面と底面とを囲むようにSTIリークストッパを形成した例が開示されている。STIリークストッパを設けた場合は、素子分離部からフォトダイオードへと流れるリーク電流を阻止でき、これによって、再生画面における不均一なムラを小さくできる。
ここで、図9を用いて、従来からのSTIリークストッパについて説明する。図9は、STIリークストッパが形成された従来のMOS型固体撮像装置の製造工程を示す部分断面図であり、図9(a)〜(d)は一連の主な工程を示している。図9(a)〜(d)においては、左側半分に画素領域Aが示され、右側半分に周辺回路領域Bが示されている。
また、一般に、MOS型固体撮像装置の場合、半導体基板上にはNチャンネルMOSトランジスタとPチャンネルMOSトランジスタとの両方が形成されるが、図9(a)〜(d)においては、NチャンネルMOSトランジスタが形成される領域(NMOS領域)のみが図示されている。また、図9(a)〜(d)においては断面に現れた線のみが図示されている。
最初に、図9(a)に示すように、半導体基板7におけるSTI素子分離部の形成領域に、STI素子領域を形成するための溝701を選択的に形成する。次に、画素領域Aが開口したレジストパターン702を形成し、これをマスクとして、不純物を斜め方向からイオン注入する。この結果、溝701の側面及び底面に沿って、STIリークストッパ703が形成される。本例では、半導体基板7はn型のシリコン基板である。ここでは、p型の不純物がイオン注入されているが、これは後述のn型不純物で形成された2つのフォトダイオードを分離する役割を兼ねるためである。
但し、図9(a)の工程を実施すると、p型不純物は、STI素子分離部の形成領域以外の領域、即ち、フォトダイオードの形成領域A1や、フォトダイオードに蓄積された信号電荷の読み出しに用いられるトランジスタ(読出し用トランジスタ)の形成領域A2にも注入される。このため、形成領域A1及び形成領域A2に形成されるウェル(図9(b)参照)の濃度は、周辺回路領域Bに形成されるウェル(図9(b)参照)の濃度よりもり高くなる。
次に、図9(b)に示すように、レジストパターン702を除去した後、溝701にシリコン酸化膜などの絶縁物を埋め込み、STI素子分離部704を形成する。次いで、形成領域A2と周辺回路領域Bとが開口したレジストパターン705を形成し、これをマスクとして、p型不純物をイオン注入する。これにより、p型のウェル706が形成される。
続いて、レジストパターン705をマスクとして、p型不純物をイオン注入する。これにより、形成領域A2と周辺回路領域Bとにおいて、トランジスタのチャンネル領域707が形成される。なお、チャンネル領域707における不純物濃度を調整することにより、トランジスタの閾値電圧VTを制御することができる。
次に、図9(c)に示すように、レジストパターン705を除去した後、形成領域A1が開口したレジストパターン709(破線で示す)を形成し、これをマスクとして、n型不純物をイオン注入する。これにより、フォトダイオードを構成するn型の半導体領域710が形成される。なお、半導体領域710の形成は、チャンネル領域707の形成の前に行なうこともできる。
次に、レジストパターン709を除去した後、形成領域A2、及び周辺回路領域Bに、シリコン酸化膜からなるゲート絶縁膜714と、ポリシリコンからなるゲート電極708とを順に形成する。
次に、図9(d)に示すように、絶縁膜の成膜及びエッチングを行なって、ゲート絶縁膜714とゲート電極708との側面に、側壁絶縁膜(サイドウォールスペーサー)711を形成する。続いて、形成領域A2と周辺回路領域Bとが開口したレジストパターン712を形成し、これをマスクとして、n型不純物をイオン注入する。これにより、トランジスタのソースドレイン領域713が形成される。その後、層間絶縁膜、各種配線、マイクロレンズ等が形成されて、MOS型固体撮像装置が完成する。
図9に示した例では、このようにSTIリークストッパ703が形成されるため、素子分離部704からフォトダイオード(半導体領域710)へと流れるリーク電流を阻止できる。この結果、再生画面における不均一なムラを小さくできる。
但し、素子分離部の近傍にリークストッパを形成すると、リークストッパの形成によって、画素領域に形成されたウェルの濃度が高くなる。このため、半導体基板に形成されたトランジスタにおいてバックバイアス効果が生じ易くなったり、MOS固体撮像装置において構成されているソースフォロア回路の出力特性が低下したりといった問題が生じてしまう。この点について、以下に説明する。
一般に、MOSFETにおいて、最も重要なパラメータの一つは閾値電圧VTである。理想的な閾値電圧VTは下記式(1)で与えられる。なお、下記式(1)において、εSはシリコンの誘電率、qは電子1個の電荷量、NAは半導体基板(サブストレート)の不純物濃度、ψBはシリコンのフェルミ準位、COXは単位面積当たりのゲート酸化膜容量値である。
Figure 2007073544
また、MOSFETにおいて、閾値電圧VTは、基板バイアス電圧VBSの影響を受ける。つまり、半導体基板とソースとの間に逆方向の電圧が印加されると、空乏層の幅が広がり、反転を起こさせるために必要な閾値電圧VTは増加することとなる。このことは、いわゆるバックバイアス効果と呼ばれている。閾値電圧VTは、基板バイアスVBSを用いて、下記式(2)によって表すことができる。なお、下記式(2)において、VT0はVBSが0(ゼロ)のときの閾値電圧である。
Figure 2007073544
ここで、下記式(3)に示すように、γを設定すると、上記式(2)は下記式(4)によって表すことができる。下記式(4)において右辺に表された電圧は、理想出力からの誤差を表している。
Figure 2007073544
Figure 2007073544
また、図10は、基本的なソースフォロア回路の回路構成を示す回路図である。ソースフォロア回路は、低電源電圧で使用でき、応答も速いという特徴を備えており、レベルシフト回路として有用である。図10において、トランジスタMAは接地されていないため、その閾値電圧VTはバックバイアス効果の影響を受け易い。また、図10中に示す電位Vin、VG、VOUTは、上記式(4)を用いて、下記式(5)によって表すことができる。
Figure 2007073544
更に、図10に示すソースフォロア回路において、電圧利得Av(=Vout/Vin)は、下記式(5)から、下記式(6)で表される。
Figure 2007073544
上記式(6)より、γの値が小さい場合はAv≒1となる。また、上記式(6)より、γの値が大きいほど線形性を崩し、電圧利得が小さくなる。このことから、γの値を小さくすれば、ソースフォロア回路の線形性を高めることができる。また、γの値を小さくすれば、電圧利得を高めることができるため、MOS型固体撮像装置においてはダイナミックレンジを拡大することができる。
上記式(3)から、γの値を小さくするには、半導体基板の不純物濃度NAを小さくすれば良いことが分かる。従って、画素領域に形成されたウェルの濃度を薄くすることによって、ソースフォロア回路の出力特性を向上させることができる。
しかし、上述したように、素子分離部の近傍にリークストッパを形成すると、リークストッパの形成によって、画素領域に形成されたウェルの濃度が高くなる。このため、ソースフォロア回路の線形性の向上やダイナミックレンジの拡大は困難である。
このような問題を解決するため、ソースフォロア回路を構成する出力トランジスタのゲートの直下に、ウェルの導電型と逆の導電型の不純物をカウンタードーピングする方法が提案されている(例えば、特許文献2参照。)。特許文献2に開示の方法によれば、半導体基板の不純物濃度NAを小さくできるため、ソースフォロア回路の線形性の向上やダイナミックレンジの拡大を図ることができる。また、ウェルの表層における不純物濃度を低下できるため、閾値電圧VTの変動を抑制でき、この結果、トランジスタにおけるバックバイアス効果を抑制することもできる。
特開2004−253729号公報 特開2004−241638号公報
しかしながら、特許文献2に開示のカウンタードーピングにおいては、導電型の異なる不純物イオンの注入が複数回行なわれるため、それぞれの不純物濃度のばらつきが相乗されてばらつきが大きくなるという問題がある。また、実際には、n型の不純物とp型の不純物とを同量にして、両者を完全に打ち消し合わせることは難しく、打ち消される程度に応じて閾値電圧VTがばらつくという問題もある。このため、特許文献2に開示の方法においては、バックバイアス効果の抑制を十分に図ることができないという問題が生じている。
本発明の目的は、上記問題を解消し、従来よりもバックバイアス効果を抑制でき、且つ、ソースフォロア回路の線形性の向上やダイナミックレンジの拡大を図り得る固体撮像装置、及びその製造方法を提供することにある。
上記目的を達成するために本発明における第1の固体撮像装置は、半導体基板を備え、前記半導体基板上の画素領域に複数の画素セルが設けられ、画素領域の周辺領域に周辺回路が設けられた固体撮像装置であって、前記複数の画素セルそれぞれは、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数の第1のトランジスタとを備え、前記周辺回路は、ソース領域及びドレイン領域の導電型が前記第1のトランジスタのソース領域及びドレイン領域の導電型と同一である複数の第2のトランジスタを備え、前記複数の第1のトランジスタそれぞれのソース領域及びドレイン領域は、前記画素領域内に形成された第1の半導体領域内に形成され、前記複数の第2のトランジスタそれぞれのソース領域及びドレイン領域は、前記周辺領域内に形成された第2の半導体領域内に形成され、前記画素領域内に形成された前記第1の半導体領域の不純物濃度は、前記周辺領域内に形成された前記第2の半導体領域の不純物濃度よりも低い値に設定されていることを特徴とする。
また、上記目的を達成するために本発明における第2の固体撮像装置は、半導体基板を備え、前記半導体基板上の画素領域に複数の画素セルが設けられ、画素領域の周辺領域に周辺回路が設けられた固体撮像装置であって、前記複数の画素セルそれぞれは、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数のトランジスタとを備え、前記画素領域及び前記周辺領域に複数の素子分離部が設けられ、前記画素領域に設けられた素子分離部のうち、隣接する受光素子間を分離する素子分離部の側面側及び底面側と、前記受光素子と前記トランジスタとを分離する素子分離部の前記受光素子側とには、前記第1のトランジスタのソース領域及びドレイン領域の導電型と反対の導電型の不純物によってリークストッパが形成されていることを特徴とする。
上記目的を達成するため本発明における第1の固体撮像装置の製造方法は、半導体基板を備え、前記半導体基板上の画素領域に、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数の第1のトランジスタとを備える複数の画素セルが設けられ、画素領域の周辺領域に、複数の第2のトランジスタを備える周辺回路が設けられ、前記第2のトランジスタのソース領域及びドレイン領域の導電型が前記第1のトランジスタのソース領域及びドレイン領域の導電型と同一である固体撮像装置の製造方法であって、(a)前記周辺領域内の前記複数の第2のトランジスタの形成領域に、第1のイオン注入を行なう工程と、(b)前記周辺領域内の前記複数の第2のトランジスタの形成領域、及び前記画素領域内の前記複数の第1のトランジスタの形成領域に、第2のイオン注入を行なう工程とを有することを特徴とする。
また、上記目的を達成するため本発明における第2の固体撮像装置の製造方法は、半導体基板を備え、前記半導体基板上の画素領域に、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数のトランジスタとを備える複数の画素セルが設けられ、画素領域の周辺領域に周辺回路が設けられた固体撮像装置の製造方法であって、(a)前記画素領域及び前記周辺領域に、複数の素子分離部を形成する工程と、(b)隣接する受光素子間を分離する素子分離部の側面側及び底面側と、前記受光素子と前記トランジスタとを分離する素子分離部の前記受光素子側とに、リークストッパが形成されるように、前記半導体基板の法線に対して傾斜した方向から、前記トランジスタのソース領域及びドレイン領域の導電型と反対の導電型の不純物をイオン注入する工程とを有することを特徴とする。
本発明の第1の固体撮像装置及びその製造方法では、画素セルの第1のトランジスタが配置される半導体領域の不純物濃度は、周辺回路の第2のトランジスタが配置される半導体領域の不純物濃度よりも低い値に設定される。
このため、本発明の第1の固体撮像装置及び第1の固体撮像装置の製造方法では、出力トランジスタのバックバイアス効果を抑制できるので、ソースフォロア回路におけるダイナミックレンジや線形性が確保される。また、従来のように、カウウンタードープを行なう必要がないため、ソースフォロア回路を構成する出力トランジスタの閾値電圧VTの変動を抑制できる。
また、本発明の第2の固体撮像装置及び第2の固体撮像装置の製造方法によれば、隣接する受光素子間を分離する素子分離部の側面側及び底面側、受光素子とトランジスタとを分離する素子分離部の受光素子側にのみ、リークストッパが形成される。よって、画素セルを構成するトランジスタが配置された半導体領域の不純物濃度が、リークストッパによって高くなるのを抑制できる。
このため、本発明の第2の固体撮像装置及び第2の固体撮像装置の製造方法では、出力トランジスタのバックバイアス効果を抑制できるので、ソースフォロア回路におけるダイナミックレンジや線形性が確保される。また、従来のように、カウウンタードープを行なう必要がないため、ソースフォロア回路を構成する出力トランジスタの閾値電圧VTの変動を抑制できる。
本発明における第1の固体撮像装置は、半導体基板を備え、前記半導体基板上の画素領域に複数の画素セルが設けられ、画素領域の周辺領域に周辺回路が設けられた固体撮像装置であって、前記複数の画素セルそれぞれは、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数の第1のトランジスタとを備え、前記周辺回路は、ソース領域及びドレイン領域の導電型が前記第1のトランジスタのソース領域及びドレイン領域の導電型と同一である複数の第2のトランジスタを備え、前記複数の第1のトランジスタそれぞれのソース領域及びドレイン領域は、前記画素領域内に形成された第1の半導体領域内に形成され、前記複数の第2のトランジスタそれぞれのソース領域及びドレイン領域は、前記周辺領域内に形成された第2の半導体領域内に形成され、前記画素領域内に形成された前記第1の半導体領域の不純物濃度は、前記周辺領域内に形成された前記第2の半導体領域の不純物濃度よりも低い値に設定されていることを特徴とする。
上記本発明における第1の固体撮像装置においては、前記第1の半導体領域が、前記第1のトランジスタのウェルとして機能し、前記第2の半導体領域が、前記第2のトランジスタのウェルとして機能する。
また、上記本発明における第1の固体撮像装置においては 前記画素領域及び前記周辺領域に複数の素子分離部が設けられ、前記複数の素子分離部のうち、前記画素領域に形成された素子分離部の側面側及び底面側に、前記第1のトランジスタのソース領域及びドレイン領域の導電型と反対の導電型の不純物によってリークストッパが形成されている態様とするのが好ましい。この態様によれば、素子分離部からフォトダイオードへとリーク電流が流れるのを抑制できる。更に、上記態様においては、前記複数の素子分離部として、前記半導体基板に形成された溝の内部に埋め込まれた酸化膜を用いることができる。
本発明における第2の固体撮像装置は、半導体基板を備え、前記半導体基板上の画素領域に複数の画素セルが設けられ、画素領域の周辺領域に周辺回路が設けられた固体撮像装置であって、前記複数の画素セルそれぞれは、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数のトランジスタとを備え、前記画素領域及び前記周辺領域に複数の素子分離部が設けられ、前記画素領域に設けられた素子分離部のうち、隣接する受光素子間を分離する素子分離部の側面側及び底面側と、前記受光素子と前記トランジスタとを分離する素子分離部の前記受光素子側とには、前記第1のトランジスタのソース領域及びドレイン領域の導電型と反対の導電型の不純物によってリークストッパが形成されていることを特徴とする。上記第2の固体撮像装置においては、リークストッパが形成されるため、上記第1の固体撮像装置に比べて、素子分離部からフォトダイオードへとリーク電流が流れるのを抑制でき、画素の微細化に容易に対応できる。
上記本発明における第2の固体撮像装置においては、前記周辺回路が、ソース領域及びドレイン領域の導電型が前記画素セルの前記複数のトランジスタのソース領域及びドレイン領域の導電型と同一の複数の第2のトランジスタを備え、前記画素セルの前記複数のトランジスタそれぞれのソース領域及びドレイン領域は、前記画素領域内に形成された第1の半導体領域内に形成され、前記複数の第2のトランジスタそれぞれのソース領域及びドレイン領域は、前記周辺領域内に形成された第2の半導体領域内に形成され、前記画素領域内に形成された前記第1の半導体領域の不純物濃度は、前記周辺領域内に形成された前記第2の半導体領域の不純物濃度よりも低い値に設定されている態様とするのが好ましい。この態様とすれば、第2の固体撮像装置に、第1の固体撮像装置による効果を付加することができる。
また、上記本発明における第2の固体撮像装置においては、前記第1の半導体領域が、前記画素セルの前記トランジスタのウェルとして機能し、前記第2の半導体領域が、前記第2のトランジスタのウェルとして機能する。
第1の固体撮像装置の製造方法は、半導体基板を備え、前記半導体基板上の画素領域に、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数の第1のトランジスタとを備える複数の画素セルが設けられ、画素領域の周辺領域に、複数の第2のトランジスタを備える周辺回路が設けられ、前記第2のトランジスタのソース領域及びドレイン領域の導電型が前記第1のトランジスタのソース領域及びドレイン領域の導電型と同一である固体撮像装置の製造方法であって、(a)前記周辺領域内の前記複数の第2のトランジスタの形成領域に、第1のイオン注入を行なう工程と、(b)前記周辺領域内の前記複数の第2のトランジスタの形成領域、及び前記画素領域内の前記複数の第1のトランジスタの形成領域に、第2のイオン注入を行なう工程とを有することを特徴とする。
また、本発明における第2の固体撮像装置の製造方法は、半導体基板を備え、前記半導体基板上の画素領域に、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数のトランジスタとを備える複数の画素セルが設けられ、画素領域の周辺領域に周辺回路が設けられた固体撮像装置の製造方法であって、(a)前記画素領域及び前記周辺領域に、複数の素子分離部を形成する工程と、(b)隣接する受光素子間を分離する素子分離部の側面側及び底面側と、前記受光素子と前記トランジスタとを分離する素子分離部の前記受光素子側とに、リークストッパが形成されるように、前記半導体基板の法線に対して傾斜した方向から、前記トランジスタのソース領域及びドレイン領域の導電型と反対の導電型の不純物をイオン注入する工程とを有することを特徴とする
(実施の形態1)
以下、本発明の実施の形態1における固体撮像装置及び固体撮像装置の製造方法について、図面を参照しながら説明する。本実施の形態1における固体撮像装置はMOS型固体撮像装置である。本実施の形態1においても、背景技術において図4に示したように、固体撮像装置は、半導体基板を備え、半導体基板上の画素領域に複数の画素セルを設け、画素領域の周辺の領域(周辺回路領域)に周辺回路を設けて構成されている。
また、本実施の形態1においても、周辺回路領域には、背景技術において図5に示した例と同様に、垂直駆動回路、水平駆動回路、負荷トランジスタ群、行信号蓄積部が備えられている。
更に、複数の画素セルは、マトリクス状に配置されており、固体撮像装置の回路構成は、背景技術において図5に示した例と同様である。更に、各画素セルは、受光素子として機能するフォトダイオードと、フォトダイオードに蓄積された信号電荷を読み出すための複数のトランジスタ(読出し用トランジスタ)とを備えている。
また、読出し用トランジスタとしては、転送トランジスタ、増幅トランジスタ、リセットトランジスタ、及び垂直選択トランジスタが挙げられる。また、これらのうち、増幅トランジスタは、周辺回路領域に設けられた負荷トランジスタ群と共に、ソースフォロア回路を構成する。
ここで、本実施の形態1における固体撮像装置の製造方法について図1を用いて説明する。図1は、本発明の実施の形態1における固体撮像装置の製造方法を示す断面図であり、図1(a)〜図1(d)それぞれは一連の主な工程を示している。図1(a)〜(d)においては、左側半分に画素領域Aが示され、右側半分に周辺回路領域Bが示されている。また、図1(a)〜(d)においては、断面に現れた線のみが図示されている。
更に、本実施の形態1においても、半導体基板上にはNチャンネルMOSトランジスタとPチャンネルMOSトランジスタとの両方が形成されるが、図1(a)〜(d)においては、NチャンネルMOSトランジスタが形成される領域のみが図示されている。図1(d)は本実施の形態1における固体撮像装置の構成についても示している。
最初に、図1(a)に示すように、半導体基板21の画素領域A及び周辺回路領域Bに、STI素子分離部22を形成するための溝41を形成する。次に、画素領域Aが開口したレジストパターン20を形成し、これをマスクとして、不純物を斜め方向からイオン注入する。この結果、画素領域Aにおいては、溝41の側面側及び底面側に、STIリークストッパ22が形成される。
なお、図1(a)に示す工程は、背景技術において図9(a)に示した工程と同様の工程である。本実施の形態1においても、半導体基板21はn型のシリコン基板である。また、図1(a)に示す工程においてイオン注入される不純物は、p型の不純物、例えばボロン(B)等である。
次に、図1(b)に示すように、レジストパターン20を除去した後、溝41が埋まるようにシリコン酸化膜を成膜し、表面を研磨して、複数の素子分離部(素子分離領域)22を形成する。
次いで、周辺回路領域Bが開口したレジストパターン25を形成し、フォトダイオードの形成領域A1と読出し用トランジスタの形成領域A2とを被覆する。更に、レジストパターン25をマスクとして、p型の不純物をイオン注入する。この場合、イオン注入は、不純物が深い領域にまで分布するよう、例えば基板表面からの拡散層深さが1.0μm〜1.5μmとなるように行なう。具体的には、例えば、イオン注入されるp型の不純物がボロン(B)の場合であれば、注入エネルギーを250KeV〜500KeVに設定し、ドーズ量を1×1013個/cm2〜1×1014個/cm2に設定する。
これにより、周辺回路領域Bには、p型の半導体領域24が形成される。半導体領域24は、周辺回路領域Bに形成されるトランジスタ(NチャンネルMOSトランジスタ)のウェルとして機能する。
次に、図1(c)に示すように、レジストパターン25を除去した後、画素セルを構成する読出し用トランジスタの形成領域A2と周辺回路領域Bとが開口した新たなレジストパターン28を形成する。次いで、レジストパターン28をマスクとして、p型の不純物をイオン注入する。
これにより、読出し用トランジスタの形成領域A2にも、p型の半導体領域26が形成される。半導体領域26は、画素セルに形成されるトランジスタ(NチャンネルMOSトランジスタ)のウェルとして機能する。また、図1(c)に示す工程により、図1(b)に示した工程で形成された半導体領域24の不純物濃度は高くなる。よって、周辺回路領域Bにおけるトランジスタは、画素領域Aにおける読出し用トランジスタよりも、不純物濃度が高いウェル内に配置されることとなる。なお、図1(c)の工程が終了した後の半導体領域24は、「半導体領域24A」とする。
ところで、CMOSで周辺回路を構成する場合、NMOS領域及びPMOS領域それぞれにおいて、ラッチアップを抑制するためには、ウェルの不純物濃度は、ピークが1×1018個/cm3以上となるように設定するのが好ましい。
なお、CMOS半導体集積回路でラッチアップが問題となり始めるのは、少なくとも設計ルールが0.25μm以下となる世代の微細トランジスタの場合であると考えられる。また、この世代におけるウェルの拡散層深さ(基板との接合位置)はおよそ1μm〜2μmである。更に、この世代におけるウェルは、基板表面の方が中央部分よりも濃度が薄いプロファイルを備えたレトログレードウェル構造をとることがある。
一方、画素領域Aにおけるウェルの不純物濃度の設定では、画素セルがNチャンネルMOSトランジスタのみで構成されていることからラッチアップを懸念する必要がなく、1×1018個/cm3以下の濃度に設定することができる。但し、静電気によるサージが入った場合の素子破壊が懸念される。よって、サージを逃がすためには、半導体基板との接合を確保する必要があるため、ウェルの不純物濃度は半導体基板の不純物濃度以上の濃度に設定するのが好ましい。
従って、図1(c)の工程においては、半導体領域26の濃度は、例えば、半導体基板として、不純物濃度が1×1015/cm3のシリコン基板を用いる場合は、それ以上の濃度に設定するのが良い。また、この場合、例えば、イオン注入されるp型の不純物がボロン(B)の場合であれば、注入エネルギーは450KeV〜600KeVに設定し、ドーズ量は1×1010個/cm2〜1×1012個/cm2に設定するのが良い。また、図1(c)の工程においても、図1(b)に示した工程と同様に、イオン注入は、基板表面からの拡散層深さが1.0μm〜1.5μmとなるように行なわれる。
また、その後、p型の不純物をイオン注入して、形成領域A2及び周辺回路領域B内に浅い半導体領域27を形成する。半導体領域27は、チャンネル領域である。半導体領域27の不純物濃度を調整することにより、トランジスタの閾値電圧VTを制御することができる。また、例えば、NMOSの閾値電圧制御にボロン(B)を用いる場合であれば、注入エネルギーは、10KeV〜30KeVに設定し、ドーズ量は1×1012個/cm2〜1×1013個/cm2に設定するのが好ましい。
次に、図1(d)に示すように、レジストパターン28を除去した後、読出し用トランジスタの形成領域A2、及び周辺回路領域Bに、シリコン酸化膜からなるゲート絶縁膜32と、ポリシリコンからなるゲート電極31とを順に形成する。次いで、フォトダイオードの形成領域A1が開口したレジストパターン(図示せず)を形成し、これをマスクとして、リン(P)やヒ素(As)等のn型不純物をイオン注入する。これにより、フォトダイオードを構成するn型の半導体領域30が形成される。
続いて、レジストパターンを除去した後、絶縁膜の成膜及びエッチングを行なって、ゲート絶縁膜32とゲート電極31との側面に、側壁絶縁膜(サイドウォールスペーサー)33を形成する。
次いで、読出し用トランジスタの形成領域A2と周辺回路領域Bとが開口したレジストパターン(図示せず)を形成し、これをマスクとして、n型不純物をイオン注入する。これにより、トランジスタのソースドレイン領域29が形成される。その後、層間絶縁膜、各種配線、マイクロレンズ等が形成されて、本実施の形態1におけるMOS型固体撮像装置が完成する。なお、図1(d)に示す工程は、背景技術において図9(c)及び(d)に示した工程に準じて行われる。
このように、本実施の形態1の固体撮像装置の製造方法によれば、画素領域Aにおけるウェル(半導体領域26)の不純物濃度と、周辺回路領域BのNMOS領域におけるウェル(半導体領域24A)の不純物濃度とが個別に設定された、本実施の形態1の固体撮像装置が得られる。本実施の形態1における固体撮像装置では、画素領域におけるウェル(半導体領域26)の不純物濃度は、周辺回路領域BのNMOS領域におけるウェル(半導体領域24A)の不純物濃度よりも、低い値に設定される。よって、STIリークストッパを形成した場合であっても、画素領域Aに形成されたウェル(半導体領域26)の不純物濃度が高くなるのを回避できる。
このため、本実施の形態1によれば、出力トランジスタのバックバイアス効果を抑制できるので、ソースフォロア回路におけるダイナミックレンジや線形性が確保される。また、従来のように、カウウンタードープを行なう必要がないため、ソースフォロア回路を構成する出力トランジスタの閾値電圧VTの変動を抑制できる。
更に、本実施の形態1における製造方法によれば、ウェルを形成した後に、閾値電圧VT制御のためのチャンネル領域が形成される。よって、その後の工程による不純物の拡散などによって、閾値電圧VTが変動するのを回避できる。図1の例では、素子分離部22は、STI法を用いて形成されているが、本実施の形態1はこの例に限定されるものではない。本実施の形態1においては、LOCOS(Local Oxidation Of Silicon)法を用いて素子分離部を形成することもできる。更に、本実施の形態1においては、STIリークストッパ22が形成されない態様とすることもできる。
また、本実施の形態1において、画素領域Aにおける半導体領域26、及び周辺回路領域Bにおける半導体領域24Aの形成工程は、図1に示す例に限定されない。例えば、図1(c)に示した形成領域A2及び周辺回路領域Bへのイオン注入を行なった後に、図1(b)に示した周辺回路領域Bへのイオン注入を行なう態様としても良い。
(実施の形態2)
次に、本発明の実施の形態2における固体撮像装置及び固体撮像装置の製造方法について、図面を参照しながら説明する。本実施の形態2においては、実施の形態1と異なり、STIリークストッパは一部分にしか設けられず、また、画素領域Aにおけるウェル濃度と周辺回路領域Bにおけるウェルの濃度とは同一の値に設定されている。
但し、本実施の形態2における固体撮像装置も、MOS型固体撮像装置であり、上記の点以外においては、実施の形態1における固体撮像装置と同様に構成されている。以下、図2を用いて説明する。
図2は、本発明の実施の形態2における固体撮像装置の製造方法を示す断面図であり、図2(a)〜図2(d)それぞれは一連の主な工程を示している。図2(a)〜(d)においては、左側半分に画素領域Aが示され、右側半分に周辺回路領域Bが示されている。また、図2(a)〜(d)においては、断面に現れた線のみが図示されている。
更に、本実施の形態2においても、半導体基板上にはNチャンネルMOSトランジスタとPチャンネルMOSトランジスタとの両方が形成されるが、図2(a)〜(d)においては、NチャンネルMOSトランジスタが形成される領域のみが図示されている。図2(d)は本実施の形態2における固体撮像装置の構成についても示している。
最初に、図2(a)に示すように、半導体基板21の画素領域A及び周辺回路領域Bに、STI素子分離部を形成するための溝41を形成する。更に、p型の不純物を斜め方向からイオン注入して、STIリークストッパ43を形成する。このとき、本実施の形態2においては、フォトダイオードの形成領域A1のみが開口したレジストパターン45を形成し、これをイオン注入時のマスクとする。
次に、図2(b)に示すように、レジストパターン45を除去した後、溝41が埋まるようにシリコン酸化膜を成膜し、表面を研磨する。これにより、隣接するフォトダイオード間を分離する素子分離部42aと、フォトダイオードとトランジスタとを分離する素子分離部42bと、周辺回路領域Bにおいてトランジスタ間を分離する素子分離部42cとが形成される。なお、図2には図示していないが、画素領域Aにおいては、隣接するトランジスタ間を分離する素子分離部も形成される。
図2(a)及び(b)に示す工程の結果、本実施の形態2においては、STIリークストッパ43はフォトダイオードの形成領域A1にのみ形成される。具体的には、STIリークストッパ43は、素子分離部42aの側面側及び底面側と、素子分離部42bの受光素子側にのみ形成される。本実施の形態2においては、STIリークストッパ43は、後述するトランジスタのウェルと重ならないように形成される。
次に、図2(c)に示すように、読出し用トランジスタの形成領域A2と周辺回路領域Bとが開口したレジストパターン46を形成する。次いで、レジストパターン46をマスクとして、p型の不純物をイオン注入する。これにより、読出し用トランジスタの形成領域A2にp型の半導体領域44aが形成され、周辺回路領域Bにp型の半導体領域44bが形成される。半導体領域44aは、画素セルに形成されるトランジスタ(NチャンネルMOSトランジスタ)のウェルとして機能する。また、半導体領域44bは、周辺回路領域Bに形成されるトランジスタ(NチャンネルMOSトランジスタ)のウェルとして機能する。
この場合のイオン注入は、不純物が深い領域にまで分布するよう、例えば基板表面からの拡散層深さが1.0μm〜1.5μmとなるように行なう。具体的には、例えば、イオン注入されるp型の不純物がボロン(B)の場合であれば、注入エネルギーを250KeV〜500KeVに設定し、ドーズ量を1×1013個/cm2〜1×1014個/cm2に設定するのが良い。
次に、p型の不純物をイオン注入して、チャンネル領域47を形成する。チャンネル領域47の形成は、実施の形態1において図1(c)に示した工程と同様に行なわれる。チャンネル領域47のイオン注入条件も、閾値電圧VTの設計値に合わせて設定される。
次に、図2(d)に示すように、レジストパターン46を除去した後、読出し用トランジスタの形成領域A2、及び周辺回路領域Bに、ゲート絶縁膜51、ゲート電極50、フォトダイオードを構成するn型の半導体領域49を形成する。更に、側壁絶縁膜(サイドウォールスペーサー)52を形成した後、n型不純物のイオン注入を行なって、トランジスタのソースドレイン領域48を形成する。その後、層間絶縁膜、各種配線、マイクロレンズ等を形成して、本実施の形態2におけるMOS型固体撮像装置が完成する。なお、図1(d)に示す工程は、背景技術において図9(c)及び(d)に示した工程に準じて行われる。
このように、本実施の形態2の固体撮像装置及びその製造方法によれば、STIリークストッパ43によって、画素領域Aに形成されたウェル(半導体領域44a)の不純物濃度が高くなるのを回避できる。このため、本実施の形態2によれば、出力トランジスタのバックバイアス効果を抑制できるので、ソースフォロア回路におけるダイナミックレンジや線形性が確保される。また、従来のように、カウウンタードープを行なう必要がないため、素子分離部42a及び42bからフォトダイオード(半導体領域43)へと流れるリーク電流を阻止しつつ、ソースフォロア回路を構成する出力トランジスタの閾値電圧VTの変動を抑制できる。
また、本実施の形態2においても、実施の形態1と同様に、ウェルを形成した後に、閾値電圧VT制御のためのチャンネル領域が形成される。よって、その後の工程による不純物の拡散などによって、閾値電圧VTが変動するのを回避できる。更に、本実施の形態2においても、素子分離部42a〜42cは、LOCOS(Local Oxidation Of Silicon)法を用いて形成することができる。
(実施形態3)
次に、本発明の実施の形態3における固体撮像装置及び固体撮像装置の製造方法について、図面を参照しながら説明する。本実施の形態3は、実施の形態1における特徴と実施の形態2における特徴との両方を備えた例を示している。つまり、本実施の形態3は、画素領域Aにおけるウェル濃度と周辺回路領域Bにおけるウェル濃度とが個別に設定される点で実施の形態1と共通している。また、本実施の形態3は、STIリークストッパが一部分にしか設けられない点で実施の形態2と共通している。また、本実施の形態3においても、固体撮像装置は、MOS型固体撮像装置である。
図3は、本発明の実施の形態3における固体撮像装置の製造方法を示す断面図であり、図3(a)〜図3(e)それぞれは一連の主な工程を示している。図3(a)〜(e)においては、左側半分に画素領域Aが示され、右側半分に周辺回路領域Bが示されている。また、図3(a)〜(e)においては、断面に現れた線のみが図示されている。
更に、本実施の形態3においても、半導体基板上にはNチャンネルMOSトランジスタとPチャンネルMOSトランジスタとの両方が形成されるが、図3(a)〜(e)においては、NチャンネルMOSトランジスタが形成される領域のみが図示されている。図3(e)は本実施の形態3における固体撮像装置の構成についても示している。
最初に、図3(a)に示すように、半導体基板21の画素領域A及び周辺回路領域Bに、STI素子分離部を形成するための溝41を形成する。更に、フォトダイオードの形成領域A1のみが開口したレジストパターン45を形成し、これをマスクとして、p型の不純物を斜め方向からイオン注入する。これにより、STIリークストッパ43が、フォトダイオードの形成領域A1にのみ形成される。
次に、図3(b)に示すように、レジストパターン45を除去した後、溝41が埋まるようにシリコン酸化膜を成膜し、表面を研磨する。これにより、隣接するフォトダイオード間を分離する素子分離部42aと、フォトダイオードとトランジスタとを分離する素子分離部42bと、周辺回路領域Bにおいてトランジスタ間を分離する素子分離部42cとが形成される。
図3(a)及び(b)に示した工程は、実施の形態2において図2(a)及び(b)に示した工程と同様の工程である。よって、本実施の形態3においても、STIリークストッパ43は、素子分離部42aの側面側及び底面側と、素子分離部42bの受光素子側にのみ形成される。また、半導体基板21は、p型のシリコン基板である。
次に、図3(c)に示すように、周辺回路領域Bが開口したレジストパターン61を形成し、フォトダイオードの形成領域A1と読出し用トランジスタの形成領域A2とを被覆する。次いで、レジストパターン61をマスクとして、p型の不純物をイオン注入する。
これにより、周辺回路領域Bには、p型の半導体領域62が形成される。半導体領域62は、周辺回路領域Bに形成されるトランジスタ(NチャンネルMOSトランジスタ)のウェルとして機能する。また、図3(c)に示す工程は、実施の形態1において図1(b)に示した工程と同様の工程であり、イオン注入条件は、図1(b)に示した工程と同様の条件に設定される。
次に、図3(d)に示すように、レジストパターン65を除去した後、画素セルを構成する読出し用トランジスタの形成領域A2と周辺回路領域Bとが開口した新たなレジストパターン65を形成する。次いで、レジストパターン65をマスクとして、p型の不純物をイオン注入する。続いて、p型の不純物を浅い領域にイオン注入して、チャンネル領域64を形成する。
なお、図3(d)に示す工程は、実施の形態1において図1(c)に示した工程と同様の工程である。図3(d)に示す工程により、読出し用トランジスタの形成領域A2に、ウェルとして機能するp型の半導体領域63が形成され、半導体領域62の不純物濃度は高くなる。また、図3(d)の工程が終了した後の半導体領域62は、「半導体領域62A」とする。更に、チャンネル領域64のイオン注入条件も、閾値電圧VTの設計値に合わせて設定される。
その後、図3(e)に示すように、レジストパターン65を除去した後、読出し用トランジスタの形成領域A2、及び周辺回路領域Bに、ゲート絶縁膜69、ゲート電極68、フォトダイオードを構成するn型の半導体領域67を形成する。更に、側壁絶縁膜(サイドウォールスペーサー)70を形成した後、n型不純物のイオン注入を行なって、トランジスタのソースドレイン領域66を形成する。その後、層間絶縁膜、各種配線、マイクロレンズ等を形成して、本実施の形態3におけるMOS型固体撮像装置が完成する。なお、図3(e)に示す工程は、背景技術において図9(c)及び(d)に示した工程に準じて行われる。
このように、本実施の形態3によれば、実施の形態1と同様に、画素領域Aにおけるウェルの不純物濃度は、周辺回路領域Bにおけるウェルの不純物濃度よりも、低い値に設定される。また、実施の形態2と同様に、STIリークストッパ43によって、画素領域Aに形成されたウェル(半導体領域63)の不純物濃度が高くなるのを回避できる。このため、本実施の形態3によれば、実施の形態1による効果と、実施の形態2による効果との両方を得ることができる。
本発明の固体撮像装置は、従来よりもバックバイアス効果を抑制でき、更に、ソースフォロア回路の線形性の向上やダイナミックレンジの拡大を図り得ることから、デジタルビデオカメラやデジタルスチルカメラ等の撮像装置として有用である。よって、本発明の固体撮像装置及び固体撮像装置の製造方法は、産業上の利用可能性を有している。
本発明の実施の形態1における固体撮像装置の製造方法を示す断面図であり、図1(a)〜図1(d)それぞれは一連の主な工程を示している。 本発明の実施の形態2における固体撮像装置の製造方法を示す断面図であり、図2(a)〜図2(d)それぞれは一連の主な工程を示している。 本発明の実施の形態3における固体撮像装置の製造方法を示す断面図であり、図3(a)〜図3(e)それぞれは一連の主な工程を示している。 従来からのMOS型固体撮像装置の概略構成を示す平面図である。 従来からのMOS型固体撮像装置の回路構成の一例を示す回路図である。 図5に示した従来の固体撮像装置の動作を説明するためのタイミングチャートである。 図5に示した従来の固体撮像装置の一部分を拡大して示す平面図である。 図5に示した従来の固体撮像装置の一部分を拡大して示す断面図である。 STIリークストッパが形成された従来のMOS型固体撮像装置の製造工程を示す部分断面図であり、図9(a)〜(d)は一連の主な工程を示している。 基本的なソースフォロア回路の回路構成を示す回路図である。
符号の説明
20、25、28、45、46、61、65 レジストパターン
21 半導体基板
22、42a、42b、42c 素子分離部
23、43 STIリークストッパ
24、62 周辺回路領域のトランジスタのウェルとなる半導体領域(低濃度)
24A、62A 周辺回路領域のトランジスタのウェルとなる半導体領域(高濃度)
26、44a、63 画素領域のトランジスタのウェルとなる半導体領域
27、47、64 チャンネル領域(半導体領域)
29、48、66 ソースドレイン領域
30、49、67 フォトダイオードとなる半導体領域
31、50、68 ゲート電極
32、51、69 ゲート絶縁膜
33、52、70 側壁絶縁膜
41 溝
44b 周辺回路領域のトランジスタのウェルとなる半導体領域
A 画素領域
A1 フォトダイオードの形成領域
A2 画素セル駆動用のトランジスタ
B 周辺回路領域

Claims (9)

  1. 半導体基板を備え、前記半導体基板上の画素領域に複数の画素セルが設けられ、画素領域の周辺領域に周辺回路が設けられた固体撮像装置であって、
    前記複数の画素セルそれぞれは、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数の第1のトランジスタとを備え、
    前記周辺回路は、ソース領域及びドレイン領域の導電型が前記第1のトランジスタのソース領域及びドレイン領域の導電型と同一である複数の第2のトランジスタを備え、
    前記複数の第1のトランジスタそれぞれのソース領域及びドレイン領域は、前記画素領域内に形成された第1の半導体領域内に形成され、
    前記複数の第2のトランジスタそれぞれのソース領域及びドレイン領域は、前記周辺領域内に形成された第2の半導体領域内に形成され、
    前記画素領域内に形成された前記第1の半導体領域の不純物濃度は、前記周辺領域内に形成された前記第2の半導体領域の不純物濃度よりも低い値に設定されていることを特徴とする固体撮像装置。
  2. 前記第1の半導体領域が、前記第1のトランジスタのウェルとして機能し、前記第2の半導体領域が、前記第2のトランジスタのウェルとして機能する請求項1に記載の固体撮像装置。
  3. 前記画素領域及び前記周辺領域に複数の素子分離部が設けられ、
    前記複数の素子分離部のうち、前記画素領域に形成された素子分離部の側面側及び底面側に、前記第1のトランジスタのソース領域及びドレイン領域の導電型と反対の導電型の不純物によってリークストッパが形成されている請求項1または2に記載の固体撮像装置。
  4. 前記複数の素子分離部が、前記半導体基板に形成された溝の内部に埋め込まれた酸化膜である請求項3に記載の固体撮像装置。
  5. 半導体基板を備え、前記半導体基板上の画素領域に複数の画素セルが設けられ、画素領域の周辺領域に周辺回路が設けられた固体撮像装置であって、
    前記複数の画素セルそれぞれは、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数のトランジスタとを備え、
    前記画素領域及び前記周辺領域に複数の素子分離部が設けられ、
    前記画素領域に設けられた素子分離部のうち、隣接する受光素子間を分離する素子分離部の側面側及び底面側と、前記受光素子と前記トランジスタとを分離する素子分離部の前記受光素子側とには、前記第1のトランジスタのソース領域及びドレイン領域の導電型と反対の導電型の不純物によってリークストッパが形成されていることを特徴とする固体撮像装置。
  6. 前記周辺回路が、ソース領域及びドレイン領域の導電型が前記画素セルの前記複数のトランジスタのソース領域及びドレイン領域の導電型と同一の複数の第2のトランジスタを備え、
    前記画素セルの前記複数のトランジスタそれぞれのソース領域及びドレイン領域は、前記画素領域内に形成された第1の半導体領域内に形成され、
    前記複数の第2のトランジスタそれぞれのソース領域及びドレイン領域は、前記周辺領域内に形成された第2の半導体領域内に形成され、
    前記画素領域内に形成された前記第1の半導体領域の不純物濃度は、前記周辺領域内に形成された前記第2の半導体領域の不純物濃度よりも低い値に設定されている請求項5に記載の固体撮像装置。
  7. 前記第1の半導体領域が、前記画素セルの前記トランジスタのウェルとして機能し、前記第2の半導体領域が、前記第2のトランジスタのウェルとして機能する請求項6に記載の固体撮像装置。
  8. 半導体基板を備え、前記半導体基板上の画素領域に、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数の第1のトランジスタとを備える複数の画素セルが設けられ、画素領域の周辺領域に、複数の第2のトランジスタを備える周辺回路が設けられ、前記第2のトランジスタのソース領域及びドレイン領域の導電型が前記第1のトランジスタのソース領域及びドレイン領域の導電型と同一である固体撮像装置の製造方法であって、
    (a)前記周辺領域内の前記複数の第2のトランジスタの形成領域に、第1のイオン注入を行なう工程と、
    (b)前記周辺領域内の前記複数の第2のトランジスタの形成領域、及び前記画素領域内の前記複数の第1のトランジスタの形成領域に、第2のイオン注入を行なう工程とを有することを特徴とする固体撮像装置の製造方法。
  9. 半導体基板を備え、前記半導体基板上の画素領域に、受光素子と、前記受光素子に蓄積された信号電荷を読み出すための複数のトランジスタとを備える複数の画素セルが設けられ、画素領域の周辺領域に周辺回路が設けられた固体撮像装置の製造方法であって、
    (a)前記画素領域及び前記周辺領域に、複数の素子分離部を形成する工程と、
    (b)隣接する受光素子間を分離する素子分離部の側面側及び底面側と、前記受光素子と前記トランジスタとを分離する素子分離部の前記受光素子側とに、リークストッパが形成されるように、前記半導体基板の法線に対して傾斜した方向から、前記トランジスタのソース領域及びドレイン領域の導電型と反対の導電型の不純物をイオン注入する工程とを有することを特徴とする固体撮像装置の製造方法。
JP2005255328A 2005-09-02 2005-09-02 固体撮像装置およびその製造方法 Withdrawn JP2007073544A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005255328A JP2007073544A (ja) 2005-09-02 2005-09-02 固体撮像装置およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005255328A JP2007073544A (ja) 2005-09-02 2005-09-02 固体撮像装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2007073544A true JP2007073544A (ja) 2007-03-22

Family

ID=37934775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005255328A Withdrawn JP2007073544A (ja) 2005-09-02 2005-09-02 固体撮像装置およびその製造方法

Country Status (1)

Country Link
JP (1) JP2007073544A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009277722A (ja) * 2008-05-12 2009-11-26 Panasonic Corp 固体撮像装置及びその製造方法
US7714263B2 (en) 2007-08-06 2010-05-11 Sharp Kabushiki Kaisha Solid-state image capturing apparatus, manufacturing method for the solid-state image capturing apparatus, and electronic information device
WO2010090104A1 (en) * 2009-02-06 2010-08-12 Canon Kabushiki Kaisha Image sensing device and camera
US8053272B2 (en) 2009-02-06 2011-11-08 Canon Kabushiki Kaisha Semiconductor device fabrication method
US8670059B2 (en) 2009-02-06 2014-03-11 Canon Kabushiki Kaisha Photoelectric conversion device having an n-type buried layer, and camera
US8723285B2 (en) 2009-02-06 2014-05-13 Canon Kabushiki Kaisha Photoelectric conversion device manufacturing method thereof, and camera

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7714263B2 (en) 2007-08-06 2010-05-11 Sharp Kabushiki Kaisha Solid-state image capturing apparatus, manufacturing method for the solid-state image capturing apparatus, and electronic information device
KR101017906B1 (ko) * 2007-08-06 2011-03-04 샤프 가부시키가이샤 고체 촬상 장치, 고체 촬상 장치의 제조 방법, 및 전자정보 기기
JP2009277722A (ja) * 2008-05-12 2009-11-26 Panasonic Corp 固体撮像装置及びその製造方法
WO2010090104A1 (en) * 2009-02-06 2010-08-12 Canon Kabushiki Kaisha Image sensing device and camera
US8053272B2 (en) 2009-02-06 2011-11-08 Canon Kabushiki Kaisha Semiconductor device fabrication method
KR101272423B1 (ko) * 2009-02-06 2013-06-07 캐논 가부시끼가이샤 화상 감지 디바이스 및 카메라
US8482646B2 (en) 2009-02-06 2013-07-09 Canon Kabushiki Kaisha Image sensing device and camera
US8670059B2 (en) 2009-02-06 2014-03-11 Canon Kabushiki Kaisha Photoelectric conversion device having an n-type buried layer, and camera
US8723285B2 (en) 2009-02-06 2014-05-13 Canon Kabushiki Kaisha Photoelectric conversion device manufacturing method thereof, and camera

Similar Documents

Publication Publication Date Title
JP4486985B2 (ja) 固体撮像装置および電子情報機器
US7592579B2 (en) Photoelectric conversion device manufacturing method, semiconductor device manufacturing method, photoelectric conversion device, and image sensing system
US8426287B2 (en) Method of manufacturing semiconductor device, solid-state imaging device, and solid-state imaging apparatus
JP5723094B2 (ja) 固体撮像装置およびカメラ
JP2013045879A (ja) 半導体装置、半導体装置の製造方法、固体撮像装置、固体撮像装置の製造方法、電子機器
US7755150B2 (en) MOS solid-state image pickup device and manufacturing method thereof
JP3729814B2 (ja) 固体撮像装置
JP5100988B2 (ja) イメージセンサー及びその製造方法
JP2005072236A (ja) 半導体装置および半導体装置の製造方法
US8679890B2 (en) CMOS image sensor and fabricating method thereof
JP2007207891A (ja) 固体撮像装置、及び固体撮像装置の製造方法
JP3901114B2 (ja) 固体撮像装置およびその製造方法
JP2007073544A (ja) 固体撮像装置およびその製造方法
JP5274118B2 (ja) 固体撮像装置
JP4779781B2 (ja) 固体撮像装置とその製造方法
JP4779575B2 (ja) 固体撮像素子
JP5241883B2 (ja) 固体撮像装置及びこれを用いたカメラ
JP2005039219A (ja) 固体撮像装置
JP2007123680A (ja) 固体撮像装置
JP2007059447A (ja) 固体撮像装置
JP2009283727A (ja) 固体撮像素子およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090311