[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006328417A - Powder coating composition curable with actinic energy ray - Google Patents

Powder coating composition curable with actinic energy ray Download PDF

Info

Publication number
JP2006328417A
JP2006328417A JP2006200297A JP2006200297A JP2006328417A JP 2006328417 A JP2006328417 A JP 2006328417A JP 2006200297 A JP2006200297 A JP 2006200297A JP 2006200297 A JP2006200297 A JP 2006200297A JP 2006328417 A JP2006328417 A JP 2006328417A
Authority
JP
Japan
Prior art keywords
group
powder coating
coating composition
resin
glass transition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006200297A
Other languages
Japanese (ja)
Other versions
JP4481963B2 (en
Inventor
Noriko Hokari
紀子 穂苅
Kenji Seko
健治 瀬古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Original Assignee
Kansai Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd filed Critical Kansai Paint Co Ltd
Priority to JP2006200297A priority Critical patent/JP4481963B2/en
Publication of JP2006328417A publication Critical patent/JP2006328417A/en
Application granted granted Critical
Publication of JP4481963B2 publication Critical patent/JP4481963B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Paints Or Removers (AREA)
  • Polyethers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powder coating composition having excellent storage stability and capable of forming a cured coating film having excellent curability with actinic energy rays when applied to a coating object. <P>SOLUTION: The powder coating composition curable with actinic energy rays comprises, as essential components, (A) a resin containing ≥2 oxetane functional groups in one molecule on an average and having a glass transition temperature of 40-100°C and a number-average molecular weight of 1,000-15,000, (B) a polyepoxide having a glass transition temperature of 40-100°C and (C) a photo-cationic polymerization initiator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、新規な活性エネルギー線硬化型粉体塗料組成物に関する。   The present invention relates to a novel active energy ray-curable powder coating composition.

従来、粉体塗料組成物は有機溶剤等の揮発成分をほとんど含まないことから公害防止、地球環境の保護の点に優れた塗料として注目されている。   Conventionally, a powder coating composition has attracted attention as a coating excellent in pollution prevention and protection of the global environment because it hardly contains volatile components such as organic solvents.

エポキシ基含有粉体樹脂を用いた光カチオン重合粉体塗料組成物は、ビニル基含有粉体樹脂を用いた光ラジカル重合粉体塗料組成物に比べ、熱安定性に優れるため、粉体塗料の製造や粉体塗装後の加熱溶融による塗膜形成が良好である。しかしながら、エポキシ基の光カチオン重合を利用した活性エネルギー線硬化樹脂は、硬化時に酸素の影響を受けない等の利点を有するため、近年多くの用途に使用され始めているが、不飽和基の活性エネルギー線ラジカル重合に比べ感光性が悪いという問題点があった。   The photo cationic polymerization powder coating composition using the epoxy group-containing powder resin is superior in thermal stability to the photo radical polymerization powder coating composition using the vinyl group-containing powder resin. Good coating film formation by heating and melting after production and powder coating. However, active energy ray curable resins using photocationic polymerization of epoxy groups have the advantage that they are not affected by oxygen during curing and have recently begun to be used in many applications. There was a problem that the photosensitivity was poor compared to the linear radical polymerization.

本発明は、活性エネルギー線による硬化性に優れた粉体塗料組成物を開発することを目的としてなされたものである。   The present invention has been made for the purpose of developing a powder coating composition having excellent curability by active energy rays.

本発明者等は、前記従来技術の欠点を解消すべく鋭意研究を重ねた。その結果、架橋官能基としてオキセタン官能基とエポキシ基を併用すると、感光性が向上して、その結果、光カチオン重合速度が増大することを見出し、本発明を完成させるに至った。   The inventors of the present invention have made extensive studies to eliminate the drawbacks of the prior art. As a result, it has been found that when an oxetane functional group and an epoxy group are used in combination as a cross-linking functional group, the photosensitivity is improved, and as a result, the photocationic polymerization rate is increased, and the present invention has been completed.

しかして、本発明によると、(A)下記一般式(I)   Thus, according to the present invention, (A) the following general formula (I)

Figure 2006328417
Figure 2006328417

(式中、R1は、水素原子、炭素数1〜6のアルキル基、フッ素原子、炭素数1〜6のフルオロアルキル基、アリル基、アリール基、アラルキル基、フリル基又はチェニル基を示す)で表わされるオキセタン官能基を1分子中に平均2個以上含有し、ガラス転移温度が40〜100℃の範囲内であり、数平均分子量が1,000〜15,000の範囲内である樹脂、(B)ガラス転移温度が40〜100℃の範囲内であるポリエポキシド、及び(C)光カチオン重合開始剤を必須成分として含有することを特徴とする活性エネルギー線硬化型粉体塗料組成物(以下、このものを「粉体塗料組成物」と呼ぶ)が提供される。 (In the formula, R 1 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a fluorine atom, a fluoroalkyl group having 1 to 6 carbon atoms, an allyl group, an aryl group, an aralkyl group, a furyl group, or a chenyl group). A resin having an average of two or more oxetane functional groups represented by the formula: a glass transition temperature in the range of 40 to 100 ° C., and a number average molecular weight in the range of 1,000 to 15,000, An active energy ray-curable powder coating composition (hereinafter referred to as “B”) containing a polyepoxide having a glass transition temperature in the range of 40 to 100 ° C. and (C) a cationic photopolymerization initiator as essential components This is referred to as a “powder coating composition”).

本発明の活性エネルギー線硬化型粉体塗料組成物は、貯蔵安定性に優れ、被塗物に塗装した場合、活性エネルギー線による硬化性に優れた硬化塗膜を形成することができる。   The active energy ray-curable powder coating composition of the present invention is excellent in storage stability and can form a cured coating film excellent in curability by active energy rays when applied to an object.

本発明の粉体塗料組成物について以下に説明する。   The powder coating composition of the present invention will be described below.

該粉体塗料組成物は、架橋官能基として前記式(I)で表わされるオキセタン官能基を有する樹脂(A)及びポリエポキシド(B)を、主たる樹脂成分として含んでなる点に特徴を有する。   The powder coating composition is characterized by comprising, as main resin components, a resin (A) having a oxetane functional group represented by the above formula (I) as a crosslinking functional group and a polyepoxide (B).

オキセタン官能基含有樹脂(A):前記式(I)中のR1の定義において、「炭素数1〜6のアルキル基」は直鎖状又は分岐状のものであってもよく、例えば、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、tert−ブチル、n−ヘキシル等が挙げられる。「炭素数1〜6のフルオロアルキル基」は上記アルキル基の水素原子の少なくとも1個がフッ素原子で置換された基であり、例えば、フルオロプロピル、フルオロブチル、トリフルオロプロピル等が挙げられる。「アリール基」は単環式又は多環式であることができ、また、芳香環が1個又はそれ以上の炭素数1〜6のアルキル基で置換されていてもよく、例えば、フェニル、トルイル、キシリル、ナフチル等が挙げられる。「アラルキル基」は、アリール部分及びアルキル部分がそれぞれ上記の意味を有するアリール−アルキル基であり、例えば、ベンジル基、フェネチル基等が挙げられる。 Oxetane functional group-containing resin (A): In the definition of R 1 in the formula (I), the “alkyl group having 1 to 6 carbon atoms” may be linear or branched, for example, methyl , Ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-hexyl and the like. The “C 1-6 fluoroalkyl group” is a group in which at least one hydrogen atom of the alkyl group is substituted with a fluorine atom, and examples thereof include fluoropropyl, fluorobutyl, trifluoropropyl and the like. The “aryl group” may be monocyclic or polycyclic, and the aromatic ring may be substituted with one or more alkyl groups having 1 to 6 carbon atoms, such as phenyl, toluyl , Xylyl, naphthyl and the like. The “aralkyl group” is an aryl-alkyl group in which the aryl part and the alkyl part have the above-mentioned meanings, and examples thereof include a benzyl group and a phenethyl group.

1としては中でも炭素数1〜6、殊に炭素数1〜4のアルキル基、例えば、メチル、エチルが好適である。 R 1 is particularly preferably an alkyl group having 1 to 6 carbon atoms, particularly 1 to 4 carbon atoms, such as methyl or ethyl.

該オキセタン官能基は、エーテル結合、エステル結合、ウレタン結合等の酸素を含有する結合又はこれらの1種以上の結合を含む炭化水素類を介して樹脂(A)の側鎖又は主鎖に結合していることが好ましい。   The oxetane functional group is bonded to the side chain or main chain of the resin (A) through a bond containing oxygen such as an ether bond, an ester bond, a urethane bond, or a hydrocarbon containing one or more of these bonds. It is preferable.

オキセタン官能基は、樹脂(A)中に1分子あたり平均して少なくとも約2個以上、好ましくは平均約3〜約30個の割合で存在することができる。該オキセタン官能基が1分子あたり平均約2個を下回ると活性エネルギー線硬化性が低下するので好ましくない。   The oxetane functional group can be present in the resin (A) at an average of at least about 2 or more, preferably an average of about 3 to about 30 per molecule. When the average number of oxetane functional groups is less than about 2 per molecule, the active energy ray curability is lowered, which is not preferable.

該オキセタン官能基含有樹脂(A)は、ガラス転移温度40〜100℃の範囲内、好ましくは50〜80℃の範囲内、数平均分子量1,000〜15,000の範囲内、好ましくは3,000〜10,000の範囲内を夫々有するものである。ガラス転移温度が40℃を下回ると塗料の耐ブロッキング性が劣り、一方、100℃を上回ると塗膜の仕上り外観(平滑性等)が劣るので好ましくない。数平均分子量が1,000を下回ると塗料の耐ブロッキング性、塗膜の耐候性が劣り、一方、15,000を上回ると塗膜の仕上り外観が劣るので好ましくない。上記したガラス転移温度(Tg、℃)は、以下のように求める。即ち、示差走査熱量測定装置(DSC)を用い、試料をサンプルパンに約10mg秤量したものを100℃まで加熱し、10分間保持し、その後、−20℃まで急冷する。その後、10℃/分の速度で昇温し、ガラス転移温度を求める。   The oxetane functional group-containing resin (A) has a glass transition temperature of 40 to 100 ° C, preferably 50 to 80 ° C, and a number average molecular weight of 1,000 to 15,000, preferably 3, Each having a range of 000 to 10,000. When the glass transition temperature is lower than 40 ° C., the coating has poor blocking resistance. On the other hand, when the glass transition temperature is higher than 100 ° C., the finished appearance (smoothness, etc.) of the coating film is inferior. When the number average molecular weight is less than 1,000, the blocking resistance of the paint and the weather resistance of the coating film are inferior. On the other hand, when the number average molecular weight exceeds 15,000, the finished appearance of the coating film is inferior. The glass transition temperature (Tg, ° C) described above is obtained as follows. That is, using a differential scanning calorimeter (DSC), about 10 mg of a sample weighed in a sample pan is heated to 100 ° C., held for 10 minutes, and then rapidly cooled to −20 ° C. Thereafter, the temperature is raised at a rate of 10 ° C./min to determine the glass transition temperature.

オキセタン官能基含有樹脂(A)は、オキセタン官能基を1分子中に平均2個以上含有し、ガラス転移温度が40〜100℃の範囲内であり、数平均分子量が1,000〜15,000の範囲内である限り、特に制限なしに使用することができる。具体的には、例えば、ポリエステル樹脂、アクリル樹脂、アルキド樹脂、及びこれらの変性樹脂等が包含される。   The oxetane functional group-containing resin (A) contains an average of two or more oxetane functional groups in one molecule, has a glass transition temperature in the range of 40 to 100 ° C., and a number average molecular weight of 1,000 to 15,000. As long as it is within the range, it can be used without particular limitation. Specifically, for example, polyester resins, acrylic resins, alkyd resins, and modified resins thereof are included.

上記した樹脂にオキセタン官能基を導入する方法について代表例を以下に例示する。   Representative examples of the method for introducing an oxetane functional group into the above-described resin are shown below.

(1)多塩基酸(例えば、(無水)フタル酸、イソフタル酸、テレフタル酸、(無水)マレイン酸、アジピン酸、アゼライン酸等)と多価アルコール(例えば、エチレングリコール、ネオペンチルグリコール、プロピレングリコール、1,6−ヘキサンジオール、グリセリン、ペンタエリスリトール、トリメチロールプロパン等)、及び必要に応じて1塩基酸の混合物をエステル化触媒の存在下でエステル化反応させてポリカルボン酸ポリエステル樹脂を製造し、次いで得られた樹脂をトリメチロールプロパン等のトリオール成分でエステル化反応させてポリエステル樹脂中にトリオール成分に由来する下記式   (1) Polybasic acids (for example, (anhydrous) phthalic acid, isophthalic acid, terephthalic acid, (anhydrous) maleic acid, adipic acid, azelaic acid, etc.) and polyhydric alcohols (for example, ethylene glycol, neopentyl glycol, propylene glycol) 1,6-hexanediol, glycerin, pentaerythritol, trimethylolpropane, etc.), and if necessary, a mixture of monobasic acids is esterified in the presence of an esterification catalyst to produce a polycarboxylic acid polyester resin. The following formula derived from the triol component in the polyester resin by esterifying the resulting resin with a triol component such as trimethylolpropane

Figure 2006328417
Figure 2006328417

の1,3−ジオール残基を導入し、続いて該残基と炭酸ジエチルとを反応させて環状ポリカーボネートを有するポリエステル樹脂を製造し、続いてこのものを脱炭酸させたもの。   A polyester resin having a cyclic polycarbonate is produced by introducing a 1,3-diol residue of the above, followed by reaction of the residue with diethyl carbonate, followed by decarboxylation.

(2)トリメチロールプロパン等のトリオールと炭酸ジエチルを反応させて水酸基含有環状カーボネートを製造した後、脱炭酸して片末端に水酸基及びもう一方の末端にオキセタン官能基を有する3−エチル−3−ヒドロキシメチルオキセタンを製造し、次いで該オキセタンの水酸基と相補的に反応するが、しかしオキセタン基とは実質的に反応しない相補性官能基、例えば、イソシアネート基、低級アルコキシ基(例えば、メトキシ、エトキシ)、低級アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル)等を有する樹脂(例えば、イソシアネート基を含有するアクリル樹脂、メチルエステル基を含有するポリエステル樹脂等)を反応させたもの。   (2) After reacting triol such as trimethylolpropane with diethyl carbonate to produce a hydroxyl group-containing cyclic carbonate, decarboxylation is performed to give a hydroxyl group at one end and an oxetane functional group at the other end. Complementary functional groups such as isocyanate groups, lower alkoxy groups (for example, methoxy, ethoxy) that produce hydroxymethyl oxetane and then react complementary to the hydroxyl group of the oxetane but do not substantially react with the oxetane group , A resin obtained by reacting a resin having a lower alkoxycarbonyl group (for example, methoxycarbonyl, ethoxycarbonyl) or the like (for example, an acrylic resin having an isocyanate group, a polyester resin having a methyl ester group, or the like).

(3)上記3−エチル−3−ヒドロキシメチルオキセタンと、相補的に反応する上記官能基及びラジカル重合性不飽和基(例えば、アクリロイル基、メタクリロイル基、ビニル基等)を含有する不飽和モノマーとを反応させて分子の片末端にラジカル重合性不飽和基及びもう一方の末端にオキセタン官能基を有する不飽和モノマーを製造し、次いで該不飽和モノマーを、必要ならばその他のラジカル重合性不飽和モノマー(例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等の(メタ)アクリル酸のC1〜C24のアルキル又はシクロアルキルエステル類;2−ヒドロキシプロピル(メタ)アクリレート、カプロラクトン変性(メタ)アクリル酸ヒドロキシエチル等の(メタ)アクリル酸のC2〜C8ヒドロキシアルキルエステル類;(メタ)アクリル酸等のカルボキシル基含有不飽和モノマー類;スチレン、α−メチルスチレン、ビニルトルエン等の芳香族ビニル化合物類;パーフルオロブチルエチル(メタ)アクリレート、パーフルオロイソノニルエチル(メタ)アクリレート等の含フッ素不飽和モノマー類;(メタ)アクリルアミド等の重合性アミド類;(メタ)アクリロニトリル等の重合性ニトリル類)とラジカル(共)重合させたもの。 (3) an unsaturated monomer containing the functional group and radical polymerizable unsaturated group (for example, acryloyl group, methacryloyl group, vinyl group, etc.) that reacts complementarily with the 3-ethyl-3-hydroxymethyloxetane; To produce an unsaturated monomer having a radically polymerizable unsaturated group at one end of the molecule and an oxetane functional group at the other end, then the unsaturated monomer, if necessary, other radically polymerizable unsaturated Monomer (for example, C 1 -C 24 alkyl of (meth) acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, etc. Or cycloalkyl esters; 2-hydroxypropyl (meth) acrylate, potassium Rorakuton modified (meth) C 2 -C 8 hydroxyalkyl esters of (meth) acrylic acid such as ethyl hydroxyethyl acrylate; (meth) carboxyl group-containing unsaturated monomers such as acrylic acid; styrene, alpha-methyl styrene, vinyl Aromatic vinyl compounds such as toluene; fluorine-containing unsaturated monomers such as perfluorobutylethyl (meth) acrylate and perfluoroisononylethyl (meth) acrylate; polymerizable amides such as (meth) acrylamide; (meth) Polymerized nitriles such as acrylonitrile) and radical (co) polymerized.

(4)上記水酸基含有環状カーボネートと上記相補性官能基を有する樹脂を反応させて樹脂中に環状カーボネートを導入した後、該環状カーボネートを脱炭酸してオキセタン官能基に変換したもの。   (4) A product obtained by reacting the hydroxyl group-containing cyclic carbonate with a resin having the complementary functional group to introduce the cyclic carbonate into the resin, and then decarboxylating the cyclic carbonate to convert it into an oxetane functional group.

(5)上記水酸基含有環状カーボネートと上記相補的に反応する官能基及びラジカル重合性不飽和基を含有する不飽和モノマーとを反応させて分子の片末端にラジカル重合性不飽和基及びもう一方の末端に環状カーボネートを有する不飽和モノマーを製造し、次いで該不飽和モノマーを、必要ならば上記その他のラジカル重合性不飽和モノマーとラジカル(共)重合させて、(共)重合体中に環状カーボネートを導入した後、該環状カーボネートを脱炭酸してオキセタン官能基に変換したもの。   (5) reacting the hydroxyl group-containing cyclic carbonate with the functional group reacting in a complementary manner and an unsaturated monomer containing a radical polymerizable unsaturated group to react with the radical polymerizable unsaturated group and the other at one end of the molecule; An unsaturated monomer having a cyclic carbonate at the terminal is produced, and then the unsaturated monomer is radically (co) polymerized with the above-mentioned other radical polymerizable unsaturated monomer, if necessary, to form a cyclic carbonate in the (co) polymer. After introducing the cyclic carbonate, the cyclic carbonate is decarboxylated and converted into an oxetane functional group.

ポリエポキシド(B):本発明に用いるポリエポキシド(B)は、1分子中にエポキシ基を平均約2個以上、好ましくは平均約2〜10個含有し、ガラス転移温度が40〜100℃の範囲内である樹脂である。該エポキシ基の数が1分子中に平均約2個を下回ると活性エネルギー線硬化性が低下するので好ましくない。また、ガラス転移温度が40℃を下回ると塗料の耐ブロッキング性が劣り、一方、100℃を上回ると塗膜の仕上り外観(平滑性等)が劣るので好ましくない。 Polyepoxide (B): The polyepoxide (B) used in the present invention contains an average of about 2 or more, preferably about 2 to 10 epoxy groups per molecule, and has a glass transition temperature in the range of 40 to 100 ° C. It is resin which is. If the number of the epoxy groups is less than about 2 on average in one molecule, the active energy ray curability is lowered, which is not preferable. On the other hand, when the glass transition temperature is lower than 40 ° C., the blocking resistance of the paint is inferior.

上記したガラス転移温度(Tg、℃)は、前述の示差走査熱量測定装置(DSC)により求める。   The glass transition temperature (Tg, ° C) described above is determined by the above-described differential scanning calorimeter (DSC).

また、ポリエポキシド(B)の数平均分子量は、約120〜200,000、好ましくは約240〜80,000の範囲内のものが好ましい。数平均分子量が約120を下回ると塗膜の耐久性等が低下し、一方、数平均分子量が約200,000を越えると塗装作業性が劣るといった欠点があるので好ましくない。   The polyepoxide (B) has a number average molecular weight of about 120 to 200,000, preferably about 240 to 80,000. When the number average molecular weight is less than about 120, the durability of the coating film is lowered. On the other hand, when the number average molecular weight exceeds about 200,000, there is a disadvantage that the coating workability is inferior.

ポリエポキシド(B)の具体例としては、例えば、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレート、アリルグリシジルエーテル等のグリシジル基含有エチレン性不飽和モノマー、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート等の脂環式エポキシ基含有エチレン性不飽和モノマー等の如きエポキシ基含有エチレン性不飽和モノマーと、必要に応じて、前記その他のラジカル重合性不飽和モノマーをラジカル(共)重合させて得られる(共)重合体;ジグリシジルエーテル、2−グリシジルフェニルグリシジルエーテル、2,6−ジグリシジルフェニルグリシジルエーテル等のグリシジルエーテル化合物;ビニルシクロヘキセンジオキサイド、レモネンジオキサイド等のグリシジル基及び脂環式エポキシ基含有化合物;ジシクロペンタジエンジオキサイド、ビス(2,3−エポキシシクロペンチル)エーテル、エポキシシクロヘキセンカルボン酸エチレングリコールジエステル、ビス(3,4−エポキシシクロヘキシルメチル)アジペート、3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート、3,4−エポキシ−6−メチルシクロヘキシルメチル−3,4−エポキシ−6−メチルシクロヘキサンカルボキシレート等の脂環式エポキシ基含有化合物;ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;フェノールノボラック型エポキシ樹脂等が包含される。   Specific examples of the polyepoxide (B) include, for example, glycidyl group-containing ethylenically unsaturated monomers such as glycidyl (meth) acrylate, methyl glycidyl (meth) acrylate, and allyl glycidyl ether, and 3,4-epoxycyclohexylmethyl (meth) acrylate. It is obtained by radical (co) polymerizing an epoxy group-containing ethylenically unsaturated monomer such as an alicyclic epoxy group-containing ethylenically unsaturated monomer such as the above and other radical polymerizable unsaturated monomers as necessary. (Co) polymers; glycidyl ether compounds such as diglycidyl ether, 2-glycidylphenyl glycidyl ether, 2,6-diglycidylphenyl glycidyl ether; Si group-containing compounds; dicyclopentadiene dioxide, bis (2,3-epoxycyclopentyl) ether, epoxycyclohexenecarboxylic acid ethylene glycol diester, bis (3,4-epoxycyclohexylmethyl) adipate, 3,4-epoxycyclohexylmethyl- Alicyclic epoxy group-containing compounds such as 3,4-epoxycyclohexanecarboxylate and 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate; bisphenol A type epoxy resin; bisphenol F type epoxy resins; cresol novolac type epoxy resins; phenol novolac type epoxy resins and the like are included.

前記オキセタン官能基含有樹脂(A)と上記ポリエポキシド(B)との配合割合は、固形分基準で、オキセタン官能基含有樹脂(A)100重量部に対してポリエポキシド(B)が約0.1〜100重量部、好ましくは約1〜50重量部の範囲内が好適である。   The blending ratio of the oxetane functional group-containing resin (A) and the polyepoxide (B) is about 0.1 to 0.1 parts by weight of the polyepoxide (B) based on 100 parts by weight of the oxetane functional group-containing resin (A). The preferred range is 100 parts by weight, preferably in the range of about 1-50 parts by weight.

光カチオン重合開始剤(C):本発明で使用する光カチオン重合開始剤(C)は、活性エネルギー線によってカチオンを発生して、オキセタン官能基及びエポキシ基のカチオン重合を開始させる化合物であり、例えば、下記式(II)〜(XVI)で表わされるヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルゼネート塩及びその他の光カチオン重合開始剤を挙げることができる。 Photocationic polymerization initiator (C): The photocationic polymerization initiator (C) used in the present invention is a compound that generates a cation by an active energy ray and initiates cationic polymerization of an oxetane functional group and an epoxy group, Examples thereof include hexafluoroantimonate salts, pentafluorohydroxyantimonate salts, hexafluorophosphate salts, hexafluoroarsenate salts and other photocationic polymerization initiators represented by the following formulas (II) to (XVI). .

Ar2+・X- (II)
[式中、Arはアリール基、例えばフェニル基を表わし、X-はPF6 -、SbF6 -、又はAsF6 -を表わす]
Ar3+・X- (III)
[式中、Ar及びX-は上記と同じ意味を有する]
Ar 2 I + · X - ( II)
[In the formula, Ar represents an aryl group such as a phenyl group, and X represents PF 6 , SbF 6 , or AsF 6 ]
Ar 3 S + · X (III)
[Wherein Ar and X − have the same meaning as above]

Figure 2006328417
Figure 2006328417

[式中、R2は炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基を表わし、nは0〜3の整数を表わし、X-は上記と同じ意味を有する] [Wherein R 2 represents an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms, n represents an integer of 0 to 3, and X has the same meaning as described above]

Figure 2006328417
Figure 2006328417

[式中、Y-はPF6 -、SbF6 -、AsF6 -又はSbF5(OH)-を表わす] [Wherein Y represents PF 6 , SbF 6 , AsF 6 or SbF 5 (OH) ]

Figure 2006328417
Figure 2006328417

[式中、X-は上記と同じ意味を有する] [Wherein X has the same meaning as above]

Figure 2006328417
Figure 2006328417

[式中、X-は上記と同じ意味を有する] [Wherein X has the same meaning as above]

Figure 2006328417
Figure 2006328417

[式中、X-は上記と同じ意味を有する] [Wherein X has the same meaning as above]

Figure 2006328417
Figure 2006328417

[式中、R3は炭素原子数7〜15のアラルキル基又は炭素原子数3〜9のアルケニル基、R4は炭素原子数1〜7の炭化水素基又はヒドロキシフェニル基、R5は酸素原子又は硫黄原子を含有していてもよい炭素原子数1〜5のアルキル基を示し、X-は上記と同じ意味を有する] [Wherein R 3 is an aralkyl group having 7 to 15 carbon atoms or an alkenyl group having 3 to 9 carbon atoms, R 4 is a hydrocarbon group or hydroxyphenyl group having 1 to 7 carbon atoms, and R 5 is an oxygen atom. Or an alkyl group having 1 to 5 carbon atoms which may contain a sulfur atom, and X has the same meaning as described above.

Figure 2006328417
Figure 2006328417

[式中、R6及びR7はそれぞれ独立に炭素数1〜12のアルキル基又は炭素数1〜12のアルコキシ基を表わす] [Wherein R 6 and R 7 each independently represents an alkyl group having 1 to 12 carbon atoms or an alkoxy group having 1 to 12 carbon atoms]

Figure 2006328417
Figure 2006328417

[式中、R6及びR7は上記と同じ意味を有する] [Wherein R 6 and R 7 have the same meaning as above]

Figure 2006328417
Figure 2006328417

光カチオン重合開始剤(C)の市販品としては、例えば、サイラキュアUVI−6970、同UVI−6990(以上、いずれも米国ユニオンカーバイド社製)、イルガキュア264(チバガイギー社製)、CIT−1682(日本曹達(株)製)等を挙げることができる。上記化合物中、毒性、汎用性の点からPF6-をアニオンとする塩が好ましい。 Commercially available products of the photocationic polymerization initiator (C) include, for example, Cyracure UVI-6970, UVI-6990 (all of which are manufactured by Union Carbide, USA), Irgacure 264 (Ciba Geigy), CIT-1682 (Japan). Soda Co., Ltd.). Among the above compounds, salts having PF 6 − as an anion are preferable from the viewpoint of toxicity and versatility.

上記の光カチオン重合開始剤(C)の配合割合は、一般に、前記樹脂(A)と前記ポリエポキシド(B)の合計量100重量部(固形分基準)に対して、0.01〜20重量部、好ましくは0.05〜15重量部、さらに好ましくは0.1〜10重量部の範囲内が好適である。配合割合が0.01重量部を下回ると硬化性、加工性等が低下し、逆に20重量部を上回ると貯蔵安定性、硬化物の仕上り外観、黄変性等が低下するのでいずれも好ましくない。   The blending ratio of the above cationic photopolymerization initiator (C) is generally 0.01 to 20 parts by weight with respect to 100 parts by weight (based on solid content) of the total amount of the resin (A) and the polyepoxide (B). The amount is preferably 0.05 to 15 parts by weight, more preferably 0.1 to 10 parts by weight. If the blending ratio is less than 0.01 parts by weight, curability, workability and the like are lowered. Conversely, if it exceeds 20 parts by weight, storage stability, finished appearance of the cured product, yellowing and the like are lowered, which is not preferable. .

粉体塗料組成物:本発明の粉体塗料組成物は、例えば、樹脂(A)の有機溶剤溶液及びポリエポキシド(B)の有機溶剤溶液に開始剤(C)及び必要に応じてその他の添加物の配合物を配合した場合には脱溶剤して固形粉体塗料組成物を得た後、粉砕機により微粉砕して粉体塗料を製造することができ、また、樹脂(A)及びポリエポキシド(B)が固形粉体樹脂の場合には樹脂(A)、ポリエポキシド(B)、開始剤(C)及び必要に応じてその他の添加物の配合物を配合した後、ミキサーでドライブレンドを行ない、次いで加熱溶融混練し、冷却、微粉砕して粉体塗料を製造することができる。粉体塗料組成物の平均粒子径は約1〜100ミクロン、好ましくは約5〜60ミクロンの範囲内が好適である。 Powder coating composition: The powder coating composition of the present invention includes, for example, an initiator (C) and, if necessary, other additives in an organic solvent solution of resin (A) and an organic solvent solution of polyepoxide (B). In the case of blending, a solid powder coating composition can be obtained by removing the solvent, and then finely pulverizing with a pulverizer to produce a powder coating, and the resin (A) and polyepoxide ( When B) is a solid powder resin, after blending resin (A), polyepoxide (B), initiator (C) and other additives as required, dry blend with a mixer, Next, the powder coating material can be produced by heating, melt-kneading, cooling, and finely pulverizing. The average particle size of the powder coating composition is about 1 to 100 microns, preferably about 5 to 60 microns.

その他の添加物としては、例えば、着色顔料、充填剤、流動性調整剤、ブロッキング防止剤、紫外線吸収剤、紫外線安定剤、表面調整剤、ワキ防止剤、酸化防止剤、帯電制御剤、硬化促進剤、その他樹脂等を挙げることができる。   Other additives include, for example, color pigments, fillers, fluidity modifiers, antiblocking agents, UV absorbers, UV stabilizers, surface stabilizers, anti-waxing agents, antioxidants, charge control agents, and curing accelerators. Agents and other resins.

本発明の活性エネルギー線硬化型粉体塗料組成物は、被塗物に静電粉体塗装(例えば、コロナ帯電式、摩擦帯電式等)、流動浸漬塗装等の方法で粉体塗装し、100〜160℃の温度に1〜10分間加熱溶融して塗膜を形成する。この塗膜に紫外線を照射することによって、カチオン重合により硬化塗膜を形成することができる。   The active energy ray-curable powder coating composition of the present invention is powder-coated by a method such as electrostatic powder coating (for example, corona charging type, friction charging type) or fluidized immersion coating on an object to be coated. A film is formed by heating and melting at a temperature of ˜160 ° C. for 1 to 10 minutes. By irradiating this coating film with ultraviolet rays, a cured coating film can be formed by cationic polymerization.

紫外線照射源としては、水銀ランプ、キセノンランプ、カーボンアーク、メタルハイトランプ、太陽光などを用いることができる。紫外線の照射条件は特に制限されないが、150〜450nmの範囲内の紫外線を含む光線を空気中もしくは不活性ガス雰囲気下で、数秒間以上照射することが好ましい。特に、空気中で照射する場合は、高圧水銀灯を用いることが好ましい。   As the ultraviolet irradiation source, a mercury lamp, a xenon lamp, a carbon arc, a metal height lamp, sunlight or the like can be used. Although the irradiation conditions of ultraviolet rays are not particularly limited, it is preferable to irradiate light containing ultraviolet rays within a range of 150 to 450 nm for several seconds or more in air or in an inert gas atmosphere. In particular, when irradiating in air, it is preferable to use a high-pressure mercury lamp.

以下、実施例を挙げて、本発明を更に具体的に説明する。「部」及び「%」はそれぞれ重量基準である。   Hereinafter, the present invention will be described more specifically with reference to examples. “Parts” and “%” are based on weight.

製造例1〜3
温度計、サーモスタット、撹拌機、還流冷却器及び滴下装置を備え付けた反応容器に、トルエン85部を仕込み、窒素ガスを吹き込みながら、110℃に加熱した後、滴下装置から表1に示すモノマー混合液に2,2´−アゾビス(2−メチルブチロニトリル)4部を溶解させた溶液を約3時間かけて滴下した。滴下終了後、110℃で2時間放置し、反応を終了した。その後、減圧蒸留によりトルエンを除去し、冷却してアクリル系樹脂(a)〜(c)を得た。得られた樹脂のDSC測定によるガラス転移温度、GPC(ゲルパーミエーションクロマトグラフ)測定による数平均分子量及び1分子中の官能基の個数を併せて表1に示す。
製造例4
温度計、サーモスタット、撹拌機、還流冷却器及び滴下装置を備え付けた反応容器に、トルエン85部を仕込み、窒素ガスを吹き込みながら、110℃に加熱した後、滴下装置から表1に示すモノマー混合液に2,2´−アゾビス(2−メチルブチロニトリル)4部を溶解させた溶液を約3時間かけて滴下した。滴下終了後、110℃で5時間放置した後、ハイドロキノンモノメチルエーテル0.05部及びテトラエチルアンモニウムブロマイド0.3部を添加し、窒素ガスを空気に切り換えて吹き込みながらアクリル酸14.7部を約1時間かけて滴下した後、5時間放置して、酸価が1以下になったことを確認して反応を終了した。この樹脂溶液を5リットルのn−ヘキサン中に注ぎ、絹布で濾過後、大きなステンレスバット中に広げ、暗室にて常温で7日間乾燥して白色の光ラジカル重合性不飽和ポリマー粉末(d)を得た。得られたポリマー(d)のDSC測定によるガラス転移温度、GPC(ゲルパーミエーションクロマトグラフ)測定による数平均分子量及び1分子中の官能基の個数を併せて表1に示す。
Production Examples 1-3
A reactor vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and dropping device was charged with 85 parts of toluene, heated to 110 ° C. while blowing nitrogen gas, and then the monomer mixture shown in Table 1 from the dropping device. A solution in which 4 parts of 2,2′-azobis (2-methylbutyronitrile) was dissolved was added dropwise over about 3 hours. After completion of the dropwise addition, the reaction was terminated by leaving it at 110 ° C. for 2 hours. Thereafter, toluene was removed by distillation under reduced pressure and cooled to obtain acrylic resins (a) to (c). Table 1 shows the glass transition temperature of the obtained resin by DSC measurement, the number average molecular weight by GPC (gel permeation chromatography) measurement, and the number of functional groups in one molecule.
Production Example 4
A reactor vessel equipped with a thermometer, thermostat, stirrer, reflux condenser and dropping device was charged with 85 parts of toluene, heated to 110 ° C. while blowing nitrogen gas, and then the monomer mixture shown in Table 1 from the dropping device. A solution in which 4 parts of 2,2′-azobis (2-methylbutyronitrile) was dissolved was added dropwise over about 3 hours. After completion of dropping, the mixture was allowed to stand at 110 ° C. for 5 hours, and then 0.05 part of hydroquinone monomethyl ether and 0.3 part of tetraethylammonium bromide were added, and 14.7 parts of acrylic acid was added while blowing nitrogen gas to air. After dropping over a period of time, the reaction was terminated after leaving it for 5 hours to confirm that the acid value was 1 or less. This resin solution is poured into 5 liters of n-hexane, filtered through a silk cloth, spread in a large stainless steel vat, and dried in a dark room at room temperature for 7 days to give a white photoradically polymerizable unsaturated polymer powder (d). Obtained. Table 1 shows the glass transition temperature of the obtained polymer (d) by DSC measurement, the number average molecular weight by GPC (gel permeation chromatography) measurement, and the number of functional groups in one molecule.

Figure 2006328417
Figure 2006328417

実施例1,2及び比較例1〜4
表2に記載のアクリル系樹脂100部及び光重合開始剤1部を室温でヘンシェルミキサーでドライブレンドした後、エクストルーダーで溶融混練した。次に冷却した後、ピンディスクミルで粉砕し、150メッシュのフルイで濾過して粉体塗料組成物を得た。得られた粉体塗料組成物の耐ブロッキング性を評価した。結果を表2に示す。
Examples 1 and 2 and Comparative Examples 1 to 4
100 parts of the acrylic resin listed in Table 2 and 1 part of the photopolymerization initiator were dry-blended with a Henschel mixer at room temperature, and then melt-kneaded with an extruder. Next, after cooling, it was pulverized by a pin disc mill and filtered through a 150 mesh sieve to obtain a powder coating composition. The blocking resistance of the obtained powder coating composition was evaluated. The results are shown in Table 2.

また、厚さ0.3mmのアルミ板上に、実施例1,2及び比較例1〜3で得た粉体塗料組成物を膜厚が約30μmとなるようにそれぞれ静電塗装し、乾燥機で140℃で5分間加熱溶融して塗膜を形成後、120W/cm2の高圧水銀灯で紫外線照射し、塗膜を硬化させた。なお、比較例4においては、加熱溶融中での塗膜の硬化を抑制するため、100℃で5分間加熱溶融した。得られた塗板について各種試験を行なった。結果を表2に示す。 In addition, the powder coating compositions obtained in Examples 1 and 2 and Comparative Examples 1 to 3 were electrostatically coated on an aluminum plate having a thickness of 0.3 mm so as to have a film thickness of about 30 μm. After heating and melting at 140 ° C. for 5 minutes to form a coating film, the coating film was cured by ultraviolet irradiation with a 120 W / cm 2 high-pressure mercury lamp. In Comparative Example 4, the coating was heated and melted at 100 ° C. for 5 minutes in order to suppress curing of the coating film during heating and melting. Various tests were performed on the obtained coated plate. The results are shown in Table 2.

表2における試験方法は以下のとうりである。   The test methods in Table 2 are as follows.

塗料の耐ブロッキング性:粉体塗料を、底面積が約20cm2の円筒容器に高さが6cmになるように入れ、30℃で7日間静置した。その後、粉体塗料を取り出して次の基準で状態を観察した。 Blocking resistance of the paint: The powder paint was placed in a cylindrical container having a bottom area of about 20 cm 2 so that the height was 6 cm, and allowed to stand at 30 ° C. for 7 days. Thereafter, the powder paint was taken out and the state was observed according to the following criteria.

◎:全く固まりがなく良好なもの、
○:若干固まるが指で簡単にほぐれるもの、
△:固まりが発生し指で強く押さないとほぐれないもの、
×:固まりが発生し指で強く押してもほぐれないもの。
A: Good without any solidity,
○: Slightly hardened but easily loosened with fingers,
△: A lump that cannot be loosened unless pressed with your fingers.
×: A mass that is not loosened even when strongly pressed with a finger.

塗膜外観:塗膜の仕上がり外観をツヤ感、平滑感から次の基準で評価した。 Appearance of coating film: The finished appearance of the coating film was evaluated from the gloss and smoothness according to the following criteria.

◎:良好、
○:若干平滑性が劣るがツヤ感は良好、
△:平滑性及びツヤ感が若干劣る、
×:平滑性及びツヤ感が劣る。
A: Good,
○: Slightly inferior in smoothness but good glossiness
Δ: Slightly inferior in smoothness and glossiness
*: Smoothness and glossiness are inferior.

光硬化最少照射量:紫外線照射した塗膜を、メチルエチルケトンを含浸させたガーゼで5回ラビングし、膨潤または溶解しない最少紫外線照射量(mJ/cm2)を測定した。 Photocuring minimum irradiation amount: The UV-irradiated coating film was rubbed five times with gauze impregnated with methyl ethyl ketone, and the minimum ultraviolet irradiation amount (mJ / cm 2 ) that did not swell or dissolve was measured.

光表面硬化性:最少紫外線照射量の2倍量紫外線照射した塗膜をメチルエチルケトンを含浸させたガーゼでラビングし、ラビング後の表面のツヤ感を次の基準で評価した。 Light surface curability: The coating film irradiated with UV light twice the minimum UV irradiation amount was rubbed with gauze impregnated with methyl ethyl ketone, and the glossiness of the surface after rubbing was evaluated according to the following criteria.

◎:5回以上のラビングでも良好、
○:2〜4回のラビングまで良好、
×:1回のラビングでツヤが引ける。
◎: Good even when rubbing 5 times or more,
○: Good up to 2-4 rubbing,
X: Gloss can be pulled by one rubbing.

Figure 2006328417
Figure 2006328417

Claims (2)

(A)下記一般式(I)
Figure 2006328417
(式中、R1は、水素原子、炭素数1〜6のアルキル基、フッ素原子、炭素数1〜6のフルオロアルキル基、アリル基、アリール基、アラルキル基、フリル基又はチェニル基を示す)で表わされるオキセタン官能基を1分子中に平均2個以上含有し、ガラス転移温度が40〜100℃の範囲内であり、数平均分子量が1,000〜15,000の範囲内である樹脂、(B)ガラス転移温度が40〜100℃の範囲内であるポリエポキシド、及び
(C)光カチオン重合開始剤を必須成分として含有することを特徴とする活性エネルギー線硬化型粉体塗料組成物。
(A) The following general formula (I)
Figure 2006328417
(In the formula, R 1 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a fluorine atom, a fluoroalkyl group having 1 to 6 carbon atoms, an allyl group, an aryl group, an aralkyl group, a furyl group, or a chenyl group). A resin having an average of two or more oxetane functional groups represented by the formula: a glass transition temperature in the range of 40 to 100 ° C., and a number average molecular weight in the range of 1,000 to 15,000, An active energy ray-curable powder coating composition comprising (B) a polyepoxide having a glass transition temperature in the range of 40 to 100 ° C. and (C) a cationic photopolymerization initiator as essential components.
樹脂(A)が、ポリエステル樹脂、アクリル樹脂、アルキド樹脂及びこれらの変性樹脂から選ばれる少なくとも1種である請求項1記載の活性エネルギー線硬化型粉体塗料組成物。
The active energy ray-curable powder coating composition according to claim 1, wherein the resin (A) is at least one selected from polyester resins, acrylic resins, alkyd resins, and modified resins thereof.
JP2006200297A 2006-07-24 2006-07-24 Active energy ray-curable powder coating composition Expired - Fee Related JP4481963B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200297A JP4481963B2 (en) 2006-07-24 2006-07-24 Active energy ray-curable powder coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200297A JP4481963B2 (en) 2006-07-24 2006-07-24 Active energy ray-curable powder coating composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14439097A Division JP4125805B2 (en) 1997-06-03 1997-06-03 Active energy ray-curable powder coating composition

Publications (2)

Publication Number Publication Date
JP2006328417A true JP2006328417A (en) 2006-12-07
JP4481963B2 JP4481963B2 (en) 2010-06-16

Family

ID=37550423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200297A Expired - Fee Related JP4481963B2 (en) 2006-07-24 2006-07-24 Active energy ray-curable powder coating composition

Country Status (1)

Country Link
JP (1) JP4481963B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177061A (en) * 2005-12-27 2007-07-12 Fuji Seal International Inc Coating material for plastic label and plastic label

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753711A (en) * 1993-08-17 1995-02-28 Toagosei Co Ltd Composition curable by actinic radiation
JPH07252344A (en) * 1994-02-09 1995-10-03 Ciba Geigy Ag Ultraviolet-curable solid epoxy resin composition
JPH08269392A (en) * 1995-03-31 1996-10-15 Toagosei Co Ltd Active energy beam-curing type composition for primary coating of optical fiber
JPH09309950A (en) * 1995-10-02 1997-12-02 Kansai Paint Co Ltd Ultraviolet-curable can coating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753711A (en) * 1993-08-17 1995-02-28 Toagosei Co Ltd Composition curable by actinic radiation
JPH07252344A (en) * 1994-02-09 1995-10-03 Ciba Geigy Ag Ultraviolet-curable solid epoxy resin composition
JPH08269392A (en) * 1995-03-31 1996-10-15 Toagosei Co Ltd Active energy beam-curing type composition for primary coating of optical fiber
JPH09309950A (en) * 1995-10-02 1997-12-02 Kansai Paint Co Ltd Ultraviolet-curable can coating composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007177061A (en) * 2005-12-27 2007-07-12 Fuji Seal International Inc Coating material for plastic label and plastic label

Also Published As

Publication number Publication date
JP4481963B2 (en) 2010-06-16

Similar Documents

Publication Publication Date Title
JP2527952B2 (en) Carboxyl-terminated lactone acrylate
JP5057016B2 (en) Amine imide compound activated by irradiation of active energy ray, composition using the same, and curing method thereof
JP2001506693A (en) Method for producing radiation-crosslinkable polymer acrylate or methacrylate
JP5549819B2 (en) Base and radical generator, composition using the same and method of curing the same
JP5593603B2 (en) Dispersant and method for producing the same
JP5700203B2 (en) Amineimide compound, composition using the same, and curing method thereof
WO2019208259A1 (en) Polymer, and oxygen absorbent and resin composition using same
JP2005187659A (en) Active energy ray-curable composition
CN1193056C (en) Polynuclear epoxy compound, resin obtained therefrom curable with actinic energy ray, and photocurable/thermosetting resin composition containing the same
JP4481963B2 (en) Active energy ray-curable powder coating composition
JP4125805B2 (en) Active energy ray-curable powder coating composition
JP7240884B2 (en) Active energy ray-curable resin composition and cured product thereof
JPH11148045A (en) Active energy light-curable coating composition and formation of coating using the same
JP7338062B2 (en) Active energy ray-curable resin composition and cured product thereof
JP2007146098A (en) Imide monomer and its production method, and active energy ray-curable composition
JP2003245606A (en) Method for forming thermoset coating film
JP3653781B2 (en) Method for producing reactive resin
JP3655718B2 (en) Method for producing active energy ray-curable resin
JP7586641B2 (en) Photosensitive composition
JPS5918717A (en) Curable resin composition
JP2001187806A (en) Active energy ray curable composition
JP2000336234A (en) Aqueous powder slurry composition, coating material curable by actinic radiation, and method of curing them
JP4235863B2 (en) Energy ray curable resin composition
TW202132459A (en) Curable composition, cured article using same, and method for producing cured article
JP2002265820A (en) Composition for active energy beam-curable powdery coating material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees