[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006309199A - Optical modulator - Google Patents

Optical modulator Download PDF

Info

Publication number
JP2006309199A
JP2006309199A JP2006088893A JP2006088893A JP2006309199A JP 2006309199 A JP2006309199 A JP 2006309199A JP 2006088893 A JP2006088893 A JP 2006088893A JP 2006088893 A JP2006088893 A JP 2006088893A JP 2006309199 A JP2006309199 A JP 2006309199A
Authority
JP
Japan
Prior art keywords
optical waveguide
light
optical
thin plate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006088893A
Other languages
Japanese (ja)
Other versions
JP4544474B2 (en
Inventor
Katsutoshi Kondo
勝利 近藤
Satoru Oikawa
哲 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2006088893A priority Critical patent/JP4544474B2/en
Publication of JP2006309199A publication Critical patent/JP2006309199A/en
Application granted granted Critical
Publication of JP4544474B2 publication Critical patent/JP4544474B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical modulator using a thin plate having a portion with ≤20 μm thickness of a substrate, in which specified polarized light can be selected from light waves propagating through an optical waveguide in the modulator without deteriorating productivity of the modulator. <P>SOLUTION: The optical modulator includes an X-cut or Y-cut thin plate 1 made of a material having an electro-optic effect, an optical waveguide 3 fabricated on the top or back surface of the thin plate, and a controlling electrode formed on the top surface of the thin plate to modulate light passing through the optical waveguide, wherein an attenuating means 10, 11 which absorbs light having a specified polarizing plane in the light propagating in the waveguide is disposed near the optical waveguide. The attenuating means is preferably a light-absorbing member and is disposed as interposing the optical waveguide at a distance L of 0.5 to 2 times the mode diameter of the light waves propagating in the optical waveguide. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光変調器に関し、特に、電気光学効果を有する材料で形成され、厚みが20μm以下の部分を有する薄板と、該薄板の裏面に接着され、該薄板より厚みの大きい補強板とを含む光変調器に関する。   The present invention relates to an optical modulator, and in particular, a thin plate formed of a material having an electro-optic effect and having a thickness of 20 μm or less, and a reinforcing plate bonded to the back surface of the thin plate and having a thickness larger than the thin plate. It is related with the optical modulator containing.

従来、光通信分野や光測定分野において、電気光学効果を有する基板上に光導波路や変調電極を形成した導波路型光変調器が多用されている。
特に、マルチメディアの発展に伴い情報伝達量も増加傾向にあり、光変調周波数の広帯域化を実現する必要がある。これらを実現する手段の一つとしてLiNbO(以下、「LN」という。)変調器等による外部変調方式が多様化されている。しかし、LN変調器の広帯域の実現には、変調信号であるマイクロ波と光波との速度整合、及び駆動電圧の低減を図る必要がある。
Conventionally, in the optical communication field and the optical measurement field, a waveguide type optical modulator in which an optical waveguide and a modulation electrode are formed on a substrate having an electro-optic effect has been widely used.
In particular, with the development of multimedia, the amount of information transmission is also increasing, and it is necessary to realize a broadband optical modulation frequency. As one of means for realizing these, external modulation methods using a LiNbO 3 (hereinafter referred to as “LN”) modulator or the like are diversified. However, in order to realize a wide band of the LN modulator, it is necessary to achieve speed matching between the microwave and the light wave that are the modulation signals and to reduce the driving voltage.

前記課題の解決手段として、従来は導波路上にバッファ層を設けることにより速度整合を図ってきた。しかし近年基板の加工技術の向上により基板の厚みを薄くすることにより、マイクロ波と光波の速度との速度整合条件を満足させ、且つ駆動電圧の低減を同時に図ることが試みられている。
以下の特許文献1乃至3においては、30μm以下の厚みを有する薄い基板(以下、「第1基板」という。)に、光導波路並びに変調電極を組み込み、第1基板より誘電率の低い他の基板(以下、「第2基板」という。)を接合し、マイクロ波に対する実効屈折率を下げ、マイクロ波と光波との速度整合を図り且つ基板の機械強度を維持することが行われている。
特開昭64−18121号公報 特開2003−215519号公報 特開平10−133159号公報
Conventionally, as a means for solving the above problems, speed matching has been achieved by providing a buffer layer on a waveguide. However, in recent years, attempts have been made to satisfy the speed matching condition between the microwave and the speed of the light wave and simultaneously reduce the driving voltage by reducing the thickness of the substrate by improving the processing technology of the substrate.
In the following Patent Documents 1 to 3, an optical waveguide and a modulation electrode are incorporated in a thin substrate (hereinafter referred to as a “first substrate”) having a thickness of 30 μm or less, and another substrate having a lower dielectric constant than the first substrate. (Hereinafter referred to as “second substrate”), the effective refractive index with respect to the microwave is lowered, the speed matching between the microwave and the light wave is achieved, and the mechanical strength of the substrate is maintained.
JP-A 64-18121 JP 2003-215519 A Japanese Patent Laid-Open No. 10-133159

他方、導波路型光変調器には、光強度変調器、光スイッチ、可変光減衰器(VOA)、位相変調器などが開発され、実用に供されている。例えば、VOA素子では、マッハツェンダー干渉計を構成する片アームの分岐導波路において、該導波路の屈折率を電気光学効果、熱光学効果などで変化させ、出力光強度を調整するものである。
しかしながら、光学的異方性を持った基板を用いた場合には、入射光偏波により、印加電圧や加熱量が異なることとなる。このため、特定の偏波のみを導波させることが行われている。
On the other hand, optical intensity modulators, optical switches, variable optical attenuators (VOA), phase modulators, and the like have been developed and put into practical use as waveguide type optical modulators. For example, in a VOA element, in a single-arm branching waveguide constituting a Mach-Zehnder interferometer, the refractive index of the waveguide is changed by the electro-optic effect, the thermo-optic effect, etc., and the output light intensity is adjusted.
However, when a substrate having optical anisotropy is used, the applied voltage and the heating amount differ depending on the incident light polarization. For this reason, only specific polarization is guided.

特定の偏波を選択する方法としては、図1(a)に示すように光変調器の基板1の入口端面に偏光子2を貼り付ける方法や、LN基板を用いた場合には、Xカット板では光導波路3上に金属膜4を貼付ける方法(図1(b)参照)、また、Zカット板では光導波路の側面にスラブを付与する方法などがある。   As a method of selecting a specific polarization, as shown in FIG. 1A, a method of attaching the polarizer 2 to the entrance end face of the substrate 1 of the optical modulator, or an X-cut when an LN substrate is used. For a plate, there is a method for attaching the metal film 4 on the optical waveguide 3 (see FIG. 1B), and for a Z-cut plate, there is a method for applying a slab to the side surface of the optical waveguide.

しかしながら、基板の厚みが20μm以下となる薄板を使用する場合には、図1(a)のように、基板端面に精度良く偏光子を貼り付けることは困難を伴い、また、図1(b)のように金属膜4を薄板の表面に貼り付ける場合には、基板と金属膜との熱膨張率の差により基板が破損する危険性が増す上、そもそも光導波路3上に金属膜を設置した場合には、特定の偏波を吸収するだけでなく他の偏波面の光波まで減衰させてしまう不具合を生じる。
また、これらの特定の偏波を選択する方法は、光変調器を製造する工程以外に別途他の工程を組み込むことが必要であり、製造工程が複雑化し、製造コストの増大にも繋がる。
However, when a thin plate having a thickness of 20 μm or less is used, it is difficult to attach a polarizer to the end face of the substrate with high accuracy as shown in FIG. 1A, and FIG. When the metal film 4 is attached to the surface of the thin plate as described above, there is an increased risk of the substrate being damaged due to the difference in coefficient of thermal expansion between the substrate and the metal film, and the metal film is installed on the optical waveguide 3 in the first place. In such a case, there arises a problem that not only the specific polarized wave is absorbed but also the light wave of another polarization plane is attenuated.
In addition, the method for selecting these specific polarized waves needs to incorporate another process in addition to the process for manufacturing the optical modulator, which complicates the manufacturing process and leads to an increase in manufacturing cost.

本発明が解決しようとする課題は、上述した問題を解決し、基板の厚みが20μm以下の部分を含む薄板を使用した光変調器において、光変調器の生産性を劣化させず、光変調器内の光導波路を伝搬する光波から特定の偏波を選択可能な光変調器を提供することである。   The problem to be solved by the present invention is to solve the above-mentioned problem, and in an optical modulator using a thin plate including a portion having a substrate thickness of 20 μm or less, the productivity of the optical modulator is not deteriorated. It is an object of the present invention to provide an optical modulator capable of selecting a specific polarization from a light wave propagating through an optical waveguide.

上述した課題を解決するため、請求項1に係る発明では、電気光学効果を有する材料で形成されたXカット又はYカットの薄板と、該薄板の表面又は裏面に形成された光導波路と、該薄板の表面に形成され、該光導波路内を通過する光を変調するための制御用電極とを含む光変調器において、該光導波路の近傍に、該光導波路を伝搬する光波の特定偏波面の光を吸収する減衰手段が配置されており、該減衰手段は光吸収性部材から構成されていることを特徴とする。   In order to solve the above-described problem, in the invention according to claim 1, an X-cut or Y-cut thin plate formed of a material having an electro-optic effect, an optical waveguide formed on the front surface or the back surface of the thin plate, In a light modulator formed on the surface of a thin plate and including a control electrode for modulating light passing through the light guide, a specific polarization plane of a light wave propagating through the light guide is adjacent to the light guide. Attenuating means for absorbing light is disposed, and the attenuating means is composed of a light absorbing member.

請求項2に係る発明では、請求項1記載の光変調器において、該光吸収手段は複数の光吸収部材から構成され、該光吸収性部材が光導波路を挟んで該光導波路を伝搬する光波のモード径の0.5〜2倍の間隔で配置されていることを特徴とする。なお複数の光吸収部材とは、光吸収部材が複数箇所の設けることを意味する。また、減衰手段を複数の光吸収性部材で構成する際には、各部材を同じ材料で形成するだけでなく、必要に応じて異なる材料で構成することも可能である。 According to a second aspect of the present invention, in the optical modulator according to the first aspect, the light absorbing means includes a plurality of light absorbing members, and the light absorbing member propagates through the optical waveguide with the optical waveguide interposed therebetween. It is characterized by being arranged at intervals of 0.5 to 2 times the mode diameter. A plurality of light absorbing members means that a plurality of light absorbing members are provided. Further, when the attenuation means is composed of a plurality of light-absorbing members, each member can be composed not only of the same material but also of different materials as required.

請求項3に係る発明では、請求項1又は2に記載の光変調器において、該減衰手段は制御用電極の少なくとも一部からなることを特徴とする。なお、本発明における制御用電極とは、信号電極と接地電極との組合せを意味するだけでなく、DC電極などのように光導波路の近傍に配置される各種電極を含むものである。   According to a third aspect of the present invention, in the optical modulator according to the first or second aspect, the attenuation means comprises at least a part of a control electrode. The control electrode in the present invention not only means a combination of a signal electrode and a ground electrode but also includes various electrodes arranged in the vicinity of the optical waveguide, such as a DC electrode.

請求項4に係る発明では、請求項1又は2に記載の光変調器において、該減衰手段は、該光導波路の入力側又は出力側の少なくとも一方の光導波路部分に形成されていることを特徴とする。   According to a fourth aspect of the present invention, in the optical modulator according to the first or second aspect, the attenuating means is formed in at least one optical waveguide portion on the input side or output side of the optical waveguide. And

請求項5に係る発明では、請求項1又は2に記載の光変調器において、該減衰手段は、基板の表面又は裏面の少なくとも一方に形成されていることを特徴とする。   According to a fifth aspect of the present invention, in the optical modulator according to the first or second aspect, the attenuation means is formed on at least one of the front surface and the back surface of the substrate.

請求項6に係る発明では、請求項1乃至5のいずれかに記載の光変調器において、該薄板の厚みは、20μm以下の部分を有することを特徴とする。   According to a sixth aspect of the present invention, in the optical modulator according to any one of the first to fifth aspects, the thin plate has a thickness of 20 μm or less.

請求項1に係る発明により、光導波路の近傍に、該光導波路を伝搬する光波の特定偏波面の光を吸収する光吸収性部材から構成されている減衰手段を配置するため、従来のように光導波路の真上に金属層を配置する場合と比較し、光導波路を伝搬する光波全体の減衰を抑制でき、特定の偏波のみを効率よく減衰させることが可能となる。また、光導波路の真上を避け、光導波路の近傍に減衰手段を配置しているため、光導波路、基板、減衰手段と異なる材質が混在し、各熱膨張率の差により基板が破損する危険性も抑制することが可能となる。
特に、基板に薄板を使用する際には、後述するように基板表面から特定偏波面の光波が滲み出す傾向にあるため、この滲み出して伝搬している光波を減衰手段を用いて吸収することが可能となる。
しかも、薄板を使用した場合には、制御用電極を構成する信号電極を伝搬するマイクロ波と、光導波路内を伝搬する光波との速度整合を図るため、従来のようなバッファ層を設ける必要が無いため、直接、基板の表面又は裏面に減衰手段を形成することができ、より効率的に特定の偏波を吸収することが可能となる。
According to the first aspect of the present invention, in order to dispose the attenuation means composed of the light absorbing member that absorbs the light of the specific polarization plane of the light wave propagating through the optical waveguide in the vicinity of the optical waveguide, Compared with the case where a metal layer is disposed directly above the optical waveguide, attenuation of the entire light wave propagating through the optical waveguide can be suppressed, and only specific polarization can be efficiently attenuated. In addition, since the attenuation means is disposed in the vicinity of the optical waveguide, avoiding directly above the optical waveguide, there is a risk that the optical waveguide, the substrate, the material different from the attenuation means may be mixed, and the substrate may be damaged due to the difference in each thermal expansion coefficient. It is also possible to suppress the property.
In particular, when a thin plate is used for the substrate, the light wave of a specific polarization plane tends to ooze out from the surface of the substrate as will be described later, so that the oozing and propagating light wave is absorbed using attenuation means. Is possible.
In addition, when a thin plate is used, it is necessary to provide a conventional buffer layer in order to achieve speed matching between the microwave propagating through the signal electrode constituting the control electrode and the light wave propagating through the optical waveguide. Therefore, the attenuation means can be formed directly on the front surface or the back surface of the substrate, and the specific polarization can be absorbed more efficiently.

請求項2に係る発明により、上記減衰手段は、複数の光吸収性部材から構成され、該光吸収性部材が光導波路を挟んで、該光導波路を伝搬する光波のモード径の0.5〜2倍の間隔で配置されているため、光導波路を伝搬する光波の特に縦方向(基板表面に垂直な方向)に偏波面を有するモード光を効率よく吸収し、横方向(基板表面に平行な方向)の偏波面を有するモード光の減衰を抑制することが可能となる。   According to the invention of claim 2, the attenuating means is composed of a plurality of light-absorbing members, and the light-absorbing member sandwiches the optical waveguide and the mode diameter of the light wave propagating through the optical waveguide is 0.5 to Since it is arranged at twice the spacing, it efficiently absorbs mode light having a polarization plane in the longitudinal direction (direction perpendicular to the substrate surface) of the light wave propagating through the optical waveguide, and laterally (parallel to the substrate surface). It is possible to suppress the attenuation of mode light having a (polarity) polarization plane.

請求項3に係る発明により、減衰手段は制御用電極の少なくとも一部からなるため、制御用電極を形成する際に、制御用電極の形状を調整するだけで容易に減衰手段が形成でき、製造工程の複雑化を抑制することが可能となる。また、制御用電極の少なくとも一部が減衰手段を兼ねているため、光変調器自身の短尺化が実現できる。   According to the invention of claim 3, since the attenuation means comprises at least a part of the control electrode, when the control electrode is formed, the attenuation means can be easily formed simply by adjusting the shape of the control electrode. It becomes possible to suppress the complexity of the process. In addition, since at least a part of the control electrode also serves as an attenuating means, the optical modulator itself can be shortened.

請求項4に係る発明により、減衰手段は、光導波路の入力側又は出力側の少なくとも一方の光導波路部分に形成されているため、光変調器に無偏波光が入射した場合でも、特定の偏波成分のみを有する光波を、光変調器から出力することが可能となる。   According to the invention of claim 4, since the attenuating means is formed in at least one of the optical waveguide portions on the input side or output side of the optical waveguide, even when non-polarized light is incident on the optical modulator, A light wave having only a wave component can be output from the optical modulator.

請求項5に係る発明により、減衰手段は、基板の表面又は裏面の少なくとも一方に形成されているため、減衰手段の設計の自由度が高くなると共に、薄板を使用するため、光導波路が形成されている面に対して反対側の基板面であっても、効率よく特定の偏波を減衰させることが可能となる。   According to the invention of claim 5, since the attenuating means is formed on at least one of the front surface and the back surface of the substrate, the degree of freedom in designing the attenuating means is increased, and an optical waveguide is formed because a thin plate is used. Even on the substrate surface opposite to the surface on which it is positioned, it is possible to efficiently attenuate specific polarized waves.

請求項6に係る発明により、薄板の厚みは、20μm以下の部分を有するため、特に20μm以下の部分では、縦方向の偏波面の基板外への滲み出しが顕著となり、減衰手段により効率的に当該偏波を吸収することが可能となる。   According to the invention of claim 6, since the thickness of the thin plate has a portion of 20 μm or less, in particular, in the portion of 20 μm or less, the seepage of the polarization plane in the vertical direction to the outside of the substrate becomes remarkable, and the attenuation means efficiently The polarized wave can be absorbed.

以下、本発明を好適例を用いて詳細に説明する。
図2は、20μm以下の厚みを有する基板1である薄板を使用した場合に、該薄板に形成された光導波路3を伝搬する光波の状態を、模式的に図示したものである。
基板の厚みが薄くなるに従い、基板表面に平行な方向(横方向)に偏波面を有する光波6と、基板表面に垂直な方向(縦方向)に偏波面を有する光波7とは、図示するように光波の偏平度が異なり、各偏波面の光強度分布は図中の8(横方向の偏波面の強度分布)、及び9(縦方向の偏波面の強度分布)のように変化する。特に、縦方向の偏波面は、基板の厚みが薄くなるに従い、基板表面から滲み出す部分が多くなるという特性を有する。
Hereinafter, the present invention will be described in detail using preferred examples.
FIG. 2 schematically shows the state of light waves propagating through the optical waveguide 3 formed on the thin plate when a thin plate, which is the substrate 1 having a thickness of 20 μm or less, is used.
As the thickness of the substrate is reduced, a light wave 6 having a polarization plane in a direction parallel to the substrate surface (lateral direction) and a light wave 7 having a polarization plane in a direction perpendicular to the substrate surface (longitudinal direction) are illustrated. However, the flatness of the light wave is different, and the light intensity distribution of each polarization plane changes as 8 (intensity distribution of the polarization plane in the horizontal direction) and 9 (intensity distribution of the polarization plane in the vertical direction) in the figure. In particular, the longitudinal polarization plane has a characteristic that as the thickness of the substrate decreases, the portion that oozes out from the substrate surface increases.

本発明者らは、このような現象に着目し、基板の表面又は裏面に特定の偏波(特に縦方向の偏波面を有する光波)を吸収するための減衰手段を光導波路3の近傍に配置することにより、本発明を成すに至ったものである。   The inventors pay attention to such a phenomenon, and arrange attenuation means for absorbing a specific polarization (particularly, a light wave having a longitudinal polarization plane) on the front or back surface of the substrate in the vicinity of the optical waveguide 3. Thus, the present invention has been achieved.

図3は、本発明に係る光変調器の実施例を示す図である。
図3(a)では、光変調器を構成する基板1の表面に光導波路3を形成すると共に、該基板の表面で、光導波路3の真上を除き、光導波路の近傍に減衰手段10を配置している。
また、図3(b)では、基板1の表面及び裏面に減衰手段10及び11を配置している。
FIG. 3 is a diagram showing an embodiment of an optical modulator according to the present invention.
In FIG. 3A, the optical waveguide 3 is formed on the surface of the substrate 1 constituting the optical modulator, and the attenuation means 10 is provided on the surface of the substrate except for the portion directly above the optical waveguide 3 in the vicinity of the optical waveguide. It is arranged.
Further, in FIG. 3B, attenuation means 10 and 11 are arranged on the front surface and the back surface of the substrate 1.

減衰手段10又は11は、光導波路3を挟んで所定の間隔L又はL’で配置されている。当該間隔は、基板1の厚みや、光導波路3の形状や材質、また減衰手段の形状(光導波路に沿った長さや高さ)や材質などにも影響されるが、光波の光強度分布あるいは光波内の各偏波面の光強度分布に対し、最大強度が1/eに減衰する位置(W:半径)の光波のモード径(2W:直径)を基準に、0.5〜2倍の範囲で設定することが好ましい。 The attenuating means 10 or 11 are arranged at a predetermined interval L or L ′ across the optical waveguide 3. The interval is affected by the thickness of the substrate 1, the shape and material of the optical waveguide 3, and the shape (length and height along the optical waveguide) and material of the attenuation means. 0.5 to 2 times the light intensity distribution of each polarization plane in the light wave, based on the mode diameter (2W: diameter) of the light wave at the position where the maximum intensity attenuates to 1 / e 2 (W: radius) It is preferable to set within a range.

LをW(モード径の0.5倍)より小さい値とすると、縦方向の偏波だけでなく横方向の偏波まで吸収し、光波自体の強度が減少する結果となる。また、Lを4W(モード径の2倍)より大きな値とすると、縦方向の偏波を効果的に減少させることが困難となる。
また、図3(b)の裏面に配置した減衰手段11の間隔L’については、基板1の厚みが薄くなるにしたがい、基板1の裏面にも同様に縦方向の偏波面が滲み出す傾向にあることから、表面側の減衰手段10の間隔Lと同様な条件が成り立つ。したがって、縦方向の偏波面の滲み出し具合に応じて、L’≦Lの関係で設定することができる。
When L is a value smaller than W (0.5 times the mode diameter), not only longitudinal polarization but also lateral polarization is absorbed, resulting in a decrease in the intensity of the light wave itself. If L is set to a value larger than 4W (twice the mode diameter), it is difficult to effectively reduce the longitudinal polarization.
In addition, with respect to the distance L ′ of the attenuation means 11 arranged on the back surface of FIG. 3B, the vertical polarization plane tends to bleed out on the back surface of the substrate 1 as the thickness of the substrate 1 decreases. Therefore, the same condition as the distance L between the attenuation means 10 on the surface side is satisfied. Therefore, the relationship of L ′ ≦ L can be set according to the degree of bleeding of the polarization plane in the vertical direction.

さらに、減衰手段の配置は、図3(a)又は(b)に限られるものではなく、図3(a)の減衰手段10を片側のみ形成することや、図3(b)の減衰手段10及び11の両方を片側のみとすることも可能である。片側のみに減衰手段を形成する場合には、例えば、図3(a)のように2つの減衰手段を配置した場合に必要な減衰手段の配置を決定し、その後、一方の減衰手段を除去した状態で、残りの減衰手段を片側のみに形成する。   Further, the arrangement of the attenuating means is not limited to that shown in FIG. 3 (a) or (b). The attenuating means 10 shown in FIG. 3 (a) is formed only on one side, or the attenuating means 10 shown in FIG. It is also possible for both and 11 to be only on one side. When the attenuation means is formed only on one side, for example, the arrangement of the attenuation means required when two attenuation means are arranged as shown in FIG. 3A is determined, and then one of the attenuation means is removed. In the state, the remaining damping means is formed only on one side.

基板1を構成する電気光学効果を有する材料としては、例えば、ニオブ酸リチウム、タンタル酸リチウム、PLZT(ジルコン酸チタン酸鉛ランタン)、及び石英系の材料及びこれらの組み合わせが利用可能である。特に、電気光学効果の高いニオブ酸リチウム(LN)結晶が好適に利用される。また、基板1としてはXカット板又はYカット板が好適に使用可能である。   As a material having an electro-optic effect constituting the substrate 1, for example, lithium niobate, lithium tantalate, PLZT (lead lanthanum zirconate titanate), quartz-based materials, and combinations thereof can be used. In particular, a lithium niobate (LN) crystal having a high electro-optic effect is preferably used. Further, as the substrate 1, an X cut plate or a Y cut plate can be suitably used.

減衰手段としては、金属膜などのように光吸収物質を使用して形成することが可能である。Alなどを使用する場合には、予めフォトレジスト膜により所定のパターンの開口を形成し、該開口に蒸着する方法や、基板表面全体に蒸着後に所定領域を残して他の蒸着膜を除去する方法がある。また、光変調器の信号電極や接地電極、さらにはDC電極などの制御用電極を形成する方法と同様に、Ti・Auの電極パターンの形成後、金メッキ方法により金属膜を形成する方法などがある。
また、減衰手段を複数の光吸収性部材で構成する際には、各部材を同じ材料で形成するだけでなく、必要に応じて異なる材料で構成することも可能である。
The attenuation means can be formed using a light absorbing material such as a metal film. When using Al or the like, a method of forming a predetermined pattern opening in advance with a photoresist film and vapor-depositing on the opening, or a method of removing other vapor-deposited film leaving a predetermined region on the entire substrate surface after vapor deposition There is. In addition, a method of forming a metal film by a gold plating method after the formation of a Ti / Au electrode pattern, as well as a method of forming a control electrode such as a signal electrode, a ground electrode, or a DC electrode of an optical modulator. is there.
Further, when the attenuation means is composed of a plurality of light-absorbing members, each member can be composed not only of the same material but also of different materials as required.

なお、光変調器の光導波路の形成方法としては、従来のようにTiなどを熱拡散法で基板表面に拡散させることにより形成することができる。
また、信号電極や接地電極などの制御用電極は、Ti・Auの電極パターンの形成及び金メッキ方法などにより形成することが可能である。本発明では、基板1の表面に誘電体SiO等のバッファ層を設けない方が、好ましく。これにより、基板表面に滲み出す縦方向の偏波を効率よく減衰させることが可能となる。
As a method of forming the optical waveguide of the optical modulator, it can be formed by diffusing Ti or the like on the substrate surface by a thermal diffusion method as in the conventional case.
Control electrodes such as a signal electrode and a ground electrode can be formed by forming a Ti / Au electrode pattern, a gold plating method, or the like. In the present invention, it is preferable not to provide a buffer layer such as dielectric SiO 2 on the surface of the substrate 1. As a result, it is possible to efficiently attenuate the longitudinal polarization that oozes onto the substrate surface.

光変調器を含む薄板の製造方法は、数百μmの厚さを有する基板に上述した光導波路や制御用電極、さらには減衰手段(基板表面に形成する場合のみ)を作り込み、基板の裏面を研磨し、例えば、20μm以下の厚みに仕上げる。光導波路又は制御用電極などの作り込みは、薄板を作成した後に行うことも可能である。ただし、光導波路形成時の熱的衝撃や各種処理時の薄膜の取り扱いによる機械的衝撃が加わりに、薄板が破損する危険性もあるため、このような衝撃が加わり易い処理工程は、基板を研磨する前に行うことが好ましい。なお、図3(b)のように、基板1の裏面に減衰手段11を形成する場合には、当然、基板1を薄板化した後、形成することとなる。   The method of manufacturing a thin plate including an optical modulator includes the above-described optical waveguide, control electrode, and attenuation means (only when formed on the substrate surface) formed on a substrate having a thickness of several hundreds of μm. Is polished to a thickness of 20 μm or less, for example. The optical waveguide or the control electrode can be formed after the thin plate is formed. However, since there is a risk of damage to the thin plate due to thermal shock when forming the optical waveguide and mechanical shock due to handling of the thin film during various processing, there is a risk that the thin plate will be damaged. It is preferable to do this before. As shown in FIG. 3B, when the attenuation means 11 is formed on the back surface of the substrate 1, it is naturally formed after the substrate 1 is thinned.

光導波路などを形成した薄板は、その後、薄板より機械的強度の高い補強板に接合される。
補強板に使用される材料としては、種々のものが利用可能であり、例えば、薄板と同様の材料を使用する他に、石英、ガラス、アルミナなどのように薄板より低誘電率の材料を使用したり、薄板と異なる結晶方位を有する材料を使用することも可能である。ただし、線膨張係数が薄板と同等である材料を選定することが、温度変化に対する光変調器の変調特性を安定させる上で好ましい。仮に、同等の材料の選定が困難である場合には、特許文献2のように薄板と補強板とを接合する接着剤に、薄板と同等な線膨張係数を有する材料を選定する。
Thereafter, the thin plate on which the optical waveguide or the like is formed is joined to a reinforcing plate having higher mechanical strength than the thin plate.
Various materials can be used as the reinforcing plate. For example, in addition to using the same material as the thin plate, a material having a lower dielectric constant than that of the thin plate such as quartz, glass, and alumina is used. It is also possible to use a material having a crystal orientation different from that of the thin plate. However, it is preferable to select a material having a linear expansion coefficient equivalent to that of the thin plate in order to stabilize the modulation characteristics of the optical modulator with respect to temperature changes. If it is difficult to select an equivalent material, a material having a linear expansion coefficient equivalent to that of the thin plate is selected as an adhesive for joining the thin plate and the reinforcing plate as in Patent Document 2.

薄板と補強板との接合には、接着層として、エポキシ系接着剤、熱硬化型接着剤、紫外線硬化性接着剤、半田ガラス、熱硬化性、光硬化性あるいは光増粘性の樹脂接着剤シートなど、種々の接着材料を使用することが可能である。また、直接接合法により、接着剤を使用せず、薄板と補強板とを直接貼り合わせることも可能である。   For bonding thin plates and reinforcing plates, epoxy adhesives, thermosetting adhesives, UV curable adhesives, solder glass, thermosetting, photocurable or photothickening resin adhesive sheets are used as adhesive layers. It is possible to use various adhesive materials. Further, it is also possible to directly bond the thin plate and the reinforcing plate without using an adhesive by the direct bonding method.

図4は、本発明に係る光変調器の他の実施例である。
基板1にマッハツェンダー型導波路3を形成しており、該光導波路に対し記号A乃至Dに記載されているように、各種の減衰手段を構成することが可能である。
A又はDにおいては、光導波路の入力側又は出力側に、光導波路3を挟む減衰手段を配置した例である。これにより、光導波路を伝搬する光波を、光変調器に入射した際、あるいは、光変調器から出射する際に、特定の偏波に整形することが可能となる。なお、22及び23は、光変調器に接続される入射用及び出射用光ファイバを示す。
FIG. 4 shows another embodiment of the optical modulator according to the present invention.
A Mach-Zehnder type waveguide 3 is formed on the substrate 1, and various attenuation means can be configured for the optical waveguide as described in symbols A to D.
A or D is an example in which an attenuation unit that sandwiches the optical waveguide 3 is arranged on the input side or output side of the optical waveguide. As a result, the light wave propagating through the optical waveguide can be shaped into a specific polarization when entering the optical modulator or when exiting from the optical modulator. Reference numerals 22 and 23 denote incident and outgoing optical fibers connected to the optical modulator.

B又はCは、制御用電極である信号電極20及び接地電極21に、減衰手段を組み込んだものを示している。減衰手段においては、光導波路を挟むこれらの電極の間隔が、上述したように光のモード径2Wの0.5〜2倍になるように設定されている。このような減衰手段は、光変調器の製造工程における制御用電極の製造時に、制御電極の形状を調整するだけで、極めて容易に形成することが可能である。
図4においては制御用電極の一部に減衰手段を設けているが、図5に示すように制御用電極の作用部すべてを減衰手段E又はFとすることにより、更に特定偏波面の吸収効果を高くすることが可能となる。
B or C indicates that the signal electrode 20 and the ground electrode 21 that are control electrodes are incorporated with attenuation means. In the attenuating means, the interval between these electrodes sandwiching the optical waveguide is set to be 0.5 to 2 times the mode diameter 2W of light as described above. Such attenuating means can be formed very easily only by adjusting the shape of the control electrode when the control electrode is manufactured in the manufacturing process of the optical modulator.
In FIG. 4, attenuating means is provided on a part of the control electrode. However, as shown in FIG. 5, by using all the operating parts of the control electrode as the attenuating means E or F, the absorption effect of the specific polarization plane is further increased. Can be increased.

次に、本発明の光変調器に係る具体的な実施例及びその試験について説明する。
(実施例1)
薄板の光変調器は、基板に厚み500μmのXカット型のLN基板を使用し、Ti拡散プロセスなどにより、基板表面に直線状の光導波路(幅4μm)を形成する。次に、光導波路を挟んで両側に、メッキプロセスにてAuの金属膜を減衰手段として形成し、該減衰手段の間隔を光導波路を伝搬する光波のモード径の1.4倍(20μm)とし、光導波路に沿った長さを2.1cmとした。基板の裏面を、研磨機で基板の厚さが10μmとなるまで研磨し、紫外線硬化性接着剤を接着層として、補強板に貼り付けた。
Next, specific examples and tests related to the optical modulator of the present invention will be described.
Example 1
The thin optical modulator uses an X-cut LN substrate having a thickness of 500 μm as a substrate, and forms a linear optical waveguide (width 4 μm) on the substrate surface by a Ti diffusion process or the like. Next, an Au metal film is formed on both sides of the optical waveguide as attenuating means by a plating process, and the distance between the attenuating means is set to 1.4 times (20 μm) the mode diameter of the light wave propagating through the optical waveguide. The length along the optical waveguide was 2.1 cm. The back surface of the substrate was polished with a polishing machine until the thickness of the substrate became 10 μm, and an ultraviolet curable adhesive was attached to the reinforcing plate as an adhesive layer.

(実施例2)
実施例1の減衰手段の間隔をモード径の2倍(30μm)とする以外は、実施例1と同様に製作した。
(Example 2)
It was manufactured in the same manner as in Example 1 except that the interval of the attenuation means in Example 1 was set to twice the mode diameter (30 μm).

実施例1及び2における偏波消光比を偏波コントローラーや光パワーメーターにより測定したところ、実施例1においては4.5dB、実施例2においては1.4dBであった。
このことから、本発明の減衰手段が、縦方向の偏波面のモード光を効果的に減衰させていることが理解される。
When the polarization extinction ratio in Examples 1 and 2 was measured with a polarization controller or an optical power meter, it was 4.5 dB in Example 1 and 1.4 dB in Example 2.
From this, it is understood that the attenuation means of the present invention effectively attenuates the mode light of the longitudinal polarization plane.

(実施例3)
次に、薄板の光変調器として、実施例1と同様に、基板に厚み500μmのXカット型のLN基板を使用し、Ti拡散プロセスなどにより、基板表面に直線状の光導波路(幅4μm)を形成する。次に、光導波路を挟んで両側に、Tiを蒸着後メッキプロセスにてAuの金属膜を減衰手段として形成し、該減衰手段の間隔を、光導波路を伝搬する光波のモード径の1〜3倍の範囲とし、光導波路に沿った長さを4.0cmとして、複数の光変調器を作成した。なお、基板の裏面を、研磨機で基板の厚さが10μmとなるまで研磨し、紫外線硬化性接着剤を接着層として、補強板に貼り付けた。
(Example 3)
Next, as a thin optical modulator, an X-cut LN substrate having a thickness of 500 μm is used as the substrate in the same manner as in Example 1, and a linear optical waveguide (width 4 μm) is formed on the substrate surface by a Ti diffusion process or the like. Form. Next, a metal film of Au is formed as attenuating means by a plating process after vapor deposition of Ti on both sides of the optical waveguide, and the interval of the attenuating means is set to 1 to 3 of the mode diameter of the light wave propagating through the optical waveguide. A plurality of optical modulators were created with a double range and a length along the optical waveguide of 4.0 cm. The back surface of the substrate was polished with a polishing machine until the thickness of the substrate became 10 μm, and an ultraviolet curable adhesive was attached as an adhesive layer to the reinforcing plate.

実施例3で作成した複数の光変調器について、偏波消光比及び伝搬損失(ロス)を偏波コントローラーや光パワーメーターにより測定したところ、図6及び図7のグラフの結果となった。なお、図6は偏波消光比を表し、図7は伝搬損失を表す。また、2つのグラフの横軸は共に、光導波路を伝搬する光波のモード径(MFD)に対する減衰手段となる電極の間隔(電極gap)を示している。
また、図6、図7における点線は、実施例3の各測定値に対する近似曲線を示している。
When the polarization extinction ratio and the propagation loss (loss) of the plurality of optical modulators created in Example 3 were measured with a polarization controller or an optical power meter, the results shown in the graphs of FIGS. 6 and 7 were obtained. 6 represents the polarization extinction ratio, and FIG. 7 represents the propagation loss. In addition, both horizontal axes of the two graphs indicate the distance (electrode gap) between electrodes serving as attenuation means with respect to the mode diameter (MFD) of the light wave propagating through the optical waveguide.
Moreover, the dotted line in FIG. 6, FIG. 7 has shown the approximate curve with respect to each measured value of Example 3. FIG.

図6の偏波消光比のグラフを見ると、電極間隔がMFDに対して小さくなるにしたがい、偏波消光比が大きくなっていることが容易に理解される。一般に光変調器に必要な偏波消光比は7dB以上であり、図6のグラフより、電極gap/MFDは2以下であることが好ましい。
また、図7により電極gapを小さくしていくと、偏波消光比は改善するが伝搬損失(ロス)が増加している。これは、縦方向の偏波だけでなく横方向の偏波まで吸収し、光波自体の強度が減少する結果となるためである。したがって、実用的な伝搬損失の限界(例えば、−10dB程度)を考慮し、また光変調器の電極gapの製造限界なども考慮し、電極gap/MFDは0.5以上であることが好ましい。より好ましくは、1以上であれば、特定の偏波を十分に減衰させることが可能である。
It can be easily understood from the graph of the polarization extinction ratio in FIG. 6 that the polarization extinction ratio increases as the electrode spacing decreases with respect to the MFD. In general, the polarization extinction ratio required for the optical modulator is 7 dB or more, and the electrode gap / MFD is preferably 2 or less from the graph of FIG.
Further, when the electrode gap is made smaller according to FIG. 7, the polarization extinction ratio is improved, but the propagation loss (loss) is increased. This is because not only vertical polarization but also horizontal polarization is absorbed, resulting in a decrease in the intensity of the light wave itself. Therefore, considering the practical limit of propagation loss (for example, about −10 dB) and the production limit of the electrode gap of the optical modulator, the electrode gap / MFD is preferably 0.5 or more. More preferably, a specific polarization can be sufficiently attenuated if the number is 1 or more.

以上説明したように、本発明によれば、基板の厚みが20μm以下の部分を含む薄板を使用した光変調器において、光変調器の生産性を劣化させず、光変調器内の光導波路を伝搬する光波から特定の偏波を選択可能な光変調器を提供することができる。   As described above, according to the present invention, in an optical modulator using a thin plate including a portion having a substrate thickness of 20 μm or less, the productivity of the optical modulator is not deteriorated, and the optical waveguide in the optical modulator is reduced. An optical modulator capable of selecting a specific polarization from a propagating light wave can be provided.

従来の光変調器の偏波選択手段を示す図である。It is a figure which shows the polarization selection means of the conventional optical modulator. 薄板を用いた光変調器における偏波面毎の光強度分布状況を示す図である。It is a figure which shows the light intensity distribution condition for every polarization plane in the optical modulator using a thin plate. 本発明に係る光変調器の第1の実施例を示す図である。It is a figure which shows the 1st Example of the optical modulator which concerns on this invention. 本発明に係る光変調器の第2の実施例を示す図である。It is a figure which shows the 2nd Example of the optical modulator which concerns on this invention. 本発明に係る光変調器の第3の実施例を示す図である。It is a figure which shows the 3rd Example of the optical modulator which concerns on this invention. 電極間隔とMFDとの比に対する偏波消光比の変化を示すグラフである。It is a graph which shows the change of the polarization extinction ratio with respect to the ratio of electrode space | interval and MFD. 電極間隔とMFDとの比に対する伝搬損失の変化を示すグラフである。It is a graph which shows the change of the propagation loss with respect to ratio of electrode space | interval and MFD.

符号の説明Explanation of symbols

1 基板
2 偏光子
3 光導波路
4 金属膜
10,11 減衰手段
20 信号電極
21 接地電極
DESCRIPTION OF SYMBOLS 1 Substrate 2 Polarizer 3 Optical waveguide 4 Metal films 10 and 11 Attenuating means 20 Signal electrode 21 Ground electrode

Claims (6)

電気光学効果を有する材料で形成されたXカット又はYカットの薄板と、該薄板の表面又は裏面に形成された光導波路と、該薄板の表面に形成され、該光導波路内を通過する光を変調するための制御用電極とを含む光変調器において、
該光導波路の近傍に、該光導波路を伝搬する光波の特定偏波面の光を吸収する減衰手段が配置されており、該減衰手段は、光吸収性部材から構成されていることを特徴とする光変調器。
An X-cut or Y-cut thin plate made of a material having an electro-optic effect, an optical waveguide formed on the surface or the back surface of the thin plate, and light passing through the optical waveguide formed on the surface of the thin plate An optical modulator including a control electrode for modulating,
An attenuation means for absorbing light of a specific polarization plane of a light wave propagating through the optical waveguide is disposed in the vicinity of the optical waveguide, and the attenuation means is composed of a light absorbing member. Light modulator.
請求項1に記載の光変調器において、該光吸収手段は複数の光吸収部材から構成され、該光吸収性部材が光導波路を挟んで該光導波路を伝搬する光波のモード径の0.5〜2倍の間隔で配置されていることを特徴とする光変調器。   2. The optical modulator according to claim 1, wherein the light absorbing means is composed of a plurality of light absorbing members, and the light absorbing member has a mode diameter of 0.5 of a light wave propagating through the optical waveguide with the optical waveguide interposed therebetween. An optical modulator characterized in that the optical modulator is arranged at intervals of ~ 2 times. 請求項1又は2に記載の光変調器において、該減衰手段は制御用電極の少なくとも一部からなることを特徴とする光変調器。   3. The optical modulator according to claim 1, wherein the attenuation means includes at least a part of a control electrode. 請求項1又は2に記載の光変調器において、該減衰手段は、該光導波路の入力側又は出力側の少なくとも一方の光導波路部分に形成されていることを特徴とする光変調器。   3. The optical modulator according to claim 1, wherein the attenuation means is formed in at least one optical waveguide portion on the input side or output side of the optical waveguide. 請求項1又は2に記載の光変調器において、該減衰手段は、基板の表面又は裏面の少なくとも一方に形成されていることを特徴とする光変調器。   3. The optical modulator according to claim 1, wherein the attenuation means is formed on at least one of the front surface and the back surface of the substrate. 請求項1乃至5のいずれかに記載の光変調器において、該薄板の厚みは、20μm以下の部分を有することを特徴とする光変調器。
6. The optical modulator according to claim 1, wherein the thickness of the thin plate has a portion of 20 [mu] m or less.
JP2006088893A 2005-03-31 2006-03-28 Light modulator Expired - Fee Related JP4544474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006088893A JP4544474B2 (en) 2005-03-31 2006-03-28 Light modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005105401 2005-03-31
JP2006088893A JP4544474B2 (en) 2005-03-31 2006-03-28 Light modulator

Publications (2)

Publication Number Publication Date
JP2006309199A true JP2006309199A (en) 2006-11-09
JP4544474B2 JP4544474B2 (en) 2010-09-15

Family

ID=37476091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006088893A Expired - Fee Related JP4544474B2 (en) 2005-03-31 2006-03-28 Light modulator

Country Status (1)

Country Link
JP (1) JP4544474B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071200A (en) * 2014-09-30 2016-05-09 住友大阪セメント株式会社 Optical waveguide device
JP2017067986A (en) * 2015-09-30 2017-04-06 住友大阪セメント株式会社 Optical waveguide element
JP2017083607A (en) * 2015-10-27 2017-05-18 住友大阪セメント株式会社 Optical modulator
WO2023188137A1 (en) * 2022-03-30 2023-10-05 住友大阪セメント株式会社 Optical waveguide element, optical modulator, optical modulation module, and optical transmission device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159979A (en) * 1995-12-11 1997-06-20 Fuji Elelctrochem Co Ltd Waveguide type optical modulator
JP2001228448A (en) * 2000-02-18 2001-08-24 Sumitomo Osaka Cement Co Ltd Forming method of optical waveguide device
JP2002357797A (en) * 2001-03-30 2002-12-13 Ngk Insulators Ltd Optical waveguide device, method for manufacturing the same, and traveling waveform optical modulator
JP2004333949A (en) * 2003-05-08 2004-11-25 Sumitomo Metal Mining Co Ltd Optical waveguide element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09159979A (en) * 1995-12-11 1997-06-20 Fuji Elelctrochem Co Ltd Waveguide type optical modulator
JP2001228448A (en) * 2000-02-18 2001-08-24 Sumitomo Osaka Cement Co Ltd Forming method of optical waveguide device
JP2002357797A (en) * 2001-03-30 2002-12-13 Ngk Insulators Ltd Optical waveguide device, method for manufacturing the same, and traveling waveform optical modulator
JP2004333949A (en) * 2003-05-08 2004-11-25 Sumitomo Metal Mining Co Ltd Optical waveguide element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016071200A (en) * 2014-09-30 2016-05-09 住友大阪セメント株式会社 Optical waveguide device
JP2017067986A (en) * 2015-09-30 2017-04-06 住友大阪セメント株式会社 Optical waveguide element
JP2017083607A (en) * 2015-10-27 2017-05-18 住友大阪セメント株式会社 Optical modulator
WO2023188137A1 (en) * 2022-03-30 2023-10-05 住友大阪セメント株式会社 Optical waveguide element, optical modulator, optical modulation module, and optical transmission device

Also Published As

Publication number Publication date
JP4544474B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4874685B2 (en) Light modulator
US7502530B2 (en) Optical waveguide devices and traveling wave type optical modulators
JP5454547B2 (en) Light modulator
US7362924B2 (en) Optical modulator
JP4183716B2 (en) Optical waveguide device
JP4589354B2 (en) Light modulation element
US7450811B2 (en) Optical waveguide device and optical modulator
US20130064492A1 (en) Optical waveguide device
JP4745432B2 (en) Optical waveguide device
WO2007122877A1 (en) Optical modulation element
JP5278986B2 (en) Light modulator
JP2007272121A (en) Optical element
JP4544474B2 (en) Light modulator
US7409114B2 (en) Optical modulator
JP4868763B2 (en) Light modulator
JP4183583B2 (en) Integrated optical waveguide device
JP2009086336A (en) Optical waveguide type device
JP2009210634A (en) Optical waveguide device
JP4691428B2 (en) Light modulator
JP4671335B2 (en) Waveguide type optical device
JP2005077987A (en) Optical modulator
JP3735685B2 (en) Integrated optical waveguide device
JPH04156423A (en) Light waveguide path type polarizer, light waveguide path device provided with such polarizer and manufacture of such device
US20240255783A1 (en) Optical Waveguide Device, and Optical Modulation Device and Optical Transmission Apparatus Using Same
JP2003279769A (en) Integrated light guide element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100623

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100623

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4544474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140709

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees