[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2009210634A - Optical waveguide device - Google Patents

Optical waveguide device Download PDF

Info

Publication number
JP2009210634A
JP2009210634A JP2008050784A JP2008050784A JP2009210634A JP 2009210634 A JP2009210634 A JP 2009210634A JP 2008050784 A JP2008050784 A JP 2008050784A JP 2008050784 A JP2008050784 A JP 2008050784A JP 2009210634 A JP2009210634 A JP 2009210634A
Authority
JP
Japan
Prior art keywords
substrate
optical waveguide
dielectric constant
adhesive layer
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008050784A
Other languages
Japanese (ja)
Other versions
JP5262186B2 (en
Inventor
Masayuki Ichioka
雅之 市岡
Mitsuru Sakuma
満 佐久間
Junichiro Ichikawa
潤一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2008050784A priority Critical patent/JP5262186B2/en
Publication of JP2009210634A publication Critical patent/JP2009210634A/en
Application granted granted Critical
Publication of JP5262186B2 publication Critical patent/JP5262186B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability of an optical waveguide device, operating in a wide band and driven at low voltage. <P>SOLUTION: This optical waveguide device includes an optical waveguide substrate having a thickness of 30 μm or less, a holding substrate holding the optical waveguide substrate, a low dielectric constant substrate having a lower dielectric constant than the optical waveguide substrate and interposed between the optical waveguide substrate and the holding substrate, an adhesive layer adhesively bonding the optical waveguide substrate and the low dielectric constant substrate to each other and having a thickness of 9 μm or less, and a fixing means for fixing the low dielectric constant substrate to the holding substrate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は光導波路デバイス、特に光変調器に関する。   The present invention relates to an optical waveguide device, and more particularly to an optical modulator.

近年、光通信システムの高速大容量化が進んで1波長当り40ギガビット/秒以上の通信速度が実用になってきており、これを受けて、基幹部品である光変調器の広帯域化が求められている。進行波型光変調器は、光導波路を進行する光波と光導波路に沿って設けた電極を進行するマイクロ波とが電気光学効果による相互作用をすることで光波を変調する光変調器であり、光波とマイクロ波との速度整合をとることにより、広帯域化を図ることができる。速度整合を実現する方法として、従来、光導波路基板上に設けた低誘電率のバッファ層の上に電極を形成した構成が用いられてきたが、この構成では、光導波路に印加される電界がバッファ層の存在によって小さくなってしまうため、駆動電圧を低電圧化できないという欠点がある。   In recent years, optical communication systems have been increased in speed and capacity, and communication speeds of 40 gigabits / second or more per wavelength have been put into practical use. ing. The traveling wave type optical modulator is an optical modulator that modulates a light wave by the interaction between the light wave traveling through the optical waveguide and the microwave traveling through the electrode provided along the optical waveguide due to the electro-optic effect, By matching the speed between the light wave and the microwave, a broad band can be achieved. As a method for realizing speed matching, a configuration in which an electrode is formed on a low dielectric constant buffer layer provided on an optical waveguide substrate has been conventionally used. In this configuration, an electric field applied to the optical waveguide is not generated. Since the buffer layer becomes small due to the presence of the buffer layer, there is a drawback that the drive voltage cannot be lowered.

この欠点を改善するために、図3のような光導波路基板を薄板化した進行波型光変調器が提案されている(例えば、特許文献1参照)。図3において、光導波路104が形成された光導波路基板101は、接着剤層103により保持基板102に固着されて保持されている。光導波路基板101の厚さは30μm程度以下であり、通常のもの(例えば厚さ0.5mm)よりも薄型である。接着剤層103としては、その誘電率が光導波路基板101よりも低いものを用い、その厚さを、電極105から印加される電界の接着剤層103への漏れが大きくなるよう十分に厚く(例えば10μm〜200μm)する。このような構成では、電極105からの電界が低誘電率の接着剤層103の内部に漏れ出すことによってマイクロ波に対する等価屈折率(その値は光波に対する等価屈折率より大きい)が光導波路基板101の厚さが厚い場合と比べて小さくなる。このように等価屈折率の値の差が小さくなるので、光波とマイクロ波の速度が整合した状態に近付き、広帯域化が実現する。それとともに、この構成では光導波路基板101上にバッファ層を設けることなく速度整合が可能なので、光導波路104に印加される電界の強度が低下してしまうことがなく、駆動電圧の低電圧化も同時に実現することができる。
特開2003−215519号公報
In order to improve this drawback, a traveling wave type optical modulator in which the optical waveguide substrate as shown in FIG. 3 is thinned has been proposed (for example, see Patent Document 1). In FIG. 3, the optical waveguide substrate 101 on which the optical waveguide 104 is formed is fixed and held on the holding substrate 102 by the adhesive layer 103. The thickness of the optical waveguide substrate 101 is about 30 μm or less, and is thinner than a normal one (for example, a thickness of 0.5 mm). As the adhesive layer 103, one having a dielectric constant lower than that of the optical waveguide substrate 101 is used, and the thickness thereof is sufficiently thick so that leakage of an electric field applied from the electrode 105 to the adhesive layer 103 becomes large ( For example, 10 μm to 200 μm). In such a configuration, when the electric field from the electrode 105 leaks into the adhesive layer 103 having a low dielectric constant, the equivalent refractive index with respect to the microwave (the value is larger than the equivalent refractive index with respect to the light wave) is reduced. Compared with the case where the thickness of the film is thick, it becomes smaller. Thus, the difference in the value of the equivalent refractive index becomes small, so that the speed of the light wave and the microwave approaches the state of matching, and a wide band is realized. In addition, in this configuration, speed matching is possible without providing a buffer layer on the optical waveguide substrate 101, so that the strength of the electric field applied to the optical waveguide 104 does not decrease, and the drive voltage can be lowered. It can be realized at the same time.
JP 2003-215519 A

しかしながら、図3の構成とした場合、接着剤層103の厚さが厚いため次のような点が問題になる。第1に、接着剤層が厚いとその接着強度が低下してしまう。第2に、接着剤の硬化時に紫外線照射や加熱によってその温度が上昇し、その後硬化して温度が下がると応力が発生するが、接着剤層が厚いと発生する応力も大きくなってしまう。第3に、接着剤層を厚く形成することは製造上難しいため、コスト高になってしまう。   However, in the case of the configuration of FIG. 3, the following points are problematic because the adhesive layer 103 is thick. First, if the adhesive layer is thick, its adhesive strength is reduced. Second, when the adhesive is cured, the temperature is increased by irradiation with ultraviolet rays or heating, and then the stress is generated when the adhesive is cured and then the temperature is decreased. However, when the adhesive layer is thick, the generated stress is also increased. Thirdly, since it is difficult to manufacture a thick adhesive layer, the cost becomes high.

本発明は上記の点に鑑みてなされたものであり、その目的は、広帯域で動作し低電圧駆動が可能な光導波路デバイスの信頼性を向上することにある。   The present invention has been made in view of the above points, and an object thereof is to improve the reliability of an optical waveguide device that operates in a wide band and can be driven at a low voltage.

本発明は上記の課題を解決するためになされたものであり、厚さ30μm以下の光導波路基板と、前記光導波路基板を保持する保持基板と、を有する光導波路デバイスであって、前記光導波路基板より誘電率が低く、前記光導波路基板と前記保持基板との間に介挿された低誘電率基板と、前記光導波路基板と前記低誘電率基板とを接着する厚さ9μm以下の接着剤層と、前記低誘電率基板を前記保持基板に固定する固定手段と、を備えることを特徴とする。   The present invention has been made to solve the above problems, and is an optical waveguide device having an optical waveguide substrate having a thickness of 30 μm or less and a holding substrate for holding the optical waveguide substrate, wherein the optical waveguide A low dielectric constant substrate having a dielectric constant lower than that of the substrate and interposed between the optical waveguide substrate and the holding substrate, and an adhesive having a thickness of 9 μm or less for bonding the optical waveguide substrate and the low dielectric constant substrate And a fixing means for fixing the low dielectric constant substrate to the holding substrate.

この構成によれば、低誘電率基板を光導波路基板と保持基板との間に設けたので、広帯域化と駆動電圧の低電圧化を実現することができるとともに、光導波路基板と低誘電率基板とを接着する接着剤層を厚さ9μm以下としたので、接着強度が増大するとともに硬化の際に発生する応力が低減されて、光導波路デバイスとしての信頼性を向上させることができる。また、接着剤層を薄く形成するのは容易であるため、製造コストも抑制することができる。   According to this configuration, since the low dielectric constant substrate is provided between the optical waveguide substrate and the holding substrate, it is possible to realize a wide band and a low driving voltage, and the optical waveguide substrate and the low dielectric constant substrate. Since the thickness of the adhesive layer for adhering to each other is 9 μm or less, the adhesive strength is increased and the stress generated during curing is reduced, so that the reliability as an optical waveguide device can be improved. Moreover, since it is easy to form an adhesive layer thinly, manufacturing cost can also be suppressed.

また、本発明は、上記の光導波路デバイスにおいて、前記低誘電率基板の厚さは30μm以上であることを特徴とする。   In the optical waveguide device, the present invention is characterized in that the low dielectric constant substrate has a thickness of 30 μm or more.

この構成によれば、低誘電率基板の厚さが十分に厚いので、マイクロ波に対する等価屈折率が小さくなることによって速度整合の状態に近付き、広帯域化の特性に優れる。   According to this configuration, since the thickness of the low dielectric constant substrate is sufficiently thick, the equivalent refractive index with respect to the microwave is reduced, so that the speed matching state is approached and the broadband characteristics are excellent.

また、本発明は、上記の光導波路デバイスにおいて、前記接着剤層が前記光導波路基板より高誘電率の材料である場合にその厚さを1μm以下としたことを特徴とする。   In the above optical waveguide device, the present invention is characterized in that when the adhesive layer is made of a material having a higher dielectric constant than that of the optical waveguide substrate, the thickness thereof is set to 1 μm or less.

この構成によれば、接着剤層が高誘電率の材料であってもその厚さが1μm以下であるので、マイクロ波に対する等価屈折率は接着剤層が低誘電率の材料である場合と同様に小さくなり、その結果として広帯域化が可能であるとともに、接着剤層に用いる接着剤の選定の幅が広がる(低誘電率材料だけでなく高誘電率材料も使用できる)というメリットがある。   According to this configuration, even if the adhesive layer is made of a material having a high dielectric constant, the thickness thereof is 1 μm or less. Therefore, the equivalent refractive index with respect to microwaves is the same as when the adhesive layer is made of a material having a low dielectric constant. As a result, there is an advantage that a wide band can be obtained and the selection range of the adhesive used for the adhesive layer is widened (not only a low dielectric constant material but also a high dielectric constant material can be used).

本発明によれば、広帯域で動作し低電圧駆動が可能な光導波路デバイスの信頼性を向上させることができる。   According to the present invention, it is possible to improve the reliability of an optical waveguide device that operates in a wide band and can be driven at a low voltage.

以下、図面を参照しながら本発明の実施形態について詳しく説明する。
図1及び図2は、本発明の一実施形態による光導波路デバイスである進行波型の光変調器10の断面構成図と平面構成図をそれぞれ示したものである。図1の断面構成図は、図2の平面構成図のA−A’線に沿って切断した様子を表している。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 are a cross-sectional view and a plan view, respectively, of a traveling wave type optical modulator 10 that is an optical waveguide device according to an embodiment of the present invention. The cross-sectional configuration diagram of FIG. 1 shows a state cut along the line AA ′ in the plan configuration diagram of FIG. 2.

図1,図2において、光変調器10は、マッハツェンダー光導波路15が形成された光導波路基板11と、光導波路基板11を保持する保持基板13と、光導波路基板11と保持基板13との間に介挿された樹脂基板12と、光導波路基板11と樹脂基板12とを接着固定する接着剤層14と、光導波路基板11上に形成された信号電極16及び接地電極17−1,17−2と、を含んで構成されている。   1 and 2, an optical modulator 10 includes an optical waveguide substrate 11 on which a Mach-Zehnder optical waveguide 15 is formed, a holding substrate 13 that holds the optical waveguide substrate 11, and the optical waveguide substrate 11 and the holding substrate 13. The resin substrate 12 interposed therebetween, the adhesive layer 14 for bonding and fixing the optical waveguide substrate 11 and the resin substrate 12, and the signal electrode 16 and the ground electrodes 17-1 and 17 formed on the optical waveguide substrate 11 -2.

光導波路基板11は、電気光学効果を有する母結晶からその主軸Pと基板表面Sとが平行になるように切り出されたXカットの基板であり、例えば、ニオブ酸リチウム(LN)基板、タンタル酸リチウム(LT)基板、ジルコン酸チタン酸鉛ランタン(PLZT)基板、等を用いることができる。このXカットの光導波路基板11に、入力導波路15−3と分岐光導波路15−1及び15−2と出力導波路15−4とからなるマッハツェンダー光導波路15が、上記主軸Pと分岐光導波路15−1及び15−2とが垂直になるように(即ち図1において主軸Pが紙面内にくるように)して形成されている。光導波路基板11の厚さは、例えば30μm以下、好ましくは10μm以下の厚さとする。このように光導波路基板11を薄板化すると、電極16,17−1,17−2により励起されて光導波路基板11内を進行するマイクロ波に対する等価屈折率が小さくなって、分岐光導波路15−1及び15−2を進行する光波に対する等価屈折率との差が小さくなる。これにより、光波とマイクロ波との速度整合がとれた状態、あるいは速度整合に近い状態となり、光変調器10の広帯域化が実現される。   The optical waveguide substrate 11 is an X-cut substrate that is cut from a mother crystal having an electro-optic effect so that the principal axis P and the substrate surface S are parallel to each other. For example, a lithium niobate (LN) substrate, tantalum acid A lithium (LT) substrate, a lead lanthanum zirconate titanate (PLZT) substrate, or the like can be used. A Mach-Zehnder optical waveguide 15 comprising an input waveguide 15-3, branch optical waveguides 15-1 and 15-2, and an output waveguide 15-4 is connected to the X-cut optical waveguide substrate 11 with the main axis P and the branched light. The waveguides 15-1 and 15-2 are formed so as to be vertical (that is, the main axis P is in the drawing in FIG. 1). The thickness of the optical waveguide substrate 11 is, for example, 30 μm or less, preferably 10 μm or less. When the optical waveguide substrate 11 is thinned in this way, the equivalent refractive index with respect to the microwaves that are excited by the electrodes 16, 17-1, and 17-2 and travel in the optical waveguide substrate 11 is reduced, so that the branched optical waveguide 15- The difference from the equivalent refractive index for light waves traveling through 1 and 15-2 is reduced. As a result, the speed matching between the light wave and the microwave is achieved or close to the speed matching, and the optical modulator 10 has a wider bandwidth.

樹脂基板12は、その誘電率が光導波路基板11の誘電率よりも低い特性を持った樹脂製の基板であり、上記のようにマイクロ波に対する等価屈折率を小さくするために用いられる。このような低誘電率の樹脂材料として、例えば、アクリル樹脂(誘電率ε=2.7〜4.5)、エポキシ樹脂(誘電率ε=2.5〜6.0)、等を用いることができるが、できるだけ低誘電率の樹脂材料を用いることが望ましい。樹脂基板12の厚さは、電極16,17−1,17−2によって発生するマイクロ波の電界が樹脂基板12の内部に大きく漏れ出すように、十分に厚く、例えば10μm以上、好ましくは30μm以上の厚さとする。これにより、マイクロ波に対する等価屈折率を小さくすることができる。   The resin substrate 12 is a resin substrate having a characteristic that the dielectric constant thereof is lower than that of the optical waveguide substrate 11 and is used to reduce the equivalent refractive index with respect to microwaves as described above. As such a low dielectric constant resin material, for example, an acrylic resin (dielectric constant ε = 2.7 to 4.5), an epoxy resin (dielectric constant ε = 2.5 to 6.0), or the like is used. Although it is possible, it is desirable to use a resin material having a dielectric constant as low as possible. The thickness of the resin substrate 12 is sufficiently thick so that the microwave electric field generated by the electrodes 16, 17-1 and 17-2 leaks into the resin substrate 12, for example, 10 μm or more, preferably 30 μm or more. Of thickness. Thereby, the equivalent refractive index with respect to a microwave can be made small.

光導波路基板11と樹脂基板12とは、接着剤層14によって接着固定されている。接着剤層14を形成する接着剤には、紫外線を照射することによって硬化する紫外線硬化型の接着剤や、加熱によって硬化する熱硬化型の接着剤を用いることができる。   The optical waveguide substrate 11 and the resin substrate 12 are bonded and fixed by an adhesive layer 14. As the adhesive forming the adhesive layer 14, an ultraviolet curable adhesive that is cured by irradiating ultraviolet rays or a thermosetting adhesive that is cured by heating can be used.

接着剤層14は、光変調器10の信頼性を向上させる必要性から、その厚さを十分に薄く、例えば9μm以下、好ましくは1μm以下の厚さとなるように形成する。一般に接着剤層は薄く形成した方が接着強度は大きくなるので、このように接着剤層14を薄くすることにより、光導波路基板11と樹脂基板12とを信頼性の上で問題がない程度に十分な強度で接着固定することができる。また、接着剤の硬化時に、紫外線照射や加熱によってその温度が上昇しその後硬化して温度が下がり応力が発生するが、接着剤層14の厚さが薄いと発生する応力を低減することができる。   The adhesive layer 14 is formed to have a sufficiently thin thickness, for example, 9 μm or less, preferably 1 μm or less, because it is necessary to improve the reliability of the optical modulator 10. In general, the thinner the adhesive layer is, the higher the adhesive strength is. Therefore, by reducing the thickness of the adhesive layer 14 in this way, the optical waveguide substrate 11 and the resin substrate 12 are not problematic in terms of reliability. Adhesive fixation can be performed with sufficient strength. Further, when the adhesive is cured, the temperature is increased by ultraviolet irradiation or heating, and then the temperature is cured and the temperature is decreased to generate a stress. However, when the adhesive layer 14 is thin, the generated stress can be reduced. .

また、接着剤層14の厚さが熱ドリフト(測定温度−40℃〜85℃での駆動電圧の変化)に与える影響を測定したところ、次の結果を得た。
接着剤層の厚さ(μm) 熱ドリフト(V) 評価
1 0.3 ◎
5 1.5 ○
9 2.9 ○
15 4.9 ×
熱ドリフトの一般的な許容値は3.0V以下であるので、熱ドリフトが問題とならない接着剤層14の厚さは、9μm以下、更に1μm以下が好適であることが分かる。
Moreover, when the influence which the thickness of the adhesive bond layer 14 has on thermal drift (change of the drive voltage in measurement temperature -40 degreeC-85 degreeC) was measured, the following result was obtained.
Adhesive layer thickness (μm) Thermal drift (V) Evaluation
1 0.3 ◎
5 1.5 ○
9 2.9 ○
15 4.9 ×
Since the general allowable value of the thermal drift is 3.0 V or less, it can be seen that the thickness of the adhesive layer 14 in which the thermal drift is not a problem is preferably 9 μm or less, and more preferably 1 μm or less.

このように、低誘電率の厚い樹脂基板12を薄い接着剤層14によって光導波路基板11に接着固定した構成を採用しているので、光変調器10の広帯域化及び駆動電圧の低電圧化(後述)と併せて信頼性の向上も同時に実現することが可能であり、熱ドリフトも問題とならない。   As described above, the configuration in which the low dielectric constant thick resin substrate 12 is bonded and fixed to the optical waveguide substrate 11 by the thin adhesive layer 14 is adopted, so that the optical modulator 10 has a wider bandwidth and lower drive voltage ( In addition, the reliability can be improved at the same time, and thermal drift is not a problem.

接着剤層14に用いる接着剤の誘電率は、接着剤層14の厚さを1μmより厚くする場合には、樹脂基板12と同様に(マイクロ波に対する等価屈折率を小さくするため)光導波路基板11の誘電率よりも低いことが必要である。これは、厚さが1μmより厚いと接着剤層14がマイクロ波の等価屈折率に与える影響が大きいからである。一方、接着剤層14の厚さを1μm以下とする場合には、接着剤層14がマイクロ波の等価屈折率に与える影響は無視できる程度となるので、接着剤層14に用いる接着剤の誘電率は光導波路基板11の誘電率より高くてもかまわない。   The dielectric constant of the adhesive used for the adhesive layer 14 is the same as that of the resin substrate 12 when the thickness of the adhesive layer 14 is thicker than 1 μm (in order to reduce the equivalent refractive index for microwaves). It is necessary that the dielectric constant is lower than 11. This is because if the thickness is greater than 1 μm, the adhesive layer 14 has a great influence on the equivalent refractive index of the microwave. On the other hand, when the thickness of the adhesive layer 14 is 1 μm or less, the influence of the adhesive layer 14 on the equivalent refractive index of the microwave is negligible. Therefore, the dielectric of the adhesive used for the adhesive layer 14 The rate may be higher than the dielectric constant of the optical waveguide substrate 11.

保持基板13は、樹脂基板12を介して光導波路基板11を保持する基板であり、光導波路基板11をしっかりと保持できるようにするため、その厚さは十分に厚く、例えば200μm以上、好ましくは0.5〜1.0mm程度とする。保持基板13の材質には、環境温度が変動した際に光導波路基板11の内部に応力が発生しないよう、あるいは発生する応力が低減されるよう、その熱膨張係数が光導波路基板11の熱膨張係数と近い材質のものを使用する。光導波路基板11と保持基板13とが同材質であれば尚更好ましい。例えば、光導波路基板11がLN基板である場合には、保持基板13の材質として、石英やアルミナ、光導波路基板11と結晶方位の異なるLN基板を利用することができる。   The holding substrate 13 is a substrate that holds the optical waveguide substrate 11 via the resin substrate 12, and the thickness thereof is sufficiently thick so that the optical waveguide substrate 11 can be firmly held, for example, 200 μm or more, preferably About 0.5 to 1.0 mm. The material of the holding substrate 13 has a thermal expansion coefficient of the optical waveguide substrate 11 so that no stress is generated inside the optical waveguide substrate 11 when the environmental temperature fluctuates or the generated stress is reduced. Use a material close to the coefficient. More preferably, the optical waveguide substrate 11 and the holding substrate 13 are made of the same material. For example, when the optical waveguide substrate 11 is an LN substrate, quartz, alumina, or an LN substrate having a crystal orientation different from that of the optical waveguide substrate 11 can be used as the material of the holding substrate 13.

樹脂基板12と保持基板13との固定方法は、本発明では特に限定されるものではなく、例えば、上記接着剤層14と同様の接着剤を用いて接着固定する方法、樹脂基板12を加熱によって粘着性が生じる材質からなるものとし、この樹脂基板12を加熱して保持基板13に固着させる方法、樹脂基板12と保持基板13を機械的に固定(例えばネジ止め)する方法、等を適用することができる。   The fixing method of the resin substrate 12 and the holding substrate 13 is not particularly limited in the present invention. For example, a method of bonding and fixing using the same adhesive as the adhesive layer 14, and the resin substrate 12 by heating. It is assumed that the material is made of an adhesive material, and a method of heating and fixing the resin substrate 12 to the holding substrate 13, a method of mechanically fixing (for example, screwing) the resin substrate 12 and the holding substrate 13, and the like are applied. be able to.

マッハツェンダー光導波路15は、例えば、チタン(Ti)等の金属を光導波路基板11の内部に熱拡散させる方法、光導波路基板11内部の原子(LN基板の場合、リチウム(Li)原子)をプロトンと交換する方法、光導波路基板11をリッジ状に形成し、該リッジ部に光を導波させる方法、等を用いて作製することができる。   The Mach-Zehnder optical waveguide 15 is, for example, a method of thermally diffusing a metal such as titanium (Ti) into the optical waveguide substrate 11, and protons in the optical waveguide substrate 11 (lithium (Li) atoms in the case of an LN substrate). For example, a method in which the optical waveguide substrate 11 is formed in a ridge shape, and light is guided to the ridge portion.

光導波路基板11上に形成される各電極16,17−1,17−2は、光導波路基板11内にマイクロ波を進行させて分岐光導波路15−1及び15−2中を伝搬する光波を変調するための電極であり、信号電極16が分岐光導波路15−1と15−2の間に配置され、接地電極17−1及び17−2がそれぞれ分岐光導波路15−1,15−2を挟んで信号電極16と対向するようにして配置される。この配置により、分岐光導波路15−1及び15−2の内部では、マイクロ波の電界が主軸P方向の主成分を持つようになる。上述したとおり、光導波路基板11の下部に設けられた樹脂基板12によって速度整合をとる構成であるので、各電極16,17−1,17−2は光導波路基板11上に直接形成する構成としている。このため、分岐光導波路15−1及び15−2に印加されるマイクロ波の電界の強度が低下せず、駆動電圧を低電圧化できる。なお、各電極16,17−1,17−2へ入力する変調電圧は、外部の高周波電源20から供給される。   The electrodes 16, 17-1 and 17-2 formed on the optical waveguide substrate 11 propagate light waves propagating through the branched optical waveguides 15-1 and 15-2 by causing microwaves to travel through the optical waveguide substrate 11. The signal electrode 16 is disposed between the branch optical waveguides 15-1 and 15-2, and the ground electrodes 17-1 and 17-2 are connected to the branch optical waveguides 15-1 and 15-2, respectively. It is arranged so as to face the signal electrode 16 with being sandwiched. With this arrangement, the microwave electric field has a main component in the principal axis P direction inside the branched optical waveguides 15-1 and 15-2. As described above, since the speed matching is achieved by the resin substrate 12 provided below the optical waveguide substrate 11, the electrodes 16, 17-1 and 17-2 are formed directly on the optical waveguide substrate 11. Yes. For this reason, the strength of the electric field of the microwave applied to the branched optical waveguides 15-1 and 15-2 does not decrease, and the drive voltage can be lowered. The modulation voltage input to each of the electrodes 16, 17-1 and 17-2 is supplied from an external high frequency power supply 20.

以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。   As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the above, and various design changes and the like can be made without departing from the scope of the present invention. It is possible to

例えば、樹脂基板12を、光導波路基板11より低い誘電率を持つ樹脂以外の材質からなる基板に置き換えてもよい。一例として、アルミナ(誘電率ε=6.0〜10.0)や石英(誘電率ε=3.5〜4.5)を材料とするガラス基板などを用いることができる。
また、マッハツェンダー光導波路15や各電極16,17−1,17−2の具体的な構成は、上述したものに限られず、必要に応じて適宜、変更してもよい。
For example, the resin substrate 12 may be replaced with a substrate made of a material other than resin having a lower dielectric constant than that of the optical waveguide substrate 11. As an example, a glass substrate made of alumina (dielectric constant ε = 6.0 to 10.0) or quartz (dielectric constant ε = 3.5 to 4.5) can be used.
Further, the specific configurations of the Mach-Zehnder optical waveguide 15 and the electrodes 16, 17-1, and 17-2 are not limited to those described above, and may be appropriately changed as necessary.

本発明の一実施形態による進行波型の光変調器の断面構成図である。1 is a cross-sectional configuration diagram of a traveling wave type optical modulator according to an embodiment of the present invention. FIG. 本発明の一実施形態による進行波型の光変調器の平面構成図である。1 is a plan configuration diagram of a traveling wave type optical modulator according to an embodiment of the present invention. FIG. 従来の進行波型の光変調器の断面構成図である。It is a cross-sectional block diagram of the conventional traveling wave type | mold optical modulator.

符号の説明Explanation of symbols

10…光変調器 11…光導波路基板 12…樹脂基板 13…保持基板 14…接着剤層 15…マッハツェンダー光導波路 15−1,15−2…分岐光導波路 15−3…入力導波路 15−4…出力導波路 16…信号電極 17−1,17−2…接地電極   DESCRIPTION OF SYMBOLS 10 ... Optical modulator 11 ... Optical waveguide substrate 12 ... Resin substrate 13 ... Holding substrate 14 ... Adhesive layer 15 ... Mach-Zehnder optical waveguide 15-1, 15-2 ... Branch optical waveguide 15-3 ... Input waveguide 15-4 ... Output waveguide 16 ... Signal electrode 17-1, 17-2 ... Ground electrode

Claims (3)

厚さ30μm以下の光導波路基板と、
前記光導波路基板を保持する保持基板と、
を有する光導波路デバイスであって、
前記光導波路基板より誘電率が低く、前記光導波路基板と前記保持基板との間に介挿された低誘電率基板と、
前記光導波路基板と前記低誘電率基板とを接着する厚さ9μm以下の接着剤層と、
前記低誘電率基板を前記保持基板に固定する固定手段と、
を備えることを特徴とする光導波路デバイス。
An optical waveguide substrate having a thickness of 30 μm or less;
A holding substrate for holding the optical waveguide substrate;
An optical waveguide device comprising:
A dielectric constant lower than that of the optical waveguide substrate, and a low dielectric constant substrate interposed between the optical waveguide substrate and the holding substrate;
An adhesive layer having a thickness of 9 μm or less for bonding the optical waveguide substrate and the low dielectric constant substrate;
Fixing means for fixing the low dielectric constant substrate to the holding substrate;
An optical waveguide device comprising:
前記低誘電率基板の厚さは30μm以上であることを特徴とする請求項1に記載の光導波路デバイス。   2. The optical waveguide device according to claim 1, wherein the low dielectric constant substrate has a thickness of 30 [mu] m or more. 前記接着剤層が前記光導波路基板より高誘電率の材料である場合にその厚さを1μm以下としたことを特徴とする請求項1又は請求項2に記載の光導波路デバイス。   3. The optical waveguide device according to claim 1, wherein when the adhesive layer is made of a material having a higher dielectric constant than the optical waveguide substrate, the thickness thereof is set to 1 μm or less.
JP2008050784A 2008-02-29 2008-02-29 Optical waveguide device Expired - Fee Related JP5262186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008050784A JP5262186B2 (en) 2008-02-29 2008-02-29 Optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008050784A JP5262186B2 (en) 2008-02-29 2008-02-29 Optical waveguide device

Publications (2)

Publication Number Publication Date
JP2009210634A true JP2009210634A (en) 2009-09-17
JP5262186B2 JP5262186B2 (en) 2013-08-14

Family

ID=41183886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008050784A Expired - Fee Related JP5262186B2 (en) 2008-02-29 2008-02-29 Optical waveguide device

Country Status (1)

Country Link
JP (1) JP5262186B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164604A (en) * 2010-02-05 2011-08-25 Advantest Corp Substrate structure and manufacturing method
WO2012147914A1 (en) 2011-04-28 2012-11-01 住友大阪セメント株式会社 Optical waveguide device
CN111522153A (en) * 2020-04-25 2020-08-11 电子科技大学 Mach-Zehnder type electro-optic modulator based on material on insulator and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380204B2 (en) 2019-12-26 2023-11-15 住友大阪セメント株式会社 optical waveguide device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235714A (en) * 1999-12-15 2001-08-31 Ngk Insulators Ltd Traveling-wave optical modulator and its manufacturing method
JP2003215519A (en) * 2001-11-16 2003-07-30 Ngk Insulators Ltd Optical waveguide device, and traveling wave form optical modulator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235714A (en) * 1999-12-15 2001-08-31 Ngk Insulators Ltd Traveling-wave optical modulator and its manufacturing method
JP2003215519A (en) * 2001-11-16 2003-07-30 Ngk Insulators Ltd Optical waveguide device, and traveling wave form optical modulator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012010096; J. Kondo, et al.: '"High-speed and low-driving-voltage thin-sheet x-cut LiNbO3 modulator with laminated low-dielectric-' IEEE Photonics Technology Letters , 200510 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011164604A (en) * 2010-02-05 2011-08-25 Advantest Corp Substrate structure and manufacturing method
WO2012147914A1 (en) 2011-04-28 2012-11-01 住友大阪セメント株式会社 Optical waveguide device
US9002165B2 (en) 2011-04-28 2015-04-07 Sumitomo Osaka Cement Co., Ltd. Optical waveguide device
CN111522153A (en) * 2020-04-25 2020-08-11 电子科技大学 Mach-Zehnder type electro-optic modulator based on material on insulator and preparation method thereof

Also Published As

Publication number Publication date
JP5262186B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP4183716B2 (en) Optical waveguide device
JP5363679B2 (en) Light modulation element
US20130064492A1 (en) Optical waveguide device
WO2005019913A1 (en) Optical waveguide device and traveling wave type opticalmodulator
WO2007122877A1 (en) Optical modulation element
JP5278986B2 (en) Light modulator
JP5262186B2 (en) Optical waveguide device
JP2009222753A (en) Optical modulator
WO2007058366A1 (en) Optical waveguide device
JP5691808B2 (en) Optical waveguide device
JP4265806B2 (en) Light modulator
JP2007101641A (en) Optical modulator and method of manufacturing same
JP4961372B2 (en) Optical waveguide device
JP2010085789A (en) Optical waveguide element
JP5254855B2 (en) Traveling wave type optical modulator
JP2013186200A (en) Optical module and optical transmitter
US20100247024A1 (en) Optical waveguide type device
JP4544474B2 (en) Light modulator
JP2006065044A (en) Optical modulator
JP4691428B2 (en) Light modulator
JP2004341147A (en) Optical waveguide device and traveling waveform optical modulator
US11656486B2 (en) Optical waveguide device
US20070081755A1 (en) Optical modulator
JP2004245991A (en) Optical waveguide device and structure combining the same and optical transmission member
JP7207086B2 (en) optical modulator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130213

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees