[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006213631A - Method for producing raw material solution for forming pzt film by chemical vapor deposition method and pzt film-forming method - Google Patents

Method for producing raw material solution for forming pzt film by chemical vapor deposition method and pzt film-forming method Download PDF

Info

Publication number
JP2006213631A
JP2006213631A JP2005027404A JP2005027404A JP2006213631A JP 2006213631 A JP2006213631 A JP 2006213631A JP 2005027404 A JP2005027404 A JP 2005027404A JP 2005027404 A JP2005027404 A JP 2005027404A JP 2006213631 A JP2006213631 A JP 2006213631A
Authority
JP
Japan
Prior art keywords
dpm
raw material
solution
pzt film
onbu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005027404A
Other languages
Japanese (ja)
Inventor
Hidekimi Kadokura
秀公 門倉
Kazushi Yamaguchi
一志 山口
Shintaro Azuma
慎太郎 東
Kazuki Baba
和樹 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kojundo Kagaku Kenkyusho KK
Original Assignee
Kojundo Kagaku Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kojundo Kagaku Kenkyusho KK filed Critical Kojundo Kagaku Kenkyusho KK
Priority to JP2005027404A priority Critical patent/JP2006213631A/en
Publication of JP2006213631A publication Critical patent/JP2006213631A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily producing a raw material solution of high purity (n-butoxy)tris(pivaloylmethanato)zirconium for using in the vaporized solution source of chemical vapor deposition method, and a PZT film-forming method using the solution. <P>SOLUTION: The (isopropoxy)tris(dipivaloylmethanato)zirconium is synthesized with the use of purified zirconium isopropoxide as a raw material, and then the (isopropoxy)tris(dipivaloylmethanato)zirconium is dissolved in n-butyl acetate, and thereafter left to stand at room temperature for 5 or more hours to obtain a raw material solution of completely converted (n-butoxy)tris(dipivaloylmethanato)zirconium. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、溶液気化供給の化学気相成長法によりPZT膜を形成するために用いられる原料溶液の製造方法および前記原料溶液を用いたPZT膜の形成方法に関する。   The present invention relates to a method for producing a raw material solution used for forming a PZT film by chemical vapor deposition with solution vaporization and a method for forming a PZT film using the raw material solution.

高集積の不揮発性メモリーに用いられるPZT薄膜を量産性よく製造する方法として、化学気相成長法(以下、CVD法という。)が用いられている。その原料供給方式は、Pb,Ti,Zrの化合物を溶液にして気化供給する方式が一般的である。
Pb源として毒性の低いビス(β−ジケトナト)鉛、例えば、ビス(ジピバロイルメタナト)鉛(以下、Pb(dpm)2と表す。)は、蒸気圧が低く、150℃で0.2Torrしかない。そのため、そのまま気化して供給する方式よりも、有機溶媒に溶解した溶液として気化供給する方式の方が、大量のPb源を供給できるため、PZT薄膜の大量生産に好都合である。
したがって、上記のような溶液気化においては、Pb,Zr,Tiの各々の原料溶液を気化器直前で混合し、一つの気化器で気化供給する方式や、Pb,Zr,Tiを含んだ一溶液を原料として、気化供給する方式等が採用されている。
A chemical vapor deposition method (hereinafter referred to as a CVD method) is used as a method for manufacturing a PZT thin film used in a highly integrated nonvolatile memory with high productivity. The raw material supply method is generally a method in which a compound of Pb, Ti, Zr is vaporized and supplied.
Bis (β-diketonato) lead having low toxicity as a Pb source, for example, bis (dipivaloylmethanato) lead (hereinafter referred to as Pb (dpm) 2 ) has a low vapor pressure and is 0.2 Torr at 150 ° C. There is only. Therefore, the vaporization supply method as a solution dissolved in an organic solvent is more convenient for mass production of PZT thin films than the vaporization supply method as it is, because a large amount of Pb source can be supplied.
Therefore, in the solution vaporization as described above, the raw material solutions of Pb, Zr, and Ti are mixed immediately before the vaporizer and vaporized and supplied by a single vaporizer, or a solution containing Pb, Zr, and Ti. As a raw material, a method of vaporizing and supplying is adopted.

一方、Zr,Ti化合物は、Pb(dpm)2と混合した場合、直ぐに反応しないように、アルコキシドでなく、β−ジケトナト化したものが好適に用いられる。
前記Pb,Zr,Tiの化合物は、さらに、堆積温度特性、溶媒への溶解性も考慮して選択され、以下のような化合物が用いられている。
以下、Oi-C37をOiPr、On-C49をOnBu、Ot-C49をOtBu、OC25をOEt、C9152(ジイソブチリルメタナト)をdibm、C11192(ジピバロイルメタナト)をdpm、OCOCH3(アセトキシ)をAcOで表す。
On the other hand, the Zr, Ti compound is preferably not β-diketonated but alkoxide so as not to react immediately when mixed with Pb (dpm) 2 .
The Pb, Zr, and Ti compounds are further selected in consideration of deposition temperature characteristics and solubility in a solvent, and the following compounds are used.
Hereinafter, Oi-C 3 H 7 is OiPr, On-C 4 H 9 is OnBu, Ot-C 4 H 9 is OtBu, OC 2 H 5 is OEt, and C 9 H 15 O 2 (diisobutyrylmethanato) is divm. C 11 H 19 O 2 (dipivaloylmethanato) is represented by dpm, and OCOCH 3 (acetoxy) is represented by AcO.

Pb化合物としてはPb(dpm)2、Zr化合物としてはZr(OiPr)2(dpm)2、Zr(OiPr)(dpm)3、Zr(OnBu)(dpm)3、Zr(OtBu)(dpm)3、Zr(dibm)4、Ti化合物としてはTi(OiPr)2(dpm)2、Ti(OnBu)2(dpm)2、Ti(OEt)2(dpm)2、Ti(OtBu)2(dpm)2、Ti(OiPr)2(dibm)2等が用いられている。 Pb (dpm) 2 as the Pb compound, Zr (OiPr) 2 (dpm) 2 , Zr (OiPr) (dpm) 3 , Zr (OnBu) (dpm) 3 , Zr (OtBu) (dpm) 3 as the Zr compound , Zr (divm) 4 , Ti compounds include Ti (OiPr) 2 (dpm) 2 , Ti (OnBu) 2 (dpm) 2 , Ti (OEt) 2 (dpm) 2 , Ti (OtBu) 2 (dpm) 2 Ti (OiPr) 2 (divm) 2 or the like is used.

一般的な溶媒としては、THF、オクタン、シクロヘキサン、酢酸ノルマルブチル(AcOnBu)等が挙げられる。この中で、AcOnBuは溶解力と安全性が高いこと、工業的にも大量に製造されており、価格が安いこと等の理由から、多く検討されている。   Common solvents include THF, octane, cyclohexane, normal butyl acetate (AcOnBu) and the like. Among them, AcOnBu has been studied a lot because of its high dissolving power and safety, industrial production in large quantities, and low price.

目的のPZT膜を得るためには、化合物の気化温度と堆積温度が、最も重要な特性であり、成膜温度や結晶物性に最適な化合物を選択する必要がある。
特許文献1には、Zr(OnBu)(dpm)3は、Zr(dpm)4より低温で堆積し、Zrの膜への取り込みが多いため、Zr化合物として有望であることが開示されている。
また、Zr化合物として、Zr(OnBu)(dpm)3を用いたPZT成膜に関しては、以下のような従来例がある。
In order to obtain the target PZT film, the vaporization temperature and deposition temperature of the compound are the most important characteristics, and it is necessary to select a compound that is optimal for the film formation temperature and the crystal properties.
Patent Document 1 discloses that Zr (OnBu) (dpm) 3 is deposited as a lower temperature than Zr (dpm) 4 and has a large amount of Zr incorporated into the film, and therefore is promising as a Zr compound.
Moreover, there are the following conventional examples of PZT film formation using Zr (OnBu) (dpm) 3 as the Zr compound.

例えば、特許文献2には、Zr(OnBu)4とジピバロイルメタン(dpmH)をモル比1:3でトルエン中で反応させた後、トルエンを減圧留去して粗成生物を得、それをヘキサン中で再結晶して、粉末状の精製Zr(OnBu)(dpm)3が得られることが記載されている。さらに、このZr(OnBu)(dpm)3とPb(dpm)2とTi(OiPr)2(dpm)2とをTHFに溶解した溶液を市販気化器で気化させると、残渣が7.1%と、Zr(OtBu)(dpm)3の場合の1.2%よりかなり劣ることも記載されている。 For example, in Patent Document 2, Zr (OnBu) 4 and dipivaloylmethane (dpmH) are reacted in toluene at a molar ratio of 1: 3, and then toluene is distilled off under reduced pressure to obtain a crude product. It is described that it can be recrystallized in hexane to obtain powdered purified Zr (OnBu) (dpm) 3 . Further, when a solution of Zr (OnBu) (dpm) 3 , Pb (dpm) 2 and Ti (OiPr) 2 (dpm) 2 dissolved in THF is vaporized with a commercial vaporizer, the residue is 7.1%. , Zr (OtBu) (dpm) 3 is also much worse than 1.2%.

また、非特許文献1には、Pb(dpm)2とZr(OnBu)(dpm)3とTi(OiPr)2(dpm)2の3種の化合物を[70vol%nBuOH+30vol%AcOnBu]なる混合溶媒に溶解した溶液を超音波噴霧供給法により供給し、1atmでのCVDで、PZT成膜を行うことが記載されており、前記Zr(OnBu)(dpm)3は、Zr(OnBu)4とdpmHをモル比1:3で反応させて作製したことが開示されている。
特開2001−151782号公報 特開2002−275121号公報(比較例6、表3) Choon-Ho Lee and Sun-Il Kim, Jpn.J.Appl.Phys., Vol.41(2002)6701
Non-Patent Document 1 discloses that three compounds of Pb (dpm) 2 , Zr (OnBu) (dpm) 3 and Ti (OiPr) 2 (dpm) 2 are mixed into a mixed solvent of [70 vol% nBuOH + 30 vol% AcOnBu]. It is described that a dissolved solution is supplied by an ultrasonic spray supply method, and PZT film formation is performed by CVD at 1 atm. The Zr (OnBu) (dpm) 3 includes Zr (OnBu) 4 and dpmH. It is disclosed that it was prepared by reacting at a molar ratio of 1: 3.
JP 2001-151782 A JP 2002-275121 A (Comparative Example 6, Table 3) Choon-Ho Lee and Sun-Il Kim, Jpn.J.Appl.Phys., Vol.41 (2002) 6701

ところで、FeRAM用のPZT膜では、微量金属不純物が極度に嫌われるため、原料化合物のZr(OnBu)(dpm)3は、非常に高純度であることが必要である。特に、Na,K,Ca,Al,Fe,U,Th等が、50ppb以下であることが好ましく、より好ましくは、10ppb以下である。
しかしながら、Zr(OnBu)(dpm)3は、蒸気圧が0.2Torr/180℃と低く、単蒸留はできるが、精留は困難であり、この化合物の高純度化は難しい。
By the way, in the PZT film for FeRAM, since trace metal impurities are extremely disliked, the raw material compound Zr (OnBu) (dpm) 3 needs to have a very high purity. In particular, Na, K, Ca, Al, Fe, U, Th, and the like are preferably 50 ppb or less, and more preferably 10 ppb or less.
However, Zr (OnBu) (dpm) 3 has a vapor pressure as low as 0.2 Torr / 180 ° C., and simple distillation is possible, but rectification is difficult, and high purity of this compound is difficult.

従来技術である上記特許文献1および比特許文献1においては、Zr(OnBu)(dpm)3の製法は、式(1)の反応による。
Zr(OnBu)4 + 3dpmH
→ Zr(OnBu)(dpm)3 + nBuOH …(1)
上記2文献においては、Zr(OnBu)(dpm)3の純度については言及されていないが、Zr(OnBu)(dpm)3の精製は、再結晶操作で行われており、精製効率が悪く、工業的でない。
In the above-mentioned Patent Document 1 and Comparative Patent Document 1, which are prior arts, the method of producing Zr (OnBu) (dpm) 3 is based on the reaction of the formula (1).
Zr (OnBu) 4 + 3dpmH
→ Zr (OnBu) (dpm) 3 + nBuOH (1)
In the above two documents, the purity of Zr (OnBu) (dpm) 3 is not mentioned, but the purification of Zr (OnBu) (dpm) 3 is performed by recrystallization operation, and the purification efficiency is poor. Not industrial.

また、Zr(OnBu)(dpm)3製造の原料であるZr(OnBu)4の蒸気圧は、本発明者らの測定によれば、1Torr/250℃と非常に低く、Na,K,Ca,Al,Fe,U,Thなどの微量不純物の除去のための精留は困難である。単蒸留は可能であるが、単蒸留では精製の効率が悪く、工業的でない。 The vapor pressure of Zr (OnBu) 4 which is a raw material for producing Zr (OnBu) (dpm) 3 is very low at 1 Torr / 250 ° C. according to the measurement by the present inventors, and Na, K, Ca, Rectification for removing trace impurities such as Al, Fe, U, and Th is difficult. Although simple distillation is possible, simple distillation is not industrial and is not efficient.

したがって、上記2文献の製造方法では、FeRAMに適する高純度Zr(OnBu)(dpm)3を得ることは困難である。 Therefore, it is difficult to obtain high-purity Zr (OnBu) (dpm) 3 suitable for FeRAM by the manufacturing methods of the above two documents.

本発明は、上記技術的課題を解決するためになされたものであり、溶液気化のCVDに用いるための高純度のZr(OnBu)(dpm)3の原料溶液を容易に製造する方法および該原料溶液を用いたPZT膜の形成方法を提供することを目的とするものである。 The present invention has been made to solve the above technical problem, and a method for easily producing a high-purity Zr (OnBu) (dpm) 3 raw material solution for use in CVD for solution vaporization and the raw material An object of the present invention is to provide a method for forming a PZT film using a solution.

本発明に係る化学気相成長法によるPZT成膜用の原料溶液の製造方法は、溶液気化供給の化学気相成長法によりPZT膜を形成するために用いられる(ノルマルアルコキシ)トリス(ジピバロイルメタナト)ジルコニウムの原料溶液の製造方法において、酢酸ノルマルアルキル(ノルマルアルキル基の炭素数は、2,3,4のうちのいずれか)に、(イソプロポキシ)トリス(ジピバロイルメタナト)ジルコニウムを溶解することを特徴とする。   The method for producing a raw material solution for PZT film formation by chemical vapor deposition according to the present invention is a (normal alkoxy) tris (dipivalo) used for forming a PZT film by chemical vapor deposition with solution vaporization. In the method for producing a raw material solution of ilmethanato) zirconium, normal alkyl acetate (carbon number of normalalkyl group is any of 2, 3, 4), (isopropoxy) tris (dipivaloylmethanato) zirconium It is characterized by dissolving.

前記酢酸ノルマルアルキルには、酢酸ノルマルブチル(ノルマルアルキル基の炭素数が4)を用い、前記原料溶液が(ノルマルブトキシ)トリス(ジピバロイルメタナト)ジルコニウムの酢酸ノルマルブチル溶液であることが好ましい。   For the normal alkyl acetate, normal butyl acetate (normal alkyl group having 4 carbon atoms) is used, and the raw material solution is preferably a normal butyl acetate solution of (normal butoxy) tris (dipivaloylmethanato) zirconium. .

さらに、上記製造方法においては、酢酸ノルマルブチルに、(イソプロポキシ)トリス(ジピバロイルメタナト)ジルコニウムを溶解して5時間以上経て、(ノルマルブトキシ)トリス(ジピバロイルメタナト)ジルコニウムの酢酸ノルマルブチル溶液を得ることが好ましい。   Further, in the above production method, (isopropoxy) tris (dipivaloylmethanato) zirconium is dissolved in normal butyl acetate, and after 5 hours or more, acetic acid of (normalbutoxy) tris (dipivaloylmethanato) zirconium is obtained. It is preferable to obtain a normal butyl solution.

また、本発明に係るPZT膜の形成方法は、上記製造方法により製造された化学気相成長法によるPZT成膜用の原料溶液を用いることを特徴とする。   The PZT film forming method according to the present invention is characterized by using a raw material solution for PZT film formation by chemical vapor deposition produced by the above production method.

Zr(OiPr)4は、蒸気圧が1Torr/181℃と比較的高く、精留が可能で、精製効率が高い。この精留により、Na,K,Ca,Al,Fe,U,Th等の金属化合物不純物を目的に適合するまで、精製することができる。
この高純度Zr(OiPr)4とdpmHとを反応させて、高純度Zr(OiPr)(dpm)3が得られる。
本発明は、このZr(OiPr)(dpm)3と溶媒AcOnBuとが、室温で5時間以内に反応し、Zr(OnBu)(dpm)3に変化することを見出したことによるものである。
すなわち、式(2)のエステル交換反応を利用する。
Zr(OiPr)(dpm)3 + AcOnBu
→ Zr(OnBu)(dpm)3 + AcOiPr …(2)
Zr (OiPr) 4 has a relatively high vapor pressure of 1 Torr / 181 ° C., enables rectification, and has high purification efficiency. By this rectification, metal compound impurities such as Na, K, Ca, Al, Fe, U, and Th can be purified until they meet the purpose.
This high purity Zr (OiPr) 4 and dpmH are reacted to obtain high purity Zr (OiPr) (dpm) 3 .
The present invention is based on the finding that Zr (OiPr) (dpm) 3 and the solvent AcOnBu react within 5 hours at room temperature and change to Zr (OnBu) (dpm) 3 .
That is, the transesterification reaction of formula (2) is utilized.
Zr (OiPr) (dpm) 3 + AcOnBu
→ Zr (OnBu) (dpm) 3 + AcOiPr (2)

一方、Zr(OiPr)4を中間原料として合成し精留したZr(OtBu)4は、Zr(OiPr)4よりかなり高価であるが、その純度はZr(OiPr)4より高く得られる。
したがって、このZr(OtBu)4を原料として,式(3)で作られたZr(OtBu)(dpm)3は高純度である。
Zr(OtBu)4 + 3dpmH
→ Zr(OtBu)(dpm)3 + nBuOH …(3)
しかしながら、式(4)
Zr(OtBu)(dpm)3 + AcOnBu
→ Zr(OnBu)(dpm)3 + AcOtBu …(4)
のエステル交換反応は、非常に起こり難く、本反応による高純度Zr(OnBu)(dpm)3のAcOnBu溶液の製造は難しいことがわかった。これは、OtBu基の立体障害によると推測される。
On the other hand, Zr (OtBu) 4 synthesized and rectified using Zr (OiPr) 4 as an intermediate material is considerably more expensive than Zr (OiPr) 4 , but its purity is higher than Zr (OiPr) 4 .
Therefore, using this Zr (OtBu) 4 as a raw material, Zr (OtBu) (dpm) 3 made by the formula (3) has high purity.
Zr (OtBu) 4 + 3dpmH
→ Zr (OtBu) (dpm) 3 + nBuOH (3)
However, equation (4)
Zr (OtBu) (dpm) 3 + AcOnBu
→ Zr (OnBu) (dpm) 3 + AcOtBu (4)
The transesterification reaction of was very unlikely to occur, and it was found that it was difficult to produce an AcOnBu solution of high purity Zr (OnBu) (dpm) 3 by this reaction. This is presumed to be due to the steric hindrance of the OtBu group.

本発明に係る化学気相成長法によるPZT成膜用の原料溶液の製造方法によれば、溶液気化のCVDに用いるための高純度のZr(OnBu)(dpm)3の原料溶液を容易に製造することができる。
また、上記製造方法により製造される原料溶液は、非常に高純度のZr化合物で、低温堆積に優れており、PZT膜の量産に有効である。
According to the method for producing a raw material solution for PZT film formation by chemical vapor deposition according to the present invention, a high-purity Zr (OnBu) (dpm) 3 raw material solution for use in CVD for solution vaporization is easily produced. can do.
The raw material solution produced by the above production method is a very high purity Zr compound, excellent in low temperature deposition, and effective for mass production of PZT films.

以下、本発明について、より詳細に説明する。
Zr(OiPr)(dpm)3の製法の基本反応は、特開2001−151782公報の記載による。
ここで、原料のZr(OiPr)4は、ZrCl4とiPrOHとNH3の反応により得られる。Zr(OiPr)4は、1Torr/181℃の蒸気圧で、融点110℃であるため、真空蒸留用の金網状充填物を備えた真空蒸留塔で高真空精留を行う。これにより、Zr(OiPr)4中のNa,K,Ca,Al,Fe,U,Th等の各不純物を50ppb以下にすることができる。Zr基準では、180ppb以下に相当する。
Hereinafter, the present invention will be described in more detail.
The basic reaction of the method for producing Zr (OiPr) (dpm) 3 is described in JP-A No. 2001-151882.
Here, the raw material Zr (OiPr) 4 is obtained by the reaction of ZrCl 4 , iPrOH and NH 3 . Since Zr (OiPr) 4 has a vapor pressure of 1 Torr / 181 ° C. and a melting point of 110 ° C., high vacuum rectification is carried out in a vacuum distillation column equipped with a wire mesh packing for vacuum distillation. Thereby, each impurity, such as Na, K, Ca, Al, Fe, U, and Th, in Zr (OiPr) 4 can be reduced to 50 ppb or less. It corresponds to 180 ppb or less on the Zr basis.

次いで、この高純度Zr(OiPr)41モルとdpmH3モルとをトルエン溶液中で反応させ、トルエンを蒸発留去し、粗Zr(OiPr)(dpm)3を高真空で昇華して、高純度Zr(OiPr)(dpm)3を得る。この工程での金属不純物の精製効果は、昇華のため小さい。
次いで、得られた高純度Zr(OiPr)(dpm)3を高純度AcOnBuに0.1〜0.5モル/Lに溶解し、クリーンルームに5時間放置した後、フィルターろ過し、ステンレススチール製容器に充填することにより、本発明に係る原料溶液が得られる。
Subsequently, 1 mol of this high purity Zr (OiPr) 4 and 3 mol of dpmH are reacted in a toluene solution, toluene is evaporated and distilled, and crude Zr (OiPr) (dpm) 3 is sublimated in a high vacuum to obtain a high purity. Zr (OiPr) (dpm) 3 is obtained. The purification effect of metal impurities in this process is small due to sublimation.
Next, the obtained high-purity Zr (OiPr) (dpm) 3 was dissolved in high-purity AcOnBu at 0.1 to 0.5 mol / L, left in a clean room for 5 hours, filtered, and made of stainless steel. The raw material solution according to the present invention can be obtained by filling in.

AcOnBu溶媒中で、Zr(OiPr)(dpm)3からZr(OnBu)(dpm)3へは、20℃、5時間で完全に変換する。
操作は、単に溶解させるだけであり、非常に簡単である。
また、原料溶液製造後、CVDを開始するまでの時間は、日単位であり、この5時間に比べて十分長いため、Zr化合物の変化の途中でCVDを行うようなことにはならない。
また、Zrは、全てZr(OnBu)(dpm)3となり、CVD途中で組成が変わるという懸念は全くない。
In AcOnBu solvent, Zr (OiPr) (dpm) 3 is completely converted to Zr (OnBu) (dpm) 3 at 20 ° C. for 5 hours.
The operation is simply simple and very simple.
Further, the time until the CVD is started after the raw material solution is manufactured is a day unit, and is sufficiently longer than the five hours. Therefore, the CVD is not performed during the change of the Zr compound.
Moreover, all Zr becomes Zr (OnBu) (dpm) 3 , and there is no concern that the composition changes during the CVD.

前記高純度AcOnBuは、水分20ppm以下であることが好ましく、より好ましくは5ppm以下であり、かつ、溶存酸素を除いたものであることが好ましい。
AcOnBu中の不純物量は、蒸留精製により、K,Ca,Al,Fe,U,Th等は、容易に0.1ppb以下、Naは2ppb以下にすることができるため、本発明の目的に合致する。
The high-purity AcOnBu preferably has a water content of 20 ppm or less, more preferably 5 ppm or less, and preferably excludes dissolved oxygen.
The amount of impurities in AcOnBu can be easily reduced to 0.1 ppb or less for Na, 2 ppb or less for Na by K, Ca, Al, Fe, U, Th, etc. by distillation purification, and therefore meets the object of the present invention. .

上記のようにして製造されたZr(OnBu)(dpm)3のAcOnBu溶液の金属不純物は、大半がZr(OiPr)4に由来するものである。このため、Zr(OiPr)4中の各不純物濃度が50ppb以下であれば、Zr濃度0.2モル/Lの目的原料溶液の各金属不純物濃度は、Zr基準で200ppb以下となる。 Most of the metal impurities in the AcOnBu solution of Zr (OnBu) (dpm) 3 produced as described above are derived from Zr (OiPr) 4 . For this reason, if each impurity concentration in Zr (OiPr) 4 is 50 ppb or less, each metal impurity concentration of the target raw material solution having a Zr concentration of 0.2 mol / L is 200 ppb or less on the Zr basis.

一方、高純度のZr(OnBu)(dpm)3を本発明以外の他の方法により製造するには、高純度のZr(OnBu)4をまず製造しなければならない。
Zr(OnBu)4は、多量体に会合して分子量が大きいため、蒸気圧が低いので、精留ができない。このため、ZrCl4から高純度のZr(OnBu)4を直接得ることはできず、まず、Zr(OiPr)4を生成させて精製後、アルコール交換等により、高純度のZr(OnBu)4に変える必要がある。
あるいはまた、Zr(OiPr)4からAcOtBuとのエステル交換反応により、Zr(OtBu)4を生成させて精製後、アルコール交換により、高純度のZr(OnBu)4に変える必要がある。
いずれの方法も反応や精製操作の工程が本発明に係る製造方法よりも増えるため、好ましい方法とは言えない。
On the other hand, in order to produce high purity Zr (OnBu) (dpm) 3 by a method other than the present invention, high purity Zr (OnBu) 4 must first be produced.
Since Zr (OnBu) 4 is associated with a multimer and has a high molecular weight, the vapor pressure is low, so that rectification cannot be performed. Therefore, high-purity Zr (OnBu) 4 cannot be obtained directly from ZrCl 4. First, Zr (OiPr) 4 is produced and purified, and then purified to high-purity Zr (OnBu) 4 by alcohol exchange or the like. Need to change.
Alternatively, by an ester exchange reaction between AcOtBu from Zr (OiPr) 4, after purification by generating a Zr (OtBu) 4, the alcohol exchange, it is necessary to change the high purity Zr (OnBu) 4.
Neither method is a preferable method because the number of steps of reaction and purification operations is greater than that of the production method according to the present invention.

また、後述する比較例1にあるように、高純度のZr(OiPr)4を経由せずに、ZrCl4から直接合成し、単蒸留して得たZr(OnBu)4の各不純物含量は、4,000〜100ppbと高く、好ましいものではなかった。 Further, as in Comparative Example 1 described later, each impurity content of Zr (OnBu) 4 obtained by simple synthesis from ZrCl 4 and simple distillation without passing through high-purity Zr (OiPr) 4 , It was as high as 4,000 to 100 ppb, which was not preferable.

これらに対して、本発明に係る製造方法によれば、Zr(OiPr)(dpm)3と溶媒AcOEtから容易にZr(OEt)(dpm)3のAcOEt溶液を製造することができる。
Zr(OEt)4は、1Torr/209℃と蒸気圧が低く、融点が171℃と高いため、精留が困難であり、この点からも、本発明は有効である。
In contrast, according to the production method of the present invention, an AcOEt solution of Zr (OEt) (dpm) 3 can be easily produced from Zr (OiPr) (dpm) 3 and the solvent AcOEt.
Since Zr (OEt) 4 has a low vapor pressure of 1 Torr / 209 ° C. and a high melting point of 171 ° C., rectification is difficult, and the present invention is also effective from this point.

また、本発明によれば、同様に、Zr(OiPr)(dpm)3と溶媒AcOnPrから、Zr(OnPr)(dpm)3のAcOnPr溶液も容易に製造することができる。 Similarly, according to the present invention, an AcOnPr solution of Zr (OnPr) (dpm) 3 can be easily produced from Zr (OiPr) (dpm) 3 and the solvent AcOnPr.

以下、本発明を実施例に基づきさらに具体的に説明するが、本発明は下記の実施例により制限されるものではない。
[実施例1]Zr(OiPr)(dpm)3を用いたZr(OnBu)(dpm)3のAcOnBu溶液の製造
以下、すべての操作は、露点−80℃以下の純N2または純Ar雰囲気中で行なった。
式(5)により、反応合成し、単蒸留してZr(OiPr)4を得た。
ZrCl4 + iPrOH + NH3 → Zr(OiPr)4・iPrOH
→ Zr(OiPr)4 …(5)
次いで、これを段数約3の充填精留塔に仕込み、釜温210℃、0.3Torrで還流比5で精留し、精製Zr(OiPr)4を得た。
EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not restrict | limited by the following Example.
[Example 1] Production of an AcOnBu solution of Zr (OnBu) (dpm) 3 using Zr (OiPr) (dpm) 3 In the following, all operations were performed in pure N 2 or pure Ar atmosphere having a dew point of -80 ° C or lower. It was done in.
According to the formula (5), reaction synthesis was performed and simple distillation was performed to obtain Zr (OiPr) 4 .
ZrCl 4 + iPrOH + NH 3 → Zr (OiPr) 4 .iPrOH
→ Zr (OiPr) 4 (5)
Next, this was charged into a packed rectification column having about 3 stages, and rectified at a kettle temperature of 210 ° C. and 0.3 Torr at a reflux ratio of 5 to obtain purified Zr (OiPr) 4 .

次いで、式(6)の反応をトルエン溶媒中、120℃で8時間行い、Zr(OiPr)(dpm)3を合成した。
Zr(OiPr)4 + 3dpmH
→ Zr(OiPr)(dpm)3 + iPrOH …(6)
トルエンや未反応物、副生物を減圧留去後、釜残を180℃オイルバス中で加熱し、0.2Torrでの高真空で昇華し精製Zr(OiPr)(dpm)3の結晶を得た。融点は200℃以上である。
Subsequently, reaction of Formula (6) was performed at 120 degreeC in the toluene solvent for 8 hours, and Zr (OiPr) (dpm) 3 was synthesize | combined.
Zr (OiPr) 4 + 3dpmH
→ Zr (OiPr) (dpm) 3 + iPrOH (6)
After toluene, unreacted substances and by-products were distilled off under reduced pressure, the residue was heated in an oil bath at 180 ° C. and sublimated in a high vacuum at 0.2 Torr to obtain purified Zr (OiPr) (dpm) 3 crystals. . The melting point is 200 ° C. or higher.

このZr(OiPr)(dpm)3を、0.2モル/Lとなるように、水分5ppm、脱酸素した精製AcOnBuに22℃のクリーンルーム中で溶解し、フィルターろ過を行い、ステンレススチール製容器に充填し、原料溶液を製造した。 This Zr (OiPr) (dpm) 3 was dissolved in purified AcOnBu dehydrated at 5 ppm water to a concentration of 0.2 mol / L in a clean room at 22 ° C, filtered, and placed in a stainless steel container. Filled to produce a raw material solution.

溶解してから5時間後、1日後、2日後、3日後、7日後、1ヶ月後、3ヶ月後に容器から溶液10mlを抜き取り、撹拌子入り100mlフラスコに入れ、加熱オイルバス温度70℃で溶媒を約10分で減圧留去回収した。回収液は、ガスクロマトグラフで、AcOiPr、AcOnBuの割合を調べ、釜残は、Ar1atmおよび0.4TorrでのTG−DTA測定を行った。   5 hours after dissolution, 1 day, 2 days, 3 days, 7 days, 1 month, 3 months later, 10 ml of the solution is withdrawn from the container, placed in a 100 ml flask containing a stir bar, and heated at an oil bath temperature of 70 ° C. Was recovered by distillation under reduced pressure in about 10 minutes. The recovered liquid was a gas chromatograph, and the proportions of AcOiPr and AcOnBu were examined. The residue of the pot was subjected to TG-DTA measurement at Ar1 atm and 0.4 Torr.

ガスクロマトグラフのAcOiPrの割合から計算されたエステル交換率は、5時間後109%、1日後100%、2日後101%%、3日後100%、7日後98%、1ヶ月後103%、3ヶ月後102%であった。
ガスクロマトグラフの分析精度を考慮すると、5時間後には、Zrは全てZr(OnBu)(dpm)3になっていることが認められた。
The transesterification rate calculated from the ratio of AcOiPr on the gas chromatograph was 109% after 5 hours, 100% after 1 day, 101% after 2 days, 100% after 3 days, 98% after 7 days, 103% after 7 days, 103% after 3 months, After 102%.
In consideration of the analysis accuracy of the gas chromatograph, it was confirmed that all Zr was Zr (OnBu) (dpm) 3 after 5 hours.

図1に、1ヶ月後のサンプルの釜残の1atmでのTG−DTA測定結果を示す。
5時間から3ヶ月までのTG−DTAも、図1と同様であった。
この釜残のTG−DTA測定結果は、後述する比較例1で得られたZr(OnBu)(dpm)3のTG−DTA測定結果(図3)と非常によく似た挙動を示している。このことからも、Zr(OnBu)(dpm)3となっていることが確認された。
図4には、原体のZr(OiPr)(dpm)3のTG−DTA測定結果を示す。
図1は、図4と異なり、Zr(OiPr)(dpm)3から変化していることが確認された。ここで、原体とは、溶解する前の原料化合物を表す。
図2には、1ヶ月後のサンプルの釜残の0.4TorrでのTG−DTA測定結果を示す。真空(0.4Torr)下では、完全に蒸発していることがわかる。
FIG. 1 shows the TG-DTA measurement result at 1 atm of the residue of the sample after one month.
The TG-DTA from 5 hours to 3 months was the same as in FIG.
The TG-DTA measurement result of this residue shows a very similar behavior to the TG-DTA measurement result (FIG. 3) of Zr (OnBu) (dpm) 3 obtained in Comparative Example 1 described later. Also from this, it was confirmed that it was Zr (OnBu) (dpm) 3 .
FIG. 4 shows a TG-DTA measurement result of the original Zr (OiPr) (dpm) 3 .
Unlike FIG. 4, FIG. 1 was confirmed to change from Zr (OiPr) (dpm) 3 . Here, the drug substance represents a raw material compound before being dissolved.
FIG. 2 shows the TG-DTA measurement result at 0.4 Torr of the sample remaining after 1 month. It can be seen that it is completely evaporated under vacuum (0.4 Torr).

また、精製Zr(OiPr)4を酸で溶解し、蒸発乾固後、酸に溶解し、水で希釈し、陰イオン交換樹脂充填カラムに通し、Zrを分離後、ICP−MSにより、不純物定量分析を行った。
その結果、Na 11ppb,K 7ppb,Mg 2ppb,Ca 6ppb,Al 40ppb,Cr 1ppb,Fe 30ppb,Ni <2ppb,Cu 1ppb,Zn 11ppb,U <5ppb,Th<1ppbであり、非常に高純度であることが認められた。
Purified Zr (OiPr) 4 is dissolved in acid, evaporated to dryness, dissolved in acid, diluted with water, passed through a column filled with an anion exchange resin, separated from Zr, and then quantified by ICP-MS. Analysis was carried out.
As a result, Na 11 ppb, K 7 ppb, Mg 2 ppb, Ca 6 ppb, Al 40 ppb, Cr 1 ppb, Fe 30 ppb, Ni <2 ppb, Cu 1 ppb, Zn 11 ppb, U <5 ppb, Th <1 ppb, which is very high purity. It was recognized that

[比較例1]Zr(OnBu)4からのZr(OnBu)(dpm)3の合成
ZrCl4 + nBuOH + NH3 → Zr(OnBu)4 …(7)
式(7)により、合成したZr(OnBu)4を250℃のオイルバス中で加熱し、0.3Torrでの高真空で単蒸留により精製した。
次いで、式(1)の反応を、トルエン溶媒中、120℃で8時間行い、Zr(OnBu)(dpm)3を合成した。
トルエンや未反応物、副生物を減圧留去後、釜残を210℃のオイルバス中で加熱し、0.2Torrでの高真空で単蒸留し、粘ちょうな液体を得た。室温で直ちに固化した。
単蒸留したZr(OnBu)(dpm)3について、実施例1と同様に、TG−DTA測定および不純物定量分析を行った。
Comparative Example 1 Synthesis of Zr (OnBu) (dpm) 3 from Zr (OnBu) 4
ZrCl 4 + nBuOH + NH 3 → Zr (OnBu) 4 (7)
According to the formula (7), the synthesized Zr (OnBu) 4 was heated in an oil bath at 250 ° C. and purified by simple distillation at a high vacuum of 0.3 Torr.
Subsequently, reaction of Formula (1) was performed at 120 degreeC in the toluene solvent for 8 hours, and Zr (OnBu) (dpm) 3 was synthesize | combined.
Toluene, unreacted substances and by-products were distilled off under reduced pressure, and the residue was heated in an oil bath at 210 ° C. and simply distilled in a high vacuum at 0.2 Torr to obtain a viscous liquid. Solidified immediately at room temperature.
The simple distilled Zr (OnBu) (dpm) 3 was subjected to TG-DTA measurement and impurity quantitative analysis in the same manner as in Example 1.

図3に、TG−DTA測定結果を示す。約83℃に、Zr(OnBu)(dpm)3の融点と思われる吸熱ピークが認められた。
また、単蒸留で得たZr(OnBu)4の不純物分析の結果は、Na 300ppb,K 100ppb,Mg 170ppb,Ca 300ppb,Al 4,000ppb,Cr 40ppb,Fe 3,000ppb,Ni 200ppb,Cu 100ppb,Zn 1,000ppbであり、高純度と言えるものではなかった。
FIG. 3 shows the TG-DTA measurement results. At about 83 ° C., an endothermic peak considered to be the melting point of Zr (OnBu) (dpm) 3 was observed.
The results of impurity analysis of Zr (OnBu) 4 obtained by simple distillation are as follows: Na 300 ppb, K 100 ppb, Mg 170 ppb, Ca 300 ppb, Al 4,000 ppb, Cr 40 ppb, Fe 3,000 ppb, Ni 200 ppb, Cu 100 ppb, Zn was 1,000 ppb, which was not high purity.

[比較例2]Zr(OtBu)(dpm)3とAcOnBu溶媒からのZr(OnBu)(dpm)3溶液の合成
特開2002−30025号公報記載の製法で得られたZr(OtBu)(dpm)3を用いて、実施例1と同様な操作を行い、AcOnBu溶液を作製した。
5時間後、3日後の溶液のサンプルを採取し、溶媒を留去回収し、ガスクロマトグラフにより、生成したAcOtBuとAcOnBuとの比率を測定した。
その結果エステル交換率は、5時間後0.15%、3日後1.3%であり、Zr(OnBu)(dpm)3へはほとんど変換していないことが認められた。
[Comparative Example 2] Synthesis of Zr (OnBu) (dpm) 3 solution from Zr (OtBu) (dpm) 3 and AcOnBu solvent Zr (OtBu) (dpm) obtained by the method described in JP-A-2002-30025 The same operation as in Example 1 was performed using 3 to prepare an AcOnBu solution.
After 5 hours, a sample of the solution after 3 days was collected, the solvent was distilled off and collected, and the ratio of the generated AcOtBu and AcOnBu was measured by gas chromatography.
As a result, the transesterification rate was 0.15% after 5 hours and 1.3% after 3 days, and it was confirmed that almost no conversion was made to Zr (OnBu) (dpm) 3 .

[実施例2]Ti(OiPr)2(dpm)2のAcOnBu溶液およびPb(dpm)2のAcOnBu溶液の経時変化の有無並びにPZT膜の形成
PZT膜用のZr以外の元素成分のAcOnBuを溶媒とした場合の原料溶液について、その原体の経時変化の有無を調べた。
0.2モル/Lの各溶液の調液3ヶ月後のサンプルについて、実施例1と同様の操作を行い、ガスクロマトグラフとTG−DTAにより、原体の変質を測定することにより行った。
[Example 2] Presence / absence of time-dependent change of TiOnOPr 2 (dpm) 2 AcOnBu solution and Pb (dpm) 2 AcOnBu solution and formation of PZT film AcOnBu, which is an element component other than Zr for PZT film, was used as a solvent. The raw material solution was examined for the presence or absence of change over time of the raw material.
About the sample 3 months after preparation of each 0.2 mol / L solution, the same operation as Example 1 was performed, and it performed by measuring the quality change of a raw material with a gas chromatograph and TG-DTA.

その結果、Ti(OiPr)2(dpm)2のAcOnBu溶液でのTi(OnBu)2(dpm)2へのエステル交換率は、わずか1.9%であり、ほとんどエステル交換反応は起きていなかった。これは、立体障害のためと推測される。
釜残のTG−DTAによる融点は157℃であり、原体の159℃とは、誤差範囲であり、同じであると言える。この結果から、Tiは原体のまま、溶液中に存在することが確認された。
Consequently, Ti (OiPr) 2 (dpm ) Ti (OnBu) 2 (dpm) transesterification rate to 2 with 2 of AcOnBu solution is only 1.9%, did not occur most transesterification . This is presumed to be due to steric hindrance.
The melting point by TG-DTA of the residue is 157 ° C., and it can be said that the original 159 ° C. is an error range and is the same. From this result, it was confirmed that Ti was present in the solution as it was.

一方、Pb(dpm)2溶液の場合は、釜残のTG−DTAによる融点を示す鋭い吸熱ピークは125℃であり、原体の126℃とは、誤差範囲であり、同じであると言える。この結果から、Pb(dpm)2も変質していないことが確認された。 On the other hand, in the case of the Pb (dpm) 2 solution, the sharp endothermic peak indicating the melting point by the residual TG-DTA is 125 ° C., and the original 126 ° C. is an error range and can be said to be the same. From this result, it was confirmed that Pb (dpm) 2 was not altered.

次いで、本発明のZr(OnBu)(dpm)3のAcOnBu溶液と、Ti(OiPr)2(dpm)2のAcOnBu溶液およびPb(dpm)2のAcOnBu溶液を用いて、気化器直前で混合して気化させ、CVDによりPZT成膜を行ったところ、安定して成膜することができた。 Next, using the Zr (OnBu) (dpm) 3 AcOnBu solution of the present invention, Ti (OiPr) 2 (dpm) 2 AcOnBu solution and Pb (dpm) 2 AcOnBu solution, they are mixed immediately before the vaporizer. After vaporizing and performing PZT film formation by CVD, film formation was stable.

実施例1におけるZr(OiPr)(dpm)3のAcOnBu溶液(調液1ヶ月後)から、溶媒を減圧留去した後の釜残のAr1atmでのTG−DTAによる測定結果を示す図である。It is a figure which shows the measurement result by TG-DTA in Ar1atm of the kettle residue after depressurizingly distilling a solvent from the AcOnBu solution of Zr (OiPr) (dpm) 3 in Example 1 (1 month after liquid preparation). 実施例1におけるZr(OiPr)(dpm)3のAcOnBu溶液(調液1ヶ月後)から、溶媒を減圧留去した後の釜残のAr0.4TorrでのTG−DTAによる測定結果を示す図である。The figure which shows the measurement result by TG-DTA in Ar0.4Torr of the kettle residue after depressurizingly distilling a solvent from the AcOnBu solution of Zr (OiPr) (dpm) 3 in Example 1 (1 month after preparation). is there. 比較例1におけるZr(OnBu)(dpm)3のAr1atmでのTG−DTAによる測定結果を示す図である。It is a figure which shows the measurement result by TG-DTA in Ar1atm of Zr (OnBu) (dpm) 3 in the comparative example 1. 実施例1における原体のZr(OiPr)(dpm)3のAr1atmでのTG−DTAによる測定結果を示す図である。FIG. 3 is a diagram showing a measurement result by TG-DTA at Ar1atm of the original Zr (OiPr) (dpm) 3 in Example 1.

Claims (4)

溶液気化供給の化学気相成長法によりPZT膜を形成するために用いられる(ノルマルアルコキシ)トリス(ジピバロイルメタナト)ジルコニウムの原料溶液の製造方法において、
酢酸ノルマルアルキル(ノルマルアルキル基の炭素数は、2,3,4のうちのいずれか)に、(イソプロポキシ)トリス(ジピバロイルメタナト)ジルコニウムを溶解することを特徴とする化学気相成長法によるPZT成膜用の原料溶液の製造方法。
In the method for producing a raw material solution of (normal alkoxy) tris (dipivaloylmethanato) zirconium used to form a PZT film by chemical vapor deposition with solution vaporization supply,
Chemical vapor deposition characterized by dissolving (isopropoxy) tris (dipivaloylmethanato) zirconium in normal alkyl acetate (normal alkyl group has any of 2, 3 and 4 carbon atoms) A method for producing a raw material solution for PZT film formation by the method.
前記酢酸ノルマルアルキルには、酢酸ノルマルブチル(ノルマルアルキル基の炭素数が4)を用い、前記原料溶液が(ノルマルブトキシ)トリス(ジピバロイルメタナト)ジルコニウムの酢酸ノルマルブチル溶液であることを特徴とする請求項1記載の化学気相成長法によるPZT成膜用の原料溶液の製造方法。   As the normal alkyl acetate, normal butyl acetate (normal alkyl group having 4 carbon atoms) is used, and the raw material solution is a normal butyl acetate solution of (normal butoxy) tris (dipivaloylmethanato) zirconium. A method for producing a raw material solution for PZT film formation by chemical vapor deposition according to claim 1. 酢酸ノルマルブチルに、(イソプロポキシ)トリス(ジピバロイルメタナト)ジルコニウムを溶解して5時間以上経て、(ノルマルブトキシ)トリス(ジピバロイルメタナト)ジルコニウムの酢酸ノルマルブチル溶液を得ることを特徴とする請求項2記載の化学気相成長法によるPZT成膜用の原料溶液の製造方法。   It is characterized by dissolving (isopropoxy) tris (dipivaloylmethanato) zirconium in normal butyl acetate and obtaining a normal butyl acetate solution of (normalbutoxy) tris (dipivaloylmethanato) zirconium after 5 hours or more. A method for producing a raw material solution for PZT film formation by chemical vapor deposition according to claim 2. 請求項1から請求項3までのいずれかに記載された製造方法により製造された化学気相成長法によるPZT成膜用の原料溶液を用いることを特徴とするPZT膜の形成方法。   A method for forming a PZT film, comprising using a raw material solution for PZT film formation by a chemical vapor deposition method manufactured by the manufacturing method according to any one of claims 1 to 3.
JP2005027404A 2005-02-03 2005-02-03 Method for producing raw material solution for forming pzt film by chemical vapor deposition method and pzt film-forming method Pending JP2006213631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027404A JP2006213631A (en) 2005-02-03 2005-02-03 Method for producing raw material solution for forming pzt film by chemical vapor deposition method and pzt film-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027404A JP2006213631A (en) 2005-02-03 2005-02-03 Method for producing raw material solution for forming pzt film by chemical vapor deposition method and pzt film-forming method

Publications (1)

Publication Number Publication Date
JP2006213631A true JP2006213631A (en) 2006-08-17

Family

ID=36977160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027404A Pending JP2006213631A (en) 2005-02-03 2005-02-03 Method for producing raw material solution for forming pzt film by chemical vapor deposition method and pzt film-forming method

Country Status (1)

Country Link
JP (1) JP2006213631A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065277A (en) * 2013-09-25 2015-04-09 株式会社アルバック Method for manufacturing pzt thin film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151782A (en) * 1999-11-19 2001-06-05 Kojundo Chem Lab Co Ltd Zirconium alkoxytris(beta-diketonate), method for its production and liquid composition for forming pzt film
JP2002275121A (en) * 2000-04-21 2002-09-25 Mitsubishi Materials Corp Organic zirconium compound, organic solution containing the same and zirconium-containing thin film prepared by using the same
JP2003213417A (en) * 2002-01-21 2003-07-30 Kojundo Chem Lab Co Ltd Method of producing pzt thin film by chemical vapor deposition method
JP2004010493A (en) * 2002-06-03 2004-01-15 Mitsubishi Materials Corp Zirconium chelate complex and method for synthesizing the same and solution raw material containing the complex
JP2004059562A (en) * 2002-07-29 2004-02-26 Kojundo Chem Lab Co Ltd Titanium complex for chemical gas phase growth and method for producing pzt thin film by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001151782A (en) * 1999-11-19 2001-06-05 Kojundo Chem Lab Co Ltd Zirconium alkoxytris(beta-diketonate), method for its production and liquid composition for forming pzt film
JP2002275121A (en) * 2000-04-21 2002-09-25 Mitsubishi Materials Corp Organic zirconium compound, organic solution containing the same and zirconium-containing thin film prepared by using the same
JP2003213417A (en) * 2002-01-21 2003-07-30 Kojundo Chem Lab Co Ltd Method of producing pzt thin film by chemical vapor deposition method
JP2004010493A (en) * 2002-06-03 2004-01-15 Mitsubishi Materials Corp Zirconium chelate complex and method for synthesizing the same and solution raw material containing the complex
JP2004059562A (en) * 2002-07-29 2004-02-26 Kojundo Chem Lab Co Ltd Titanium complex for chemical gas phase growth and method for producing pzt thin film by using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015065277A (en) * 2013-09-25 2015-04-09 株式会社アルバック Method for manufacturing pzt thin film

Similar Documents

Publication Publication Date Title
JP5857970B2 (en) (Amidoaminoalkane) metal compound and method for producing metal-containing thin film using the metal compound
US6593484B2 (en) Tantalum tertiary amylimido tris (dimethylamide), a process for producing the same, a solution of starting material for mocvd using the same, and a method of forming a tantalum nitride film using the same
JP5180040B2 (en) Metal complexes of tridentate beta ketoiminates
US7635441B2 (en) Raw material for forming a strontium-containing thin film and process for preparing the raw material
US20070248754A1 (en) Metal Complexes of Polydentate Beta-Ketoiminates
TWI532869B (en) Raw materials for chemical vapor deposition comprising ruthenium complex, production method thereof and chemical vapor deposition method
TW200528574A (en) Metal compound, material for forming thin film and method for preparing thin film
EP3384065B1 (en) Process for the generation of metallic films
JP2010111672A (en) Group 2 metal precursor for depositing group 2 metal oxide film
JP5260148B2 (en) Method for forming strontium-containing thin film
JP5892668B1 (en) Chemical vapor deposition material comprising organic ruthenium compound and chemical vapor deposition method using the chemical vapor deposition material
JP2014028859A (en) Volatile imidazoles and group 2 imidazole based metal precursors
US10570514B2 (en) Process for the generation of metallic films
JPH06298714A (en) Novel organometallic complex and its ligand
JP5776555B2 (en) Metal alkoxide compound and method for producing metal-containing thin film using the compound
DelaRosa et al. Structural investigations of copper (II) complexes containing fluorine-substituted β-diketonate ligands
JP2006213631A (en) Method for producing raw material solution for forming pzt film by chemical vapor deposition method and pzt film-forming method
JP2002275121A (en) Organic zirconium compound, organic solution containing the same and zirconium-containing thin film prepared by using the same
Gordon et al. Synthesis and characterization of ruthenium amidinate complexes as precursors for vapor deposition
JP5919882B2 (en) Cobalt compound mixture and method for producing cobalt-containing thin film using the cobalt compound mixture
Zharkova et al. X-ray diffraction study of volatile complexes of dimethylgold (III) derived from symmetrical β-diketones
JP5030127B2 (en) Raw material solution for PZT film formation by chemical vapor deposition and method for forming PZT film
JP4859098B2 (en) Niobium tetraalkoxydiisobutyrylmethanate and raw material solution for forming Pb (Zr, Ti, Nb) O3 film using the same
JP4767158B2 (en) Method for producing bis (pentamethylcyclopentadienyl) strontium
JP4904032B2 (en) Process for producing purified borazine compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Effective date: 20101118

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20101203

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20110331

Free format text: JAPANESE INTERMEDIATE CODE: A02