JP5776555B2 - Metal alkoxide compound and method for producing metal-containing thin film using the compound - Google Patents
Metal alkoxide compound and method for producing metal-containing thin film using the compound Download PDFInfo
- Publication number
- JP5776555B2 JP5776555B2 JP2011549020A JP2011549020A JP5776555B2 JP 5776555 B2 JP5776555 B2 JP 5776555B2 JP 2011549020 A JP2011549020 A JP 2011549020A JP 2011549020 A JP2011549020 A JP 2011549020A JP 5776555 B2 JP5776555 B2 JP 5776555B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- zirconium
- alkoxide compound
- compound
- metal alkoxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 85
- 239000002184 metal Substances 0.000 title claims description 85
- -1 alkoxide compound Chemical class 0.000 title claims description 72
- 239000010409 thin film Substances 0.000 title claims description 36
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 150000001875 compounds Chemical class 0.000 title description 19
- 229910052726 zirconium Inorganic materials 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 27
- 238000005229 chemical vapour deposition Methods 0.000 claims description 24
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 18
- 239000010936 titanium Chemical group 0.000 claims description 16
- 229910052735 hafnium Chemical group 0.000 claims description 15
- 229910052719 titanium Chemical group 0.000 claims description 15
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 11
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical group [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 claims description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 10
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 239000011261 inert gas Substances 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 claims description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 claims description 3
- 150000002170 ethers Chemical class 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 claims 3
- 230000015572 biosynthetic process Effects 0.000 description 28
- 238000003786 synthesis reaction Methods 0.000 description 26
- 238000006243 chemical reaction Methods 0.000 description 25
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 239000007788 liquid Substances 0.000 description 18
- 150000003755 zirconium compounds Chemical class 0.000 description 18
- 238000000231 atomic layer deposition Methods 0.000 description 16
- XQHYKWIBWHTMDR-UHFFFAOYSA-N CC(C)C(C(C)C)O[Zr](OC(C(C)C)C(C)C)(OC(C(C)C)C(C)C)OC(C(C)C)C(C)C Chemical compound CC(C)C(C(C)C)O[Zr](OC(C(C)C)C(C)C)(OC(C(C)C)C(C)C)OC(C(C)C)C(C)C XQHYKWIBWHTMDR-UHFFFAOYSA-N 0.000 description 15
- 239000012300 argon atmosphere Substances 0.000 description 15
- 239000012141 concentrate Substances 0.000 description 13
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 13
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 12
- 239000000758 substrate Substances 0.000 description 12
- BAYAKMPRFGNNFW-UHFFFAOYSA-N 2,4-dimethylpentan-3-ol Chemical compound CC(C)C(O)C(C)C BAYAKMPRFGNNFW-UHFFFAOYSA-N 0.000 description 11
- 238000000151 deposition Methods 0.000 description 11
- 150000002736 metal compounds Chemical class 0.000 description 11
- 238000005160 1H NMR spectroscopy Methods 0.000 description 9
- 238000011084 recovery Methods 0.000 description 9
- 239000000706 filtrate Substances 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 8
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 150000002363 hafnium compounds Chemical class 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- WGYOOFMUKPWKON-UHFFFAOYSA-N CC(C)C(C(C)C)O[Hf](OC(C(C)C)C(C)C)(OC(C(C)C)C(C)C)OC(C(C)C)C(C)C Chemical compound CC(C)C(C(C)C)O[Hf](OC(C(C)C)C(C)C)(OC(C(C)C)C(C)C)OC(C(C)C)C(C)C WGYOOFMUKPWKON-UHFFFAOYSA-N 0.000 description 5
- RSOIFZVYRBMAEA-UHFFFAOYSA-N CC(C)C(C(C)C)O[Ti](OC(C(C)C)C(C)C)(OC(C(C)C)C(C)C)OC(C(C)C)C(C)C Chemical compound CC(C)C(C(C)C)O[Ti](OC(C(C)C)C(C)C)(OC(C(C)C)C(C)C)OC(C(C)C)C(C)C RSOIFZVYRBMAEA-UHFFFAOYSA-N 0.000 description 5
- 238000000921 elemental analysis Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 230000008016 vaporization Effects 0.000 description 5
- 239000006200 vaporizer Substances 0.000 description 5
- BGGIUGXMWNKMCP-UHFFFAOYSA-N 2-methylpropan-2-olate;zirconium(4+) Chemical compound CC(C)(C)O[Zr](OC(C)(C)C)(OC(C)(C)C)OC(C)(C)C BGGIUGXMWNKMCP-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- KQWGKQNSYGNBSJ-UHFFFAOYSA-N CC(C)C(CC)O[Zr](OC(C(C)C)CC)(OC(C(C)C)CC)OC(C(C)C)CC Chemical compound CC(C)C(CC)O[Zr](OC(C(C)C)CC)(OC(C(C)C)CC)OC(C(C)C)CC KQWGKQNSYGNBSJ-UHFFFAOYSA-N 0.000 description 3
- QJWSESNDRVMRRN-UHFFFAOYSA-N CC(C)C(CCC)O[Zr](OC(C(C)C)CCC)(OC(C(C)C)CCC)OC(C(C)C)CCC Chemical compound CC(C)C(CCC)O[Zr](OC(C(C)C)CCC)(OC(C(C)C)CCC)OC(C(C)C)CCC QJWSESNDRVMRRN-UHFFFAOYSA-N 0.000 description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 3
- NIJDLRJGRCHJDB-UHFFFAOYSA-N propan-2-ol;propan-2-olate;zirconium(4+) Chemical compound [Zr+4].CC(C)O.CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] NIJDLRJGRCHJDB-UHFFFAOYSA-N 0.000 description 3
- YBRBMKDOPFTVDT-UHFFFAOYSA-N tert-butylamine Chemical compound CC(C)(C)N YBRBMKDOPFTVDT-UHFFFAOYSA-N 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000009834 vaporization Methods 0.000 description 2
- OERNJTNJEZOPIA-UHFFFAOYSA-N zirconium nitrate Chemical compound [Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O OERNJTNJEZOPIA-UHFFFAOYSA-N 0.000 description 2
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- DUJKCHHMRIHGIW-UHFFFAOYSA-N 1-methoxy-2-methylpropan-2-olate zirconium(4+) Chemical compound COCC(C)(C)O[Zr](OC(C)(C)COC)(OC(C)(C)COC)OC(C)(C)COC DUJKCHHMRIHGIW-UHFFFAOYSA-N 0.000 description 1
- ISTJMQSHILQAEC-UHFFFAOYSA-N 2-methyl-3-pentanol Chemical compound CCC(O)C(C)C ISTJMQSHILQAEC-UHFFFAOYSA-N 0.000 description 1
- RGRUUTLDBCWYBL-UHFFFAOYSA-N 2-methylhexan-3-ol Chemical compound CCCC(O)C(C)C RGRUUTLDBCWYBL-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- OPFJDXRVMFKJJO-ZHHKINOHSA-N N-{[3-(2-benzamido-4-methyl-1,3-thiazol-5-yl)-pyrazol-5-yl]carbonyl}-G-dR-G-dD-dD-dD-NH2 Chemical compound S1C(C=2NN=C(C=2)C(=O)NCC(=O)N[C@H](CCCN=C(N)N)C(=O)NCC(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(=O)N[C@H](CC(O)=O)C(N)=O)=C(C)N=C1NC(=O)C1=CC=CC=C1 OPFJDXRVMFKJJO-ZHHKINOHSA-N 0.000 description 1
- QJWWEAMHTHINQX-UHFFFAOYSA-N [Zr+4].CN(C)C([O-])C.CN(C)C([O-])C.CN(C)C([O-])C.CN(C)C([O-])C Chemical compound [Zr+4].CN(C)C([O-])C.CN(C)C([O-])C.CN(C)C([O-])C.CN(C)C([O-])C QJWWEAMHTHINQX-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229940125810 compound 20 Drugs 0.000 description 1
- 229940126086 compound 21 Drugs 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- SRLSISLWUNZOOB-UHFFFAOYSA-N ethyl(methyl)azanide;zirconium(4+) Chemical compound [Zr+4].CC[N-]C.CC[N-]C.CC[N-]C.CC[N-]C SRLSISLWUNZOOB-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- JAXFJECJQZDFJS-XHEPKHHKSA-N gtpl8555 Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)N[C@H](B1O[C@@]2(C)[C@H]3C[C@H](C3(C)C)C[C@H]2O1)CCC1=CC=C(F)C=C1 JAXFJECJQZDFJS-XHEPKHHKSA-N 0.000 description 1
- PDPJQWYGJJBYLF-UHFFFAOYSA-J hafnium tetrachloride Chemical compound Cl[Hf](Cl)(Cl)Cl PDPJQWYGJJBYLF-UHFFFAOYSA-J 0.000 description 1
- HRDRRWUDXWRQTB-UHFFFAOYSA-N hafnium(4+);propan-2-olate Chemical compound [Hf+4].CC(C)[O-].CC(C)[O-].CC(C)[O-].CC(C)[O-] HRDRRWUDXWRQTB-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N methyl monoether Natural products COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- BHRZNVHARXXAHW-UHFFFAOYSA-N sec-butylamine Chemical compound CCC(C)N BHRZNVHARXXAHW-UHFFFAOYSA-N 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical group [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/28—Titanium compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/02—Monohydroxylic acyclic alcohols
- C07C31/125—Monohydroxylic acyclic alcohols containing five to twenty-two carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/003—Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/18—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/40—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02181—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02186—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing titanium, e.g. TiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02189—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing zirconium, e.g. ZrO2
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B99/00—Subject matter not provided for in other groups of this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Chemical Vapour Deposition (AREA)
Description
本発明は、ジルコニウム、ハフニウム又はチタニウム含有薄膜を形成させる際に使用可能なジルコニウムアルコキシド化合物、ハフニウムアルコキシド化合物又はチタニウムアルコキシド化合物に関する。本発明は、又、ジルコニウムアルコキシド化合物、ハフニウムアルコキシド化合物又はチタニウムアルコキシド化合物を用いて、化学気相蒸着法(Chemical Vapor Deposition法;以下、CVD法と称する)及び原子層蒸着法(Atomic Layer Deposition法;以下、ALD法と称する)により金属含有薄膜を製造する方法に関する。 The present invention relates to a zirconium alkoxide compound, a hafnium alkoxide compound or a titanium alkoxide compound that can be used in forming a zirconium-, hafnium- or titanium-containing thin film. The present invention also provides a chemical vapor deposition method (hereinafter referred to as a CVD method) and an atomic layer deposition method (atomic layer deposition method) using a zirconium alkoxide compound, a hafnium alkoxide compound or a titanium alkoxide compound; Hereinafter, the present invention relates to a method for producing a metal-containing thin film by the ALD method.
近年、DRAMに代表される半導体メモリー及びデバイスの微細化に伴って、高誘電体材料であるジルコニウム、ハフニウム又はチタニウム含有薄膜はキャパシタの分野で注目されている。また、強誘電体キャパシタ、絶縁膜などの電子材料の用途で活発に研究開発が行われている。 In recent years, with the miniaturization of semiconductor memories and devices typified by DRAMs, zirconium, hafnium or titanium-containing thin films, which are high dielectric materials, have attracted attention in the field of capacitors. In addition, active research and development is being conducted for applications of electronic materials such as ferroelectric capacitors and insulating films.
ジルコニウム、ハフニウム又はチタニウム含有薄膜の製造方法としては、例えば、スパッタ法やゾルゲル法が報告されている。しかし、優れた薄膜の均一性や組成制御、その量産性から、CVD法又はALD法での製造が現在の主流になっていると言える。 As a method for producing a zirconium, hafnium, or titanium-containing thin film, for example, a sputtering method or a sol-gel method has been reported. However, it can be said that the production by the CVD method or the ALD method has become the current mainstream because of excellent uniformity of thin film, composition control, and mass production.
従来、ジルコニウム化合物としては、例えば、ジルコニウムテトラクロリド(例えば、非特許文献1参照)、ジルコニウムナイトレート(例えば、非特許文献2参照)等の無機ジルコニウム化合物;テトラキス(t−ブトキシド)ジルコニウム(例えば、非特許文献3参照)、テトラキス(1−メトキシ−2−メチル−2−プロポキシ)ジルコニウム(例えば、非特許文献4参照)、テトラキス(ジメチルアミノエトキシド)ジルコニウム(例えば、非特許文献5参照)、テトラキス(2−メチル−3−ブテン−2−オキシド)ジルコニウム(例えば、特許文献1参照)等のジルコニウムアルコキシド化合物;テトラキス(エチルメチルアミノ)ジルコニウム(例えば、非特許文献6参照)等のジルコニウムアミド化合物;テトラキス(ジピバロイルメタナト)ジルコニウム(例えば、非特許文献7参照)等のβ−ジケトナトジルコニウム化合物;ビス(メチルシクロペンタジエニル)メチルメトキシドジルコニウム(例えば、非特許文献8及び特許文献2参照)等のジルコニウムシクロペンタジエニル化合物が開示されている。更に、ジルコニウムジイソプロポキシビステトラメチルヘプタンジオネート等も知られている(例えば、特許文献3参照)。 Conventionally, examples of the zirconium compound include inorganic zirconium compounds such as zirconium tetrachloride (for example, see Non-Patent Document 1) and zirconium nitrate (for example, see Non-Patent Document 2); tetrakis (t-butoxide) zirconium (for example, Non-patent document 3), tetrakis (1-methoxy-2-methyl-2-propoxy) zirconium (for example, refer to non-patent document 4), tetrakis (dimethylaminoethoxide) zirconium (for example, refer to non-patent document 5), Zirconium alkoxide compounds such as tetrakis (2-methyl-3-butene-2-oxide) zirconium (for example, see Patent Document 1); Zirconium amide compounds such as tetrakis (ethylmethylamino) zirconium (for example, see Non-Patent Document 6) ; Tetrakis (zipi Roylmethanato) β-diketonatozirconium compounds such as zirconium (for example, see Non-Patent Document 7); zirconium cyclones such as bis (methylcyclopentadienyl) methylmethoxide zirconium (for example, Non-Patent Document 8 and Patent Document 2) Pentadienyl compounds are disclosed. Furthermore, zirconium diisopropoxybistetramethylheptanedionate is known (for example, see Patent Document 3).
又、ハフニウム化合物としては、例えば、ビス(メチルシクロペンタジエニル)ハフニウムジメチルが知られている(例えば、特許文献4参照)。更に、ハフニウム化合物及びチタニウム化合物として、アルコキシアルキルメチル基を有するβ−ジケトナトとアルコキシを配位子とするハフニウム錯体及びチタニウム錯体が知られている(例えば、特許文献5参照)。 As a hafnium compound, for example, bis (methylcyclopentadienyl) hafnium dimethyl is known (see, for example, Patent Document 4). Furthermore, as a hafnium compound and a titanium compound, a hafnium complex and a titanium complex having a β-diketonate having an alkoxyalkylmethyl group and an alkoxy as a ligand are known (see, for example, Patent Document 5).
一般的にCVD法やALD法に使用される金属化合物は、高い蒸気圧を有し、低融点であること(室温で液状又はガス状であることがより望ましい)が、その物性として要求されている。 Generally, a metal compound used in a CVD method or an ALD method has a high vapor pressure and a low melting point (preferably liquid or gaseous at room temperature) as its physical properties. Yes.
仮に、低蒸気圧の金属化合物を使用した場合には、化合物を充填する容器、搬送する配管等を高温に保温することが必要となり、高エネルギーを費やすと共に、装置全体が高温仕様となることから高額化してしまうという問題が生じる。 If a low vapor pressure metal compound is used, it is necessary to keep the container filled with the compound, the piping to be transported, etc. at a high temperature, which consumes high energy and the entire device becomes a high temperature specification. There is a problem that it will be expensive.
一方、高融点の金属化合物を使用した場合には、通常、金属化合物の供給が不安定となり、目的とする金属含有膜の安定製造は困難となる。又、配管等の保温が不完全となると配管内閉塞をもたらし、メンテナンスに膨大な時間を費やすという問題が生じる。 On the other hand, when a metal compound having a high melting point is used, the supply of the metal compound usually becomes unstable, making it difficult to stably produce the target metal-containing film. Moreover, if the heat insulation of the piping or the like is incomplete, the piping is blocked, and there is a problem that a huge amount of time is spent for maintenance.
以上の観点から、現在までに報告されている金属化合物について考えてみると、無機金属化合物やβ−ジケトナト金属化合物は、いずれも低蒸気圧であるとともに高融点であるため、上記問題点を解決するに至っていなかった。 From the above viewpoints, considering the metal compounds reported to date, the inorganic metal compound and the β-diketonato metal compound both have a low vapor pressure and a high melting point. I did not come to do.
これに対して、金属アルコキシド化合物や金属アミド化合物では、高い蒸気圧を有する金属化合物もいくつか開示されているが、4配位を超える多座配位化や多量化することによって、高沸点化や高融点化するものもある。 On the other hand, metal alkoxide compounds and metal amide compounds have also disclosed several metal compounds having a high vapor pressure. However, a higher boiling point can be obtained by multidentate coordination or multimerization exceeding four coordinations. Some have higher melting points.
これらの金属化合物の中でも単量化を達成している化合物、即ち、高い蒸気圧および低融点を有する金属化合物が見出されている。しかしながら、これらの金属化合物は、熱安定性がいずれも低く、その合成時や金属薄膜の製造時に分解してしまうという問題、更には分解することで炭素が不純物として混入してしまう等の問題が生じていた。 Among these metal compounds, compounds that have achieved monomerization, that is, metal compounds having a high vapor pressure and a low melting point have been found. However, these metal compounds are both low in thermal stability and have a problem that they are decomposed during the synthesis or production of the metal thin film, and further, there are problems such as carbon being mixed as an impurity by decomposition. It was happening.
即ち、本発明の課題は、上記問題点を解決し、低融点、高蒸気圧を有し、熱に対しての安定性に優れるとともに、CVD法及びALD法による金属含有薄膜の製造に適した金属アルコキシド化合物を提供することにある。本発明の課題は、又、当該金属アルコキシド化合物を用いた金属含有薄膜の製造法を提供するものでもある。 That is, the object of the present invention is to solve the above problems, have a low melting point, a high vapor pressure, excellent heat stability, and suitable for the production of metal-containing thin films by CVD and ALD methods. The object is to provide a metal alkoxide compound. The subject of this invention is also providing the manufacturing method of the metal containing thin film using the said metal alkoxide compound.
本発明は以下の事項に関する。 The present invention relates to the following matters.
1. 一般式(1) 1. General formula (1)
(式中、Mはジルコニウム、ハフニウム又はチタニウムを示し、4つのRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数2〜6の直鎖又は分枝状のアルキル基を示す。)、
で示される金属アルコキシド化合物。(In the formula, M represents zirconium, hafnium or titanium, and four Rs may be the same or different, and each independently represents a linear or branched alkyl group having 2 to 6 carbon atoms. ),
A metal alkoxide compound represented by:
2. 上記1記載の金属アルコキシド化合物を用いた金属含有薄膜の製造法。 2. A method for producing a metal-containing thin film using the metal alkoxide compound according to 1 above.
3. 上記1記載の金属アルコキシド化合物又は上記1記載の金属アルコキシド化合物の溶液を金属供給源として用いた化学気相蒸着法による金属含有薄膜の製造法。 3. A method for producing a metal-containing thin film by chemical vapor deposition using the metal alkoxide compound according to 1 or a solution of the metal alkoxide compound according to 1 as a metal supply source.
4. 上記1記載の金属アルコキシド化合物又は上記1記載の金属アルコキシド化合物の溶液と、酸素源とを用いた化学気相蒸着法による金属含有薄膜の製造法。 4). A method for producing a metal-containing thin film by chemical vapor deposition using the metal alkoxide compound according to 1 or a solution of the metal alkoxide compound according to 1 and an oxygen source.
5. 上記1記載の金属アルコキシド化合物又は上記1記載の金属アルコキシド化合物の溶液と、窒素源とを用いた化学気相蒸着法による金属含有薄膜の製造法。 5. A method for producing a metal-containing thin film by chemical vapor deposition using the metal alkoxide compound according to 1 or a solution of the metal alkoxide compound according to 1 and a nitrogen source.
6. 上記1記載の金属アルコキシド化合物又は上記1記載の金属アルコキシド化合物の溶液と、不活性ガスとを用いた化学気相蒸着法による金属含有薄膜の製造法。 6). A method for producing a metal-containing thin film by chemical vapor deposition using the metal alkoxide compound according to 1 or a solution of the metal alkoxide compound according to 1 and an inert gas.
7. 前記金属アルコキシド化合物の溶液の溶媒が、脂肪族炭化水素類、芳香族炭化水素類及びエーテル類からなる群より選ばれる少なくとも1種である上記3乃至6記載の化学気相蒸着法による金属含有薄膜の製造法。 7). 7. The metal-containing thin film by chemical vapor deposition according to 3 to 6 above, wherein the solvent of the metal alkoxide compound solution is at least one selected from the group consisting of aliphatic hydrocarbons, aromatic hydrocarbons, and ethers. Manufacturing method.
本発明により、金属含有薄膜を形成させる際に有用な金属アルコキシド化合物を提供することが出来る。本発明の金属アルコキシド化合物は、低融点および高蒸気圧を有し、熱に対しての安定性にも優れており、特にCVD法またはALD法による金属含有薄膜の製造に適している。又、当該金属アルコキシド化合物を用いて、CVD法またはALD法により、良好な成膜特性で、金属含有薄膜を製造することが出来る。 According to the present invention, a metal alkoxide compound useful for forming a metal-containing thin film can be provided. The metal alkoxide compound of the present invention has a low melting point and a high vapor pressure, is excellent in heat stability, and is particularly suitable for the production of a metal-containing thin film by a CVD method or an ALD method. In addition, using the metal alkoxide compound, a metal-containing thin film can be produced with good film forming characteristics by a CVD method or an ALD method.
本発明の金属アルコキシド化合物は、前記の一般式(1)で示される。その一般式(1)において、Mはジルコニウム、ハフニウム又はチタニウムを示す。4つのRは、同一でも異なっていてもよく、それぞれ互いに独立に、炭素原子数2〜6、好ましくは2〜4、特に好ましくは2〜3の直鎖又は分枝状のアルキル基を示す。Rは、例えば、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、ペンチル基、ヘキシル基であり、好ましくはエチル基、n−プロピル基、イソプロピル基である。4つのRが同一である化合物は比較的容易に合成でき、その点では好ましい。 The metal alkoxide compound of the present invention is represented by the general formula (1). In the general formula (1), M represents zirconium, hafnium or titanium. Four R may be the same or different and each independently represents a linear or branched alkyl group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms, particularly preferably 2 to 3 carbon atoms. R is, for example, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a pentyl group, or a hexyl group, preferably an ethyl group, an n-propyl group, or an isopropyl group. is there. A compound in which four R's are the same can be synthesized relatively easily and is preferable in that respect.
本発明の金属アルコキシド化合物の具体例としては、例えば、式(2)から式(10)で示される化合物が挙げられる。なお、式(2)〜式(10)中、Mはジルコニウム、ハフニウム又はチタニウムを示す。 Specific examples of the metal alkoxide compound of the present invention include compounds represented by formulas (2) to (10). In the formulas (2) to (10), M represents zirconium, hafnium, or titanium.
本発明の金属アルコキシド化合物は、公知の方法を参考にして、アルコキシ交換反応により製造することができる。 The metal alkoxide compound of the present invention can be produced by an alkoxy exchange reaction with reference to a known method.
CVD法及びALD法においては、金属含有薄膜形成のために金属アルコキシド化合物を気化させる必要があるが、本発明の金属アルコキシド化合物を気化させる方法としては、例えば、金属アルコキシド化合物自体を気化室に充填又は搬送して気化させる方法だけでなく、金属アルコキシド化合物を適当な溶媒(例えば、ヘキサン、メチルシクロヘキサン、エチルシクロヘキサン、オクタン等の脂肪族炭化水素類;トルエン等の芳香族炭化水素類;テトラヒドロフラン、ジブチルエーテル等のエーテル類等が挙げられる。)に希釈した溶液を液体搬送用ポンプで気化室に導入して気化させる方法(溶液法)も使用出来る。 In the CVD method and the ALD method, it is necessary to vaporize the metal alkoxide compound in order to form the metal-containing thin film. As a method for vaporizing the metal alkoxide compound of the present invention, for example, the metal alkoxide compound itself is filled in the vaporization chamber. Alternatively, not only a method of transporting and vaporizing but also a metal alkoxide compound in an appropriate solvent (for example, aliphatic hydrocarbons such as hexane, methylcyclohexane, ethylcyclohexane, and octane; aromatic hydrocarbons such as toluene; (Ethers such as butyl ether can be used.) A method (solution method) in which a solution diluted in) is introduced into a vaporization chamber with a liquid transfer pump and vaporized can be used.
成膜対象物上への金属含有膜の蒸着方法としては、公知のCVD法及びALD法で行うことが出来、例えば、常圧又は減圧下にて、金属アルコキシド化合物を酸素源(例えば、酸素ガス、オゾンガス等)、あるいは、窒素源(例えば、アンモニアガス、窒素ガス等)と同時、もしくは交互に加熱した基板上に送り込んで金属含有膜を蒸着させる方法が使用出来る。又、不活性なガス(例えば、アルゴンガス、ヘリウムガス)とともに加熱した基板上に送り込んで金属含有薄膜を蒸着させる方法も使用できる。又、プラズマCVD法で金属含有膜を蒸着させる方法も使用出来る。 As a method for depositing a metal-containing film on an object to be formed, a known CVD method and ALD method can be used. For example, a metal alkoxide compound is converted into an oxygen source (for example, oxygen gas) under normal pressure or reduced pressure. , Ozone gas, etc.), or a nitrogen source (for example, ammonia gas, nitrogen gas, etc.) or a method of vapor-depositing a metal-containing film by feeding it onto a substrate heated alternately or alternately can be used. Alternatively, a method of depositing a metal-containing thin film by feeding it onto a substrate heated with an inert gas (for example, argon gas or helium gas) can be used. Moreover, the method of vapor-depositing a metal containing film | membrane by plasma CVD method can also be used.
酸素ガスを用いて金属含有薄膜を蒸着させる場合の全ガス量に対する酸素ガスの含有割合は、好ましくは0.1〜99容量%、更に好ましくは0.5〜95容量%である。 When the metal-containing thin film is deposited using oxygen gas, the content ratio of the oxygen gas to the total gas amount is preferably 0.1 to 99% by volume, more preferably 0.5 to 95% by volume.
本発明の金属アルコキシド化合物を用いて金属含有薄膜を蒸着させる場合、その蒸着条件としては、例えば、反応系内の圧力は、好ましくは1Pa〜200kPa、更に好ましくは10Pa〜110kPa、成膜対象物温度は、好ましくは150〜700℃、更に好ましくは200〜600℃、金属アルコキシド化合物を気化させる温度は、好ましくは20〜250℃、更に好ましくは40〜200℃である。 In the case of depositing a metal-containing thin film using the metal alkoxide compound of the present invention, as the deposition conditions, for example, the pressure in the reaction system is preferably 1 Pa to 200 kPa, more preferably 10 Pa to 110 kPa, and the film formation target temperature. Is preferably 150 to 700 ° C, more preferably 200 to 600 ° C, and the temperature for vaporizing the metal alkoxide compound is preferably 20 to 250 ° C, more preferably 40 to 200 ° C.
なお、本願発明の金属含有薄膜の製造法の好ましい態様としては以下の通りである。
(1)本願発明の金属アルコキシド化合物又は金属アルコキシド化合物の溶媒溶液と酸素源(特に、酸素ガス、オゾンガスが好ましい)とを用いてCVD法及びALD法により金属含有薄膜を製造する。
(2)本願発明の金属アルコキシド化合物又は金属アルコキシド化合物の溶媒溶液と窒素源(特に、アンモニアガス、窒素ガスが好ましい)とを用いてCVD法及びALD法により金属含有薄膜を製造する。
(3)本願発明の金属アルコキシド化合物又は金属アルコキシド化合物の溶媒溶液と不活性ガス(特に、アルゴンガス、ヘリウムガスが好ましい)とを用いてCVD法により金属含有薄膜を製造する。In addition, as a preferable aspect of the manufacturing method of the metal containing thin film of this invention, it is as follows.
(1) A metal-containing thin film is produced by a CVD method and an ALD method using a metal alkoxide compound of the present invention or a solvent solution of a metal alkoxide compound and an oxygen source (especially oxygen gas and ozone gas are preferred).
(2) A metal-containing thin film is produced by a CVD method and an ALD method using a metal alkoxide compound of the present invention or a solvent solution of a metal alkoxide compound and a nitrogen source (particularly, ammonia gas and nitrogen gas are preferred).
(3) A metal-containing thin film is produced by a CVD method using the metal alkoxide compound of the present invention or a solvent solution of the metal alkoxide compound and an inert gas (especially, argon gas or helium gas is preferable).
次に、実施例を挙げて本発明を具体的に説明するが、本発明の範囲はこれらに限定されるものではない。 Next, the present invention will be specifically described with reference to examples, but the scope of the present invention is not limited thereto.
実施例1(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ジルコニウム・イソプロパノール付加体5.11g(13.17mmol)及び2,4−ジメチル−3−ペンタノール10.12g(88.61mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(150℃、12Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム5.73gを得た(単離収率;79%)。Example 1 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4)))
In a 100-ml flask equipped with a stirrer and a thermometer, in an argon atmosphere, tetrakis (isopropoxy) zirconium-isopropanol adduct 5.11 g (13.17 mmol) and 2,4-dimethyl-3-pentanol 10 .12 g (88.61 mmol) was added, the liquid temperature was raised to 170 ° C., and the reaction was carried out at the same temperature for 30 minutes while distilling off the produced isopropanol. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the concentrate was distilled under reduced pressure (150 ° C., 12 Pa) to obtain 5.73 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid. (Isolated yield; 79%).
なお、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムは、以下の物性値で示される新規な化合物である。 Tetrakis (2,4-dimethyl-3-pentoxy) zirconium is a novel compound represented by the following physical property values.
1H−NMR(CDCl3,δ(ppm));0.90(48H,d)、1.70(8H,m)、3.30(4H,d)
元素分析:C28H60O4Zr
測定値 C:60.5%、H:11.1%、Zr:16.5%
理論値 C:60.9%、H:11.0%、Zr:16.5% 1 H-NMR (CDCl 3 , δ (ppm)); 0.90 (48H, d), 1.70 (8H, m), 3.30 (4H, d)
Elemental analysis: C 28 H 60 O 4 Zr
Measurement value C: 60.5%, H: 11.1%, Zr: 16.5%
Theoretical value C: 60.9%, H: 11.0%, Zr: 16.5%
実施例2(M=Zr,R=エチル基;テトラキス(2−メチル−3−ペントキシ)ジルコニウムの合成(式(2)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ジルコニウム・イソプロパノール付加体4.42g(11.41mmol)及び2−メチル−3−ペンタノール7.29g(71.36mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(140℃、17Pa)し、白色固体として、テトラキス(2−メチル−3−ペントキシ)ジルコニウム4.18gを得た(単離収率;74%)。Example 2 (M = Zr, R = ethyl group; synthesis of tetrakis (2-methyl-3-pentoxy) zirconium (zirconium compound of formula (2)))
In a 100 ml flask equipped with a stirrer and a thermometer, 4.42 g (11.41 mmol) of tetrakis (isopropoxy) zirconium isopropanol adduct and 7.29 g of 2-methyl-3-pentanol were added in an argon atmosphere. (71.36 mmol) was added, the liquid temperature was raised to 170 ° C., and the reaction was carried out at the same temperature for 30 minutes while distilling off the produced isopropanol. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the concentrate was distilled under reduced pressure (140 ° C., 17 Pa) to obtain 4.18 g of tetrakis (2-methyl-3-pentoxy) zirconium as a white solid (simple (Separation yield; 74%).
なお、テトラキス(2−メチル−3−ペントキシ)ジルコニウムは、以下の物性値で示される新規な化合物である。 Tetrakis (2-methyl-3-pentoxy) zirconium is a novel compound represented by the following physical property values.
1H−NMR(CDCl3,δ(ppm));0.92(36H,m)、1.50(8H,m)、1.66(4H,m)、3.29(4H,q)
元素分析:C24H52O4Zr
測定値 C:58.3%、H:10.4%、Zr:18.4%
理論値 C:58.1%、H:10.6%、Zr:18.4% 1 H-NMR (CDCl 3 , δ (ppm)); 0.92 (36H, m), 1.50 (8H, m), 1.66 (4H, m), 3.29 (4H, q)
Elemental analysis: C 24 H 52 O 4 Zr
Measurement C: 58.3%, H: 10.4%, Zr: 18.4%
Theoretical value C: 58.1%, H: 10.6%, Zr: 18.4%
実施例3(M=Zr,R=n−プロピル基;テトラキス(2−メチル−3−ヘキソキシ)ジルコニウムの合成(式(3)のジルコニウム化合物の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ジルコニウム・イソプロパノール付加体4.32g(11.15mmol)及び2−メチル−3−ヘキサノール9.17g(78.91mmol)を加え、液温を200℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(150℃、12Pa)し、低粘性の透明液体として、テトラキス(2−メチル−3−ヘキソキシ)ジルコニウム4.20gを得た(単離収率;68%)。Example 3 (M = Zr, R = n-propyl group; synthesis of tetrakis (2-methyl-3-hexoxy) zirconium (synthesis of zirconium compound of formula (3))
In a 100-ml flask equipped with a stirrer and a thermometer, in an argon atmosphere, tetrakis (isopropoxy) zirconium-isopropanol adduct 4.32 g (11.15 mmol) and 2-methyl-3-hexanol 9.17 g ( 78.91 mmol) was added, the liquid temperature was raised to 200 ° C., and the resulting isopropanol was distilled off, followed by reaction at the same temperature for 30 minutes. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and then the concentrate was distilled under reduced pressure (150 ° C., 12 Pa) to obtain 4.20 g of tetrakis (2-methyl-3-hexoxy) zirconium as a low-viscosity transparent liquid. (Isolation yield; 68%).
なお、テトラキス(2−メチル−3−ヘキソキシ)ジルコニウムは、以下の物性値で示される新規な化合物である。 Tetrakis (2-methyl-3-hexoxy) zirconium is a novel compound represented by the following physical property values.
1H−NMR(CDCl3,δ(ppm));0.68(36H,m)、1.35(12H,m)、1.57(8H,m)3.60(4H,q)
元素分析:C28H60O4Zr
測定値 C:60.7%、H:11.3%、Zr:16.5%
理論値 C:60.9%、H:11.0%、Zr:16.5% 1 H-NMR (CDCl 3 , δ (ppm)); 0.68 (36H, m), 1.35 (12H, m), 1.57 (8H, m) 3.60 (4H, q)
Elemental analysis: C 28 H 60 O 4 Zr
Measurement value C: 60.7%, H: 11.3%, Zr: 16.5%
Theoretical value C: 60.9%, H: 11.0%, Zr: 16.5%
実施例4〜6及び比較例1〜5(熱安定性の比較1)
実施例1〜3で得られた式(2)〜(4)の本発明のジルコニウム化合物と、比較として合成した式(11)〜(15)のジルコニウム化合物について、それぞれの熱安定性を確認するため、一度蒸留を行った各化合物について再度蒸留を行い、その回収率を確認した。その結果を表1に示す。なお、化合物の構造を下記式に示す。但し、式中、Mはジルコニウム(Zr)を示す。Examples 4-6 and Comparative Examples 1-5 (Comparison 1 of thermal stability)
The thermal stability of each of the zirconium compounds of the present invention of the formulas (2) to (4) obtained in Examples 1 to 3 and the zirconium compounds of the formulas (11) to (15) synthesized for comparison is confirmed. Therefore, each compound once distilled was distilled again to confirm the recovery rate. The results are shown in Table 1. The structure of the compound is shown in the following formula. However, in the formula, M represents zirconium (Zr).
式(11)〜(15)のジルコニウム化合物(比較例1〜5)は再蒸留では熱分解して回収できなかったのに対して、本発明のジルコニウムアルコキシド化合物(式(2)〜(4)のジルコニウム化合物)は再蒸留回収率が97〜99%であり、熱安定性に優れていることが分かる。更に、本発明のジルコニウムアルコキシド化合物は、分子量に関わらず、いずれも低い温度且つ低い減圧度で蒸留でき、このことから、ジルコニウム含有薄膜の製造に適していることが分かる。 The zirconium compounds of the formulas (11) to (15) (Comparative Examples 1 to 5) could not be recovered by pyrolysis by redistillation, whereas the zirconium alkoxide compounds of the present invention (formulas (2) to (4)) The zirconium compound) has a redistillation recovery rate of 97 to 99%, which indicates that it is excellent in thermal stability. Furthermore, regardless of the molecular weight, the zirconium alkoxide compound of the present invention can be distilled at a low temperature and a low degree of vacuum, which indicates that it is suitable for the production of a zirconium-containing thin film.
実施例7及び比較例6(熱安定性の比較2;加熱処理試験)
実施例1で得られた式(4)のジルコニウム化合物と、テトラキス(t−ブトキシド)ジルコニウム(非特許文献3のジルコニウムアルコキシド化合物)について、熱安定性の比較試験を行った。それぞれの化合物を、アルゴン雰囲気で250℃にて10時間加熱した後、熱処理後のジルコニウムアルコキシド化合物について、1H−NMRにより分解具合を観察し、また、再蒸留を行い、その回収率を確認し、それぞれの結果を比較した。その結果を表2に示した。Example 7 and Comparative Example 6 (thermal stability comparison 2; heat treatment test)
A thermal stability comparison test was performed on the zirconium compound of the formula (4) obtained in Example 1 and tetrakis (t-butoxide) zirconium (zirconium alkoxide compound of Non-Patent Document 3). After each compound was heated at 250 ° C. for 10 hours in an argon atmosphere, the degree of decomposition of the zirconium alkoxide compound after the heat treatment was observed by 1 H-NMR and redistilled to confirm the recovery rate. Each result was compared. The results are shown in Table 2.
本発明のジルコニウムアルコキシド化合物(式(4)のジルコニウム化合物)は、熱処理後においても色の変化がなく、1H−NMRのスペクトルパターンでも変化は観られなかった。又、再蒸留での回収率も98%であった。The zirconium alkoxide compound of the present invention (zirconium compound of the formula (4)) did not change in color even after the heat treatment, and no change was observed in the spectrum pattern of 1 H-NMR. The recovery rate by redistillation was 98%.
一方、テトラキス(t−ブトキシド)ジルコニウムは、熱処理後すぐに褐色に変色し、再蒸留での回収率も低く、又、蒸留残渣として釜の中に褐色固体(分解物)が残っていた。 On the other hand, tetrakis (t-butoxide) zirconium turned brown immediately after the heat treatment, and the recovery rate by redistillation was low, and a brown solid (decomposed product) remained in the kettle as a distillation residue.
以上のことから、本発明のジルコニウムアルコキシド化合物が熱に対して高い安定性を有していることが分かった。 From the above, it was found that the zirconium alkoxide compound of the present invention has high stability to heat.
通常、ALD法では、基板への化合物吸着、反応ガス(例えば、酸素ガス、オゾンガス)との反応を繰り返して成膜が行われる。この基板への化合物の吸着の際、基板温度で化合物が熱分解しないことが求められる。本発明のジルコニウムアルコキシド化合物(式(4)のジルコニウム化合物)は、加熱処理試験の結果より、アルゴンガス雰囲気(不活性ガス雰囲気)での熱安定性が高いことから、基板上で熱分解しないことが示唆されており、ALD法でより好適に使用できることがわかる。一方、テトラキス(t−ブトキシド)ジルコニウム(非特許文献3のジルコニウムアルコキシド化合物)は加熱処理試験において変質、分解物が見られることから、基板上で容易に熱分解することが示唆され、ALD法には不向きであることがわかる。 In general, in the ALD method, film formation is performed by repeating compound adsorption on a substrate and reaction with a reaction gas (for example, oxygen gas or ozone gas). When the compound is adsorbed on the substrate, it is required that the compound is not thermally decomposed at the substrate temperature. The zirconium alkoxide compound of the present invention (zirconium compound of the formula (4)) has a high thermal stability in an argon gas atmosphere (inert gas atmosphere) from the result of the heat treatment test, and therefore does not thermally decompose on the substrate. This suggests that it can be used more favorably in the ALD method. On the other hand, since tetrakis (t-butoxide) zirconium (zirconium alkoxide compound of Non-Patent Document 3) is altered and decomposed in the heat treatment test, it is suggested that it is easily pyrolyzed on the substrate. Is unsuitable.
実施例8〜9(蒸着実験;ジルコニウム含有薄膜の製造)
実施例1及び3で得られた式(4)及び(3)のジルコニウムアルコキシド化合物を用いて、CVD法による蒸着実験を行い、成膜特性を評価した。Examples 8 to 9 (deposition experiment; production of zirconium-containing thin film)
Using the zirconium alkoxide compounds of the formulas (4) and (3) obtained in Examples 1 and 3, a vapor deposition experiment by the CVD method was performed to evaluate the film forming characteristics.
評価試験には、図1に示す装置を使用した。気化器3(ガラス製アンプル)にあるジルコニウムアルコキシド化合物20は、ヒーター10Bで加熱されて気化し、マスフローコントローラー1Aを経て予熱器10Aで予熱後導入されたヘリウムガスに同伴し気化器3を出る。気化器3を出たガスは、マスフローコントローラー1B、ストップバルブ2を経て導入された酸素ガスとともに反応器4に導入される。反応系内圧力は、真空ポンプ手前のバルブ6の開閉により、所定圧力にコントロールされ、圧力計5によってモニターされる。反応器の中央部はヒーター10Cで加熱可能な構造となっている。反応器に導入されたジルコニウムアルコキシド化合物は、反応器内中央部にセットされ、ヒーター10Cで所定の温度に加熱された被蒸着基板21の表面上で酸化熱分解し、基板21上にジルコニウム含有薄膜が析出する。反応器4を出たガスは、トラップ7、真空ポンプを経て、大気中に排気される構造となっている。
The apparatus shown in FIG. 1 was used for the evaluation test. The
蒸着条件及び蒸着結果(膜特性)を表3に示す。なお、被蒸着基板としては、6mm×20mmサイズの矩形のものを使用した。 The deposition conditions and deposition results (film characteristics) are shown in Table 3. Note that a 6 mm × 20 mm rectangular substrate was used as the deposition substrate.
その結果、本発明のジルコニウムアルコキシド化合物(式(3)及び(4)の化合物)は、酸素雰囲気にて、優れた成膜特性を示すことが分かった。 As a result, it was found that the zirconium alkoxide compounds of the present invention (compounds of formulas (3) and (4)) exhibited excellent film forming characteristics in an oxygen atmosphere.
実施例10(M=Hf,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウムの合成(式(4)のハフニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)ハフニウム・イソプロパノール付加体5.15g(10.84mmol)及び2,4−ジメチル−3−ペンタノール10.00g(86.06mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(150℃、17Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウム4.94gを得た(単離収率;71.3%)。Example 10 (M = Hf, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) hafnium (synthesis of hafnium compound of formula (4))
In a 100-ml flask equipped with a stirrer and a thermometer, in an argon atmosphere, 5.15 g (10.84 mmol) of tetrakis (isopropoxy) hafnium / isopropanol adduct and 2,4-dimethyl-3-pentanol 10 0.000 g (86.06 mmol) was added, the temperature of the solution was raised to 170 ° C., and the resulting isopropanol was distilled off and reacted at the same temperature for 30 minutes. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and then the concentrate was distilled under reduced pressure (150 ° C., 17 Pa) to give 4.94 g of tetrakis (2,4-dimethyl-3-pentoxy) hafnium as a low-viscosity transparent liquid. (Isolated yield; 71.3%).
なお、テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウムは、以下の物性値で示される新規な化合物である。 Tetrakis (2,4-dimethyl-3-pentoxy) hafnium is a novel compound represented by the following physical property values.
1H−NMR(CDCl3,δ(ppm));0.90(48H,d)、1.70(8H,m)、3.39(4H,d)
元素分析:C28H60O4Hf
測定値 C:53.0%、H:9.7%、Hf:27.7%
理論値 C:52.6%、H:9.5%、Hf:27.9% 1 H-NMR (CDCl 3 , δ (ppm)); 0.90 (48H, d), 1.70 (8H, m), 3.39 (4H, d)
Elemental analysis: C 28 H 60 O 4 Hf
Measurement value C: 53.0%, H: 9.7%, Hf: 27.7%
Theoretical value C: 52.6%, H: 9.5%, Hf: 27.9%
実施例11(熱安定性;加熱処理試験)
実施例10で得られた式(4)のハフニウム化合物(本発明)の熱安定性を確認するために再度蒸留を行い、その回収率を確認した。また、アルゴン雰囲気で250℃にて10時間加熱した後、熱処理後のハフニウム化合物について、1H−NMRにより分解具合を観察し、また、再蒸留を行い、その回収率を確認した。その結果は以下の通りであった。Example 11 (thermal stability; heat treatment test)
Distillation was performed again to confirm the thermal stability of the hafnium compound of the formula (4) obtained in Example 10 (present invention), and the recovery rate was confirmed. Moreover, after heating at 250 degreeC for 10 hours in argon atmosphere, about the hafnium compound after heat processing, the decomposition condition was observed by < 1 > H-NMR, and re-distillation was performed, and the recovery rate was confirmed. The results were as follows.
初回蒸留;150℃(17Pa)
再蒸留回収率;99%
熱処理前;無色透明液体
熱処理後;無色透明液体
熱処理後の再蒸留回収率;97%
熱処理後の1H−NMR(CDCl3,δ(ppm));変化なしInitial distillation: 150 ° C. (17 Pa)
Redistillation recovery rate: 99%
Before heat treatment; after heat treatment of colorless and transparent liquid; redistillation recovery rate after heat treatment of colorless and transparent liquid; 97%
1 H-NMR after heat treatment (CDCl 3 , δ (ppm)); no change
以上の結果より、本発明の金属アルコキシド化合物が、優れた熱安定性を有するとともに、特にCVD法またはALD法により金属含有膜を製造する際に有用な化合物であることが分かる。 From the above results, it can be seen that the metal alkoxide compound of the present invention has excellent thermal stability and is particularly useful when producing a metal-containing film by a CVD method or an ALD method.
実施例12(M=Ti,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)チタニウムの合成(式(4)のチタニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、テトラキス(イソプロポキシ)チタニウム5.00g(17.59mmol)及び2,4−ジメチル−3−ペンタノール10.00g(86.06mmol)を加え、液温を170℃まで昇温し、生成したイソプロパノールを留去しながら、同温度で30分間反応させた。反応終了後、反応液を減圧下で濃縮した後、濃縮物を減圧蒸留(160℃、21Pa)し、無色透明固体として、テトラキス(2,4−ジメチル−3−ペントキシ)チタニウム6.50gを得た(単離収率;72.6%)。Example 12 (M = Ti, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) titanium (synthesis of titanium compound of formula (4))
In a 100-ml flask equipped with a stirrer and a thermometer, in an argon atmosphere, 5.00 g (17.59 mmol) of tetrakis (isopropoxy) titanium and 10.00 g (86 of 2,4-dimethyl-3-pentanol) 0.06 mmol) was added, the liquid temperature was raised to 170 ° C., and the resulting isopropanol was distilled off, and the mixture was reacted at the same temperature for 30 minutes. After completion of the reaction, the reaction solution was concentrated under reduced pressure, and the concentrate was distilled under reduced pressure (160 ° C., 21 Pa) to obtain 6.50 g of tetrakis (2,4-dimethyl-3-pentoxy) titanium as a colorless transparent solid. (Isolated yield; 72.6%).
なお、テトラキス(2,4−ジメチル−3−ペントキシ)チタニウムは、以下の物性値で示される新規な化合物である。 Tetrakis (2,4-dimethyl-3-pentoxy) titanium is a novel compound represented by the following physical property values.
融点:65〜75℃
1H−NMR(CDCl3,δ(ppm));0.93(48H,m)、1.71(8H,m)、3.70(4H,m)
元素分析:C28H60O4Ti
測定値 C:66.3%、H:12.2%、Ti:9.3%
理論値 C:66.1%、H:11.9%、Ti:9.4%Melting point: 65-75 ° C
1 H-NMR (CDCl 3 , δ (ppm)); 0.93 (48H, m), 1.71 (8H, m), 3.70 (4H, m)
Elemental analysis: C 28 H 60 O 4 Ti
Measurement C: 66.3%, H: 12.2%, Ti: 9.3%
Theoretical value C: 66.1%, H: 11.9%, Ti: 9.4%
実施例13(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.02g(17.25mmol)及びメチルシクロヘキサン50mlを秤量し、水冷下でイソプロピルアミン12ml(140.08mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、13Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.71gを得た(単離収率;81.0%)。Example 13 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 100-ml flask equipped with a stirrer and a thermometer, 4.02 g (17.25 mmol) of zirconium tetrachloride and 50 ml of methylcyclohexane were weighed in an argon atmosphere, and 12 ml (140.08 mmol) of isopropylamine under water cooling. Was dripped. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 13 Pa) to obtain 7.71 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid (isolated yield; 81.0%). .
実施例14(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積50mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.12g(17.68mmol)及びメチルシクロヘキサン25mlを秤量し、水冷下でsec−ブチルアミン13ml(128.51mmol)を滴下した。この溶液を2,4−ジメチル−3−ペンタノール9.88g(85.03mmol)及びメチルシクロヘキサン25mlを仕込んだ攪拌装置及び温度計を備えた内容積100mlのフラスコに滴下して1時間反応させた。反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、15Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム8.05gを得た(単離収率;82.5%)。Example 14 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 50-ml flask equipped with a stirrer and a thermometer, 4.12 g (17.68 mmol) of zirconium tetrachloride and 25 ml of methylcyclohexane were weighed in an argon atmosphere, and 13 ml (128.51 mmol) of sec-butylamine under water cooling. ) Was added dropwise. This solution was dropped into a 100-ml flask equipped with a stirrer and a thermometer charged with 9.88 g (85.03 mmol) of 2,4-dimethyl-3-pentanol and 25 ml of methylcyclohexane and reacted for 1 hour. . The reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 15 Pa) to obtain 8.05 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid (isolated yield; 82.5%). .
実施例15(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、水冷下でtert−ブチルアミン23.5ml(224.91mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、10Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.69gを得た(単離収率;77.3%)。Example 15 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 100 ml-volume flask equipped with a stirrer and a thermometer, 4.20 g (18.02 mmol) of zirconium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and 23.5 ml (224.22 ml) of tert-butylamine under water cooling. 91 mmol) was added dropwise. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 10 Pa) to obtain 7.69 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid (isolated yield; 77.3%). .
実施例16(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、水冷下でジエチルアミン16.5ml(157.92mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の淡黄色透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.76gを得た(単離収率;76.7%)。Example 16 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 100 ml flask equipped with a stirrer and a thermometer, 4.20 g (18.02 mmol) of zirconium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and 16.5 ml (157.92 mmol) of diethylamine under water cooling. Was dripped. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 11 Pa) to obtain 7.76 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity pale yellow transparent liquid (isolated yield; 76.7). %).
実施例17(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、系内を−10℃以下となるようにジエチルアミン16.0ml(153.13mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.92gを得た(単離収率;79.6%)。Example 17 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4))
In a 100 ml flask equipped with a stirrer and a thermometer, 4.20 g (18.02 mmol) of zirconium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and diethylamine was adjusted so that the temperature in the system was −10 ° C. or lower. 16.0 ml (153.13 mmol) was added dropwise. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 11 Pa), and 7.92 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium was obtained as a low-viscosity transparent liquid (isolated yield; 79.6%). .
実施例18(M=Zr,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウムの合成(式(4)のジルコニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ジルコニウム4.20g(18.02mmol)及びトルエン50mlを秤量し、系内を−10℃以下となるようにジメチルアミン11.61g(257.54mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール12ml(85.61mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、11Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ジルコニウム7.81gを得た(単離収率;76.3%)。Example 18 (M = Zr, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) zirconium (synthesis of zirconium compound of formula (4)))
In a 100-ml flask equipped with a stirrer and a thermometer, 4.20 g (18.02 mmol) of zirconium tetrachloride and 50 ml of toluene are weighed in an argon atmosphere, and dimethyl dimethyl ether so that the temperature in the system is -10 ° C. or lower. 11.61 g (257.54 mmol) of amine was added dropwise. Next, 12 ml (85.61 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 11 Pa) to obtain 7.81 g of tetrakis (2,4-dimethyl-3-pentoxy) zirconium as a low-viscosity transparent liquid (isolated yield; 76.3%). .
実施例19(M=Hf,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウムの合成(式(4)のハフニウム化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化ハフニウム5.03g(15.71mmol)及びトルエン50mlを秤量し、水冷下でtert−ブチルアミン10ml(95.71mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール10ml(71.34mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(170℃、19Pa)し、低粘性の透明液体として、テトラキス(2,4−ジメチル−3−ペントキシ)ハフニウム3.50gを得た(単離収率;34.9%)。Example 19 (M = Hf, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) hafnium (synthesis of hafnium compound of formula (4)))
In a 100-ml flask equipped with a stirrer and a thermometer, 5.03 g (15.71 mmol) of hafnium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and 10 ml (95.71 mmol) of tert-butylamine under water cooling. Was dripped. Next, 10 ml (71.34 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (170 ° C., 19 Pa) to obtain 3.50 g of tetrakis (2,4-dimethyl-3-pentoxy) hafnium as a low-viscosity transparent liquid (isolated yield; 34.9%). .
実施例20(M=Ti,R=イソプロピル基;テトラキス(2,4−ジメチル−3−ペントキシ)チタニウムの合成(式(4)の化合物)の合成)
攪拌装置及び温度計を備えた内容積100mlのフラスコに、アルゴン雰囲気にて、四塩化チタン5.85g(30.84mmol)及びトルエン50mlを秤量し、水冷下でtert−ブチルアミン16ml(153.13mmol)を滴下した。次に2,4−ジメチル−3−ペンタノール17.5ml(124.85mmol)を滴下して1時間反応させた後、反応液をろ過し、ろ液を濃縮した。濃縮物を減圧蒸留(160℃、17Pa)し、透明固体として、テトラキス(2,4−ジメチル−3−ペントキシ)チタニウム8.81gを得た(単離収率;56.2%)。Example 20 (M = Ti, R = isopropyl group; synthesis of tetrakis (2,4-dimethyl-3-pentoxy) titanium (synthesis of compound of formula (4))
In a 100 ml flask equipped with a stirrer and a thermometer, 5.85 g (30.84 mmol) of titanium tetrachloride and 50 ml of toluene were weighed in an argon atmosphere, and 16 ml (153.13 mmol) of tert-butylamine under water cooling. Was dripped. Next, 17.5 ml (124.85 mmol) of 2,4-dimethyl-3-pentanol was dropped and reacted for 1 hour, and then the reaction solution was filtered and the filtrate was concentrated. The concentrate was distilled under reduced pressure (160 ° C., 17 Pa) to obtain 8.81 g of tetrakis (2,4-dimethyl-3-pentoxy) titanium as a transparent solid (isolated yield; 56.2%).
本発明により、特にCVD法またはALD法により金属含有薄膜を形成させる際に有用な金属アルコキシド化合物を提供することが出来る。又、当該金属アルコキシド化合物を用いて金属含有薄膜を製造する方法も提供することが出来る。 According to the present invention, it is possible to provide a metal alkoxide compound that is useful when a metal-containing thin film is formed by a CVD method or an ALD method. Moreover, the method of manufacturing a metal containing thin film using the said metal alkoxide compound can also be provided.
1A マスフローコントローラー
1B マスフローコントローラー
2 ストップバルブ
3 気化器
4 反応器
5 圧力計
6 バルブ
7 トラップ
8 ストップバルブ
10A 予熱器
10B 気化器ヒーター
10C 反応器ヒーター
20 金属アルコキシド化合物
21 基板1A mass flow controller 1B mass flow controller 2 stop valve 3
Claims (6)
で示される金属アルコキシド化合物。 General formula (1)
A metal alkoxide compound represented by:
で示される金属アルコキシド化合物又はこの金属アルコキシド化合物の溶液を金属供給源として用いた化学気相蒸着法による金属含有薄膜の製造法。 General formula (1)
Preparation of the metal-containing thin film by chemical vapor deposition solution was used as the metal source in the metal alkoxide compound or the metal alkoxide compound represented in.
で示される金属アルコキシド化合物又はこの金属アルコキシド化合物の溶液と、酸素源とを用いた請求項2記載の化学気相蒸着法による金属含有薄膜の製造法。 General formula (1)
Preparation of the metal-containing thin film by the solution and the oxygen source and the chemical vapor deposition method according to claim 2, wherein using a metal alkoxide compound or the metal alkoxide compound represented in.
で示される金属アルコキシド化合物又はこの金属アルコキシド化合物の溶液と、窒素源とを用いた請求項2記載の化学気相蒸着法による金属含有薄膜の製造法。 General formula (1)
Preparation of the metal-containing thin film by chemical vapor deposition of the solution and, according to claim 2, wherein using a nitrogen source of the metal alkoxide compound or the metal alkoxide compound represented in.
で示される金属アルコキシド化合物又はこの金属アルコキシド化合物の溶液と、不活性ガスとを用いた請求項2記載の化学気相蒸着法による金属含有薄膜の製造法。 General formula (1)
Solution and method for producing a metal-containing thin film by chemical vapor deposition according to claim 2, wherein with the inert gas of the metal alkoxide compound or the metal alkoxide compound represented in.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011549020A JP5776555B2 (en) | 2010-01-07 | 2011-01-06 | Metal alkoxide compound and method for producing metal-containing thin film using the compound |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010002312 | 2010-01-07 | ||
JP2010002312 | 2010-01-07 | ||
JP2010236797 | 2010-10-21 | ||
JP2010236797 | 2010-10-21 | ||
PCT/JP2011/050117 WO2011083820A1 (en) | 2010-01-07 | 2011-01-06 | Metal alkoxide compound and process for production of metal-containing thih film using the compound |
JP2011549020A JP5776555B2 (en) | 2010-01-07 | 2011-01-06 | Metal alkoxide compound and method for producing metal-containing thin film using the compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2011083820A1 JPWO2011083820A1 (en) | 2013-05-16 |
JP5776555B2 true JP5776555B2 (en) | 2015-09-09 |
Family
ID=44305557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011549020A Expired - Fee Related JP5776555B2 (en) | 2010-01-07 | 2011-01-06 | Metal alkoxide compound and method for producing metal-containing thin film using the compound |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5776555B2 (en) |
KR (1) | KR101476016B1 (en) |
TW (1) | TW201139720A (en) |
WO (1) | WO2011083820A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012201629A (en) * | 2011-03-25 | 2012-10-22 | Ube Industries Ltd | High purity zirconium alkoxide raw material and production method of the same, and analysis method of the raw material |
AU2013274235B2 (en) | 2012-06-15 | 2018-01-18 | Samir N. Khleif | Cationic lipid vaccine compositions and methods of use |
JP2020515722A (en) * | 2017-03-29 | 2020-05-28 | アイエイチ アイピー ホールディングス リミテッド | Methods for increasing hydrogen trap vacancy in materials |
IL302870A (en) * | 2020-11-19 | 2023-07-01 | Adeka Corp | A method for producing a thin layer |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000219969A (en) * | 1999-02-01 | 2000-08-08 | Mitsubishi Materials Corp | Organic tantalum compound, raw material for organo- metallic chemical vapor deposition containing this and tantalum-containing thin film made therefrom |
JP2003221672A (en) * | 2002-01-29 | 2003-08-08 | Dainippon Printing Co Ltd | Titanium oxide thin-film, manufacturing method therefor, and laminate of titanium oxide thin-film |
WO2005116292A1 (en) * | 2004-05-26 | 2005-12-08 | Adeka Corporation | Material for chemical vapor deposition and thin film forming method |
-
2011
- 2011-01-06 WO PCT/JP2011/050117 patent/WO2011083820A1/en active Application Filing
- 2011-01-06 KR KR1020127020488A patent/KR101476016B1/en not_active Expired - Fee Related
- 2011-01-06 JP JP2011549020A patent/JP5776555B2/en not_active Expired - Fee Related
- 2011-01-07 TW TW100100716A patent/TW201139720A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000219969A (en) * | 1999-02-01 | 2000-08-08 | Mitsubishi Materials Corp | Organic tantalum compound, raw material for organo- metallic chemical vapor deposition containing this and tantalum-containing thin film made therefrom |
JP2003221672A (en) * | 2002-01-29 | 2003-08-08 | Dainippon Printing Co Ltd | Titanium oxide thin-film, manufacturing method therefor, and laminate of titanium oxide thin-film |
WO2005116292A1 (en) * | 2004-05-26 | 2005-12-08 | Adeka Corporation | Material for chemical vapor deposition and thin film forming method |
Non-Patent Citations (1)
Title |
---|
JPN6014041862; Inorganica Chimica Acta Vol.359, 2006, p.4159-4167 * |
Also Published As
Publication number | Publication date |
---|---|
KR20120105046A (en) | 2012-09-24 |
JPWO2011083820A1 (en) | 2013-05-16 |
KR101476016B1 (en) | 2014-12-23 |
WO2011083820A1 (en) | 2011-07-14 |
TW201139720A (en) | 2011-11-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1849789B1 (en) | Metal complexes of polydentate beta-ketoiminates | |
EP2535343B1 (en) | Organoaminosilane precursors and methods for making and using same | |
JP5857970B2 (en) | (Amidoaminoalkane) metal compound and method for producing metal-containing thin film using the metal compound | |
KR101533844B1 (en) | Raw material for forming a strontium-containing thin film and process for preparing the raw material | |
JP4312006B2 (en) | Rare earth metal complex, raw material for thin film formation, and method for producing thin film | |
TW200907091A (en) | Organometallic compounds | |
CN110073474A (en) | Zirconium precursors, hafnium precursors, titanium precursor and the film for containing the 4th race using its deposition | |
TW200528574A (en) | Metal compound, material for forming thin film and method for preparing thin film | |
US8617305B2 (en) | Metal complexes for metal-containing film deposition | |
JP5776555B2 (en) | Metal alkoxide compound and method for producing metal-containing thin film using the compound | |
JP5260148B2 (en) | Method for forming strontium-containing thin film | |
WO1999055712A1 (en) | Group ii mocvd source reagents, and method of forming group ii metal-containing films utilizing same | |
WO2018088078A1 (en) | Compound, thin-film-forming raw material, thin-film-forming raw material for atomic-layer deposition method, and process for producing thin film | |
JP3511228B2 (en) | Ethylcyclopentadienyl (1,5-cyclooctadiene) iridium, method for producing the same, and method for producing iridium-containing thin film using the same | |
KR20160148542A (en) | Alkoxide compound, raw material for forming thin film, method for producing thin film, and alcohol compound | |
WO2018042871A1 (en) | Diazadienyl compound, raw material for forming thin film, and method for producing thin film | |
JP4823069B2 (en) | Metal compound, thin film forming raw material, and thin film manufacturing method | |
WO2017030150A1 (en) | Method for producing aluminum oxide film, material for producing aluminum oxide film and aluminum compound | |
JP4859098B2 (en) | Niobium tetraalkoxydiisobutyrylmethanate and raw material solution for forming Pb (Zr, Ti, Nb) O3 film using the same | |
WO2017150212A1 (en) | Method for producing aluminum oxide film and production starting material for aluminum oxide film | |
JP2007070236A (en) | Bis(ethylcyclopentadienyl)trihydrotantalum, method for producing the same and method for forming tantalum carbide film or tantalum carbonitride film using the same | |
JP2005060358A (en) | BISMUTH ALKOXIDE, ITS PRODUCTION METHOD, AND METHOD FOR PRODUCTION OF Bi-LAYERED FERROELECTRIC THIN FILM USING THE ALKOXIDE |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141202 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150609 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5776555 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |