[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006201463A - Antireflection film - Google Patents

Antireflection film Download PDF

Info

Publication number
JP2006201463A
JP2006201463A JP2005012819A JP2005012819A JP2006201463A JP 2006201463 A JP2006201463 A JP 2006201463A JP 2005012819 A JP2005012819 A JP 2005012819A JP 2005012819 A JP2005012819 A JP 2005012819A JP 2006201463 A JP2006201463 A JP 2006201463A
Authority
JP
Japan
Prior art keywords
antireflection film
layer
film
refractive index
active energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005012819A
Other languages
Japanese (ja)
Other versions
JP5242883B2 (en
Inventor
Satoru Shiyoji
悟 所司
Shin Koizumi
伸 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2005012819A priority Critical patent/JP5242883B2/en
Priority to PCT/JP2006/301092 priority patent/WO2006078053A1/en
Priority to KR1020077018800A priority patent/KR101275408B1/en
Priority to CN2006800027826A priority patent/CN101107543B/en
Priority to TW95101990A priority patent/TWI395667B/en
Publication of JP2006201463A publication Critical patent/JP2006201463A/en
Application granted granted Critical
Publication of JP5242883B2 publication Critical patent/JP5242883B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Optical Filters (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antireflection film which has near infrared ray absorption performance, antireflection performance and excellent scuffing resistance, the constitution of whose layers is simplified, and which is suitable, particularly, for a PDP (a plasma display panel) and is produced at a low cost by a wet process. <P>SOLUTION: This antireflection film, in the whole area of which the transmittance of the light having 850-1,000 nm wavelength is ≤30% at the least, is produced by successively laminating a hard coat layer (A) which contains the resin to be cured by irradiation with an active energy ray and a near infrared ray absorbing agent and has 2-20 μm thickness, and a low-refractive index layer (B) which contains the resin to be cured by irradiation with the active energy ray and has ≤1.43 refractive index and 50-200 nm thickness, on one side of a base material film. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は反射防止フィルム、さらに詳しくは、近赤外線吸収性能と反射防止性能を有し、かつ耐擦傷性に優れる上、層構成が簡単でコストが低く、特にプラズマディスプレイ用として好適な反射防止フィルムに関するものである。   The present invention relates to an antireflection film. More specifically, the antireflection film has near-infrared absorption performance and antireflection performance, is excellent in scratch resistance, has a simple layer structure and is low in cost, and particularly suitable for plasma displays. It is about.

プラズマディスプレイ(PDP)、ブラウン管(CRT)、液晶ディスプレイ(LCD)などの画像表示装置においては、画面に外部から光が入射し、この光が反射して表示画像を見ずらくすることがあり、特に近年、ディスプレイの大型化に伴い、上記問題を解決することが、ますます重要な課題となってきている。
このような問題を解決するために、これまで種々のディスプレイに対して、様々な反射防止処置や防眩処置がとられている。その一つとして反射防止フィルムを各種のディスプレイに使用することが行われている。
この反射防止フィルムは、従来、蒸着やスパッタリングなどのドライプロセス法により、基材フィルム上に、低屈折率の物質(MgF2)を薄膜化する方法や、屈折率の高い物質[ITO(錫ドープ酸化インジウム)、TiO2など]と屈折率の低い物質(MgF2、SiO2など)を交互に積層する方法などで作製されている。しかしながら、このようなドライプロセス法で作製された反射防止フィルムは、製造コストが高くつくのを免れないという問題があった。
そこで、近年、ウエットプロセス法、すなわちコーティングにより反射防止フィルムを作製することが試みられている。しかしながら、このウエットプロセス法により作製された反射防止フィルムにおいては、前記のドライプロセス法による反射防止フィルムに比べて、表面の耐擦傷性に劣るという問題が生じる。
そこで、ウエットプロセス法における前記問題を解決するために、電離放射線硬化型樹脂組成物を用いて硬化層(ハードコート層)を形成することが行われている。例えば基材フィルム上に、(1)(A)電離放射線による硬化樹脂を含む厚さ2〜20μmのハードコート層、(B)電離放射線による硬化樹脂と、アンチモンドープ酸化錫を含む少なくとも2種の金属酸化物を含み、屈折率が1.65〜1.80の範囲にある厚さ60〜160nmの高屈折率層、及び(C)シロキサン系ポリマーを含み、屈折率が1.37〜1.47の範囲にある厚さ80〜180nmの低屈折率層を順次積層してなる光学用フィルム(例えば、特許文献1参照)、(2)(A)金属酸化物と、熱又は電離放射線による硬化物とを含む厚さ2〜20μmのハードコート層、及び(B)多孔性シリカとポリシロキサン系ポリマーとを含み、屈折率が1.30〜1.45の範囲にある厚さ40〜200nmの低屈折率層を順次積層してなる光学用フィルム(例えば、特許文献2参照)などが開示されている。
これらの光学用フィルムは、画像表示素子の表面の光の反射を効果的に防止すると共に、耐擦傷性に優れる反射防止フィルムである。
ところで、PDPは、電極間のプラズマ放電により封入されているキセノンガスの分子を励起し、発生する紫外線で蛍光物質を励起し、可視光領域の光を発光させ映像を表示する装置である。このPDPにおいては、発光は、プラズマ放電を利用していることから、周波数帯域が30〜130MHz程度の不要な電磁波が外部に漏洩するため、他の機器(例えば情報処理装置など)へ悪影響を与えないように、電磁波を極力抑制することが要求される。
また、PDPにおいては、近赤外線を発することが知られている。この近赤外線は、コードレスホン、近赤外線リモートコントロール装置を使用するビデオデッキなど、周辺にある電子機器に作用し、正常な動作を阻害するおそれがあり、この近赤外線を極力遮断することが要求される。
さらに、PDPにおいては、表示面が平面であるため、外光が差し込んだ際に、広い範囲で反射した光が同時に目に入り、画面が見えにくくなる場合があり、外光の反射防止が必要である。また、PDPの発光を所定の透過率で透過させて、良好な画面表示をすることや、発光色の色調補正をすることも重要である。
PDPにおいては、これらの要求に対して、一般に表示画面に、(1)電磁波遮断フィルム、(2)近赤外線吸収フィルム及び(3)反射防止フィルムの少なくとも3枚の機能性フィルムを有する前面板を、該反射防止フィルムが、最表面(観察者側)になるように配置する処置が講ぜられている(例えば、特許文献3参照)。この場合、少なくとも3枚の機能性フィルムを別々に作製して、それらを貼合しなければならず、コストが高くつくのを免れない。
これに対し、近年、コストダウンの面から、最表面の反射防止フィルムにおいて、その基材の反射防止層とは反対側の面に近赤外線吸収層を設けることにより、1枚のフィルムで、反射防止性能と近赤外線吸収性能を兼ね備えた機能性フィルムが開発されている。このような機能性フィルムを製造する場合、(1)反射防止フィルムの裏面への近赤外線吸収層の形成、及び(2)近赤外線吸収フィルムの裏面への反射防止層の形成、の2つの方法があるが、いずれの場合も、フィルムのロスが発生するため、コストダウンの効果は小さい。
特開2002−341103号公報 特開2003−139908号公報 特開平11−126024号公報
In an image display device such as a plasma display (PDP), a cathode ray tube (CRT), a liquid crystal display (LCD), etc., light is incident on the screen from outside, and this light may be reflected to make it difficult to view the displayed image. Particularly in recent years, with the increase in the size of displays, solving the above problems has become an increasingly important issue.
In order to solve such a problem, various antireflection treatments and antiglare treatments have been taken for various displays so far. As one of them, an antireflection film is used for various displays.
Conventionally, this antireflection film is formed by a method of thinning a low refractive index substance (MgF 2 ) on a base film by a dry process method such as vapor deposition or sputtering, or a high refractive index substance [ITO (tin-doped Indium oxide), TiO 2, etc.] and a material having a low refractive index (MgF 2 , SiO 2, etc.) are alternately stacked. However, the antireflection film produced by such a dry process method has a problem that the production cost is unavoidable.
Therefore, in recent years, an attempt has been made to produce an antireflection film by a wet process method, that is, coating. However, the antireflection film produced by the wet process method has a problem that the surface is inferior in scratch resistance as compared with the antireflection film by the dry process method.
Therefore, in order to solve the above problems in the wet process method, a cured layer (hard coat layer) is formed using an ionizing radiation curable resin composition. For example, on a base film, (1) (A) a hard coat layer having a thickness of 2 to 20 μm containing a cured resin by ionizing radiation, (B) a cured resin by ionizing radiation, and at least two kinds including antimony-doped tin oxide A high refractive index layer having a thickness of 60 to 160 nm containing a metal oxide and having a refractive index in the range of 1.65 to 1.80, and (C) a siloxane-based polymer, and having a refractive index of 1.37 to 1. An optical film formed by sequentially laminating low refractive index layers having a thickness of 80 to 180 nm in the range of 47 (see, for example, Patent Document 1), (2) (A) metal oxide, and curing by heat or ionizing radiation A hard coat layer having a thickness of 2 to 20 μm, and (B) a porous silica and a polysiloxane polymer, and having a refractive index in the range of 1.30 to 1.45 and a thickness of 40 to 200 nm Laminate low refractive index layers sequentially. An optical film (see, for example, Patent Document 2) is disclosed.
These optical films are antireflection films that effectively prevent reflection of light on the surface of the image display element and are excellent in scratch resistance.
By the way, the PDP is an apparatus that excites xenon gas molecules enclosed by plasma discharge between electrodes, excites a fluorescent substance with generated ultraviolet rays, emits light in the visible light region, and displays an image. In this PDP, since light emission uses plasma discharge, unnecessary electromagnetic waves having a frequency band of about 30 to 130 MHz leak to the outside, which adversely affects other devices (for example, information processing devices). It is required to suppress electromagnetic waves as much as possible.
Also, it is known that PDP emits near infrared rays. This near-infrared ray may affect peripheral electronic devices such as cordless phones and video decks that use a near-infrared remote control device, and may interfere with normal operation. It is required to block this near-infrared ray as much as possible. .
Furthermore, in the PDP, since the display surface is flat, when outside light is inserted, the light reflected in a wide range may enter the eyes at the same time, making the screen difficult to see, and it is necessary to prevent reflection of outside light. It is. It is also important to transmit the light emitted from the PDP with a predetermined transmittance to display a good screen and to correct the color tone of the emitted color.
In the PDP, in response to these requirements, a front plate having at least three functional films of (1) an electromagnetic wave shielding film, (2) a near infrared ray absorbing film, and (3) an antireflection film is generally provided on the display screen. Measures have been taken to arrange the antireflection film so as to be the outermost surface (observer side) (see, for example, Patent Document 3). In this case, at least three functional films must be prepared separately and bonded together, which is inevitable in cost.
On the other hand, in recent years, from the viewpoint of cost reduction, in the outermost antireflection film, a near-infrared absorbing layer is provided on the surface opposite to the antireflection layer of the base material, thereby reflecting with one film. Functional films that have both prevention performance and near infrared absorption performance have been developed. When manufacturing such a functional film, two methods of (1) formation of the near-infrared absorption layer on the back surface of the antireflection film and (2) formation of the antireflection layer on the back surface of the near-infrared absorption film However, in any case, film loss occurs, so the cost reduction effect is small.
JP 2002-341103 A JP 2003-139908 A Japanese Patent Laid-Open No. 11-12604

本発明は、このような事情のもとで、近赤外線吸収性能と反射防止性能を有し、かつ耐擦傷性に優れる上、層構成が簡単でコストが低く、特にPDP用として好適なウエットプロセス法による反射防止フィルムを提供することを目的としてなされたものである。   Under such circumstances, the present invention has a near infrared absorption performance and an antireflection performance, is excellent in scratch resistance, has a simple layer structure and is low in cost, and is particularly suitable for a PDP. It was made for the purpose of providing an antireflection film by the law.

本発明者らは、前記の好ましい性質を有する反射防止フィルムを開発すべく鋭意研究を重ねた結果、ウエットプロセス法による反射防止フィルムにおいて必須であるハードコート層に、得られる反射防止フィルムの少なくとも波長850〜1000nmの全領域における透過率がある値以下になるように、近赤外線吸収剤を含有させることにより、その目的を達成し得ることを見出し、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)基材フィルムの一方の面に、(A)活性エネルギー線照射による硬化樹脂と近赤外線吸収剤を含む厚さ2〜20μmのハードコート層、及び(B)活性エネルギー線照射による硬化樹脂を含む屈折率1.43以下、厚さ50〜200nmの低屈折率層が順次積層され、かつ少なくとも波長850〜1000nmの全領域における透過率が30%以下であることを特徴とする反射防止フィルム、
(2)(A)層における近赤外線吸収剤が、酸化タングステン系化合物である上記(1)項に記載の反射防止フィルム、
(3)酸化タングステン系化合物が、セシウム含有酸化タングステンである上記(2)項に記載の反射防止フィルム、
(4)(A)層に、さらに有機及び/又は無機フィラーを含有させてなる上記(1)〜(3)項のいずれかに記載の反射防止フィルム、
(5)(B)層が、多孔性シリカ30〜80重量%を含む上記(1)〜(4)項のいずれかに記載の反射防止フィルム、
(6)基材フィルムの他方の面に、厚さ5〜50μmの粘着剤層を有する上記(1)〜(5)項のいずれかに記載の反射防止フィルム、及び
(7)プラズマディスプレイ用である上記(1)〜(6)項のいずれかに記載の反射防止フィルム、
を提供するものである。
As a result of intensive studies to develop an antireflection film having the above-mentioned preferable properties, the present inventors have obtained at least the wavelength of the antireflection film obtained in the hard coat layer essential in the antireflection film by the wet process method. It has been found that the object can be achieved by including a near-infrared absorber so that the transmittance in the entire range of 850 to 1000 nm is below a certain value, and the present invention has been completed based on this finding. It was.
That is, the present invention
(1) On one surface of the substrate film, (A) a hard coat layer having a thickness of 2 to 20 μm containing a cured resin by irradiation with active energy rays and a near infrared absorber, and (B) a cured resin by irradiation with active energy rays An antireflective film comprising a low refractive index layer having a refractive index of 1.43 or less and a thickness of 50 to 200 nm sequentially laminated, and a transmittance of at least 30% or less in all regions having a wavelength of 850 to 1000 nm ,
(2) The antireflection film as described in (1) above, wherein the near infrared absorber in the (A) layer is a tungsten oxide compound,
(3) The antireflection film as described in (2) above, wherein the tungsten oxide compound is cesium-containing tungsten oxide,
(4) The antireflection film according to any one of (1) to (3) above, wherein the layer (A) further contains an organic and / or inorganic filler.
(5) The antireflection film according to any one of (1) to (4), wherein the layer (B) contains 30 to 80% by weight of porous silica,
(6) The antireflection film according to any one of (1) to (5) above, having an adhesive layer having a thickness of 5 to 50 μm on the other surface of the base film, and (7) For plasma display The antireflection film according to any one of (1) to (6) above,
Is to provide.

本発明によれば、近赤外線吸収性能と反射防止性能を有し、かつ耐擦傷性に優れる上、層構成が簡単でコストが低く、特にPDP用として好適なウエットプロセス法による反射防止フィルムを提供することができる。   According to the present invention, there is provided an antireflection film by a wet process method that has near-infrared absorption performance and antireflection performance, is excellent in scratch resistance, has a simple layer structure and is low in cost, and particularly suitable for PDP use. can do.

本発明の反射防止フィルムは、ウエットプロセス法により、基材フィルムの一方の面に、(A)近赤外線吸収剤を含むハードコート層、及び(B)低屈折率層が順次積層された構造を有している。
本発明の反射防止フィルムにおける基材フィルムについては特に制限はなく、従来反射防止フィルムの基材として公知のプラスチックフィルムの中から適宜選択して用いることができる。このようなプラスチックフィルムとしては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、セロファン、ジアセチルセルロースフィルム、トリアセチルセルロースフィルム、アセチルセルロースブチレートフィルム、ポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム、ポリビニルアルコールフィルム、エチレン−酢酸ビニル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリメチルペンテンフィルム、ポリスルホンフィルム、ポリエーテルエーテルケトンフィルム、ポリエーテルスルホンフィルム、ポリエーテルイミドフィルム、ポリイミドフィルム、フッ素樹脂フィルム、ポリアミドフィルム、アクリル樹脂フィルム、ノルボルネン系樹脂フィルム、シクロオレフィン樹脂フィルム等を挙げることができる。
これらの基材フィルムは、透明、半透明のいずれであってもよく、また、着色されていてもよいし、無着色のものでもよく、用途に応じて適宜選択すればよい。
これらの基材フィルムの厚さは特に制限はなく、適宜選定されるが、通常15〜250μm、好ましくは30〜200μmの範囲である。また、この基材フィルムは、その表面に設けられる層との密着性を向上させる目的で、所望により片面又は両面に、酸化法や凹凸化法などにより表面処理を施すことができる。上記酸化法としては、例えばコロナ放電処理、クロム酸処理(湿式)、火炎処理、熱風処理、オゾン・紫外線照射処理などが挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶剤処理法などが挙げられる。これらの表面処理法は基材フィルムの種類に応じて適宜選ばれるが、一般にはコロナ放電処理法が効果及び操作性などの面から、好ましく用いられる。また、片面又は両面にプライマー処理を施したものも用いることができる。
The antireflection film of the present invention has a structure in which (A) a hard coat layer containing a near infrared absorber and (B) a low refractive index layer are sequentially laminated on one surface of a base film by a wet process method. Have.
There is no restriction | limiting in particular about the base film in the antireflection film of this invention, It can select suitably from well-known plastic films as a base material of a conventional antireflection film, and can use it. Examples of such plastic films include polyester films such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate, polyethylene films, polypropylene films, cellophane, diacetyl cellulose films, triacetyl cellulose films, acetyl cellulose butyrate films, and polychlorinated salts. Vinyl film, polyvinylidene chloride film, polyvinyl alcohol film, ethylene-vinyl acetate copolymer film, polystyrene film, polycarbonate film, polymethylpentene film, polysulfone film, polyether ether ketone film, polyether sulfone film, polyetherimide film , Polyimide film, fluororesin film, Li amide film, acrylic resin film, norbornene resin film, a cycloolefin resin film.
These base films may be either transparent or translucent, may be colored, or may be uncolored, and may be appropriately selected depending on the application.
The thickness of these substrate films is not particularly limited and is appropriately selected, but is usually 15 to 250 μm, preferably 30 to 200 μm. Moreover, this base film can be surface-treated by an oxidation method, a concavo-convex method, or the like on one side or both sides as desired for the purpose of improving adhesion to a layer provided on the surface. Examples of the oxidation method include corona discharge treatment, chromic acid treatment (wet), flame treatment, hot air treatment, ozone / ultraviolet irradiation treatment and the like, and examples of the unevenness method include sand blast method and solvent treatment method. Is mentioned. These surface treatment methods are appropriately selected according to the type of the base film, but generally, the corona discharge treatment method is preferably used from the viewpoints of effects and operability. Moreover, what gave the primer process to the single side | surface or both surfaces can also be used.

本発明の反射防止フィルムにおいては、前記基材フィルムの少なくとも一方の面に、まず(A)活性エネルギー線照射による硬化樹脂と近赤外線吸収剤とを含むハードコート層が設けられる。
この活性エネルギー線照射による硬化樹脂と近赤外線吸収剤とを含むハードコート層は、例えば活性エネルギー線硬化性化合物と、前記の近赤外線吸収剤と、所望により光重合開始剤などを含むハードコート層形成用塗工液を、基材フィルムの一方の面にコーティングして塗膜を形成させ、活性エネルギー線を照射して、該塗膜を硬化させることにより、形成することができる。
ここで、活性エネルギー線硬化性化合物とは、電磁波又は荷電粒子線の中でエネルギー量子を有するもの、すなわち、紫外線又は電子線などを照射することにより、架橋、硬化する化合物を指す。
このような活性エネルギー線硬化性化合物としては、例えば活性エネルギー線重合性プレポリマー及び/又は活性エネルギー線重合性モノマーを挙げることができる。上記活性エネルギー線重合性プレポリマーには、ラジカル重合型とカチオン重合型があり、ラジカル重合型の活性エネルギー線重合性プレポリマーとしては、例えばポリエステルアクリレート系、エポキシアクリレート系、ウレタンアクリレート系、ポリオールアクリレート系などが挙げられる。ここで、ポリエステルアクリレート系プレポリマーとしては、例えば多価カルボン酸と多価アルコールの縮合によって得られる両末端に水酸基を有するポリエステルオリゴマーの水酸基を(メタ)アクリル酸でエステル化することにより、あるいは、多価カルボン酸にアルキレンオキシドを付加して得られるオリゴマーの末端の水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。
In the antireflection film of the present invention, at least one surface of the base film is first provided with a hard coat layer containing (A) a cured resin by irradiation with active energy rays and a near infrared absorber.
The hard coat layer containing a curable resin and a near infrared absorber by irradiation with active energy rays is, for example, a hard coat layer containing an active energy ray curable compound, the near infrared absorber, and a photopolymerization initiator as required. It can be formed by coating the forming coating solution on one surface of the base film to form a coating film, irradiating with active energy rays and curing the coating film.
Here, the active energy ray-curable compound refers to a compound having energy quanta in an electromagnetic wave or a charged particle beam, that is, a compound that is crosslinked and cured by irradiation with ultraviolet rays or electron beams.
Examples of such an active energy ray-curable compound include an active energy ray-polymerizable prepolymer and / or an active energy ray-polymerizable monomer. The active energy ray polymerizable prepolymer includes a radical polymerization type and a cationic polymerization type. Examples of the radical polymerization type active energy ray polymerizable prepolymer include polyester acrylate, epoxy acrylate, urethane acrylate, and polyol acrylate. The system etc. are mentioned. Here, as the polyester acrylate-based prepolymer, for example, by esterifying the hydroxyl group of a polyester oligomer having a hydroxyl group at both ends obtained by condensation of a polyvalent carboxylic acid and a polyhydric alcohol with (meth) acrylic acid, or It can be obtained by esterifying the terminal hydroxyl group of an oligomer obtained by adding an alkylene oxide to a polyvalent carboxylic acid with (meth) acrylic acid.

エポキシアクリレート系プレポリマーは、例えば、比較的低分子量のビスフェノール型エポキシ樹脂やノボラック型エポキシ樹脂のオキシラン環に、(メタ)アクリル酸を反応しエステル化することにより得ることができる。ウレタンアクリレート系プレポリマーは、例えば、ポリエーテルポリオールやポリエステルポリオールとポリイソシアネートの反応によって得られるポリウレタンオリゴマーを、(メタ)アクリル酸でエステル化することにより得ることができる。さらに、ポリオールアクリレート系プレポリマーは、ポリエーテルポリオールの水酸基を(メタ)アクリル酸でエステル化することにより得ることができる。これらの活性エネルギー線重合性プレポリマーは1種用いてもよいし、2種以上を組み合わせて用いてもよい。
一方、カチオン重合型の活性エネルギー線重合性プレポリマーとしては、エポキシ系樹脂が通常使用される。このエポキシ系樹脂としては、例えばビスフェノール樹脂やノボラック樹脂などの多価フェノール類にエピクロルヒドリンなどでエポキシ化した化合物、直鎖状オレフィン化合物や環状オレフィン化合物を過酸化物などで酸化して得られた化合物などが挙げられる。
活性エネルギー線重合性モノマーとしては、例えば1,4−ブタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールアジペートジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、エチレンオキシド変性リン酸ジ(メタ)アクリレート、アリル化シクロヘキシルジ(メタ)アクリレート、イソシアヌレートジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、プロピオン酸変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、プロピレンオキシド変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、プロピオン酸変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレートなどの多官能アクリレートが挙げられる。これらの活性エネルギー線重合性モノマーは1種用いてもよいし、2種以上を組み合わせて用いてもよく、また、前記活性エネルギー線重合性プレポリマーと併用してもよい。
The epoxy acrylate prepolymer can be obtained, for example, by reacting (meth) acrylic acid with an oxirane ring of a relatively low molecular weight bisphenol type epoxy resin or novolak type epoxy resin and esterifying it. The urethane acrylate-based prepolymer can be obtained, for example, by esterifying a polyurethane oligomer obtained by reaction of polyether polyol or polyester polyol and polyisocyanate with (meth) acrylic acid. Furthermore, the polyol acrylate-based prepolymer can be obtained by esterifying the hydroxyl group of the polyether polyol with (meth) acrylic acid. These active energy ray polymerizable prepolymers may be used alone or in combination of two or more.
On the other hand, as a cationic polymerization type active energy ray polymerizable prepolymer, an epoxy resin is usually used. Examples of the epoxy resins include compounds obtained by epoxidizing polyphenols such as bisphenol resins and novolak resins with epichlorohydrin, etc., and compounds obtained by oxidizing a linear olefin compound or a cyclic olefin compound with a peroxide or the like. Etc.
Examples of active energy ray polymerizable monomers include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. , Neopentyl glycol adipate di (meth) acrylate, hydroxypivalate neopentyl glycol di (meth) acrylate, dicyclopentanyl di (meth) acrylate, caprolactone-modified dicyclopentenyl di (meth) acrylate, ethylene oxide-modified phosphate di ( (Meth) acrylate, allylated cyclohexyl di (meth) acrylate, isocyanurate di (meth) acrylate, trimethylolpropane tri (meth) acrylate, dipentaerythritol tri (meth) acrylate, propionic acid modified Dipentaerythritol tri (meth) acrylate, pentaerythritol tri (meth) acrylate, propylene oxide modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, propionic acid modified dipentaerythritol penta (meth) acrylate, Examples thereof include polyfunctional acrylates such as dipentaerythritol hexa (meth) acrylate and caprolactone-modified dipentaerythritol hexa (meth) acrylate. These active energy ray polymerizable monomers may be used alone or in combination of two or more thereof, or may be used in combination with the active energy ray polymerizable prepolymer.

所望により用いられる光重合開始剤としては、ラジカル重合型の活性エネルギー線重合性プレポリマーや活性エネルギー線重合性モノマーに対しては、例えばベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン−n−ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2−ジメトキシ−2−フェニルアセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノ−プロパン−1−オン、4−(2−ヒドロキシエトキシ)フェニル−2(ヒドロキシ−2−プロプル)ケトン、ベンゾフェノン、p−フェニルベンゾフェノン、4,4'−ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2−メチルアントラキノン、2−エチルアントラキノン、2−ターシャリ−ブチルアントラキノン、2−アミノアントラキノン、2−メチルチオキサントン、2−エチルチオキサントン、2−クロロチオキサントン、2,4−ジメチルチオキサントン、2,4−ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p−ジメチルアミン安息香酸エステルなどが挙げられる。また、カチオン重合型の活性エネルギー線重合性プレポリマーに対する光重合開始剤としては、例えば芳香族スルホニウムイオン、芳香族オキソスルホニウムイオン、芳香族ヨードニウムイオンなどのオニウムと、テトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネートなどの陰イオンとからなる化合物が挙げられる。これらは1種用いてもよいし、2種以上を組み合わせて用いてもよく、また、その配合量は、前記活性エネルギー線重合性プレポリマー及び/又は活性エネルギー線重合性モノマー100重量部に対して、通常0.2〜10重量部の範囲で選ばれる。   As photopolymerization initiators used as desired, for radical polymerization type active energy ray polymerizable prepolymers and active energy ray polymerizable monomers, for example, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin -N-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropane- 1-one, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2 Roxy-2-propyl) ketone, benzophenone, p-phenylbenzophenone, 4,4′-diethylaminobenzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 2-aminoanthraquinone, 2- Examples include methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, benzyldimethyl ketal, acetophenone dimethyl ketal, p-dimethylamine benzoate, and the like. Examples of the photopolymerization initiator for the cationic polymerization type active energy ray polymerizable prepolymer include oniums such as aromatic sulfonium ions, aromatic oxosulfonium ions and aromatic iodonium ions, tetrafluoroborate, hexafluorophosphate, Examples thereof include compounds composed of anions such as hexafluoroantimonate and hexafluoroarsenate. These may be used alone or in combination of two or more, and the blending amount thereof is 100 parts by weight of the active energy ray polymerizable prepolymer and / or the active energy ray polymerizable monomer. In general, it is selected in the range of 0.2 to 10 parts by weight.

一方、ハードコート層に含有させる近赤外線吸収剤については、少なくとも波長850〜1000nmの全領域における透過率が30%以下である反射防止フィルムを与えることのできるものであればよく、特に制限されず、様々な種類のものを、適宜選択して用いることができる。
当該近赤外線吸収剤は、有機系近赤外線吸収剤と無機系近赤外線吸収剤に大別するができる。ここで、有機系近赤外線吸収剤としては、例えばシアニン系化合物、スクワリリウム系化合物、チオールニッケル錯塩系化合物、ナフタロシアニン系化合物、フタロシアニン系化合物、トリアリルメタン系化合物、ナフトキノン系化合物、アントラキノン系化合物、さらにはN,N,N',N'−テトラキス(p−ジ−n−ブチルアミノフェニル)−p−フェニレンジアミニウムの過塩素酸塩、フェニレンジアミニウムの塩素塩、フェニレンジアミニウムのヘキサフルオロアンチモン酸塩、フェニレンジアミニウムのフッ化ホウ素酸塩、フェニレンジアミニウムのフッ素塩、フェニレンジアミニウムの過塩素酸塩などのアミノ化合物、銅化合物とビスチオウレア化合物、リン化合物と銅化合物、リン酸エステル化合物と銅化合物との反応により得られるリン酸エステル銅化合物などが挙げられる。
これらの中では、チオールニッケル錯塩系化合物(特開平9−230134号公報など)及びフタロシアニン系化合物が好ましく、特に、特開2000−26748号公報などに開示されているフッ素含有フタロシアニン化合物が、有機系近赤外線吸収剤の中で、可視光線透過率が高く、かつ耐熱性、耐光性、耐候性などの特性に優れることから、好適である。
On the other hand, the near-infrared absorber to be contained in the hard coat layer is not particularly limited as long as it can provide an antireflection film having a transmittance of 30% or less in the entire region of at least a wavelength of 850 to 1000 nm. Various types can be appropriately selected and used.
The said near-infrared absorber can be divided roughly into an organic near-infrared absorber and an inorganic near-infrared absorber. Here, as the organic near infrared absorber, for example, a cyanine compound, a squarylium compound, a thiol nickel complex compound, a naphthalocyanine compound, a phthalocyanine compound, a triallylmethane compound, a naphthoquinone compound, an anthraquinone compound, Further, N, N, N ′, N′-tetrakis (p-di-n-butylaminophenyl) -p-phenylenediaminium perchlorate, phenylenediaminium chloride, phenylenedianium hexafluoroantimony Amino compounds such as acid salts, fluorinated boronates of phenylene dianium, fluorine salts of phenylene diaminium, perchlorates of phenylene diaminium, copper compounds and bisthiourea compounds, phosphorus compounds and copper compounds, phosphate ester compounds Obtained by reaction of copper with copper compounds Such as Berlin ester copper compound.
Among these, a thiol nickel complex salt compound (JP-A-9-230134, etc.) and a phthalocyanine compound are preferable, and in particular, a fluorine-containing phthalocyanine compound disclosed in JP-A-2000-26748 is an organic type. Among near-infrared absorbers, it has a high visible light transmittance and is excellent in properties such as heat resistance, light resistance, and weather resistance.

また、無機系近赤外線吸収剤としては、例えば、酸化タングステン系化合物、酸化チタン、酸化ジルコニウム、酸化タンタル、酸化ニオブ、酸化亜鉛、酸化インジウム、錫ドープ酸化インジウム(ITO)、酸化錫、アンチモンドープ酸化錫(ATO)、酸化セシウム、硫化亜鉛などが挙げられる。これらの中では、近赤外線の吸収率が高く、かつ可視光線の透過率が高いことから、酸化タングステン系化合物が好ましく、特にセシウム含有酸化タングステンが好適である。
一般に、有機系近赤外線吸収剤と無機系近赤外線吸収剤を比較した場合、近赤外線の吸収能力は有機系の方が優れているが、耐光性や耐候性については、無機系の方が格段に優れている。また、有機系のものは着色しやすいという欠点も有しており、実用性の点からは、無機系近赤外線吸収剤の方が好ましく、特にセシウム含有酸化タングステンの使用が好ましい。この無機系赤外線吸収剤は、可視光領域において吸収が少なく、かつ透明なコート層を形成するには、好ましくは0.5μm以下、より好ましくは0.1μm以下の粒径を有するものが有利である。
本発明においては、有機系近赤外線吸収剤を1種用いてもよいし、2種以上を組み合わせて用いてもよく、また無機系近赤外線吸収剤を1種用いてもよいし、2種以上を組み合わせて用いてもよい。あるいは、有機系近赤外線吸収剤1種以上と無機系近赤外線吸収剤1種以上とを適宜組み合わせて用いてもよい。
なお、近赤外線吸収剤を単独使用した場合、たとえ波長850〜1000nmの領域で透過率が30%を超える部分があったとしても、2種以上を併用することにより、波長850〜1000nmの全領域における透過率が30%以下であればよい。
この近赤外線吸収剤の使用量は、ハードコート層の膜厚にもよるが、有機系近赤外線吸収剤を使用する場合には、ハードコート層中の含有量は、通常1〜10重量%、好ましくは3〜7重量%である。一方、無機系近赤外線吸収剤を使用する場合には、ハードコート層中の含有量は、通常10〜60重量%、好ましくは20〜40重量%である。
Examples of inorganic near-infrared absorbers include tungsten oxide compounds, titanium oxide, zirconium oxide, tantalum oxide, niobium oxide, zinc oxide, indium oxide, tin-doped indium oxide (ITO), tin oxide, and antimony-doped oxide. Examples thereof include tin (ATO), cesium oxide, and zinc sulfide. Among these, tungsten oxide compounds are preferred, and cesium-containing tungsten oxide is particularly preferred because of its high near-infrared absorptivity and high visible light transmittance.
In general, when comparing organic near-infrared absorbers with inorganic near-infrared absorbers, the near-infrared absorption capacity is superior to organic ones, but inorganic ones are far superior in terms of light resistance and weather resistance. Is excellent. In addition, organic materials also have a drawback that they are easily colored, and from the viewpoint of practicality, inorganic near-infrared absorbers are preferred, and the use of cesium-containing tungsten oxide is particularly preferred. In order to form a transparent coat layer with a small absorption in the visible light region, this inorganic infrared absorber preferably has a particle size of preferably 0.5 μm or less, more preferably 0.1 μm or less. is there.
In the present invention, one type of organic near infrared absorber may be used, two or more types may be used in combination, one type of inorganic near infrared absorber may be used, or two or more types. May be used in combination. Alternatively, one or more organic near infrared absorbers and one or more inorganic near infrared absorbers may be used in appropriate combination.
In addition, when the near infrared absorber is used alone, even if there is a portion where the transmittance exceeds 30% in the wavelength range of 850 to 1000 nm, the entire region of the wavelength range of 850 to 1000 nm can be obtained by using two or more kinds in combination. The transmittance at 30 may be 30% or less.
The amount of the near infrared absorber used depends on the film thickness of the hard coat layer, but when an organic near infrared absorber is used, the content in the hard coat layer is usually 1 to 10% by weight, Preferably it is 3-7 weight%. On the other hand, when using an inorganic near infrared absorber, the content in the hard coat layer is usually 10 to 60% by weight, preferably 20 to 40% by weight.

本発明においては、(A)層のハードコート層には、防眩性付与剤として、有機及び/又は無機フィラーを含有させることができる。有機フィラーとしては、例えばメラミン系樹脂粒子、アクリル系樹脂粒子、アクリル−スチレン系共重合体粒子、ポリカーボネート系粒子、ポリエチレン系粒子、ポリスチレン系粒子、ベンゾグアナミン系樹脂粒子などが挙げられる。これらの有機フィラーの平均粒径は、通常2〜10μm程度である。
また、無機フィラーとしては、例えば平均粒径が0.5〜10μm程度のシリカ粒子や、コロイド状シリカ粒子のアミン化合物による凝集物であって、平均粒径が0.5〜10μm程度のものなどを挙げることができる。
これらの防眩性付与剤は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよく、ハードコート層中のその含有量は、通常2〜15重量%、好ましくは3〜8重量%である。ハードコート層に防眩性付与剤を含有させることにより、本発明の反射防止フィルムの60°グロス値は、通常30〜120となる。
In the present invention, the hard coat layer (A) can contain an organic and / or inorganic filler as an antiglare property-imparting agent. Examples of the organic filler include melamine resin particles, acrylic resin particles, acrylic-styrene copolymer particles, polycarbonate particles, polyethylene particles, polystyrene particles, and benzoguanamine resin particles. These organic fillers usually have an average particle size of about 2 to 10 μm.
Examples of the inorganic filler include silica particles having an average particle diameter of about 0.5 to 10 μm, and aggregates of colloidal silica particles with an amine compound having an average particle diameter of about 0.5 to 10 μm. Can be mentioned.
One of these antiglare imparting agents may be used alone, or two or more thereof may be used in combination, and the content thereof in the hard coat layer is usually 2 to 15% by weight, preferably 3 ~ 8% by weight. When the hard coat layer contains an antiglare property-imparting agent, the 60 ° gloss value of the antireflection film of the present invention is usually 30 to 120.

本発明において用いられるこのハードコート層形成用塗工液は、必要に応じ、適当な溶剤中に、前記の活性エネルギー線硬化性化合物と、近赤外線吸収剤と、所望により用いられる前記の光重合開始剤、防眩性付与剤、さらには各種添加剤、例えば酸化防止剤、紫外線吸収剤、光安定剤、レベリング剤、消泡剤などを、それぞれ所定の割合で加え、溶解又は分散させることにより、調製することができる。
この際用いる溶剤としては、例えばヘキサン、ヘプタン、シクロヘキサンなどの脂肪族炭化水素、トルエン、キシレンなどの芳香族炭化水素、塩化メチレン、塩化エチレンなどのハロゲン化炭化水素、メタノール、エタノール、プロパノール、ブタノール、1−メトキシ−2−プロパノールなどのアルコール、アセトン、メチルエチルケトン、2−ペンタノン、メチルイソブチルケトン、イソホロンなどのケトン、酢酸エチル、酢酸ブチルなどのエステル、エチルセロソルブなどのセロソルブ系溶剤などが挙げられる。
このようにして調製された塗工液の濃度、粘度としては、コーティング可能な濃度、粘度であればよく、特に制限されず、状況に応じて適宜選定することができる。
次に、基材フィルムの一方の面に、上記塗工液を、従来公知の方法、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法などを用いて、コーティングして塗膜を形成させ、乾燥後、これに活性エネルギー線を照射して該塗膜を硬化させることにより、近赤外線吸収性ハードコート層が形成される。
活性エネルギー線としては、例えば紫外線や電子線などが挙げられる。上記紫外線は、高圧水銀ランプ、ヒュージョンHランプ、キセノンランプなどで得られる。一方電子線は、電子線加速器などによって得られる。この活性エネルギー線の中では、特に紫外線が好適である。なお、電子線を使用する場合は、重合開始剤を添加することなく、硬化膜を得ることができる。
本発明においては、(A)ハードコート層の厚さは2〜20μmの範囲である。この厚さが2μm未満では得られる反射防止フィルムの耐擦傷性が十分に発揮されないおそれがあるし、また20μmを超えるとハードコート層にクラックが発生することがある。このハードコート層の好ましい厚さは3〜15μmの範囲であり、特に5〜10μmの範囲が好適である。
本発明の光学用フィルムにおいては、この(A)ハードコート層の屈折率は、通常1.47〜1.60、好ましくは1.49〜1.55の範囲である。
The hard coat layer-forming coating solution used in the present invention may contain the active energy ray-curable compound, the near-infrared absorber, and the photopolymerization used as required, in an appropriate solvent, if necessary. By adding an initiator, an antiglare agent, and various other additives such as an antioxidant, an ultraviolet absorber, a light stabilizer, a leveling agent, an antifoaming agent, etc. at a predetermined ratio, and dissolving or dispersing them. Can be prepared.
Examples of the solvent used in this case include aliphatic hydrocarbons such as hexane, heptane, and cyclohexane, aromatic hydrocarbons such as toluene and xylene, halogenated hydrocarbons such as methylene chloride and ethylene chloride, methanol, ethanol, propanol, butanol, Examples include alcohols such as 1-methoxy-2-propanol, ketones such as acetone, methyl ethyl ketone, 2-pentanone, methyl isobutyl ketone, and isophorone, esters such as ethyl acetate and butyl acetate, and cellosolv solvents such as ethyl cellosolve.
The concentration and viscosity of the coating solution thus prepared are not particularly limited as long as the concentration and viscosity can be coated, and can be appropriately selected depending on the situation.
Next, the coating liquid is applied to one surface of the base film using a conventionally known method such as a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, or a gravure coating method. The coating film is formed by coating, and after drying, the active energy ray is irradiated to cure the coating film, whereby a near-infrared absorbing hard coat layer is formed.
Examples of the active energy rays include ultraviolet rays and electron beams. The ultraviolet rays can be obtained with a high-pressure mercury lamp, a fusion H lamp, a xenon lamp, or the like. On the other hand, the electron beam is obtained by an electron beam accelerator or the like. Among these active energy rays, ultraviolet rays are particularly preferable. In addition, when using an electron beam, a cured film can be obtained, without adding a polymerization initiator.
In the present invention, the thickness of the (A) hard coat layer is in the range of 2 to 20 μm. If the thickness is less than 2 μm, the resulting antireflection film may not exhibit sufficient scratch resistance, and if it exceeds 20 μm, cracks may occur in the hard coat layer. The preferred thickness of the hard coat layer is in the range of 3 to 15 μm, and particularly in the range of 5 to 10 μm.
In the optical film of the present invention, the refractive index of the (A) hard coat layer is usually 1.47 to 1.60, preferably 1.49 to 1.55.

本発明の反射防止フィルムにおいては、前記ハードコート層上に、(B)活性エネルギー線照射による硬化樹脂と多孔性シリカ粒子とを含む低屈折率層が設けられる。
この活性エネルギー線照射による硬化樹脂と多孔性シリカ粒子とを含む低屈折率層は、例えば活性エネルギー線硬化性化合物と、多孔性シリカ粒子と、所望により光重合開始剤などを含む低屈折率層形成用塗工液を、(A)ハードコート層上にコーティングして塗膜を形成させ、活性エネルギー線を照射して、該塗膜を硬化させることにより、形成することができる。
前記の活性エネルギー線硬化性化合物及び所望により用いられる光重合開始剤については、前述の(A)ハードコート層の説明において示したとおりである。
この(B)層に含まれる多孔性シリカ粒子としては、比重が1.7〜1.9、屈折率が1.25〜1.36及び平均粒径が20〜100nmの範囲にあるものが好ましく用いられる。このような性状を有する多孔性シリカ粒子を用いることにより、反射防止性能に優れる反射防止層が1層タイプの反射防止フィルムを得ることができる。
本発明においては、この(B)層中の多孔性シリカ粒子の含有量は、好ましくは30〜80重量%の範囲で選定される。該多孔性シリカ粒子の含有量が上記範囲にあれば、当該(B)層は所望の低屈折率を有する層となり、得られる反射防止フィルムは、反射防止性に優れたものとなる。該多孔性シリカ粒子の好ましい含有量は、50〜80重量%であり、特に60〜75重量%の範囲が好ましい。
当該(B)層は、厚さが50〜200nmであって、屈折率が、1.43以下、好ましくは1.30〜1.42の範囲にある。当該(B)層の厚さや屈折率が上記範囲にあれば、反射防止性能、及び耐擦傷性に優れる反射防止フィルムを得ることができる。当該(B)層の厚さは、好ましくは70〜130nmであり、屈折率は、好ましくは1.35〜1.40の範囲である。
In the antireflection film of the present invention, a low refractive index layer containing (B) a cured resin by irradiation with active energy rays and porous silica particles is provided on the hard coat layer.
The low refractive index layer containing a cured resin and porous silica particles by this active energy ray irradiation is, for example, a low refractive index layer containing an active energy ray curable compound, porous silica particles, and a photopolymerization initiator as required. The coating liquid for forming can be formed by coating the (A) hard coat layer to form a coating film, irradiating with active energy rays and curing the coating film.
About the said active energy ray hardening compound and the photoinitiator used depending on necessity, it is as having shown in description of the above-mentioned (A) hard-coat layer.
The porous silica particles contained in the layer (B) are preferably those having a specific gravity of 1.7 to 1.9, a refractive index of 1.25 to 1.36, and an average particle size of 20 to 100 nm. Used. By using porous silica particles having such properties, an antireflection film having a single layer type antireflection layer having excellent antireflection performance can be obtained.
In the present invention, the content of the porous silica particles in the layer (B) is preferably selected in the range of 30 to 80% by weight. If content of this porous silica particle exists in the said range, the said (B) layer will become a layer which has a desired low refractive index, and the obtained antireflection film will be excellent in antireflection property. The preferable content of the porous silica particles is 50 to 80% by weight, and particularly preferably 60 to 75% by weight.
The (B) layer has a thickness of 50 to 200 nm and a refractive index of 1.43 or less, preferably 1.30 to 1.42. When the thickness and refractive index of the (B) layer are in the above ranges, an antireflection film having excellent antireflection performance and scratch resistance can be obtained. The thickness of the (B) layer is preferably 70 to 130 nm, and the refractive index is preferably in the range of 1.35 to 1.40.

本発明において用いられるこの低屈折率層形成用塗工液は、必要に応じ、適当な溶剤中に、前記の活性エネルギー線硬化性化合物と、多孔性シリカ粒子と、所望により用いられる前記の光重合開始剤、さらには各種添加剤、例えば酸化防止剤、紫外線吸収剤、光安定剤、レベリング剤、消泡剤などを、それぞれ所定の割合で加え、溶解又は分散させることにより、調製することができる。
この際用いる溶剤については、前述のハードコート層形成用塗工液の説明において示したとおりである。
このようにして調製された塗工液の濃度、粘度としては、コーティング可能な濃度、粘度であればよく、特に制限されず、状況に応じて適宜選定することができる。
(A)ハードコート層上に、この塗工液を、従来公知の方法、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法などを用いて、コーティングして塗膜を形成させ、乾燥後、これに活性エネルギー線を照射して該塗膜を硬化させることにより、(B)低屈折率層が形成される。
活性エネルギー線については、前述のハードコート層の説明において示したとおりである。
The coating solution for forming a low refractive index layer used in the present invention comprises the above-mentioned active energy ray-curable compound, porous silica particles, and the above-mentioned light used as required, in an appropriate solvent, if necessary. It can be prepared by adding a polymerization initiator and further various additives such as an antioxidant, an ultraviolet absorber, a light stabilizer, a leveling agent, an antifoaming agent, etc. in a predetermined ratio and dissolving or dispersing them. it can.
The solvent used in this case is as described in the description of the hard coat layer forming coating solution.
The concentration and viscosity of the coating solution thus prepared are not particularly limited as long as the concentration and viscosity can be coated, and can be appropriately selected depending on the situation.
(A) The coating liquid is coated on the hard coat layer using a conventionally known method such as a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, or a gravure coating method. A coating film is formed, dried, and then irradiated with active energy rays to cure the coating film, thereby forming a (B) low refractive index layer.
The active energy ray is as described in the description of the hard coat layer.

本発明においては、前記(A)ハードコート層及び(B)低屈折率層の形成は、以下に示す方法で行うのが有利である。
まず、基材フィルムの一方の面にハードコート層形成用塗工液をコーティングして塗膜を形成させ、活性エネルギー線を照射してハーフキュア状態に硬化させる。この際、紫外線を照射する場合には、光量は、通常50〜150mJ/cm2程度である。次いで、このようにして形成されたハーフキュア状態の硬化層上に、低屈折率層形成用塗工液をコーティングして塗膜を形成させ、活性エネルギー線を十分に照射し、前記ハーフキュア状態の硬化層と共に完全に硬化させる。この際、紫外線を照射する場合、光量は、通常400〜1000mJ/cm2程度である。なお、(A)ハードコート層及び/又は低屈折率層を完全に硬化させる際は、酸素による硬化阻害を防ぐために、窒素ガスなどの雰囲気下で、活性エネルギー線を照射することができる。この場合、酸素濃度は低い方がよく、2容量%以下が好ましい。
このようにして、基材フィルム上に、(A)層と(B)層間の密着性に優れる(A)近赤外線吸収性ハードコート層及び(B)低屈折率層が順次形成される。
このようにして作製された本発明の反射防止フィルムにおいては、少なくとも波長850〜1000nmの全領域における透過率が30%以下であることを要す。該透過率が30%以下であれば、本発明の反射防止フィルムをPDPの前面板に用いた場合に、該PDPから発生する近赤外線による周辺電子機器(例えば、コードレスホン、近赤外線リモートコントロール装置を使用するビデオデッキなど)の誤作動を抑制することができる。前記透過率は、好ましくは20%以下である。
また、波長500〜700nmにおける反射率は、通常3%以下であり、全光線透過率は、通常40%以上、好ましくは50%以上である。また、ヘイズ値は、通常3%未満であり、ハードコート層に防眩性付与剤を含有させた場合は、3〜30%程度である。
本発明の反射防止フィルムにおいては、前記(B)低屈折率層上に防汚コート層を設けることができる。この防汚コート層は、一般にフッ素系樹脂を含む塗工液を、従来公知の方法、例えばバーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法などを用いて、(B)低屈折率層上にコーティングし、塗膜を形成させ、乾燥処理することにより、形成することがきでる。
この防汚コート層の厚さは、通常1〜10nm、好ましくは3〜8nmの範囲である。該防汚コート層を設けることにより、得られる反射防止フィルムは、表面の滑り性が良くなると共に、汚れにくくなる。
In the present invention, the (A) hard coat layer and (B) low refractive index layer are advantageously formed by the following method.
First, a hard coat layer-forming coating solution is coated on one surface of the base film to form a coating film, which is irradiated with active energy rays and cured to a half-cured state. In this case, when irradiating with ultraviolet rays, the amount of light is usually about 50 to 150 mJ / cm 2 . Next, a coating film is formed by coating a coating solution for forming a low refractive index layer on the cured layer in the half-cured state thus formed, and the half-cured state is sufficiently irradiated with active energy rays. And completely cured together with the cured layer. Under the present circumstances, when irradiating an ultraviolet-ray, a light quantity is about 400-1000mJ / cm < 2 > normally. When (A) the hard coat layer and / or the low refractive index layer is completely cured, active energy rays can be irradiated in an atmosphere of nitrogen gas or the like in order to prevent curing inhibition by oxygen. In this case, the oxygen concentration is preferably low and is preferably 2% by volume or less.
Thus, the (A) near-infrared absorbing hard coat layer and the (B) low refractive index layer, which are excellent in adhesion between the (A) layer and the (B) layer, are sequentially formed on the base film.
In the antireflection film of the present invention thus produced, it is necessary that the transmittance in the entire region of at least a wavelength of 850 to 1000 nm is 30% or less. If the transmittance is 30% or less, when the antireflection film of the present invention is used for the front plate of the PDP, peripheral electronic devices using near infrared rays generated from the PDP (for example, cordless phones, near infrared remote control devices) Malfunction of the video deck used) can be suppressed. The transmittance is preferably 20% or less.
The reflectance at a wavelength of 500 to 700 nm is usually 3% or less, and the total light transmittance is usually 40% or more, preferably 50% or more. Further, the haze value is usually less than 3%, and is about 3 to 30% when an antiglare imparting agent is contained in the hard coat layer.
In the antireflection film of the present invention, an antifouling coating layer can be provided on the (B) low refractive index layer. This antifouling coating layer is generally obtained by applying a coating solution containing a fluororesin using a conventionally known method such as a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, or a gravure coating method. (B) It can be formed by coating on a low refractive index layer, forming a coating film, and drying.
The thickness of the antifouling coating layer is usually in the range of 1 to 10 nm, preferably 3 to 8 nm. By providing the antifouling coating layer, the resulting antireflection film has improved surface slipperiness and is less likely to become dirty.

このようにして、近赤外線吸収性能と反射防止性能を兼備すると共に、耐擦傷性に優れる上、層構成が簡単でコストの低い反射防止フィルムを得ることができる。この反射防止フィルムは、特にPDPの前面板に好適に用いられる。
本発明の反射防止フィルムにおいては、基材フィルムのハードコート層とは反対側の面に、前面板における被着体に貼着させるための粘着剤層を形成させることができる。この粘着剤層を構成する粘着剤としては、光学用途用のもの、例えばアクリル系粘着剤、ウレタン系粘着剤、シリコーン系粘着剤が好ましく用いられる。この粘着剤層の厚さは、通常5〜50μmの範囲である。この粘着剤層には、表示装置の発光色を色調補正するために、染料や顔料を含有させることができる。
さらに、この粘着剤層の上に、剥離フィルムを設けることができる。この剥離フィルムとしては、例えばグラシン紙、コート紙、ラミネート紙などの紙及び各種プラスチックフィルムに、シリコーン樹脂などの剥離剤を塗付したものなどが挙げられる。この剥離フィルムの厚さについては特に制限はないが、通常20〜150μm程度である。
本発明の反射防止フィルムは、ディスプレイ用、特にPDP用の反射防止フィルムとして好適に使用できる。
In this way, an antireflection film having both near-infrared absorption performance and antireflection performance, excellent scratch resistance, a simple layer structure and low cost can be obtained. This antireflection film is particularly suitably used for the front plate of a PDP.
In the antireflection film of this invention, the adhesive layer for making it adhere to the to-be-adhered body in a front plate can be formed in the surface on the opposite side to the hard-coat layer of a base film. As an adhesive which comprises this adhesive layer, the thing for optical uses, for example, an acrylic adhesive, a urethane type adhesive, and a silicone type adhesive, are used preferably. The thickness of this pressure-sensitive adhesive layer is usually in the range of 5 to 50 μm. This pressure-sensitive adhesive layer can contain a dye or a pigment in order to correct the color tone of the display device.
Furthermore, a release film can be provided on this pressure-sensitive adhesive layer. Examples of the release film include paper such as glassine paper, coated paper, and laminate paper, and various plastic films coated with a release agent such as silicone resin. Although there is no restriction | limiting in particular about the thickness of this peeling film, Usually, it is about 20-150 micrometers.
The antireflection film of the present invention can be suitably used as an antireflection film for displays, particularly for PDPs.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
なお、各例で得られた反射防止フィルムの物性は、以下に示す方法に従って測定した。
(1)波長500nm、600nm及び700nmにおける反射率
分光光度計[(株)島津製作所製「UV−3101PC」]により、波長500nm、600nm及び700nmにおける反射率を測定した。
(2)波長850〜1000nmにおける分光透過率
分光光度計[(株)島津製作所製「UV−3101PC」]により、波長850nmから1000nmにおける分光透過率(以下、透過率という。)を測定した。波長850nm、900nm及び1000nmの測定値を第1表に示す。
(3)全光線透過率及びヘイズ値
日本電色工業社製ヘイズメーター「NDH 2000」を使用し、JIS K 6714に準拠して測定した。
(4)60°グロス値
日本電色工業社製グロスメーター「VG 2000」を使用し、JIS K 7105に準拠して測定した。
(5)耐擦傷性
スチールウール#0000を使用し、荷重9.8×10-3N/mm2で5往復擦った後に目視観察を行い、下記の判定基準で評価した。
○:傷が付かない。
×:傷が付く。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
In addition, the physical property of the antireflection film obtained in each example was measured according to the method shown below.
(1) Reflectance at wavelengths of 500 nm, 600 nm, and 700 nm The reflectance at wavelengths of 500 nm, 600 nm, and 700 nm was measured with a spectrophotometer [manufactured by Shimadzu Corporation “UV-3101PC”].
(2) Spectral transmittance at a wavelength of 850 to 1000 nm A spectral transmittance at a wavelength of 850 nm to 1000 nm (hereinafter referred to as transmittance) was measured with a spectrophotometer [“UV-3101PC” manufactured by Shimadzu Corporation]. Table 1 shows measured values at wavelengths of 850 nm, 900 nm, and 1000 nm.
(3) Total light transmittance and haze value A haze meter “NDH 2000” manufactured by Nippon Denshoku Industries Co., Ltd. was used and measured according to JIS K 6714.
(4) 60 ° gloss value A gloss meter “VG 2000” manufactured by Nippon Denshoku Industries Co., Ltd. was used and measured according to JIS K 7105.
(5) Scratch resistance Steel wool # 0000 was used, and after rubbed 5 times with a load of 9.8 × 10 −3 N / mm 2 , visual observation was performed, and evaluation was performed according to the following criteria.
○: Not scratched.
×: Scratched.

実施例1
(1)A液(ハードコート層形成用塗工液)の調製
活性エネルギー線硬化性化合物として多官能アクリレート混合物[荒川化学(株)製、商品名「ビームセット577CB」、固形分濃度100%]100重量部に、光重合開始剤[チバ・スペシャルティ・ケミカルズ社製、商品名「イルガキュア907」]2重量部を添加し、次いで近赤外線吸収剤[住友金属鉱山(株)製、商品名「YMF−01」、セシウム含有酸化タングステン(タングステンに対し、セシウム33モル%含有)含有量10重量%懸濁液、全固形分濃度14重量%]300重量部を混合したのち、全体の固形分濃度が30重量%になるようにメチルイソブチルケトン(MIBK)で希釈して、A液(ハードコート層形成用塗工液)を調製した。
(2)B液(低屈折率層形成用塗工液)の調製
多官能アクリレート混合物[荒川化学(株)製、商品名「ビームセット577CB」、固形分濃度100%]100重量部に、光重合開始剤[チバ・スペシャルティ・ケミカルズ社製、商品名「イルガキュア907」]5重量部を添加し、次いで多孔性シリカ粒子のメチルイソブチルケトン(MIBK)分散体[触媒化成工業(株)製、商品名「ELCOM RT−1002SIV」、固形分濃度21重量%、多孔性シリカ粒子:比重1.8、屈折率1.30、平均粒径60nm]1200重量部を混合したのち、全体の固形分濃度が2重量%になるようにMIBKで希釈して、(B)液(低屈折率層形成用塗工液)を調製した。
(3)反射防止フィルムの作製
基材フィルムとして厚さ100μmの両面易接着処理ポリエチレンテレフタレート(PET)フィルム[東洋紡績(株)製、商品名「A4300」]表面に、前記(1)で得たA液を硬化後の厚さが6μmになるように、マイヤーバーNo.16で塗布した。次いで、90℃で1分間乾燥したのち、紫外線を光量100mJ/cm2で照射して、ハーフキュア状態に硬化させた。
次に、このハーフキュア面に、前記(2)で得たB液を硬化後の厚さが100nmになるようにマイヤーバーNo.4で塗布した。次いで、80℃で1分間乾燥したのち、窒素ガス雰囲気下(酸素濃度0.5容量%)で紫外線を光量500mJ/cm2で照射して、完全硬化させ、PETフィルム上に、屈折率1.54の近赤外線吸収性ハードコート層及び屈折率1.38の低屈折率層を順次形成させることにより、反射防止フィルムを作製した。
このようにして作製された反射防止フィルムの物性を第1表に示す。この反射防止フィルムの波長850〜1000nmの全領域における透過率は30%以下であった。
なお、各コート層の厚さは、松下インターテクノ社製「フィルメトリクスF−20」により測定し、屈折率は(株)アタゴ製アッベ屈折計(Na光源、波長:約590nm)により測定した。(以下、同様)
実施例2
実施例1におけるA液(ハードコート層形成用塗工液)の調製を、下記のように変更した以外は、実施例1と同様に実施した。
<A液の調製>
多官能アクリレート混合物[荒川化学(株)製、商品名「ビームセット577CB」、固形分濃度100%]100重量部に、光重合開始剤[チバ・スペシャルティ・ケミカルズ社製、商品名「イルガキュア907」]2重量部を添加し、次いで近赤外線吸収剤[(株)日本触媒製、商品名「イーエックスカラーIR−12」、フタロシアニン系、固形分濃度100%(粉体)]1.3重量部、近赤外線吸収剤[(株)日本触媒製、商品名「イーエックスカラーIR−14」、フタロシアニン系、固形分濃度100%(粉体)]0.75重量部、近赤外線吸収剤[(株)日本触媒製、商品名「イーエックスカラーIR−906B」、フタロシアニン系、固形分濃度100%(粉体)]0.65重量部、近赤外線吸収剤[(株)日本触媒製、商品名「イーエックスカラーIR−910B」、フタロシアニン系、固形分濃度100%(粉体)]3.3重量部を混合したのち、全体の固形分濃度が30重量%になるようにMIBKで希釈してA液(ハードコート層形成用塗工液)を調製した。
このようにして作製した反射防止フィルムの物性を第1表に示す。この反射防止フィルムの波長850〜1000nmの全領域における透過率は30%以下であった。なお、ハードコート層の屈折率は、1.53であった。
実施例3
実施例1におけるA液(ハードコート層形成用塗工液)の調製を、下記のように変更した以外は、実施例1と同様に実施した。
<A液の調製>
多官能アクリレート混合物[荒川化学(株)製、商品名「ビームセット577CB」、固形分濃度100%]100重量部に、光重合開始剤[チバ・スペシャルティ・ケミカルズ社製、商品名「イルガキュア907」]2重量部を添加し、次いで近赤外線吸収剤[住友金属鉱山(株)製、商品名「YMF−01」、セシウム含有酸化タングステン(タングステンに対し、セシウム33モル%含有)含有量10重量%懸濁液、全固形分濃度14重量%]300重量部を混合し、さらに防眩性付与剤としてシリカ粒子[東ソー・シリカ(株)製、商品名「ニップシールE−200」、平均粒径3μm]5重量部を加えたのち、全体の固形分濃度が30重量%になるようにMIBKで希釈してA液(ハードコート層形成用塗工液)を調製した。
このようにして作製した反射防止フィルムの物性を第1表に示す。この反射防止フィルムの波長850〜1000nmの全領域における透過率は30%以下であった。なお、ハードコート層の屈折率は、1.53であった。
Example 1
(1) Preparation of liquid A (hard coat layer forming coating liquid) Polyfunctional acrylate mixture [trade name “Beamset 577CB” manufactured by Arakawa Chemical Co., Ltd., solid content concentration 100%] as an active energy ray-curable compound To 100 parts by weight, 2 parts by weight of a photopolymerization initiator [manufactured by Ciba Specialty Chemicals, trade name “Irgacure 907”] is added, and then a near infrared absorber [manufactured by Sumitomo Metal Mining Co., Ltd., trade name “YMF”. -01 ", cesium-containing tungsten oxide (containing 33 mol% of cesium with respect to tungsten) content of 10 wt% suspension, total solid content concentration of 14 wt%], after mixing 300 parts by weight, the total solid content concentration It diluted with methyl isobutyl ketone (MIBK) so that it might become 30 weight%, and A liquid (coating liquid for hard-coat layer formation) was prepared.
(2) Preparation of liquid B (coating liquid for forming a low refractive index layer) A polyfunctional acrylate mixture [made by Arakawa Chemical Co., Ltd., trade name “Beam Set 577CB”, solid content concentration: 100%] 5 parts by weight of a polymerization initiator [trade name “Irgacure 907” manufactured by Ciba Specialty Chemicals Co., Ltd.] was added, and then a methyl isobutyl ketone (MIBK) dispersion of porous silica particles [manufactured by Catalyst Kasei Kogyo Co., Ltd., product Name "ELCOM RT-1002SIV", solid content concentration 21 wt%, porous silica particles: specific gravity 1.8, refractive index 1.30, average particle size 60 nm] After mixing 1200 parts by weight, the total solid content concentration By diluting with MIBK so as to be 2% by weight, a liquid (B) (a coating liquid for forming a low refractive index layer) was prepared.
(3) Production of antireflection film Obtained on (1) above on the surface of a double-sided easy-adhesion-treated polyethylene terephthalate (PET) film [manufactured by Toyobo Co., Ltd., trade name “A4300”] having a thickness of 100 μm as a base film. The Meyer bar No. was adjusted so that the thickness after curing the A liquid was 6 μm. 16 was applied. Next, after drying at 90 ° C. for 1 minute, ultraviolet rays were irradiated at a light amount of 100 mJ / cm 2 to be cured in a half-cured state.
Next, on this half-cure surface, the Meyer bar No. was adjusted so that the thickness after curing the B liquid obtained in (2) was 100 nm. 4 was applied. Next, after drying at 80 ° C. for 1 minute, ultraviolet rays were irradiated at a light amount of 500 mJ / cm 2 in a nitrogen gas atmosphere (oxygen concentration 0.5% by volume) to completely cure, and a refractive index of 1. An antireflection film was prepared by sequentially forming a 54 near-infrared absorbing hard coat layer and a low refractive index layer having a refractive index of 1.38.
Table 1 shows the physical properties of the antireflection film thus prepared. The transmittance of this antireflection film in the entire region of a wavelength of 850 to 1000 nm was 30% or less.
The thickness of each coat layer was measured by “Filmetrics F-20” manufactured by Matsushita Intertechno Co., Ltd., and the refractive index was measured by an Abbe refractometer (Na light source, wavelength: about 590 nm) manufactured by Atago Co., Ltd. (Hereinafter the same)
Example 2
The preparation of the liquid A (hard coat layer forming coating liquid) in Example 1 was performed in the same manner as in Example 1 except that the preparation was changed as follows.
<Preparation of solution A>
Multi-functional acrylate mixture [trade name “Beamset 577CB” manufactured by Arakawa Chemical Co., Ltd., solid content concentration 100%] 100 parts by weight, photopolymerization initiator [product name “Irgacure 907” manufactured by Ciba Specialty Chemicals Co., Ltd.] ] 2 parts by weight, then, near infrared absorber [manufactured by Nippon Shokubai Co., Ltd., trade name "EX Color IR-12", phthalocyanine-based, solid content 100% (powder)] 1.3 parts by weight , Near infrared absorber [made by Nippon Shokubai Co., Ltd., trade name “EX color IR-14”, phthalocyanine series, solid content concentration 100% (powder)], 0.75 part by weight, near infrared absorber [(stock ) Manufactured by Nippon Shokubai Co., Ltd., trade name “EX Color IR-906B”, phthalocyanine series, solid content concentration 100% (powder)] 0.65 parts by weight, near infrared absorber [made by Nippon Shokubai Co., Ltd., trade name “ X Color IR-910B ”, phthalocyanine-based, solid content concentration 100% (powder)] After mixing 3.3 parts by weight, diluted with MIBK so that the total solid content concentration becomes 30% by weight, liquid A ( Hard coat layer forming coating solution) was prepared.
Table 1 shows the physical properties of the antireflection film thus prepared. The transmittance of this antireflection film in the entire region of a wavelength of 850 to 1000 nm was 30% or less. The refractive index of the hard coat layer was 1.53.
Example 3
The preparation of the liquid A (hard coat layer forming coating liquid) in Example 1 was performed in the same manner as in Example 1 except that the preparation was changed as follows.
<Preparation of solution A>
Multi-functional acrylate mixture [trade name “Beamset 577CB” manufactured by Arakawa Chemical Co., Ltd., solid content concentration 100%] 100 parts by weight, photopolymerization initiator [product name “Irgacure 907” manufactured by Ciba Specialty Chemicals Co., Ltd.] ] 2 parts by weight, then, near-infrared absorber [manufactured by Sumitomo Metal Mining Co., Ltd., trade name “YMF-01”, cesium-containing tungsten oxide (containing 33 mol% of cesium with respect to tungsten) content of 10% by weight 300 parts by weight of a suspension and a total solid content of 14% by weight are mixed, and silica particles [manufactured by Tosoh Silica Co., Ltd., trade name “Nip seal E-200”, average particle size of 3 μm as an antiglare agent After adding 5 parts by weight, the solution A (hard coat layer forming coating solution) was prepared by diluting with MIBK so that the total solid concentration was 30% by weight.
Table 1 shows the physical properties of the antireflection film thus prepared. The transmittance of this antireflection film in the entire region of a wavelength of 850 to 1000 nm was 30% or less. The refractive index of the hard coat layer was 1.53.

比較例1
実施例1(1)におけるA液の調製において、近赤外線吸収剤を用いなかったこと以外は、実施例1と同様に実施して、反射防止フィルムを作製した。ハードコート層の屈折率:1.53
このようにして作製した反射防止フィルムの物性を第1表に示す。
比較例2
実施例1(1)のA液の調製において、光重合開始剤「イルガキュア907」の使用量を5重量部に変更した以外は、実施例1(1)と同様にして、ハードコート層形成用塗工液を調製した。
次に、基材フィルムとして、厚さ100μmのPETフィルム「A4300」(前出)表面に、前記ハードコート層形成用塗工液を硬化後の厚さが6μmになるように、マイヤーバーNo.16で塗布した。次いで、90℃で1分間乾燥したのち、紫外線を光量250mJ/cm2で照射して完全硬化させ、ハードコートフィルムを作製した。
このようにして作製されたハードコートフィルムの物性を第1表に示す。
Comparative Example 1
In the preparation of the liquid A in Example 1 (1), an antireflection film was produced in the same manner as in Example 1 except that the near-infrared absorber was not used. Refractive index of hard coat layer: 1.53
Table 1 shows the physical properties of the antireflection film thus prepared.
Comparative Example 2
For preparing a hard coat layer in the same manner as in Example 1 (1) except that the amount of the photopolymerization initiator “Irgacure 907” used was changed to 5 parts by weight in the preparation of solution A in Example 1 (1). A coating solution was prepared.
Next, on the surface of a PET film “A4300” (described above) having a thickness of 100 μm as a base film, a Mayer bar No. 1 was prepared so that the thickness after curing the coating liquid for forming a hard coat layer was 6 μm. 16 was applied. Next, after drying at 90 ° C. for 1 minute, ultraviolet rays were irradiated with a light amount of 250 mJ / cm 2 to be completely cured to produce a hard coat film.
The physical properties of the hard coat film thus prepared are shown in Table 1.

Figure 2006201463
Figure 2006201463

第1表から、本発明の反射防止フィルム(実施例1〜3)は、いずれも反射防止性に優れると共に、近赤外線吸収性に優れ、耐擦傷性にも優れている。また、実施例3は、ハードコート層に防眩性付与剤を含有させているので、60°グロス値が58となっている。
これに対し、比較例1は、ハードコート層に近赤外線吸収剤を含んでいないので、近赤外線吸収性能が付与されていない。また、比較例2は、低屈折率層が設けられていないので、反射防止性に劣る。
From Table 1, the antireflection films of the present invention (Examples 1 to 3) are all excellent in antireflection properties, excellent in near infrared absorptivity, and excellent in scratch resistance. In Example 3, since the hard coat layer contains an antiglare agent, the 60 ° gloss value is 58.
On the other hand, since the comparative example 1 does not contain the near-infrared absorber in the hard-coat layer, the near-infrared absorption performance is not provided. Moreover, since the low refractive index layer is not provided in the comparative example 2, it is inferior to antireflection property.

本発明の反射防止フィルムは、近赤外線吸収性能と反射防止性能を有し、かつ耐擦傷性に優れる上、層構成が簡単でコストが低く、特にPDP用として好適である。   The antireflection film of the present invention has near-infrared absorption performance and antireflection performance, is excellent in scratch resistance, has a simple layer structure and is low in cost, and is particularly suitable for PDP use.

Claims (7)

基材フィルムの一方の面に、(A)活性エネルギー線照射による硬化樹脂と近赤外線吸収剤を含む厚さ2〜20μmのハードコート層、及び(B)活性エネルギー線照射による硬化樹脂を含む屈折率1.43以下、厚さ50〜200nmの低屈折率層が順次積層され、かつ少なくとも波長850〜1000nmの全領域における透過率が30%以下であることを特徴とする反射防止フィルム。   On one surface of the base film, (A) a hard coat layer having a thickness of 2 to 20 μm containing a cured resin and near infrared absorber by irradiation with active energy rays, and (B) a refraction containing a cured resin by irradiation with active energy rays. 1. An antireflection film characterized by comprising a low refractive index layer having a refractive index of 1.43 or less and a thickness of 50 to 200 nm sequentially laminated, and having a transmittance of 30% or less at least in the entire region of a wavelength of 850 to 1000 nm. (A)層における近赤外線吸収剤が、酸化タングステン系化合物である請求項1に記載の反射防止フィルム。   The near-infrared absorber in the (A) layer is a tungsten oxide compound, The antireflection film according to claim 1. 酸化タングステン系化合物が、セシウム含有酸化タングステンである請求項2に記載の反射防止フィルム。   The antireflection film according to claim 2, wherein the tungsten oxide compound is cesium-containing tungsten oxide. (A)層に、さらに有機及び/又は無機フィラーを含有させてなる請求項1〜3のいずれかに記載の反射防止フィルム。   The antireflection film according to any one of claims 1 to 3, wherein the layer (A) further contains an organic and / or inorganic filler. (B)層が、多孔性シリカ30〜80重量%を含む請求項1〜4のいずれかに記載の反射防止フィルム。   The antireflection film according to any one of claims 1 to 4, wherein the layer (B) contains 30 to 80% by weight of porous silica. 基材フィルムの他方の面に、厚さ5〜50μmの粘着剤層を有する請求項1〜5のいずれかに記載の反射防止フィルム。   The antireflection film according to any one of claims 1 to 5, further comprising a pressure-sensitive adhesive layer having a thickness of 5 to 50 µm on the other surface of the base film. プラズマディスプレイ用である請求項1〜6のいずれかに記載の反射防止フィルム。   It is an object for plasma displays, The antireflection film in any one of Claims 1-6.
JP2005012819A 2005-01-20 2005-01-20 Antireflection film Active JP5242883B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005012819A JP5242883B2 (en) 2005-01-20 2005-01-20 Antireflection film
PCT/JP2006/301092 WO2006078053A1 (en) 2005-01-20 2006-01-18 Reflection preventing film
KR1020077018800A KR101275408B1 (en) 2005-01-20 2006-01-18 Reflection preventing film
CN2006800027826A CN101107543B (en) 2005-01-20 2006-01-18 Reflection preventing film
TW95101990A TWI395667B (en) 2005-01-20 2006-01-19 An anti-reflectance film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005012819A JP5242883B2 (en) 2005-01-20 2005-01-20 Antireflection film

Publications (2)

Publication Number Publication Date
JP2006201463A true JP2006201463A (en) 2006-08-03
JP5242883B2 JP5242883B2 (en) 2013-07-24

Family

ID=36692419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005012819A Active JP5242883B2 (en) 2005-01-20 2005-01-20 Antireflection film

Country Status (5)

Country Link
JP (1) JP5242883B2 (en)
KR (1) KR101275408B1 (en)
CN (1) CN101107543B (en)
TW (1) TWI395667B (en)
WO (1) WO2006078053A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008059995A1 (en) * 2006-11-17 2008-05-22 Lintec Corporation Pressure sensitive adhesive composition for display
JP2008114544A (en) * 2006-11-07 2008-05-22 Catalysts & Chem Ind Co Ltd Substrate with transparent coating
WO2008102907A1 (en) * 2007-02-20 2008-08-28 Lintec Corporation Near-infrared shielding film
JP2008200924A (en) * 2007-02-19 2008-09-04 Toray Ind Inc Laminated film
JP2008268267A (en) * 2007-04-16 2008-11-06 Nippon Shokubai Co Ltd Resin composition for hard coat
JP2009116314A (en) * 2007-10-18 2009-05-28 Nof Corp Hardcoat film for plasma display panel and plasma display panel
JP2009114326A (en) * 2007-11-06 2009-05-28 Sumitomo Metal Mining Co Ltd Dispersion liquid for near-infrared absorbing tacky adhesive, near-infrared absorbing self-adhesive, near-infrared absorbing filter for plasma display panel and plasma display panel
JP2009197146A (en) * 2008-02-22 2009-09-03 Sumitomo Metal Mining Co Ltd Liquid dispersion of fine particles of infrared shielding material, infrared shielding film, infrared shielding optical member and near-infrared ray absorbing filter for plasma display panel
KR101249597B1 (en) * 2006-09-06 2013-04-01 린텍 가부시키가이샤 Infrared-ray absorption film
JP2013184992A (en) * 2012-03-06 2013-09-19 Japan Carlit Co Ltd:The Near-infrared ray absorption resin composition and near-infrared ray absorption film

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5510198B2 (en) * 2010-08-31 2014-06-04 コニカミノルタ株式会社 Manufacturing method of liquid crystal display device with front plate, liquid crystal display device with front plate
CN102503165B (en) * 2011-10-15 2013-08-21 浙江大学 Preparation method of antireflection film on glass surface
CN104428699A (en) * 2012-07-13 2015-03-18 柯尼卡美能达株式会社 Infrared-shielding film
CN103323902B (en) * 2013-06-21 2016-03-16 南京中电熊猫液晶显示科技有限公司 A kind of anti-glare optical thin film and manufacture method thereof
TWI503346B (en) * 2014-06-11 2015-10-11 Zirco Applied Materials Co Ltd A near infrared light shielding film, and a method of producing the near infrared light shielding
KR101973195B1 (en) 2016-03-11 2019-04-26 주식회사 엘지화학 Anti-reflective film and preparation method of the same
CN107200860B (en) * 2016-03-18 2020-10-30 湖北航天化学技术研究所 Night vision compatible near-infrared absorption anti-glare optical film and preparation method and application thereof
EP3486697B1 (en) * 2016-07-15 2021-04-07 Toray Industries, Inc. Film and layered body
JP2019105694A (en) * 2017-12-11 2019-06-27 株式会社ダイセル Antiglare film, and method for producing the same and application
CN110196461A (en) * 2019-05-30 2019-09-03 汕头万顺新材集团股份有限公司 A kind of anti-reflective film
KR102229141B1 (en) * 2019-09-13 2021-03-17 히타치 긴조쿠 가부시키가이샤 Cable and medical hollow tube
US11779193B2 (en) 2019-09-13 2023-10-10 Proterial, Ltd. Molded article and hollow tube
JP7524530B2 (en) * 2019-11-19 2024-07-30 大日本印刷株式会社 Infrared Sensor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10105076A (en) * 1996-09-26 1998-04-24 Nof Corp Near infrared shielding filter for electronic display
JP2001159711A (en) * 1999-12-03 2001-06-12 Mitsubishi Chemicals Corp Adhesive filter for plasma display
JP2001296401A (en) * 2000-04-11 2001-10-26 Jsr Corp Curable composition for high refractive index film, high refractive index film and antireflection laminated body
JP2002006102A (en) * 2000-06-19 2002-01-09 Nof Corp Near-infrared ray shielding and reflection reducing material and its use
JP2003139908A (en) * 2001-11-07 2003-05-14 Lintec Corp Optical film
JP2003292805A (en) * 2002-04-01 2003-10-15 Nippon Shokubai Co Ltd Composition having low refractive index and anti- reflection coating
JP2004012592A (en) * 2002-06-04 2004-01-15 Tomoegawa Paper Co Ltd Near infrared ray absorption and antireflection combined functional film
JP2004258267A (en) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd Antireflection film, method for manufacturing antireflection film, and antireflection member
JP2004272197A (en) * 2003-02-20 2004-09-30 Dainippon Printing Co Ltd Antireflective stack
WO2004088364A1 (en) * 2003-03-31 2004-10-14 Lintec Corporation Optical film
JP2004325579A (en) * 2003-04-22 2004-11-18 Asahi Glass Co Ltd Manufacturing method of antireflection organic base material
WO2005037932A1 (en) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
WO2005087680A1 (en) * 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. Sun screening laminated structure

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022037A1 (en) * 2000-05-05 2001-11-08 Bayer Ag Transparent thermoplastic polymer compositions for e.g. glazing or roofing contain synergistic mixture of organic NIR absorber and surface-modified oxide nanoparticles to reduce amount of expensive NIR nanoparticles required
TW546331B (en) * 2001-06-25 2003-08-11 Asahi Glass Co Ltd Optical film
JP2003295778A (en) * 2002-04-05 2003-10-15 Bridgestone Corp Filter for plasma display panel, and display device provided with this filter
KR100751932B1 (en) * 2003-04-01 2007-08-27 엘지전자 주식회사 Front-filter and fabricating method thereof
TWI339741B (en) * 2003-06-26 2011-04-01 Zeon Corp Optical laminated film, polarizer and optical article

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10105076A (en) * 1996-09-26 1998-04-24 Nof Corp Near infrared shielding filter for electronic display
JP2001159711A (en) * 1999-12-03 2001-06-12 Mitsubishi Chemicals Corp Adhesive filter for plasma display
JP2001296401A (en) * 2000-04-11 2001-10-26 Jsr Corp Curable composition for high refractive index film, high refractive index film and antireflection laminated body
JP2002006102A (en) * 2000-06-19 2002-01-09 Nof Corp Near-infrared ray shielding and reflection reducing material and its use
JP2003139908A (en) * 2001-11-07 2003-05-14 Lintec Corp Optical film
JP2003292805A (en) * 2002-04-01 2003-10-15 Nippon Shokubai Co Ltd Composition having low refractive index and anti- reflection coating
JP2004012592A (en) * 2002-06-04 2004-01-15 Tomoegawa Paper Co Ltd Near infrared ray absorption and antireflection combined functional film
JP2004272197A (en) * 2003-02-20 2004-09-30 Dainippon Printing Co Ltd Antireflective stack
JP2004258267A (en) * 2003-02-25 2004-09-16 Matsushita Electric Works Ltd Antireflection film, method for manufacturing antireflection film, and antireflection member
WO2004088364A1 (en) * 2003-03-31 2004-10-14 Lintec Corporation Optical film
JP2004325579A (en) * 2003-04-22 2004-11-18 Asahi Glass Co Ltd Manufacturing method of antireflection organic base material
WO2005037932A1 (en) * 2003-10-20 2005-04-28 Sumitomo Metal Mining Co., Ltd. Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
WO2005087680A1 (en) * 2004-03-16 2005-09-22 Sumitomo Metal Mining Co., Ltd. Sun screening laminated structure

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249597B1 (en) * 2006-09-06 2013-04-01 린텍 가부시키가이샤 Infrared-ray absorption film
JP2008114544A (en) * 2006-11-07 2008-05-22 Catalysts & Chem Ind Co Ltd Substrate with transparent coating
WO2008059995A1 (en) * 2006-11-17 2008-05-22 Lintec Corporation Pressure sensitive adhesive composition for display
KR101399987B1 (en) * 2006-11-17 2014-05-27 린텍 가부시키가이샤 Pressure sensitive adhesive composition for display
JP5328364B2 (en) * 2006-11-17 2013-10-30 リンテック株式会社 Pressure-sensitive adhesive composition for display
JP2008200924A (en) * 2007-02-19 2008-09-04 Toray Ind Inc Laminated film
WO2008102907A1 (en) * 2007-02-20 2008-08-28 Lintec Corporation Near-infrared shielding film
JP2008200983A (en) * 2007-02-20 2008-09-04 Lintec Corp Near-infrared shielding film
TWI492844B (en) * 2007-02-20 2015-07-21 Lintec Corp Film for shielding near infrared ray
JP2008268267A (en) * 2007-04-16 2008-11-06 Nippon Shokubai Co Ltd Resin composition for hard coat
JP2009116314A (en) * 2007-10-18 2009-05-28 Nof Corp Hardcoat film for plasma display panel and plasma display panel
US8174190B2 (en) 2007-11-06 2012-05-08 Sumitomo Metal Mining Co., Ltd. Dispersion liquid for near-infrared-absorbing adhesive-body, near-infrared-absorbing adhesive body, near-infrared-absorbing plasma-display-panel filter, and plasma display panel
JP2009114326A (en) * 2007-11-06 2009-05-28 Sumitomo Metal Mining Co Ltd Dispersion liquid for near-infrared absorbing tacky adhesive, near-infrared absorbing self-adhesive, near-infrared absorbing filter for plasma display panel and plasma display panel
JP2009197146A (en) * 2008-02-22 2009-09-03 Sumitomo Metal Mining Co Ltd Liquid dispersion of fine particles of infrared shielding material, infrared shielding film, infrared shielding optical member and near-infrared ray absorbing filter for plasma display panel
JP2013184992A (en) * 2012-03-06 2013-09-19 Japan Carlit Co Ltd:The Near-infrared ray absorption resin composition and near-infrared ray absorption film

Also Published As

Publication number Publication date
CN101107543B (en) 2010-04-21
WO2006078053A1 (en) 2006-07-27
KR20070095418A (en) 2007-09-28
KR101275408B1 (en) 2013-06-14
CN101107543A (en) 2008-01-16
TWI395667B (en) 2013-05-11
TW200631776A (en) 2006-09-16
JP5242883B2 (en) 2013-07-24

Similar Documents

Publication Publication Date Title
JP5242883B2 (en) Antireflection film
JP3862941B2 (en) High definition antiglare hard coat film
JP5149052B2 (en) Anti-glare hard coat film and polarizing plate using the same
KR101067546B1 (en) Anti?glare hard coat film
JP5486840B2 (en) Antireflection film and polarizing plate using the same
JP4746863B2 (en) Anti-glare hard coat layer forming material and anti-glare hard coat film
EP1531167B1 (en) Film for optical applications
JP5154772B2 (en) Antireflection film
JP5154773B2 (en) Antireflection film
JP4944572B2 (en) Anti-glare hard coat film
KR20100103390A (en) Optical film
JP2009029126A (en) Hard coat film and its manufacturing method
JP5259334B2 (en) Anti-glare hard coat film and polarizing plate using the same
KR20060091233A (en) An anti-glare hard coat film
JP2012053178A (en) Antiglare and antistatic hard-coat film and polarizing plate
JP4906283B2 (en) Infrared absorption film
JP5690491B2 (en) Anti-glare hard coat film and polarizing plate using the same
US6404543B1 (en) Infrared shielding film
JP2009222801A (en) Optical film
JP2022131260A (en) hard coat film
JP4390717B2 (en) Antireflection film
JP3959286B2 (en) Hard coat film
JP2016090728A (en) Hard coat film
JP2010026074A (en) Optical filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111025

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111222

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5242883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250