[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006295603A - Optical receiver - Google Patents

Optical receiver Download PDF

Info

Publication number
JP2006295603A
JP2006295603A JP2005114503A JP2005114503A JP2006295603A JP 2006295603 A JP2006295603 A JP 2006295603A JP 2005114503 A JP2005114503 A JP 2005114503A JP 2005114503 A JP2005114503 A JP 2005114503A JP 2006295603 A JP2006295603 A JP 2006295603A
Authority
JP
Japan
Prior art keywords
optical
tributary
differential
bit delay
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005114503A
Other languages
Japanese (ja)
Other versions
JP4602148B2 (en
Inventor
Kazuyuki Ishida
和行 石田
Kenkichi Shimomura
健吉 下村
Katsuhiro Shimizu
克宏 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005114503A priority Critical patent/JP4602148B2/en
Publication of JP2006295603A publication Critical patent/JP2006295603A/en
Application granted granted Critical
Publication of JP4602148B2 publication Critical patent/JP4602148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Communication System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical receiver capable of precosely and correctly decoding two data signals. <P>SOLUTION: The optical receiver is provided with: an optical coupler 2 for branching a DQPSK (Differential Quadrature Phase Shift Keying) signal, two one-bit delay interferometers 3, 4 for decoding the DQPSK signal; two differential light receivers 5, 6 for respectively performing the photoelectric conversion of optical signals from the two one-bit delay interferometers 3, 4; two discriminators 7, 8 for respectively discriminating signals photoelectrically converted by the two differential light receivers 5, 6; a logic-tributary decision circuit 12 for judging the logic and tributary information of data discriminated by the discriminator 7; a phase control part 9 for controlling the one-bit delay interferometer 3 on the basis of a control signal obtained from an error signal detected by branching an output from the differential light receiver 5 and the logic and tributary information of the data discriminated by the discriminator 7; and a phase control part 15 for controlling the one-bit interferometer 4 on the basis of a control signal obtained by adding fixed voltage to the control signal of the phase control part 9. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、DQPSK(Differential Quadrature Phase Shift Keying)信号を復号する2つの1ビット遅延干渉計の光位相を安定化する際に論理・トリビュタリ情報をフィードバックする光受信器に関するものである。   The present invention relates to an optical receiver that feeds back logical and tributary information when stabilizing the optical phase of two 1-bit delay interferometers that decode a DQPSK (Differential Quadrature Phase Shift Keying) signal.

長距離光伝送システムでは1.5μm帯の光を直接増幅できるエルビウム添加ファイバ増幅器(以下、EDFA(Erubium Doped Fiber Amplifier)と略する)を利用した光中継増幅伝送方式が主流となっている。さらに、近年では広帯域に増幅可能なEDFAの実現により波長多重伝送方式を用いた大容量伝送システムが実現されている。   In the long-distance optical transmission system, an optical repeater amplification transmission system using an erbium-doped fiber amplifier (hereinafter abbreviated as EDFA (Erubium Doped Fiber Amplifier)) capable of directly amplifying light in the 1.5 μm band is mainly used. Further, in recent years, a large-capacity transmission system using a wavelength division multiplexing transmission system has been realized by realizing an EDFA that can be amplified in a wide band.

さらなる大容量化が要求される昨今、これを実現する手段として増幅帯域の有効利用(波長多重間隔の狭窄化)が考えられるが、通常の2値信号では1bit/s/Hzの周波数利用効率が上限と考えられている。   In recent years when a further increase in capacity is required, effective use of the amplification band (narrowing of the wavelength multiplexing interval) can be considered as a means for realizing this, but a normal binary signal has a frequency utilization efficiency of 1 bit / s / Hz. It is considered an upper limit.

近年、周波数利用効率を高める手段として多値信号、特に位相4値(以下、DQPSKと称する)変調方式が注目を集めている。   In recent years, attention has been focused on multilevel signals, particularly phase four-value (hereinafter referred to as DQPSK) modulation methods, as means for increasing frequency utilization efficiency.

DQPSK変調方式は、光搬送波の位相を同相成分と直交成分で変調し、受信端では2つの1ビット遅延検波器により遅延検波することで異なる2つの強度信号に変換する方式である。   The DQPSK modulation method is a method in which the phase of an optical carrier wave is modulated with an in-phase component and a quadrature component, and converted into two different intensity signals by delay detection with two 1-bit delay detectors at the receiving end.

図4は、従来のDQPSK変調方式の光送受信器の構成例を示す図である(例えば、特許文献1参照)。図4に示す光送受信器は、光源26と、集積型マッハツェンダ変調器27と、符号化器28と、伝送路1と、光カプラ2と、2つの1ビット遅延干渉計3、4と、2つの差動受光器5、6とが設けられている。   FIG. 4 is a diagram illustrating a configuration example of a conventional DQPSK modulation optical transceiver (see, for example, Patent Document 1). 4 includes a light source 26, an integrated Mach-Zehnder modulator 27, an encoder 28, a transmission line 1, an optical coupler 2, and two 1-bit delay interferometers 3, 4, 2 Two differential light receivers 5 and 6 are provided.

図4において、光源26から発生させたCW光は、集積型マッハツェンダ変調器27においてDQPSK変調を施され、伝送路1に送出される。DQPSK変調を行う2つの差動信号(Ik、Qk)は、符号化器28において2つのデータ信号(Vk、Uk)から生成される。集積型マッハツェンダ変調器27では、2つのマッハツェンダ変調器において2つの差動信号により位相変調を施し、片側の光位相をπ/2進め、再び合波することで光位相の4値信号を得ている。符号化器28では、以下の論理演算を行う(○の中に+印は排他的論理和を表している)。   In FIG. 4, the CW light generated from the light source 26 is subjected to DQPSK modulation in the integrated Mach-Zehnder modulator 27 and transmitted to the transmission line 1. Two differential signals (Ik, Qk) for performing DQPSK modulation are generated from the two data signals (Vk, Uk) in the encoder 28. In the integrated Mach-Zehnder modulator 27, phase modulation is performed by two differential signals in the two Mach-Zehnder modulators, the optical phase on one side is advanced by π / 2, and the signals are combined again to obtain a quaternary signal of the optical phase. Yes. The encoder 28 performs the following logical operation (the + sign in the circle represents an exclusive OR).

Figure 2006295603
Figure 2006295603

受信側はDQPSK信号を光カプラ2で等分岐した後、2つの1ビット遅延干渉計3、4において隣接ビットとの位相差情報を強度情報に変換して、それぞれ差動受光器5、6において受光する。2つの1ビット遅延干渉計3、4ではそれぞれ光位相をπ/4と−π/4とすることで、2つのデータ信号(Vk、Uk)が復号される。つまり、一方の1ビット遅延干渉計3の光位相(π/4)に対して−π/2だけシフトした光位相を他方の1ビット遅延干渉計4に与えることで正しく復号できる。   On the receiving side, the DQPSK signal is equally branched by the optical coupler 2, and then the two 1-bit delay interferometers 3 and 4 convert the phase difference information from adjacent bits into intensity information. Receive light. The two 1-bit delay interferometers 3 and 4 decode the two data signals (Vk and Uk) by setting the optical phase to π / 4 and −π / 4, respectively. In other words, the optical phase shifted by −π / 2 with respect to the optical phase (π / 4) of one 1-bit delay interferometer 3 can be correctly decoded by giving the other 1-bit delay interferometer 4 to the optical phase.

1ビット遅延干渉計3、4には高い光位相の精度および安定度が要求されるが、内的要因(組成変化等)と外的要因(温度、圧力変化等)により光位相に誤差が生じるため、位相安定化制御が必要になる(例えば、非特許文献1参照)。   The 1-bit delay interferometers 3 and 4 require high optical phase accuracy and stability, but errors in the optical phase occur due to internal factors (such as composition changes) and external factors (such as temperature and pressure changes). Therefore, phase stabilization control is required (see, for example, Non-Patent Document 1).

同様の手法をDQPSK信号に対して適用した場合、一方の1ビット遅延干渉計3に対して位相安定化制御を行い、他方の1ビット遅延干渉計4には−π/2だけ位相シフトさせることで位相安定化が可能となる。   When the same method is applied to the DQPSK signal, phase stabilization control is performed on one 1-bit delay interferometer 3, and the other 1-bit delay interferometer 4 is phase-shifted by −π / 2. This makes it possible to stabilize the phase.

しかしながら、非特許文献1等の安定化制御手法を適用した場合、2つのデータ信号(VkもしくはUk)がどちらの1ビット遅延干渉計3、4において復号されるかは不定であり、その論理(正論理、反転論理)も不定である。また、2つの1ビット遅延干渉計3、4間に周囲温度等の環境に差がある場合には、個別に位相安定化制御を行う必要がある。   However, when the stabilization control method of Non-Patent Document 1 or the like is applied, it is uncertain which one-bit delay interferometer 3 or 4 decodes the two data signals (Vk or Uk), and its logic ( Positive logic and inverted logic) are also undefined. If there is a difference in the environment such as the ambient temperature between the two 1-bit delay interferometers 3 and 4, it is necessary to individually control the phase stabilization.

特表2004−516743号公報JP-T-2004-516743 B.Milivojevic et al.,“Practical 40 Gbit/s CSRZ−DPSK transmission system with signed online chromatic dispersion detection”,ECOC2003,TU364B. Milivojevic et al., “Practical 40 Gbit / s CSRZ-DPSK transmission system with signed online chromatographic detection”, ECOC 2003, TU36

上記のように、従来の光受信器ではDQPSK信号を受信する際に復号される2つのデータ信号の出力先、論理に関しては不定であるという問題点があった。また、2つの1ビット遅延干渉計に環境差が存在する場合には、個別に位相安定化制御を行う必要があるという問題点があった。   As described above, the conventional optical receiver has a problem that the output destination and logic of the two data signals decoded when receiving the DQPSK signal are indefinite. Further, when there is an environmental difference between the two 1-bit delay interferometers, there is a problem that it is necessary to individually control the phase stabilization.

この発明は、上述のような課題を解決するためになされたもので、その目的は、2つのデータ信号の出力先と論理を任意に選択できる機能を設け、2つのデータ信号を精度良く、かつ正しく復号することができる光受信器を得るものである。   The present invention has been made to solve the above-described problems, and its purpose is to provide a function capable of arbitrarily selecting the output destination and logic of two data signals, and to accurately select the two data signals. An optical receiver capable of correctly decoding is obtained.

この発明に係る光受信器は、光差動4値位相シフトキーイング信号を分岐する光カプラと、前記光差動4値位相シフトキーイング信号を復号する第1及び第2の1ビット遅延干渉計と、前記第1及び第2の1ビット遅延干渉計からの光信号をそれぞれ光電気変換する第1及び第2の差動受光器と、前記第1及び第2の差動受光器により光電気変換された信号をそれぞれ識別する第1及び第2の識別器とを備えた光受信器であって、前記第1の識別器により識別再生されたデータの論理情報、トリビュタリ情報を判定する論理・トリビュタリ判定回路と、前記第1の差動受光器の出力を分岐して検出した誤差信号と前記第1の識別器において識別したデータの論理情報、トリビュタリ情報の少なくともいずれか一方とから得られる第1の制御信号に基づいて前記第1の1ビット遅延干渉計を制御する第1の位相制御部と、前記第1の位相制御部の第1の制御信号に固定電圧を付加した第2の制御信号に基づいて前記第2の1ビット遅延干渉計を制御する第2の位相制御部とを設けたものである。   An optical receiver according to the present invention includes an optical coupler that branches an optical differential quaternary phase shift keying signal, and first and second 1-bit delay interferometers that decode the optical differential quaternary phase shift keying signal. The first and second differential optical receivers convert the optical signals from the first and second 1-bit delay interferometers, respectively, and photoelectric conversion by the first and second differential optical receivers. A first and second discriminator for discriminating each of the received signals, and a logical / tributary for judging logical information and tributary information of the data identified and reproduced by the first discriminator A first circuit obtained from a determination circuit, an error signal detected by branching the output of the first differential optical receiver, and at least one of logical information and tributary information of data identified by the first discriminator Control signal Based on a first phase control unit that controls the first 1-bit delay interferometer, and a second control signal obtained by adding a fixed voltage to the first control signal of the first phase control unit And a second phase controller for controlling the second 1-bit delay interferometer.

この発明に係る光受信器は、2つのデータ信号を精度良く、かつ正しく復号することができるという効果を奏する。   The optical receiver according to the present invention has an effect that two data signals can be accurately and correctly decoded.

実施の形態1.
この発明の実施の形態1に係る光受信器について図1を参照しながら説明する。図1は、この発明の実施の形態1に係る光受信器の構成を示す図である。なお、各図中、同一符号は同一又は相当部分を示す。
Embodiment 1 FIG.
An optical receiver according to Embodiment 1 of the present invention will be described with reference to FIG. 1 is a diagram showing a configuration of an optical receiver according to Embodiment 1 of the present invention. In addition, in each figure, the same code | symbol shows the same or equivalent part.

図1において、この実施の形態1に係る光受信器は、伝送路1から入力される光DQPSK信号(光差動4値位相シフトキーイング信号)を等分岐する光カプラ2と、2連続するビット間の相関をとる2つの1ビット遅延干渉計3、4と、信号を光電気変換する2つの差動受光器5、6と、元の2つのデータ信号が識別再生する識別器7、8と、誤差信号を検出する誤差信号検出手段10と、誤差信号を増幅する増幅器11と、識別再生されたデータの信号論理とトリビュタリを判定する論理・トリビュタリ判定回路12と、判定結果から固定電圧を発生する電圧源13と、増幅された誤差信号と固定電圧を加算する加算器14と、固定電圧を生成する電圧源16と、加算器14からの分岐信号と固定電圧を加算する加算器17とが設けられている。   In FIG. 1, the optical receiver according to the first embodiment includes an optical coupler 2 that equally branches an optical DQPSK signal (optical differential quaternary phase shift keying signal) input from a transmission line 1, and two consecutive bits. Two 1-bit delay interferometers 3 and 4 that take a correlation between them, two differential optical receivers 5 and 6 that photoelectrically convert signals, and identifiers 7 and 8 that identify and reproduce the original two data signals An error signal detection means 10 for detecting an error signal, an amplifier 11 for amplifying the error signal, a logic / tributary determination circuit 12 for determining the signal logic and tributary of the identified and reproduced data, and generating a fixed voltage from the determination result A voltage source 13 for adding, an adder 14 for adding the amplified error signal and the fixed voltage, a voltage source 16 for generating a fixed voltage, and an adder 17 for adding the branch signal from the adder 14 and the fixed voltage. Provided There.

位相制御部9は、誤差信号検出手段10と、増幅器11と、電圧源13と、加算器14とから構成されている。また、位相制御部15は、電圧源16と、加算器17とから構成されている。   The phase control unit 9 includes an error signal detection means 10, an amplifier 11, a voltage source 13, and an adder 14. The phase control unit 15 includes a voltage source 16 and an adder 17.

伝送路1から入力される光DQPSK信号は、光カプラ2において等分岐され、2つの1ビット遅延干渉計3、4に入力される。この2つの1ビット遅延干渉計3、4では、2連続するビット間の相関をとることで光位相情報を光強度情報に変換している。このとき、2つの1ビット遅延干渉計3、4の光位相がそれぞれπ/4と−π/4の場合に正しく2つのデータ信号を復号できることが知られている。   The optical DQPSK signal input from the transmission line 1 is equally branched by the optical coupler 2 and input to the two 1-bit delay interferometers 3 and 4. In these two 1-bit delay interferometers 3 and 4, the optical phase information is converted into optical intensity information by taking a correlation between two consecutive bits. At this time, it is known that two data signals can be correctly decoded when the optical phases of the two 1-bit delay interferometers 3 and 4 are π / 4 and −π / 4, respectively.

復号された2つのデータ信号は、2つの1ビット遅延干渉計3、4の後段に配した2つの差動受光器5、6でそれぞれ光電気変換され、それぞれ識別器7、8により元の2つのデータ信号が識別再生される。位相制御部9には、一方の差動受光器5の出力信号を一部分岐した信号が入力され、出力である制御信号により1ビット遅延干渉計3の光位相が安定化制御される。   The two decoded data signals are photoelectrically converted by the two differential light receivers 5 and 6 arranged at the subsequent stage of the two 1-bit delay interferometers 3 and 4, respectively. Two data signals are identified and reproduced. A signal obtained by partially branching the output signal of one of the differential optical receivers 5 is input to the phase controller 9, and the optical phase of the 1-bit delay interferometer 3 is stabilized and controlled by a control signal that is an output.

位相制御部9では、入力された信号を基に誤差信号検出手段10にて誤差信号を検出し、増幅器11にて増幅し、電圧源13にて発生する固定電圧を加算器14で重畳した制御信号を出力する。この電圧源13は、識別器7で識別再生されたデータの信号論理とトリビュタリ(VkかUk)を論理・トリビュタリ判定回路12にて判定した結果から、位相差に対して−π、−π/2、0、+π/2に対応する電圧を発生する。この誤差信号を検出する手法としては、非特許文献1で開示されている方式等が適用できる。   In the phase controller 9, an error signal is detected by the error signal detection means 10 based on the input signal, amplified by the amplifier 11, and a fixed voltage generated by the voltage source 13 is superposed by the adder 14. Output a signal. The voltage source 13 determines the signal logic and tributary (Vk or Uk) of the data identified and reproduced by the discriminator 7 from the result of determination by the logic / tributary determination circuit 12 to -π, −π / A voltage corresponding to 2, 0, + π / 2 is generated. As a method for detecting this error signal, the method disclosed in Non-Patent Document 1 can be applied.

位相制御部9の制御信号の一部は分岐され、もうひとつの位相制御部15において電圧源16で生成される固定電圧(光位相差に対して−π/2を与える電圧)が加算器17において重畳され、1ビット遅延干渉計4の位相安定化制御信号として用いられる。   A part of the control signal of the phase control unit 9 is branched, and a fixed voltage (voltage that gives −π / 2 with respect to the optical phase difference) generated by the voltage source 16 in the other phase control unit 15 is added to the adder 17. Is used as a phase stabilization control signal for the 1-bit delay interferometer 4.

つぎに、この実施の形態1に係る光受信器の動作について図面を参照しながら説明する。   Next, the operation of the optical receiver according to the first embodiment will be described with reference to the drawings.

非特許文献1等で開示されている誤差信号検出手段10をDQPSK信号に適用した場合、図1の1ビット遅延干渉計3の光位相は−π/4、π/4とそれぞれにπ位相シフトした3π/4、5π/4が選択できるため、識別器7の出力ではUk、Vk、およびそれぞれの反転論理のデータ信号が出力される場合がそれぞれ等しい確立で存在する。   When the error signal detection means 10 disclosed in Non-Patent Document 1 or the like is applied to a DQPSK signal, the optical phase of the 1-bit delay interferometer 3 in FIG. 1 is shifted by π phase to −π / 4 and π / 4, respectively. Since 3π / 4 and 5π / 4 can be selected, Uk, Vk, and data signals of the respective inverted logic are output at the output of the discriminator 7 with the same probability.

そのため、識別再生されたデータ信号を論理・トリビュタリ判定回路12で判定し、その情報を基に電圧源13の固定電圧を決定する。予め送信側でトレーニングビット等を送信することにより、論理・トリビュタリ判定回路12ではどのデータ(トリビュタリ)がどの論理で識別再生されたかを判定することが可能となる。   Therefore, the identified / reproduced data signal is determined by the logic / tributary determination circuit 12 and the fixed voltage of the voltage source 13 is determined based on the information. By transmitting a training bit or the like on the transmission side in advance, the logic / tributary determination circuit 12 can determine which data (tributary) is identified and reproduced by which logic.

仮に論理が反転していた場合(光位相が5π/4)には、電圧源13で光位相差に対して−πに相当する固定電圧を出力することで識別器7の出力を正しいデータ信号(Vk)とすることができる。同様に、データが入替わっていた場合(光位相が−π/4)には、光位相差に対して+π/2に相当する電圧、さらに論理が反転していた場合(光位相が3π/4)には、−π/2に相当する電圧を電圧源13で出力することにより、正しいデータ信号(Vk)が得られる。   If the logic is inverted (the optical phase is 5π / 4), the voltage source 13 outputs a fixed voltage corresponding to −π with respect to the optical phase difference, so that the output of the discriminator 7 is a correct data signal. (Vk). Similarly, when the data is switched (the optical phase is −π / 4), the voltage corresponding to + π / 2 with respect to the optical phase difference, and the logic is inverted (the optical phase is 3π /). In 4), a correct data signal (Vk) is obtained by outputting a voltage corresponding to −π / 2 from the voltage source 13.

このとき、1ビット遅延干渉計4の光位相は、1ビット遅延干渉計3の光位相に対して常に−π/2の光位相差に相当する制御電圧を電圧源16から加算器17を介して与えられていることから、識別器8においても正しいデータ信号(Uk)が識別再生されることとなる。   At this time, as for the optical phase of the 1-bit delay interferometer 4, a control voltage corresponding to an optical phase difference of −π / 2 with respect to the optical phase of the 1-bit delay interferometer 3 is always supplied from the voltage source 16 via the adder 17. Therefore, the correct data signal (Uk) is also identified and reproduced in the discriminator 8.

図1では、論理・トリビュタリ判定回路12に与える信号を識別器7の出力より得たが、さらに後段に配される誤り訂正器等の出力信号を基に、論理・トリビュタリ判定を行っても同様の効果が得られる。   In FIG. 1, a signal to be given to the logic / tributary determination circuit 12 is obtained from the output of the discriminator 7. However, even if the logic / tributary determination is performed based on an output signal from an error corrector or the like arranged in the subsequent stage. The effect is obtained.

実施の形態2.
この発明の実施の形態2に係る光受信器について図2を参照しながら説明する。図2は、この発明の実施の形態2に係る光受信器の構成を示す図である。
Embodiment 2. FIG.
An optical receiver according to Embodiment 2 of the present invention will be described with reference to FIG. FIG. 2 is a diagram showing a configuration of an optical receiver according to Embodiment 2 of the present invention.

図2において、この実施の形態2に係る光受信器は、伝送路1から入力される光DQPSK信号を等分岐する光カプラ2と、2連続するビット間の相関をとる2つの1ビット遅延干渉計3、4と、信号を光電気変換する2つの差動受光器5、6と、元の2つのデータ信号が識別再生する識別器7、8と、誤差信号を検出する誤差信号検出手段10と、誤差信号を増幅する増幅器11と、識別再生されたデータの信号論理とトリビュタリを判定する論理・トリビュタリ判定回路12と、判定結果から固定電圧を発生する電圧源13と、増幅された誤差信号と固定電圧を加算する加算器14と、誤差信号を検出する誤差信号検出手段19と、誤差信号を増幅する増幅器20と、識別再生されたデータの信号論理とトリビュタリを判定する論理・トリビュタリ判定回路21と、判定結果から固定電圧を発生する電圧源22と、増幅された誤差信号と固定電圧を加算する加算器23とが設けられている。   In FIG. 2, the optical receiver according to the second embodiment includes an optical coupler 2 that equally branches an optical DQPSK signal input from a transmission line 1, and two 1-bit delay interferences that correlate between two consecutive bits. A total of 3 and 4; two differential optical receivers 5 and 6 for photoelectrically converting signals; discriminators 7 and 8 for discriminating and reproducing the original two data signals; and error signal detecting means 10 for detecting an error signal An amplifier 11 that amplifies the error signal, a logic / tributary determination circuit 12 that determines the signal logic and tributary of the identified and reproduced data, a voltage source 13 that generates a fixed voltage from the determination result, and an amplified error signal And an adder 14 for adding a fixed voltage, an error signal detecting means 19 for detecting an error signal, an amplifier 20 for amplifying the error signal, and a logic value for determining the signal logic and tributary of the identified and reproduced data. And Byutari determination circuit 21, a voltage source 22 for generating a fixed voltage from the determination result, an adder 23 for adding the amplified error signal and a fixed voltage is provided.

位相制御部18は、誤差信号検出手段19と、増幅器20と、電圧源22と、加算器23とから構成されている。   The phase control unit 18 includes an error signal detection means 19, an amplifier 20, a voltage source 22, and an adder 23.

上記実施の形態1との差異は、1ビット遅延干渉計4に対しても位相制御部18を備え、独立に位相の安定化制御を行う点である。これらは上記実施の形態1で説明した1ビット遅延干渉計3に対する位相安定化制御と同様の動作を行い、また、1ビット遅延干渉計4に対する位相安定化制御に関する内容は、上記実施の形態1の説明と同様である。本実施の形態2では、論理・トリビュタリ判定を個別に行うことから、2つの1ビット遅延干渉計3、4を全く独立に制御することが可能である。   The difference from the first embodiment is that the 1-bit delay interferometer 4 is also provided with a phase control unit 18 and independently performs phase stabilization control. These perform the same operation as the phase stabilization control for the 1-bit delay interferometer 3 described in the first embodiment, and the contents regarding the phase stabilization control for the 1-bit delay interferometer 4 are the same as those in the first embodiment. It is the same as that of description. In the second embodiment, since the logic / tributary determination is performed individually, the two 1-bit delay interferometers 3 and 4 can be controlled completely independently.

実施の形態3.
この発明の実施の形態3に係る光受信器について図3を参照しながら説明する。図3は、この発明の実施の形態3に係る光受信器の構成を示す図である。
Embodiment 3 FIG.
An optical receiver according to Embodiment 3 of the present invention will be described with reference to FIG. FIG. 3 is a diagram showing a configuration of an optical receiver according to Embodiment 3 of the present invention.

図3において、この実施の形態3に係る光受信器は、伝送路1から入力される光DQPSK信号を等分岐する光カプラ2と、2連続するビット間の相関をとる2つの1ビット遅延干渉計3、4と、信号を光電気変換する2つの差動受光器5、6と、元の2つのデータ信号が識別再生する識別器7、8と、誤差信号を検出する誤差信号検出手段10と、誤差信号を増幅する増幅器11と、識別再生されたデータの信号論理とトリビュタリを判定する論理・トリビュタリ判定回路12と、固定電圧を生成する電圧源16と、増幅器11からの分岐信号と固定電圧を加算する加算器17と、2つの識別器7、8に接続されたスイッチ回路(SW回路)25とが設けられている。   In FIG. 3, the optical receiver according to the third embodiment includes an optical coupler 2 that equally divides an optical DQPSK signal input from a transmission line 1, and two 1-bit delay interferences that correlate between two consecutive bits. A total of 3 and 4; two differential optical receivers 5 and 6 for photoelectrically converting signals; discriminators 7 and 8 for discriminating and reproducing the original two data signals; and error signal detecting means 10 for detecting an error signal An amplifier 11 that amplifies the error signal, a logic / tributary determination circuit 12 that determines the signal logic and tributary of the identified and reproduced data, a voltage source 16 that generates a fixed voltage, and a branch signal from the amplifier 11 is fixed. An adder 17 for adding voltages and a switch circuit (SW circuit) 25 connected to the two discriminators 7 and 8 are provided.

位相制御部24は、誤差信号検出手段10と、増幅器11とから構成されている。   The phase control unit 24 includes the error signal detection means 10 and the amplifier 11.

つぎに、この実施の形態3に係る光受信器の動作について図面を参照しながら説明する。   Next, the operation of the optical receiver according to the third embodiment will be described with reference to the drawings.

上記実施の形態1との差異は、機能を簡略化した位相制御部24と、論理・トリビュタリ判定回路12で判定した結果を2つの識別器7、8に接続したスイッチ回路25に与えている点である。なお、図1と同一符号を与えたものに対しては、同様の動作を行うものとする。   The difference from the first embodiment is that the phase control unit 24 having a simplified function and the result determined by the logic / tributary determination circuit 12 are given to the switch circuit 25 connected to the two discriminators 7 and 8. It is. It should be noted that the same operations as those shown in FIG. 1 are performed.

位相制御部24には差動受光器5の出力の分岐信号を与え、この分岐信号を基に誤差信号検出手段10で検出した信号を増幅器11で増幅することにより、1ビット遅延干渉計3の制御信号を出力する。スイッチ回路25では、論理・トリビュタリ判定回路12の情報から、識別器7、8の出力のデータ信号の論理をそれぞれ反転もしくはそれぞれのデータ信号の出力先を変更(入れ替える)する。   The phase control unit 24 is given a branch signal output from the differential optical receiver 5, and the amplifier 11 amplifies the signal detected by the error signal detection means 10 based on this branch signal, so that the 1-bit delay interferometer 3 Output a control signal. The switch circuit 25 inverts the logic of the data signals output from the discriminators 7 and 8 or changes (replaces) the output destination of each data signal from the information of the logic / tributary determination circuit 12.

1ビット遅延干渉計3に対する位相制御信号に対して−π/2だけ位相シフトさせる制御信号を1ビット遅延干渉計4に与えていることから、識別器7、8の出力の2つのデータ信号は互いに異なるデータ信号、かつ同一論理である。よって、識別器7の出力のデータ信号を基に論理・トリビュタリ判定回路12で判定した結果から識別器8の出力のデータ信号の論理も反転させることにより、正しいデータ信号を得ることができる。   Since the control signal for shifting the phase by -π / 2 with respect to the phase control signal for the 1-bit delay interferometer 3 is given to the 1-bit delay interferometer 4, the two data signals output from the discriminators 7 and 8 are Different data signals and the same logic. Therefore, a correct data signal can be obtained by inverting the logic of the data signal output from the discriminator 8 based on the result determined by the logic / tributary determination circuit 12 based on the data signal output from the discriminator 7.

実施の形態4.
上記実施の形態1から上記実施の形態3までに示した光受信器において、送信側で主信号に対して論理とトリビュタリ情報を重畳させておくことにより、運用中においても2つの復号されるデータ信号の論理とトリビュタリをモニタすることが可能となる。
Embodiment 4 FIG.
In the optical receivers shown in the first to third embodiments, two decoded data can be obtained even during operation by superimposing logic and tributary information on the main signal on the transmission side. It becomes possible to monitor the logic and tributary of the signal.

この発明の実施の形態1に係る光受信器の構成を示す図である。It is a figure which shows the structure of the optical receiver which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る光受信器の構成を示す図である。It is a figure which shows the structure of the optical receiver which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る光受信器の構成を示す図である。It is a figure which shows the structure of the optical receiver which concerns on Embodiment 3 of this invention. 従来の光受信器の構成を示す図である。It is a figure which shows the structure of the conventional optical receiver.

符号の説明Explanation of symbols

1 伝送路、2 光カプラ、3 1ビット遅延干渉計、4 1ビット遅延干渉計、5、6 差動受光器、7、8 識別器、9 位相制御部、10 誤差信号検出手段、11 増幅器、12 論理・トリビュタリ判定回路、13 電圧源、14 加算器、15 位相制御部、16 電圧源、17 加算器、18 位相制御部、19 誤差信号検出手段、20 増幅器、21 論理・トリビュタリ判定回路、22 電圧源、23 加算器、24 位相制御部、25 スイッチ回路。   DESCRIPTION OF SYMBOLS 1 Transmission path, 2 Optical coupler, 3 1-bit delay interferometer, 4 1-bit delay interferometer, 5, 6 Differential receiver, 7, 8 Discriminator, 9 Phase control part, 10 Error signal detection means, 11 Amplifier, 12 logic / tributary determination circuit, 13 voltage source, 14 adder, 15 phase control unit, 16 voltage source, 17 adder, 18 phase control unit, 19 error signal detection means, 20 amplifier, 21 logic / tributary determination circuit, 22 Voltage source, 23 adder, 24 phase controller, 25 switch circuit.

Claims (4)

光差動4値位相シフトキーイング信号を分岐する光カプラと、
前記光差動4値位相シフトキーイング信号を復号する第1及び第2の1ビット遅延干渉計と、
前記第1及び第2の1ビット遅延干渉計からの光信号をそれぞれ光電気変換する第1及び第2の差動受光器と、
前記第1及び第2の差動受光器により光電気変換された信号をそれぞれ識別する第1及び第2の識別器とを備えた光受信器であって、
前記第1の識別器により識別再生されたデータの論理情報、トリビュタリ情報を判定する論理・トリビュタリ判定回路と、
前記第1の差動受光器の出力を分岐して検出した誤差信号と前記第1の識別器において識別したデータの論理情報、トリビュタリ情報の少なくともいずれか一方とから得られる第1の制御信号に基づいて前記第1の1ビット遅延干渉計を制御する第1の位相制御部と、
前記第1の位相制御部の第1の制御信号に固定電圧を付加した第2の制御信号に基づいて前記第2の1ビット遅延干渉計を制御する第2の位相制御部と
を備えたことを特徴とする光受信器。
An optical coupler for branching the optical differential quaternary phase shift keying signal;
First and second 1-bit delay interferometers for decoding the optical differential quaternary phase shift keying signal;
First and second differential optical receivers for photoelectrically converting optical signals from the first and second 1-bit delay interferometers, respectively;
An optical receiver comprising first and second discriminators for respectively identifying the signals photoelectrically converted by the first and second differential optical receivers;
Logical / tributary determination circuit for determining logical information and tributary information of data identified and reproduced by the first classifier;
A first control signal obtained from an error signal detected by branching the output of the first differential optical receiver and at least one of logical information and tributary information of data identified by the first discriminator; A first phase controller for controlling the first 1-bit delay interferometer based on
A second phase control unit that controls the second 1-bit delay interferometer based on a second control signal obtained by adding a fixed voltage to the first control signal of the first phase control unit. An optical receiver characterized by.
光差動4値位相シフトキーイング信号を分岐する光カプラと、
前記光差動4値位相シフトキーイング信号を復号する第1及び第2の1ビット遅延干渉計と、
前記第1及び第2の1ビット遅延干渉計からの光信号をそれぞれ光電気変換する第1及び第2の差動受光器と、
前記第1及び第2の差動受光器により光電気変換された信号をそれぞれ識別する第1及び第2の識別器とを備えた光受信器であって、
前記第1の識別器により識別再生されたデータの論理情報、トリビュタリ情報を判定する第1の論理・トリビュタリ判定回路と、
前記第1の差動受光器の出力を分岐して検出した誤差信号と前記第1の識別器において識別したデータの論理情報、トリビュタリ情報の少なくともいずれか一方とから得られる第1の制御信号に基づいて前記第1の1ビット遅延干渉計を制御する第1の位相制御部と、
前記第2の識別器により識別再生されたデータの論理情報、トリビュタリ情報を判定する第2の論理・トリビュタリ判定回路と、
前記第2の差動受光器の出力を分岐して検出した誤差信号と前記第2の識別器において識別したデータの論理情報、トリビュタリ情報の少なくともいずれか一方とから得られる第2の制御信号に基づいて前記第2の1ビット遅延干渉計を制御する第2の位相制御部と
を備えたことを特徴とする光受信器。
An optical coupler for branching the optical differential quaternary phase shift keying signal;
First and second 1-bit delay interferometers for decoding the optical differential quaternary phase shift keying signal;
First and second differential optical receivers for photoelectrically converting optical signals from the first and second 1-bit delay interferometers, respectively;
An optical receiver comprising first and second discriminators for respectively identifying the signals photoelectrically converted by the first and second differential optical receivers;
A first logic / tributary determination circuit for determining logical information and tributary information of data identified and reproduced by the first classifier;
A first control signal obtained from an error signal detected by branching the output of the first differential optical receiver and at least one of logical information and tributary information of data identified by the first discriminator; A first phase controller for controlling the first 1-bit delay interferometer based on
A second logic / tributary determination circuit for determining logical information and tributary information of data identified and reproduced by the second classifier;
A second control signal obtained from an error signal detected by branching the output of the second differential optical receiver and at least one of logical information and tributary information of data identified by the second discriminator; An optical receiver comprising: a second phase control unit that controls the second 1-bit delay interferometer based on the second phase control unit.
光差動4値位相シフトキーイング信号を分岐する光カプラと、
前記光差動4値位相シフトキーイング信号を復号する第1及び第2の1ビット遅延干渉計と、
前記第1及び第2の1ビット遅延干渉計からの光信号をそれぞれ光電気変換する第1及び第2の差動受光器と、
前記第1及び第2の差動受光器により光電気変換された信号をそれぞれ識別する第1及び第2の識別器とを備えた光受信器であって、
前記第1の差動受光器の出力を分岐して検出した誤差信号から得られる第1の制御信号に基づいて前記第1の1ビット遅延干渉計を制御する第1の位相制御部と、
前記第1の位相制御部の第1の制御信号に固定電圧を付加した第2の制御信号に基づいて前記第2の1ビット遅延干渉計を制御する第2の位相制御部と、
前記第1の識別器により識別再生されたデータの論理情報、トリビュタリ情報を判定する論理・トリビュタリ判定回路と、
前記第1の識別器により識別再生されたデータの論理情報、トリビュタリ情報の少なくともいずれか一方に基づいて、前記第1及び第2の識別器からのデータの論理を反転、又は前記第1及び第2の識別器からのデータを入れ替えるスイッチ回路と
を備えたことを特徴とする光受信器。
An optical coupler for branching the optical differential quaternary phase shift keying signal;
First and second 1-bit delay interferometers for decoding the optical differential quaternary phase shift keying signal;
First and second differential optical receivers for photoelectrically converting optical signals from the first and second 1-bit delay interferometers, respectively;
An optical receiver comprising first and second discriminators for respectively identifying the signals photoelectrically converted by the first and second differential optical receivers;
A first phase control unit for controlling the first 1-bit delay interferometer based on a first control signal obtained from an error signal detected by branching and detecting an output of the first differential optical receiver;
A second phase control unit for controlling the second 1-bit delay interferometer based on a second control signal obtained by adding a fixed voltage to the first control signal of the first phase control unit;
Logical / tributary determination circuit for determining logical information and tributary information of data identified and reproduced by the first classifier;
Based on at least one of logical information and tributary information of data identified and reproduced by the first discriminator, the logic of data from the first and second discriminators is inverted, or the first and second An optical receiver comprising: a switching circuit for exchanging data from the two discriminators.
前記光カプラは、送信側で重畳された前記光差動4値位相シフトキーイング信号の論理情報、トリビュタリ情報の少なくともいずれか一方を入力する
ことを特徴とする請求項1から請求項3までのいずれかに記載の光受信器。
The optical coupler inputs at least one of logical information and tributary information of the optical differential quaternary phase shift keying signal superimposed on the transmission side. An optical receiver according to claim 1.
JP2005114503A 2005-04-12 2005-04-12 Optical receiver Active JP4602148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005114503A JP4602148B2 (en) 2005-04-12 2005-04-12 Optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005114503A JP4602148B2 (en) 2005-04-12 2005-04-12 Optical receiver

Publications (2)

Publication Number Publication Date
JP2006295603A true JP2006295603A (en) 2006-10-26
JP4602148B2 JP4602148B2 (en) 2010-12-22

Family

ID=37415681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005114503A Active JP4602148B2 (en) 2005-04-12 2005-04-12 Optical receiver

Country Status (1)

Country Link
JP (1) JP4602148B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008092406A (en) * 2006-10-04 2008-04-17 Nippon Telegr & Teleph Corp <Ntt> Frame synchronization method and optical signal receiver
EP1965519A1 (en) 2007-02-28 2008-09-03 Yokogawa Electric Corporation Optical receiver and optical transmitter
JP2009033261A (en) * 2007-07-24 2009-02-12 Fujitsu Ltd Optical reception apparatus and controlling method thereof
JP2009232330A (en) * 2008-03-25 2009-10-08 Yokogawa Electric Corp Optical receiver
JP2009239791A (en) * 2008-03-28 2009-10-15 Yokogawa Electric Corp Optical receiver and optical testing device
WO2010035333A1 (en) * 2008-09-26 2010-04-01 富士通オプティカルコンポーネンツ株式会社 Phase modulated signal receiver
JP2010087900A (en) * 2008-09-30 2010-04-15 Sumitomo Osaka Cement Co Ltd Optical receiver
JP2010233099A (en) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd Optical receiver
WO2010119499A1 (en) * 2009-04-13 2010-10-21 三菱電機株式会社 Optical transmitting/receiving system, optical transmitting/receiving apparatus and optical transmitting/receiving method
JP2011077582A (en) * 2009-09-29 2011-04-14 Sumitomo Osaka Cement Co Ltd Optical receiver
WO2011092862A1 (en) 2010-02-01 2011-08-04 住友大阪セメント株式会社 Light receiver
WO2011105351A1 (en) * 2010-02-26 2011-09-01 住友大阪セメント株式会社 Optical demodulator
WO2013011549A1 (en) * 2011-07-15 2013-01-24 住友大阪セメント株式会社 Optical demodulator
EP2109234B1 (en) * 2008-04-11 2014-05-21 Hitachi, Ltd. Optical receiving apparatus

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352530A (en) * 1986-08-22 1988-03-05 Fujitsu Ltd Receiver for coherent light communication
JPH0621891A (en) * 1992-06-30 1994-01-28 Fujitsu Ltd Optical transmitter evaluation device for coherent optical communication
JP2004516743A (en) * 2000-12-21 2004-06-03 ブッカム・テクノロジー・ピーエルシー Improvements in or related to optical communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6352530A (en) * 1986-08-22 1988-03-05 Fujitsu Ltd Receiver for coherent light communication
JPH0621891A (en) * 1992-06-30 1994-01-28 Fujitsu Ltd Optical transmitter evaluation device for coherent optical communication
JP2004516743A (en) * 2000-12-21 2004-06-03 ブッカム・テクノロジー・ピーエルシー Improvements in or related to optical communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010028255, Swanson et.al., ""High sensitivity optically preamplified direct detection DPSK receiver with active delay−line stab", IEEE Photonics Technology Letters, 199902, Vol.6, No.2, p.263 − 265 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4489743B2 (en) * 2006-10-04 2010-06-23 日本電信電話株式会社 Frame synchronization method and optical signal receiving apparatus
JP2008092406A (en) * 2006-10-04 2008-04-17 Nippon Telegr & Teleph Corp <Ntt> Frame synchronization method and optical signal receiver
EP1965519A1 (en) 2007-02-28 2008-09-03 Yokogawa Electric Corporation Optical receiver and optical transmitter
JP2009033261A (en) * 2007-07-24 2009-02-12 Fujitsu Ltd Optical reception apparatus and controlling method thereof
JP2009232330A (en) * 2008-03-25 2009-10-08 Yokogawa Electric Corp Optical receiver
JP2009239791A (en) * 2008-03-28 2009-10-15 Yokogawa Electric Corp Optical receiver and optical testing device
EP2109234B1 (en) * 2008-04-11 2014-05-21 Hitachi, Ltd. Optical receiving apparatus
WO2010035333A1 (en) * 2008-09-26 2010-04-01 富士通オプティカルコンポーネンツ株式会社 Phase modulated signal receiver
JP2010087900A (en) * 2008-09-30 2010-04-15 Sumitomo Osaka Cement Co Ltd Optical receiver
JP2010233099A (en) * 2009-03-27 2010-10-14 Sumitomo Osaka Cement Co Ltd Optical receiver
US8180226B2 (en) 2009-03-27 2012-05-15 Sumitomo Osaka Cement Co., Ltd. Optical receiver
JP5068387B2 (en) * 2009-04-13 2012-11-07 三菱電機株式会社 Optical transmission / reception system, optical transmission / reception apparatus, and optical transmission / reception method
WO2010119499A1 (en) * 2009-04-13 2010-10-21 三菱電機株式会社 Optical transmitting/receiving system, optical transmitting/receiving apparatus and optical transmitting/receiving method
US8805198B2 (en) 2009-04-13 2014-08-12 Mitsubishi Electric Corporation Optical transmission and reception system, optical transmitting and receiving apparatus, and optical transmission and reception method
JP2011077582A (en) * 2009-09-29 2011-04-14 Sumitomo Osaka Cement Co Ltd Optical receiver
WO2011092862A1 (en) 2010-02-01 2011-08-04 住友大阪セメント株式会社 Light receiver
WO2011105351A1 (en) * 2010-02-26 2011-09-01 住友大阪セメント株式会社 Optical demodulator
JP2011182027A (en) * 2010-02-26 2011-09-15 Sumitomo Osaka Cement Co Ltd Optical demodulator
WO2013011549A1 (en) * 2011-07-15 2013-01-24 住友大阪セメント株式会社 Optical demodulator

Also Published As

Publication number Publication date
JP4602148B2 (en) 2010-12-22

Similar Documents

Publication Publication Date Title
JP4602148B2 (en) Optical receiver
JP4422661B2 (en) Driving voltage setting method for differential quadrature phase shift modulator
US10404378B2 (en) Optical communication system
US7805085B2 (en) Optical reception apparatus
US20090022498A1 (en) Optical transmission system
US10895797B2 (en) Line coding for optical transmission
US20100239264A1 (en) Optical transmission system, apparatus and method
US20040141222A1 (en) Optical phase multi-level modulation method and apparatus, and error control method
JP4554519B2 (en) Optical transmitter
JP2009171135A (en) Optical transmitter, optical transmission system, and modulation scheme selection method
JP2004348112A (en) Encoder using direct optical n-state phase shift keying, its system, and method for encoding
JP2004170954A (en) Optical phase multi-value modulation method, optical phase multi-value modulating device, and error control method
JP2009232330A (en) Optical receiver
US20090086215A1 (en) Polarization-Multiplexed Multilevel Differential Phase Shift Keyed Signal Detector
JP2008172787A (en) Demodulating signal encoded according to ask modulation and psk modulation
US8538274B2 (en) Optical relay system and method
US20090220249A1 (en) Demodulation circuit
JP2008187714A (en) SIGNAL MODULATION ACCORDING TO 2n-PSK MODULATION
JP5233115B2 (en) Optical receiver using DQPSK demodulation method and DQPSK demodulation method
JP3769623B2 (en) Optical multilevel transmission system and method, optical transmitter, and multilevel signal light generation method
JP5131601B2 (en) Optical modulation signal generator
KR101347294B1 (en) Optical receiving apparatus and method for controlling phase offset for differential quadrature phase shift keying
JP2009027442A (en) Optical receiving circuit
JP5813331B2 (en) Optical receiver
JP2008211439A (en) Optical transmitter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4602148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250