JP2006294738A - Tube-like thermoelectric module and thermoelectric convertor using the same, and method of manufacturing thereof - Google Patents
Tube-like thermoelectric module and thermoelectric convertor using the same, and method of manufacturing thereof Download PDFInfo
- Publication number
- JP2006294738A JP2006294738A JP2005110866A JP2005110866A JP2006294738A JP 2006294738 A JP2006294738 A JP 2006294738A JP 2005110866 A JP2005110866 A JP 2005110866A JP 2005110866 A JP2005110866 A JP 2005110866A JP 2006294738 A JP2006294738 A JP 2006294738A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- electrode
- outer peripheral
- type thermoelectric
- inner peripheral
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 230000002093 peripheral effect Effects 0.000 claims abstract description 148
- 238000006243 chemical reaction Methods 0.000 claims abstract description 106
- 229910000048 titanium hydride Inorganic materials 0.000 claims description 22
- -1 titanium hydride Chemical compound 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 12
- 239000012530 fluid Substances 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 239000003949 liquefied natural gas Substances 0.000 claims 2
- 238000009713 electroplating Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 72
- 239000000843 powder Substances 0.000 description 35
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 32
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 26
- 239000007789 gas Substances 0.000 description 26
- 239000002994 raw material Substances 0.000 description 22
- 238000010248 power generation Methods 0.000 description 17
- 229910052786 argon Inorganic materials 0.000 description 16
- 229910002909 Bi-Te Inorganic materials 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 239000004372 Polyvinyl alcohol Substances 0.000 description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 description 11
- 229910000679 solder Inorganic materials 0.000 description 11
- 238000002844 melting Methods 0.000 description 10
- 230000008018 melting Effects 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 238000003826 uniaxial pressing Methods 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000005219 brazing Methods 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 6
- 229910052739 hydrogen Inorganic materials 0.000 description 6
- 238000005304 joining Methods 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 238000005551 mechanical alloying Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000007921 spray Substances 0.000 description 5
- 239000002918 waste heat Substances 0.000 description 5
- 238000005303 weighing Methods 0.000 description 5
- 229910018104 Ni-P Inorganic materials 0.000 description 4
- 229910018536 Ni—P Inorganic materials 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 229910007657 ZnSb Inorganic materials 0.000 description 2
- 239000011247 coating layer Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000007751 thermal spraying Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910016312 BiSb Inorganic materials 0.000 description 1
- 229910018989 CoSb Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000005679 Peltier effect Effects 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
本発明は熱を直接電気に変換する熱発電モジュールに関するものであって、発電所や工場、自動車等で発生する廃熱を熱源とする熱発電システムに特に有用な管状熱電モジュールおよびそれを用いた熱電変換装置並びに管状熱電モジュールの製造方法に係るものである。 TECHNICAL FIELD The present invention relates to a thermoelectric power generation module that directly converts heat into electricity, and a tubular thermoelectric module that is particularly useful for a thermoelectric power generation system that uses waste heat generated in a power plant, factory, automobile, etc. as a heat source, and the same. The present invention relates to a method for manufacturing a thermoelectric conversion device and a tubular thermoelectric module.
熱電材料はゼーベック効果により熱を電気に直接変換でき、またこれとは逆にペルチェ効果により電気を熱(加熱・冷却)に直接変換できる材料である。熱電材料には、金属のように導電率が高い半導体が用いられ、通常、p型とn型の半導体を組み合わせて利用される。この対を通常、熱電素子といい、一般には、多数の素子を組み合わせたモジュールとして使用する。この熱電モジュールの用途としては、精密な温度制御ができる、局部的冷却ができる、静かである、フロン規制を受けない、長寿命で信頼性が高い、メインテナンス不要など利点があるため、主に光通信用レーザーダイオードの温度制御等に利用されてきている。
一方、近年、地球温暖化問題として、CO2の大幅な排出抑制が求められているが、産業、民生、運輸分野における未利用の熱エネルギーを有効活用することは、省エネルギー、CO2削減に大きく寄与するものとなるため、熱エネルギーを直接、電気エネルギーに変換できる熱電モジュールおよび熱電変換装置の開発が活発に行われるようになってきた。
Thermoelectric materials are materials that can directly convert heat into electricity by the Seebeck effect, and conversely, can convert electricity directly into heat (heating / cooling) by the Peltier effect. As the thermoelectric material, a semiconductor having high conductivity such as metal is used, and usually a combination of p-type and n-type semiconductors is used. This pair is usually called a thermoelectric element, and is generally used as a module in which many elements are combined. This thermoelectric module has advantages such as precise temperature control, local cooling, quietness, no CFC regulation, long life, high reliability, and maintenance-free. It has been used for temperature control of laser diodes for communication.
On the other hand, in recent years, as a global warming problem, there has been a demand for drastic suppression of CO 2 emissions. Effective use of unused thermal energy in the industrial, consumer, and transportation fields greatly contributes to energy saving and CO 2 reduction. In order to contribute, development of a thermoelectric module and a thermoelectric conversion device capable of directly converting thermal energy into electric energy has been actively performed.
常温から200℃の低温域で使用される熱電材料としては、1954年に米国のGE社のGoldsmidによって見出されたBiTe材が一般的に知られており、温度制御用途には、ほとんどこの材料が用いられている。熱電材料は、一般的に適用温度範囲が狭いため、廃熱を用いた発電用途においては、その温度域に応じて、低温域から中高温域で特性の優れた熱電材料が必要とされる。低温域においては、先の温度制御用途に用いられているBiTe材が特性的に優れ、発電用途にも用いることができる。またさらに低温域ではBiSb材が優れた特性を示す。中高温域においては、ZnSb系材や、スクッテルダイト材、酸化物材などが優れた特性を示す。 As a thermoelectric material used in the low temperature range from room temperature to 200 ° C, BiTe material found by Goldsmid of GE Corporation in the United States in 1954 is generally known, and this material is mostly used for temperature control applications. Is used. Since thermoelectric materials generally have a narrow application temperature range, in power generation applications using waste heat, a thermoelectric material having excellent characteristics in a low temperature range to a medium to high temperature range is required depending on the temperature range. In the low temperature range, the BiTe material used in the previous temperature control application is excellent in characteristics and can be used in power generation applications. Furthermore, BiSb material shows excellent characteristics at lower temperatures. In the middle and high temperature range, ZnSb-based materials, skutterudite materials, oxide materials and the like exhibit excellent characteristics.
熱電変換装置は、低エネルギー密度の廃熱を利用して発電を行うため、一定の出力を得るためには、広いエリアに熱電モジュールを設置することが必要であり、製造コストの安価なものでなければ実用化することは困難である。
ところが、従来の熱電モジュールは、図5に示すように、多数のp型とn型の素子を平面上で交互に並べ、各素子間を電気的に直列になるよう電極を接合する必要があり、製造上非常に手間がかかるため、製造コストの低減が大きな問題であった。また、図4に示すように、ドーナツ状のP型およびn型素子を絶縁材料を挟んで交互に並べた管状モジュールも研究レベルでは知られている。(例えば非特許文献1参照)。しかしこの熱電モジュールは、熱電材料を析出成形で形成しており、製造コスト低減に有効な構造とは言い難い。この構造の複雑さと製造コスト、変換できる電気量が小さいという問題が、熱電変換装置の普及に大きな障害となっていた。
Thermoelectric converters generate power using waste heat of low energy density, so it is necessary to install thermoelectric modules in a wide area in order to obtain a certain output, and the manufacturing cost is low. Without it, it is difficult to put it into practical use.
However, in the conventional thermoelectric module, as shown in FIG. 5, it is necessary to arrange a large number of p-type and n-type elements alternately on a plane and to join electrodes so that the elements are electrically in series. Since the manufacturing process is very laborious, the reduction of manufacturing cost has been a big problem. Further, as shown in FIG. 4, a tubular module in which doughnut-shaped P-type and n-type elements are alternately arranged with an insulating material interposed therebetween is also known at the research level. (For example, refer nonpatent literature 1). However, this thermoelectric module is formed of a thermoelectric material by precipitation molding, and it is difficult to say that the thermoelectric module is an effective structure for reducing the manufacturing cost. The complexity of the structure, the manufacturing cost, and the problem that the amount of electricity that can be converted is small have been a major obstacle to the widespread use of thermoelectric conversion devices.
熱電変換技術は、未利用エネルギーの回収技術として、長年、実用化が期待されているにもかかわらず、一向に普及の兆しがない。この一番の大きな原因は、出力当たりの製造コストが高すぎるためである。発電用途の熱電モジュールとしては、たとえば、アメリカのHi-Z社が製品化しているものがあるが、温度制御用モジュールと同様に、多数のp型とn型の素子を交互に電極で接合した構造を有し、製造上、非常に手間がかかるものである。熱電発電技術を熱回収分野で利用するためには、この問題を解決することが一番大きな課題となっている。 Although thermoelectric conversion technology is expected to be put into practical use for many years as a technology for recovering unused energy, there is no sign of widespread use. The main reason for this is that the manufacturing cost per output is too high. As a thermoelectric module for power generation, for example, there is a product manufactured by US Hi-Z, but as with the temperature control module, a large number of p-type and n-type elements are alternately joined with electrodes. It has a structure and is very time-consuming to manufacture. In order to use thermoelectric generation technology in the field of heat recovery, solving this problem is the biggest issue.
そこで、熱源流体の流路の確保や製造上の有利性等を考えると管状の熱電モジュール構造が望ましいと言える。管状熱電モジュールとして、例えば特許文献1では、管状基材の外周面に熱電変換材料を析出成形して形成された熱電気変換装置が記載されている。図4に示すように軸方向に沿ってp型とn型の熱電変換材料が交互に並び、管状基材よりの位置で両者を直接接合した接合体構造を持つ事などが開示されている。しかし熱電材料と電極の接合は、熱電変換材料と電極を溶射により析出成形する方法を用いているが、溶射はコストが高く製造方法を低減するのは難しい。低コストな電極と熱電素子の接合方法としては、はんだを使用する方法があるが、はんだの融点は一般的に300度以下と低くそれ以上の高温にさらすとはんだが溶融してしまい、接合が外れてしまうという問題がある。また高融点のろう材を用いて接合する方法もあるが、ろう材は一般的に700℃以上の融点のものしかなく、前記BiTe材やZnSb材の融点が580℃から620℃程度であるため、材料が溶融してしまい使用できないという問題がある。この300℃から700℃の間で接合可能な適切なろう材がないということも熱電発電技術を熱回収分野で利用するための、大きな課題の一つとなっている。
また、特許文献2では、内部が高温流体の流体流路となる二重円筒管の熱電発電モジュールが記載されている。この熱電モジュールは、内管と外管の間の空隙部に電気的に並列に接続された複数個の熱電変換素子が設けられている。しかしながら、これも多数の熱電変換素子を二重円筒管の空隙部の周方向に一対毎に並べて接合するので接続構造が煩雑となりコスト的な要求が満足できるか疑問であり、また各素子全てを通電させるような接合は技術的にかなりの困難が予想される。
Therefore, it can be said that a tubular thermoelectric module structure is desirable in view of securing the flow path of the heat source fluid and manufacturing advantages. As a tubular thermoelectric module, for example, Patent Document 1 describes a thermoelectric conversion device formed by depositing a thermoelectric conversion material on the outer peripheral surface of a tubular base material. As shown in FIG. 4, it is disclosed that p-type and n-type thermoelectric conversion materials are alternately arranged along the axial direction and have a joined structure in which both are directly joined at a position from the tubular base material. However, the bonding between the thermoelectric material and the electrode uses a method in which the thermoelectric conversion material and the electrode are formed by thermal spraying, but the thermal spraying is expensive and it is difficult to reduce the manufacturing method. There is a soldering method for joining low cost electrodes and thermoelectric elements, but the melting point of the solder is generally low at 300 degrees or less, and the solder melts when exposed to high temperature above that. There is a problem that it comes off. There is also a method of joining using a high melting point brazing material, but the brazing material generally has a melting point of 700 ° C. or higher, and the melting point of the BiTe material or ZnSb material is about 580 ° C. to 620 ° C. There is a problem that the material melts and cannot be used. The lack of an appropriate brazing material that can be joined between 300 ° C. and 700 ° C. is one of the major issues for using thermoelectric power generation technology in the heat recovery field.
Patent Document 2 describes a thermoelectric generator module having a double cylindrical tube whose inside is a fluid flow path of a high-temperature fluid. This thermoelectric module is provided with a plurality of thermoelectric conversion elements electrically connected in parallel to a gap between the inner tube and the outer tube. However, this is also a question of whether a large number of thermoelectric conversion elements are joined side by side in the circumferential direction of the gap of the double cylindrical tube, so that the connection structure becomes complicated and cost requirements can be satisfied. It is expected to be technically difficult to join such a current.
以上のように従来の管状熱電モジュールでは、管状ではあるがまだ構造が複雑であり、製造上の煩雑さも伴いコスト的な問題を解決するには至っていない。また、低コストな製造方法としてはんだやろう材を利用した熱電素子と電極の接合方法があるが、はんだを使用した場合でははんだの融点以上の温度では熱電モジュールが使用できず、700℃以上の高融点のろう材を使用するとBiTe材のような低融点の材料は使用できないという問題があった。熱電熱電変換装置について見ると、熱媒体として従来、自動車の排ガスや加熱炉の排ガス、火力発電の加熱器など高温側の流体を熱源としている。そのため装置を構成する部材の耐熱、耐久性が問題になることがある。
そこで、本発明は、組み立てやすい簡易な形状となすことで安価なコストで製造可能な管状熱電モジュールおよびそれを用いた熱電変換装置並びに管状熱電モジュールの製造方法を提供することを第1の目的としている。さらに、本発明は、比較的高い温度域でも信頼性の高く使用可能な管状熱電モジュールおよびそれを用いた熱電変換装置並びに管状熱電モジュールの製造方法を提供することを第2の目的としている。
As described above, in the conventional tubular thermoelectric module, although it is tubular, the structure is still complicated, and it has not been possible to solve the cost problem due to complicated manufacturing. In addition, as a low-cost manufacturing method, there is a method of joining a thermoelectric element and an electrode using solder or brazing material. However, when solder is used, a thermoelectric module cannot be used at a temperature higher than the melting point of the solder, and the temperature exceeds 700 ° C. When a high melting point brazing material is used, a low melting point material such as BiTe material cannot be used. Looking at thermoelectric thermoelectric conversion devices, as a heat medium, heat sources such as automobile exhaust gas, heating furnace exhaust gas, and thermal power generation heaters are conventionally used as heat sources. For this reason, the heat resistance and durability of members constituting the apparatus may become a problem.
Therefore, the first object of the present invention is to provide a tubular thermoelectric module that can be manufactured at a low cost by making it easy to assemble, a thermoelectric conversion device using the same, and a method for manufacturing the tubular thermoelectric module. Yes. Furthermore, a second object of the present invention is to provide a tubular thermoelectric module that can be used with high reliability even in a relatively high temperature range, a thermoelectric conversion device using the same, and a method for manufacturing the tubular thermoelectric module.
本発明の一態様は、外周面に形成された外周電極と内周面に形成された内周電極とを有する環状のp型熱電変換素子と、外周面に形成された外周電極と内周面に形成された内周電極とを有する環状のn型熱電変換素子とが管軸方向に交互に配列され、隣合う前記p型熱電変換素子とn型熱電変換素子との外周電極同士または内周電極同士が対向する面の間に、導電性を有する管状の電極部材が配設された管状熱電モジュールである。外周面に形成された外周電極と内周面に形成された内周電極とを有する環状のp型熱電変換素子と、外周面に形成された外周電極と内周面に形成された内周電極とを有する環状のn型熱電変換素子と導電性を有する管状の電極部材を別に設けることにより、これらを交互に積み重ねていくだけで容易に長い管状モジュールを組み立てることができる。管状熱電モジュールを上記のような構成にすることにより、管軸方向の長さが比較的長い管状熱電モジュールを容易に一括して製造することができ個別に製造された管状熱電モジュールを組み合わせて長い管状熱電モジュールを構成する場合に比べコストを低減することができる。なお、前記電極部材は、前記内周電極同士の間に位置する第1の電極部材と、前記外周電極同士の間に位置する第2の電極部材とからなり、前記第1の電極部材と第2の電極部材とが管軸方向に交互に配設されていれば好ましい。このような構成とすることにより、発電の際の電圧が高くなり効率良く出力を得ることができる。 One aspect of the present invention is an annular p-type thermoelectric conversion element having an outer peripheral electrode formed on the outer peripheral surface and an inner peripheral electrode formed on the inner peripheral surface, and an outer peripheral electrode and an inner peripheral surface formed on the outer peripheral surface. Annular n-type thermoelectric conversion elements having inner peripheral electrodes formed on the outer peripheral electrodes of the adjacent p-type thermoelectric conversion elements and n-type thermoelectric conversion elements or the inner circumference It is a tubular thermoelectric module in which a tubular electrode member having conductivity is disposed between the surfaces where the electrodes face each other. An annular p-type thermoelectric conversion element having an outer peripheral electrode formed on the outer peripheral surface and an inner peripheral electrode formed on the inner peripheral surface, an outer peripheral electrode formed on the outer peripheral surface, and an inner peripheral electrode formed on the inner peripheral surface By separately providing an annular n-type thermoelectric conversion element having the above and a tubular electrode member having conductivity, a long tubular module can be easily assembled by simply stacking them alternately. By configuring the tubular thermoelectric module as described above, a tubular thermoelectric module having a relatively long length in the tube axis direction can be easily manufactured in a lump, and the tubular thermoelectric modules manufactured individually can be combined and long. Cost can be reduced compared with the case of constituting a tubular thermoelectric module. The electrode member includes a first electrode member positioned between the inner peripheral electrodes and a second electrode member positioned between the outer peripheral electrodes, and the first electrode member and the first electrode member It is preferable if the two electrode members are alternately arranged in the tube axis direction. By setting it as such a structure, the voltage in the case of electric power generation becomes high, and an output can be obtained efficiently.
なお、前記外周電極または内周電極と前記p型熱電変換素子またはn型熱電変換素子の境界には、チタン又は水素化チタンの層が存していれば、好ましい。はんだの融点である300℃以上の熱源を利用することができ高温の熱源を利用することが可能となり、p型熱電変換素子及びn型熱電変換素子に高い温度差が加わり効率的に電力を取り出すことができる。 It is preferable that a titanium or titanium hydride layer exists at the boundary between the outer peripheral electrode or inner peripheral electrode and the p-type thermoelectric conversion element or n-type thermoelectric conversion element. A heat source of 300 ° C. or higher, which is the melting point of the solder, can be used, and a high-temperature heat source can be used, and a high temperature difference is added to the p-type thermoelectric conversion element and the n-type thermoelectric conversion element to efficiently extract electric power. be able to.
さらに、前記p型熱電変換素子とn型熱電変換素子との対向する面の間には、環状の絶縁部材が配置されていれば好ましい。さらに、前記外周電極または内周電極の前記p型熱電変換素子またはn型熱電変換素子との接合面には導電性めっきが施されていることが好ましい。この構成にすることにより電気的なロスを低減してさらに発電量を向上することが出来るからである。 Furthermore, it is preferable that an annular insulating member is disposed between the opposing surfaces of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element. Furthermore, it is preferable that conductive plating is applied to a joint surface of the outer peripheral electrode or the inner peripheral electrode with the p-type thermoelectric conversion element or the n-type thermoelectric conversion element. This is because this configuration can reduce the electrical loss and further improve the amount of power generation.
本発明の一態様は、環状のp型熱電変換素子およびn型熱電変換素子のそれぞれの外周面に外周電極を接合するとともにそれぞれの内周面に内周電極とを接合し、前記p型熱電変換素子およびn型熱電変換素子とを管軸方向に交互に配列するとともに、隣合う前記p型熱電変換素子とn型熱電変換素子との外周電極同士または内周電極同士が対向する面の間に導電性を有する環状の電極部材を配設することを特徴とする管状熱電モジュールの製造方法である。この製造方法によれば、上記管状熱電モジュールを好適に製造することができる。なお、前記外周電極若しくは内周電極又は前記p型熱電変換素子若しくはn型熱電変換素子の接合予定面に、少なくとも水素化チタンを含む溶液を塗布した後に、前記外周電極若しくは内周電極と前記p型熱電変換素子又はn型熱電変換素子とを接合すれば好ましい。 According to one aspect of the present invention, an outer peripheral electrode is bonded to each outer peripheral surface of each of the annular p-type thermoelectric conversion element and the n-type thermoelectric conversion element, and an inner peripheral electrode is bonded to each inner peripheral surface. Between the surfaces where the outer peripheral electrodes or the inner peripheral electrodes of the adjacent p-type thermoelectric conversion elements and n-type thermoelectric conversion elements face each other while alternately arranging the conversion elements and the n-type thermoelectric conversion elements in the tube axis direction An annular electrode member having electrical conductivity is disposed on the tubular thermoelectric module. According to this manufacturing method, the said tubular thermoelectric module can be manufactured suitably. In addition, after applying the solution containing at least titanium hydride to the junction planned surface of the outer peripheral electrode or inner peripheral electrode or the p-type thermoelectric conversion element or n-type thermoelectric conversion element, the outer peripheral electrode or inner peripheral electrode and the p It is preferable to join a type thermoelectric conversion element or an n type thermoelectric conversion element.
さらに、管状熱電モジュールの信頼性を高めるため、前記内周電極の内側に配設された内管と、外周電極の外側に配設された外管とを有し、前記内管の外周面及び前記外管の内周面には電気的絶縁性を有する被覆層が形成されていれば好ましい。また、さらに、前記内管の少なくとも外周面及び前記外管の少なくとも内周面には、当該内管および外管とp型熱電変換素子及びn型熱電変換素子とを電気的に絶縁するため表面にSiO2等の絶縁性被覆層を形成することが好ましい。 Further, in order to increase the reliability of the tubular thermoelectric module, the tubular thermoelectric module has an inner tube disposed inside the inner circumferential electrode and an outer tube disposed outside the outer circumferential electrode, and the outer circumferential surface of the inner tube and It is preferable if a coating layer having electrical insulation is formed on the inner peripheral surface of the outer tube. Further, at least an outer peripheral surface of the inner tube and at least an inner peripheral surface of the outer tube are surfaces for electrically insulating the inner tube and the outer tube from the p-type thermoelectric conversion element and the n-type thermoelectric conversion element. It is preferable to form an insulating coating layer of SiO 2 or the like.
本発明の一態様は、前記内管および外管を設けた管状熱電モジュールを用いた熱電変換装置であって、前記内管側を低温流体の流路となし、前記外管側を高温側となる媒体を介在させてなることを特徴とする熱電変換装置である。この熱電変換装置は、前記管状熱電モジュールの内管内に直接または間接的に工業排熱や自動車の排ガス等の高温流体が通る流路となし、且つ前記外管の周囲を低温側となる水などの媒体を介在させて熱電変換を行うものである。なお、、管状熱電モジュールの外管の外表面または内管の内表面にフィン等を設ければ、管状熱電モジュールの表面積を拡大でき有効である。 One aspect of the present invention is a thermoelectric conversion device using a tubular thermoelectric module provided with the inner tube and the outer tube, wherein the inner tube side is a flow path of a low-temperature fluid, and the outer tube side is a high-temperature side. It is a thermoelectric conversion device characterized by interposing a medium. This thermoelectric conversion device has a flow path through which a high-temperature fluid such as industrial exhaust heat or automobile exhaust gas passes directly or indirectly into the inner tube of the tubular thermoelectric module, and water that has a lower temperature around the outer tube. The medium is interposed to perform thermoelectric conversion. Note that it is effective to increase the surface area of the tubular thermoelectric module by providing fins or the like on the outer surface of the outer tube of the tubular thermoelectric module or the inner surface of the inner tube.
本発明によれば、構造もシンプルで信頼性も高く製造コストを大幅に低減可能で、はんだの融点である300℃よりも高い熱源を利用することができ、より高い温度差を設けることができる管状熱電モジュールおよび熱電変換装置並びにその製造方法を提供できる。 According to the present invention, the structure is simple, the reliability is high, and the manufacturing cost can be greatly reduced, a heat source higher than 300 ° C. that is the melting point of the solder can be used, and a higher temperature difference can be provided. A tubular thermoelectric module, a thermoelectric conversion device, and a manufacturing method thereof can be provided.
次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。
以下、本発明の実施の一形態を図1を参照し説明する。図1は、本発明の一態様の管状熱電モジュール1を組み込んだ熱電変換装置2の代表的な構成を示す断面図である。本態様の管状モジュール1は、外周面に形成された外周電極151と内周面に形成された内周電極152とを有する環状のp型熱電変換素子13と、外周面に形成された外周電極151と内周面に形成された内周電極152とを有する環状のn型熱電変換素子14とが管軸方向に交互に配列され、隣合う前記p型熱電変換素子13とn型熱電変換素子14との外周電極同士または内周電極同士が対向する面の間に、導電性を有する管状の電極部材191、192が配設されているものである。ここで、環状の電極と熱電変換素子の境界にはチタン、又は水素化チタンの層18が存する。このように本発明の熱電モジュールは、管の軸方向(長さ方向)に環状電極部材191、192によってp型とn型の熱電変換素子13、14を電気的に直列に接続してなり、この環状電極部材は、内周電極152側に位置する小径の環状電極部材192と外周電極151側に位置する大径の環状電極部材191とを交互に配置して、p型とn型の熱電変換素子内を連続的に電流がロス無く流れるように接続している。環状電極部材191、192の材質としては、銅やSUS304やアルミ製のリングなどを用いることができる。本態様の熱電変換装置2は、上記管状熱電モジュールの外周電極151の外側に金属製の外管22が配設され、内周電極152の内側に金属製の内管21が配設されている。すなわち、本態様の熱電変換装置2では、高温流体の流路となる金属製の内管と外管との間に熱電変換モジュール1が配設される構造となっている。金属製の内管21と外管22は、p型とn型の熱電変換素子を電気的に絶縁するために表面をSiO2等の絶縁材23でコーティングしている。p型とn型の熱電素子13、14とその内外周部に形成された電極部材151、152は、環状熱電変換素子と内外電極の間に隙間を設けて、その内外の隙間に溶剤と混ぜた水素化チタンの粉末を塗布し、SUS304等のパンチにより管軸方向に加圧しながら、470℃以上の温度でホットプレスあるいは放電焼結することにより接合されている。そして、外周面に形成された外周電極151と内周面に形成された内周電極152とを有する環状のp型熱電変換素子13と、外周面に形成された外周電極151と内周面に形成された内周電極152とを有する環状のn型熱電変換素子14と、環状電極部材191、192は、はんだや水素化チタン、ろう材を挟んで接合されている。
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a cross-sectional view illustrating a typical configuration of a thermoelectric conversion device 2 in which a tubular thermoelectric module 1 according to an aspect of the present invention is incorporated. The tubular module 1 of this aspect includes an annular p-type thermoelectric conversion element 13 having an outer peripheral electrode 151 formed on the outer peripheral surface and an inner peripheral electrode 152 formed on the inner peripheral surface, and an outer peripheral electrode formed on the outer peripheral surface. 151 and annular n-type thermoelectric conversion elements 14 having inner peripheral electrodes 152 formed on the inner peripheral surface are alternately arranged in the tube axis direction, and the adjacent p-type thermoelectric conversion elements 13 and n-type thermoelectric conversion elements are arranged. 14, the electrode electrodes 191 and 192 having conductivity are disposed between the surfaces of the outer peripheral electrodes 14 and the inner peripheral electrodes facing each other. Here, a layer 18 of titanium or titanium hydride exists at the boundary between the annular electrode and the thermoelectric conversion element. Thus, the thermoelectric module of the present invention is formed by electrically connecting the p-type and n-type thermoelectric conversion elements 13 and 14 in series with the annular electrode members 191 and 192 in the axial direction (length direction) of the tube, In this annular electrode member, a small-diameter annular electrode member 192 positioned on the inner peripheral electrode 152 side and a large-diameter annular electrode member 191 positioned on the outer peripheral electrode 151 side are alternately arranged, and p-type and n-type thermoelectric members are arranged. They are connected so that current flows continuously through the conversion element without loss. As a material of the annular electrode members 191 and 192, copper, SUS304, an aluminum ring, or the like can be used. In the thermoelectric conversion device 2 of this aspect, a metal outer tube 22 is disposed outside the outer peripheral electrode 151 of the tubular thermoelectric module, and a metal inner tube 21 is disposed inside the inner peripheral electrode 152. . That is, the thermoelectric conversion device 2 according to this aspect has a structure in which the thermoelectric conversion module 1 is disposed between a metal inner tube and an outer tube serving as a flow path for a high-temperature fluid. The metal inner tube 21 and the outer tube 22 are coated with an insulating material 23 such as SiO 2 in order to electrically insulate the p-type and n-type thermoelectric conversion elements. The p-type and n-type thermoelectric elements 13 and 14 and the electrode members 151 and 152 formed on the inner and outer peripheral portions thereof are provided with a gap between the annular thermoelectric conversion element and the inner and outer electrodes, and mixed with a solvent in the inner and outer gaps. Titanium hydride powder is applied and bonded by hot pressing or discharge sintering at a temperature of 470 ° C. or higher while pressurizing in the tube axis direction with a punch such as SUS304. An annular p-type thermoelectric conversion element 13 having an outer peripheral electrode 151 formed on the outer peripheral surface and an inner peripheral electrode 152 formed on the inner peripheral surface, an outer peripheral electrode 151 formed on the outer peripheral surface, and an inner peripheral surface The annular n-type thermoelectric conversion element 14 having the formed inner peripheral electrode 152 and the annular electrode members 191 and 192 are joined with solder, titanium hydride, or a brazing material interposed therebetween.
(実施例1)
本発明の第1実施例について説明する。
Bi-Te系熱電材料(n型材)の原料粉はSbI3を0.1wt%含むBi2Te2.85Se0.15組成となるように原料を秤量し、一方、Sb-Te系熱電材料(p型材)の原料粉はBi0.4Sb1.6Te3の組成となるように原料を秤量して、振動ミルによるメカニカルアロイングを行い合成した。得られた粉末(Bi-Te粉またはSb-Te粉)を外径41.6mm、内径36.5mm、厚さ45mmのリング状に加圧成形後、酸素含有率低減のため、水素中350℃で10時間の熱処理を行い、その後、n型材とp型材ともにホットプレスでアルゴンガス中、50Mpa、500℃、1時間の焼結にて外径41.8mm、内径36.2mm、厚さ40mmの焼結体を得た。
その後、外周電極152には、外径44mm×肉厚1mm×長さ45mmのSUS304製管を、内周電極151には外径36mm×肉厚1mm×長さ45mmのSUS304製管を用い、5wt%のポリビニルアルコールに水素化チタンの粉末を混ぜ、外周電極152の内側と、内周電極151の外側に塗布し、その電極間の空隙部に前記焼結体をセットした。そして外径41.8mm、内径36.2mm、長さ100mmのSUS304製のパンチ72で焼結体のみに圧力が掛かるように図2に示すようにカーボンの冶具71、73にセットし、ホットプレスでアルゴンガス中、570℃、45分、加圧力5Mpaの条件で電極と熱電素子の接合を行った。得られた電極が接合された熱電素子を3mmの長さになるように切断した。なお、SUS304製のパンチにはパンチと熱電素子の反応防止のためBNスプレーを十分塗布した。
(Example 1)
A first embodiment of the present invention will be described.
The raw material powder of Bi-Te thermoelectric material (n-type material) weighs the raw material so that it has a composition of Bi 2 Te 2.85 Se 0.15 containing 0.1 wt% of SbI 3 , while the Sb-Te thermoelectric material (p-type material) The raw material powder was synthesized by weighing the raw material so as to have a composition of Bi 0.4 Sb 1.6 Te 3 and performing mechanical alloying with a vibration mill. The obtained powder (Bi-Te powder or Sb-Te powder) is pressed into a ring shape having an outer diameter of 41.6 mm, an inner diameter of 36.5 mm, and a thickness of 45 mm, and then reduced to 350 ° C. in hydrogen to reduce the oxygen content. After that, the n-type material and the p-type material were both hot-pressed in argon gas at 50 Mpa, 500 ° C. for 1 hour and sintered at an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a thickness of 40 mm. A sintered body was obtained.
Thereafter, a SUS304 pipe having an outer diameter of 44 mm, a thickness of 1 mm, and a length of 45 mm is used for the outer peripheral electrode 152, and a SUS304 pipe having an outer diameter of 36 mm, a thickness of 1 mm, and a length of 45 mm is used for the inner peripheral electrode 151. % Of polyvinyl alcohol was mixed with titanium hydride powder and applied to the inner side of the outer peripheral electrode 152 and the outer side of the inner peripheral electrode 151, and the sintered body was set in the gap between the electrodes. 2 is set on carbon jigs 71 and 73 as shown in FIG. 2 so as to apply pressure only to the sintered body with a punch 72 made of SUS304 having an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a length of 100 mm. Then, the electrode and the thermoelectric element were joined in an argon gas at 570 ° C. for 45 minutes under a pressure of 5 Mpa. The thermoelectric element to which the obtained electrode was bonded was cut to a length of 3 mm. Note that BN spray was sufficiently applied to the punch made of SUS304 to prevent reaction between the punch and the thermoelectric element.
先に得られた内外周に外周電極151と内周電極152とを形成したn型焼結体(Bi-Te焼結体)14と、SUS304製の外径44mm×肉厚1mm×厚み0.5mmの大径側にある第1の環状の電極部材192と、絶縁部材であるジルコニア製の外径42mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを1セットとし、また、内外周に外周電極151と内周電極152を形成したp型焼結体(Sb-Te焼結体)13と、SUS304製の外径36mm×肉厚1mm×厚み0.5mmの小径側にある第2の環状の電極部材191と、ジルコニア製の外径44mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを他の1セットとし、これらのセットを順に交互に10セット積み重ねてSiO2で絶縁コーティングしたSUS304製の内管21と外管22の空隙部に挿入した。なお、外周電極151及び内周電極152の管軸方向の両面に5wt%のポリビニルアルコールに水素化チタン8を混ぜたものを塗布した。その後図3に示すようにSUS304製のパンチ72を使用し、アルゴンガス中で、温度550℃、加圧力5Mpa、保持時間30分の熱間一軸プレスを行い、管状熱電モジュールを作製した。 The n-type sintered body (Bi-Te sintered body) 14 in which the outer peripheral electrode 151 and the inner peripheral electrode 152 are formed on the inner and outer peripheries obtained previously, an outer diameter 44 mm × thickness 1 mm × thickness 0. A combination of the first annular electrode member 192 on the large-diameter side of 5 mm and the insulating member 16 made of zirconia, which is an insulating member having an outer diameter of 42 mm, a thickness of 3 mm, and a thickness of 0.5 mm. The p-type sintered body (Sb-Te sintered body) 13 in which the outer peripheral electrode 151 and the inner peripheral electrode 152 are formed on the inner and outer periphery, and the small diameter side of the outer diameter 36 mm × thickness 1 mm × thickness 0.5 mm made of SUS304 A combination of a second annular electrode member 191 and an insulating member 16 made of zirconia having an outer diameter of 44 mm, a thickness of 3 mm, and a thickness of 0.5 mm is set as another set, and these sets are alternately set in ten sets. stacking SUS304 steel inner tube 21 insulated coated on SiO 2 and outer tube 2 was inserted into the gap portion. In addition, what mixed the titanium hydride 8 in 5 wt% polyvinyl alcohol was apply | coated to both surfaces of the outer peripheral electrode 151 and the inner peripheral electrode 152 of the pipe-axis direction. Thereafter, as shown in FIG. 3, a SUS304 punch 72 was used, and hot uniaxial pressing was performed in argon gas at a temperature of 550 ° C., a pressurizing force of 5 Mpa, and a holding time of 30 minutes to produce a tubular thermoelectric module.
次に、上記で得た管状熱電モジュールを用いた熱電変換装置の内管に400℃のガスを流し、外側には20℃の冷却水を流し温度差を設けて発電試験を行った。この時の熱電変換の最大出力を、電子負荷装置を用い負荷抵抗を変化させて求めた。その結果、得られた出力は15Wであった。また、連続一週間の連続試験でも出力の低下は認められなかった。 Next, a 400 ° C. gas was allowed to flow through the inner tube of the thermoelectric conversion device using the tubular thermoelectric module obtained above, and a 20 ° C. cooling water was allowed to flow outside to provide a temperature difference to conduct a power generation test. The maximum output of thermoelectric conversion at this time was obtained by changing the load resistance using an electronic load device. As a result, the obtained output was 15W. Also, no decrease in output was observed in the continuous test for one week.
(実施例2)
本発明の第2の実施例について説明する。なお、上記第1実施例との相違点は、外周電極151及び内周電極152の表面に反応性を高めるために無電解Ni-Pめっきを施したことである。
Bi-Te系熱電材料(n型材)の原料粉はSbI3を0.1wt%含むBi2Te2.85Se0.15組成となるように原料を秤量し、一方、Sb-Te系熱電材料(p型材)の原料粉はBi0.4Sb1.6Te3の組成となるように原料を秤量して、振動ミルによるメカニカルアロイングを行い合成した。得られた粉末(Bi-Te粉またはSb-Te粉)を外径41.6mm、内径36.5mm、厚さ45mmのリング状に加圧成形後、酸素含有率低減のため、水素中350℃で10時間の熱処理を行い、その後、n型材とp型材ともにホットプレスでアルゴンガス中、50Mpa、500℃、1時間の焼結にて外径41.8mm、内径36.2mm、厚さ40mmの焼結体を得た。
(Example 2)
A second embodiment of the present invention will be described. The difference from the first embodiment is that the surfaces of the outer peripheral electrode 151 and the inner peripheral electrode 152 are subjected to electroless Ni—P plating in order to increase the reactivity.
The raw material powder of Bi-Te thermoelectric material (n-type material) weighs the raw material so that it has a composition of Bi 2 Te 2.85 Se 0.15 containing 0.1 wt% of SbI 3 , while the Sb-Te thermoelectric material (p-type material) The raw material powder was synthesized by weighing the raw material so as to have a composition of Bi 0.4 Sb 1.6 Te 3 and performing mechanical alloying with a vibration mill. The obtained powder (Bi-Te powder or Sb-Te powder) is pressed into a ring shape having an outer diameter of 41.6 mm, an inner diameter of 36.5 mm, and a thickness of 45 mm, and then reduced to 350 ° C. in hydrogen to reduce the oxygen content. After that, the n-type material and the p-type material were both hot-pressed in argon gas at 50 Mpa, 500 ° C. for 1 hour and sintered at an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a thickness of 40 mm. A sintered body was obtained.
その後、外周電極152には、外径44mm×肉厚1mm×長さ45mmのSUS304製管に無電解Ni-Pめっきを施したものを、内周電極151には外径36mm×肉厚1mm×長さ45mmのSUS304製管に無電解Ni-Pめっきを施したものを用い、5wt%のポリビニルアルコールに水素化チタンの粉末を混ぜ、外周電極152の内側と、内周電極151の外側に塗布し、その電極間の空隙部に前記焼結体をセットした。そして外径41.8mm、内径36.2mm、長さ100mmのSUS304製のパンチ72で焼結体のみに圧力が掛かるように図2に示すようにカーボンの冶具71、73にセットし、ホットプレスでアルゴンガス中、570℃、45分、加圧力5Mpaの条件で電極と熱電素子の接合を行った。得られた電極が接合された熱電素子を3mmの長さになるように切断した。なお、SUS304製のパンチにはパンチと熱電素子の反応防止のためBNスプレーを十分塗布した。 Thereafter, the outer peripheral electrode 152 is an SUS304 pipe having an outer diameter of 44 mm, a wall thickness of 1 mm, and a length of 45 mm, and the inner electrode 151 is an outer diameter of 36 mm and a wall thickness of 1 mm. Using 45mm long SUS304 tube with electroless Ni-P plating, mix 5wt% polyvinyl alcohol with titanium hydride powder and apply it to the inside of the outer peripheral electrode 152 and the outer side of the inner peripheral electrode 151. And the said sintered compact was set to the space | gap part between the electrodes. 2 is set on carbon jigs 71 and 73 as shown in FIG. 2 so as to apply pressure only to the sintered body with a punch 72 made of SUS304 having an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a length of 100 mm. Then, the electrode and the thermoelectric element were joined in an argon gas at 570 ° C. for 45 minutes under a pressure of 5 Mpa. The thermoelectric element to which the obtained electrode was bonded was cut to a length of 3 mm. Note that BN spray was sufficiently applied to the punch made of SUS304 to prevent reaction between the punch and the thermoelectric element.
先に得られた内外周に外周電極151と内周電極152とを形成したn型焼結体(Bi-Te焼結体)14と、SUS304製の外径44mm×肉厚1mm×厚み0.5mmの大径側にある第1の環状の電極部材192と、絶縁部材であるジルコニア製の外径42mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを1セットとし、また、内外周に外周電極151と内周電極152を形成したp型焼結体(Sb-Te焼結体)13と、SUS304製の外径36mm×肉厚1mm×厚み0.5mmの小径側にある第2の環状の電極部材191と、ジルコニア製の外径44mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを他の1セットとし、これらのセットを順に交互に10セット積み重ねてSiO2で絶縁コーティングしたSUS304製の内管21と外管22の空隙部に挿入した。なお、外周電極151および内周電極152の管軸方向の両面に5wt%のポリビニルアルコールに水素化チタン8を混ぜたものを塗布した。その後図3に示すようにSUS304製のパンチ72を使用し、アルゴンガス中で、温度550℃、加圧力5Mpa、保持時間30分の熱間一軸プレスを行い、管状熱電モジュールを作製した。
次に、上記で得た管状熱電モジュールを用いた熱電変換装置の内管に400℃のガスを流し、外側には20℃の冷却水を流し温度差を設けて発電試験を行った。この時の熱電変換の最大出力を、電子負荷装置を用い負荷抵抗を変化させて求めた。その結果、得られた出力は16Wであった。また、連続一週間の連続試験でも出力の低下は認められなかった。
The n-type sintered body (Bi-Te sintered body) 14 in which the outer peripheral electrode 151 and the inner peripheral electrode 152 are formed on the inner and outer peripheries obtained previously, an outer diameter 44 mm × thickness 1 mm × thickness 0. A combination of the first annular electrode member 192 on the large-diameter side of 5 mm and the insulating member 16 made of zirconia, which is an insulating member having an outer diameter of 42 mm, a thickness of 3 mm, and a thickness of 0.5 mm. The p-type sintered body (Sb-Te sintered body) 13 in which the outer peripheral electrode 151 and the inner peripheral electrode 152 are formed on the inner and outer periphery, and the small diameter side of the outer diameter 36 mm × thickness 1 mm × thickness 0.5 mm made of SUS304 A combination of a second annular electrode member 191 and an insulating member 16 made of zirconia having an outer diameter of 44 mm, a thickness of 3 mm, and a thickness of 0.5 mm is set as another set, and these sets are alternately set in ten sets. stacking SUS304 steel inner tube 21 insulated coated on SiO 2 and outer tube 2 was inserted into the gap portion. In addition, what mixed the titanium hydride 8 in 5 wt% polyvinyl alcohol was apply | coated to both surfaces of the pipe-axis direction of the outer periphery electrode 151 and the inner periphery electrode 152. FIG. Thereafter, as shown in FIG. 3, a SUS304 punch 72 was used, and hot uniaxial pressing was performed in argon gas at a temperature of 550 ° C., a pressurizing force of 5 Mpa, and a holding time of 30 minutes to produce a tubular thermoelectric module.
Next, a 400 ° C. gas was allowed to flow through the inner tube of the thermoelectric conversion device using the tubular thermoelectric module obtained above, and a 20 ° C. cooling water was allowed to flow outside to provide a temperature difference to conduct a power generation test. The maximum output of thermoelectric conversion at this time was obtained by changing the load resistance using an electronic load device. As a result, the obtained output was 16W. Also, no decrease in output was observed in the continuous test for one week.
(実施例3)
本発明の第3の実施例について説明する。なお、上記第1実施例との相違点は、絶縁部材16を使用しない点である。
Bi-Te系熱電材料(n型材)の原料粉はSbI3を0.1wt%含むBi2Te2.85Se0.15組成となるように原料を秤量し、一方、Sb-Te系熱電材料(p型材)の原料粉はBi0.4Sb1.6Te3の組成となるように原料を秤量して、振動ミルによるメカニカルアロイングを行い合成した。得られた粉末(Bi-Te粉またはSb-Te粉)を外径41.6mm、内径36.5mm、厚さ45mmのリング状に加圧成形後、酸素含有率低減のため、水素中350℃で10時間の熱処理を行い、その後、n型材とp型材ともにホットプレスでアルゴンガス中、50Mpa、500℃、1時間の焼結にて外径41.8mm、内径36.2mm、厚さ40mmの焼結体を得た。
Example 3
A third embodiment of the present invention will be described. The difference from the first embodiment is that the insulating member 16 is not used.
The raw material powder of Bi-Te thermoelectric material (n-type material) is weighed so as to have a composition of Bi 2 Te 2.85 Se 0.15 containing 0.1 wt% of SbI 3 , while the Sb-Te thermoelectric material (p-type material) The raw material powder was synthesized by weighing the raw material so as to have a composition of Bi 0.4 Sb 1.6 Te 3 and performing mechanical alloying with a vibration mill. The obtained powder (Bi-Te powder or Sb-Te powder) is pressed into a ring shape having an outer diameter of 41.6 mm, an inner diameter of 36.5 mm, and a thickness of 45 mm, and then reduced to 350 ° C. in hydrogen to reduce the oxygen content. After that, the n-type material and the p-type material were both hot-pressed in argon gas at 50 Mpa, 500 ° C., sintered for 1 hour with an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a thickness of 40 mm. A sintered body was obtained.
その後、外周電極152には、外径44mm×肉厚1mm×長さ45mmのSUS304製管を、内周電極151には外径36mm×肉厚1mm×長さ45mmのSUS304製管を用い、5wt%のポリビニルアルコールに水素化チタンの粉末を混ぜ、外周電極152の内側と、内周電極151の外側に塗布し、その電極間の空隙部に前記焼結体をセットした。そして外径41.8mm、内径36.2mm、長さ100mmのSUS304製のパンチ72で焼結体のみに圧力が掛かるように図2に示すようにカーボンの冶具71、73にセットし、ホットプレスでアルゴンガス中、570℃、45分、加圧力5Mpaの条件で電極と熱電素子の接合を行った。得られた電極が接合された熱電素子を3mmの長さになるように切断した。なお、SUS304製のパンチにはパンチと熱電素子の反応防止のためBNスプレーを十分塗布した。 Thereafter, a SUS304 pipe having an outer diameter of 44 mm, a thickness of 1 mm, and a length of 45 mm is used for the outer peripheral electrode 152, and a SUS304 pipe having an outer diameter of 36 mm, a thickness of 1 mm, and a length of 45 mm is used for the inner peripheral electrode 151. % Of polyvinyl alcohol was mixed with titanium hydride powder and applied to the inner side of the outer peripheral electrode 152 and the outer side of the inner peripheral electrode 151, and the sintered body was set in the gap between the electrodes. 2 is set on carbon jigs 71 and 73 as shown in FIG. 2 so as to apply pressure only to the sintered body with a punch 72 made of SUS304 having an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a length of 100 mm. Then, the electrode and the thermoelectric element were joined in an argon gas at 570 ° C. for 45 minutes under a pressure of 5 Mpa. The thermoelectric element to which the obtained electrode was bonded was cut to a length of 3 mm. Note that BN spray was sufficiently applied to the punch made of SUS304 to prevent reaction between the punch and the thermoelectric element.
先に得られた内外周に外周電極151と内周電極152とを形成したn型焼結体(Bi-Te焼結体)14と、SUS304製の外径44mm×肉厚1mm×厚み0.5mmの大径側にある第1の環状の電極部材192と、絶縁部材であるジルコニア製の外径42mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを1セットとし、また、内外周に外周電極151と内周電極152を形成したp型焼結体(Sb-Te焼結体)13と、SUS304製の外径36mm×肉厚1mm×厚み0.5mmの小径側にある第2の環状の電極部材191とを組み合わせたものを他の1セットとし、これらのセットを順に交互に10セット積み重ねてSiO2で絶縁コーティングしたSUS304製の内管21と外管22の空隙部に挿入した。なお、外周電極151および内周電極152の管軸方向の両面に5wt%のポリビニルアルコールに水素化チタン8を混ぜたものを塗布した。その後図3に示すようにSUS304製のパンチ72を使用し、アルゴンガス中で、温度550℃、加圧力5Mpa、保持時間30分の熱間一軸プレスを行い、管状熱電モジュールを作製した。 The n-type sintered body (Bi-Te sintered body) 14 in which the outer peripheral electrode 151 and the inner peripheral electrode 152 are formed on the inner and outer peripheries obtained previously, an outer diameter 44 mm × thickness 1 mm × thickness 0. A combination of the first annular electrode member 192 on the large-diameter side of 5 mm and the insulating member 16 made of zirconia, which is an insulating member having an outer diameter of 42 mm, a thickness of 3 mm, and a thickness of 0.5 mm. The p-type sintered body (Sb-Te sintered body) 13 in which the outer peripheral electrode 151 and the inner peripheral electrode 152 are formed on the inner and outer periphery, and the small diameter side of the outer diameter 36 mm × thickness 1 mm × thickness 0.5 mm made of SUS304 A combination of a certain second annular electrode member 191 is used as another set, and 10 sets of these sets are alternately stacked in order, and the gap between the inner tube 21 and the outer tube 22 made of SUS304 is insulation-coated with SiO 2. Inserted into the section. In addition, what mixed the titanium hydride 8 in 5 wt% polyvinyl alcohol was apply | coated to both surfaces of the pipe-axis direction of the outer periphery electrode 151 and the inner periphery electrode 152. FIG. Thereafter, as shown in FIG. 3, a SUS304 punch 72 was used, and hot uniaxial pressing was performed in argon gas at a temperature of 550 ° C., a pressurizing force of 5 Mpa, and a holding time of 30 minutes to produce a tubular thermoelectric module.
次に、上記で得た管状熱電モジュールを用いた熱電変換装置の内管に400℃のガスを流し、外側には20℃の冷却水を流し温度差を設けて発電試験を行った。この時の熱電変換の最大出力を、電子負荷装置を用い負荷抵抗を変化させて求めた。その結果、得られた出力は14Wであった。また、連続一週間の連続試験でも出力の低下は認められなかった。 Next, a 400 ° C. gas was allowed to flow through the inner tube of the thermoelectric conversion device using the tubular thermoelectric module obtained above, and a 20 ° C. cooling water was allowed to flow outside to provide a temperature difference to conduct a power generation test. The maximum output of thermoelectric conversion at this time was obtained by changing the load resistance using an electronic load device. As a result, the obtained output was 14 W. Also, no decrease in output was observed in the continuous test for one week.
(実施例4)
本発明の第4実施例について説明する。なお、上記第1実施例との相違点は、内管21と外管22を使用しない点である。
Bi-Te系熱電材料(n型材)の原料粉はSbI3を0.1wt%含むBi2Te2.85Se0.15組成となるように原料を秤量し、一方、Sb-Te系熱電材料(p型材)の原料粉はBi0.4Sb1.6Te3の組成となるように原料を秤量して、振動ミルによるメカニカルアロイングを行い合成した。得られた粉末(Bi-Te粉またはSb-Te粉)を外径41.6mm、内径36.5mm、厚さ45mmのリング状に加圧成形後、酸素含有率低減のため、水素中350℃で10時間の熱処理を行い、その後、n型材とp型材ともにホットプレスでアルゴンガス中、50Mpa、500℃、1時間の焼結にて外径41.8mm、内径36.2mm、厚さ40mmの焼結体を得た。
Example 4
A fourth embodiment of the present invention will be described. The difference from the first embodiment is that the inner tube 21 and the outer tube 22 are not used.
The raw material powder of Bi-Te thermoelectric material (n-type material) weighs the raw material so that it has a composition of Bi 2 Te 2.85 Se 0.15 containing 0.1 wt% of SbI 3 , while the Sb-Te thermoelectric material (p-type material) The raw material powder was synthesized by weighing the raw material so as to have a composition of Bi 0.4 Sb 1.6 Te 3 and performing mechanical alloying with a vibration mill. The obtained powder (Bi-Te powder or Sb-Te powder) is pressed into a ring shape having an outer diameter of 41.6 mm, an inner diameter of 36.5 mm, and a thickness of 45 mm, and then reduced to 350 ° C. in hydrogen to reduce the oxygen content. After that, the n-type material and the p-type material were both hot-pressed in argon gas at 50 Mpa, 500 ° C. for 1 hour and sintered at an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a thickness of 40 mm. A sintered body was obtained.
その後、外周電極152には、外径44mm×肉厚1mm×長さ45mmのSUS304製管を、内周電極151には外径36mm×肉厚1mm×長さ45mmのSUS304製管を用い、5wt%のポリビニルアルコールに水素化チタンの粉末を混ぜ、外周電極152の内側と、内周電極151の外側に塗布し、その電極間の空隙部に前記焼結体をセットした。そして外径41.8mm、内径36.2mm、長さ100mmのSUS304製のパンチ72で焼結体のみに圧力が掛かるように図2に示すようにカーボンの冶具71、73にセットし、ホットプレスでアルゴンガス中、570℃、45分、加圧力5Mpaの条件で電極と熱電素子の接合を行った。得られた電極が接合された熱電素子を3mmの長さになるように切断した。なお、SUS304製のパンチにはパンチと熱電素子の反応防止のためBNスプレーを十分塗布した。 Thereafter, a SUS304 pipe having an outer diameter of 44 mm, a thickness of 1 mm, and a length of 45 mm is used for the outer peripheral electrode 152, and a SUS304 pipe having an outer diameter of 36 mm, a thickness of 1 mm, and a length of 45 mm is used for the inner peripheral electrode 151. % Of polyvinyl alcohol was mixed with titanium hydride powder and applied to the inner side of the outer peripheral electrode 152 and the outer side of the inner peripheral electrode 151, and the sintered body was set in the gap between the electrodes. 2 is set on carbon jigs 71 and 73 as shown in FIG. 2 so as to apply pressure only to the sintered body with a punch 72 made of SUS304 having an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a length of 100 mm. Then, the electrode and the thermoelectric element were joined in an argon gas at 570 ° C. for 45 minutes under a pressure of 5 Mpa. The thermoelectric element to which the obtained electrode was bonded was cut to a length of 3 mm. Note that BN spray was sufficiently applied to the punch made of SUS304 to prevent reaction between the punch and the thermoelectric element.
先に得られた内外周に外周電極151と内周電極152とを形成したn型焼結体(Bi-Te焼結体)14と、SUS304製の外径44mm×肉厚1mm×厚み0.5mmの大径側にある第1の環状の電極部材192と、絶縁部材であるジルコニア製の外径42mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを1セットとし、また、内外周に外周電極151と内周電極152を形成したp型焼結体(Sb-Te焼結体)13と、SUS304製の外径36mm×肉厚1mm×厚み0.5mmの小径側にある第2の環状の電極部材191と、ジルコニア製の外径44mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを他の1セットとし、これらのセットを順に交互に10セット積み重ねた。なお、外周電極151及び内周電極152の管軸方向の両面に5wt%のポリビニルアルコールに水素化チタン8を混ぜたものを塗布した。その後図3に示すようにSUS304製のパンチ72を使用し、アルゴンガス中で、温度550℃、加圧力5Mpa、保持時間30分の熱間一軸プレスを行い、管状熱電モジュールを作製した。。 The n-type sintered body (Bi-Te sintered body) 14 in which the outer peripheral electrode 151 and the inner peripheral electrode 152 are formed on the inner and outer peripheries obtained previously, an outer diameter 44 mm × thickness 1 mm × thickness 0. A combination of the first annular electrode member 192 on the large-diameter side of 5 mm and the insulating member 16 made of zirconia, which is an insulating member having an outer diameter of 42 mm, a thickness of 3 mm, and a thickness of 0.5 mm. The p-type sintered body (Sb-Te sintered body) 13 in which the outer peripheral electrode 151 and the inner peripheral electrode 152 are formed on the inner and outer periphery, and the small diameter side of the outer diameter 36 mm × thickness 1 mm × thickness 0.5 mm made of SUS304 A combination of a second annular electrode member 191 and an insulating member 16 made of zirconia having an outer diameter of 44 mm, a thickness of 3 mm, and a thickness of 0.5 mm is set as another set, and these sets are alternately set in ten sets. Stacked up. In addition, what mixed the titanium hydride 8 in 5 wt% polyvinyl alcohol was apply | coated to both surfaces of the outer peripheral electrode 151 and the inner peripheral electrode 152 of the pipe-axis direction. Thereafter, as shown in FIG. 3, a SUS304 punch 72 was used, and hot uniaxial pressing was performed in argon gas at a temperature of 550 ° C., a pressurizing force of 5 Mpa, and a holding time of 30 minutes to produce a tubular thermoelectric module. .
次に、上記で得た管状熱電モジュールの内側に400℃のガスを流し、外側には20℃の冷却水を流し温度差を設けて発電試験を行った。この時の熱電変換の最大出力を、電子負荷装置を用い負荷抵抗を変化させて求めた。その結果、得られた出力は18Wであった。また、連続一週間の連続試験でも出力の低下は認められなかった。 Next, a 400 ° C. gas was allowed to flow inside the tubular thermoelectric module obtained above, and a 20 ° C. cooling water was allowed to flow outside to provide a temperature difference to conduct a power generation test. The maximum output of thermoelectric conversion at this time was obtained by changing the load resistance using an electronic load device. As a result, the obtained output was 18 W. Also, no decrease in output was observed in the continuous test for one week.
(実施例5)
本発明の第5実施例について説明する。なお、上記第1実施例との相違点は、出力評価時に400℃のガスではなくLNGを用いる点である。
実施例1と同様の方法で管状モジュールを作成し、上記で得た管状熱電モジュールを用いた熱電変換装置の内管にLNG(−160℃)を流し、外管の外側に20℃の水を流すことにより、温度差を設けて発電試験を行った。実施例1との違いは熱源としてLNGを使用した点である。この時の熱電変換の最大出力を、電子負荷装置を用い負荷抵抗を変化させて求めた。その結果、得られた出力は10Wであった。また、連続一週間の連続試験でも出力の低下は認められなかった。
(Example 5)
A fifth embodiment of the present invention will be described. The difference from the first embodiment is that LNG is used instead of the gas at 400 ° C. during output evaluation.
A tubular module was prepared in the same manner as in Example 1, LNG (−160 ° C.) was allowed to flow through the inner tube of the thermoelectric conversion device using the tubular thermoelectric module obtained above, and water at 20 ° C. was poured outside the outer tube. A power generation test was performed with a temperature difference provided by flowing the sample. The difference from Example 1 is that LNG was used as a heat source. The maximum output of thermoelectric conversion at this time was obtained by changing the load resistance using an electronic load device. As a result, the obtained output was 10 W. Also, no decrease in output was observed in the continuous test for one week.
(実施例6)
本発明の第5実施例について説明する。なお、上記第1実施例との相違点は、熱電素子にBiTe材では無くスクッテルダイト系熱電材料を用いる点である。
スクッテルダイト系熱電材料(n型材)の原料粉はYb0.25Co4Sb12組成となるように原料を秤量し、一方、スクッテルダイト系熱電材料(p型材)の原料粉はCeFe3CoSb12の組成となるように原料を秤量して、1100℃24時間の条件で真空溶解を行った。得られた合金を、Ar雰囲気中で粉砕しスクッテルダイト材の粉末を合成した。得られた粉末を外径41.6mm、内径36.5mm、厚さ45mmのリング状に加圧成形後、酸素含有率低減のため、水素中350℃で10時間の熱処理を行い、その後、n型材とp型材ともに放電プラズマ焼結で真空中、50Mpa、700℃、30分の焼結にて外径41.8mm、内径36.2mm、厚さ40mmの焼結体を得た。
Example 6
A fifth embodiment of the present invention will be described. The difference from the first embodiment is that a skutterudite thermoelectric material is used for the thermoelectric element instead of the BiTe material.
The raw material powder of the skutterudite-based thermoelectric material (n-type material) is weighed so as to have a Yb 0.25 Co 4 Sb 12 composition, while the raw material powder of the skutterudite-based thermoelectric material (p-type material) is CeFe 3 CoSb 12 The raw materials were weighed so as to achieve the following composition, and vacuum melting was performed at 1100 ° C. for 24 hours. The obtained alloy was pulverized in an Ar atmosphere to synthesize skutterudite powder. The obtained powder was pressed into a ring shape having an outer diameter of 41.6 mm, an inner diameter of 36.5 mm, and a thickness of 45 mm, and then heat-treated at 350 ° C. for 10 hours in hydrogen to reduce the oxygen content. A sintered body having an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a thickness of 40 mm was obtained by performing discharge plasma sintering in a vacuum at 50 Mpa, 700 ° C. for 30 minutes for both the mold material and the p-type material.
その後、外周電極152には、外径44mm×肉厚1mm×長さ45mmのSUS304製管を、内周電極151には外径36mm×肉厚1mm×長さ45mmのSUS304製管を用い、5wt%のポリビニルアルコールに水素化チタンの粉末を混ぜ、外周電極152の内側と、内周電極151の外側に塗布し、その電極間の空隙部に前記焼結体をセットした。そして外径41.8mm、内径36.2mm、長さ100mmのSUS304製のパンチ72で焼結体のみに圧力が掛かるように図2に示すようにカーボンの冶具71、73にセットし、ホットプレスでアルゴンガス中、570℃、45分、加圧力5Mpaの条件で電極と熱電素子の接合を行った。得られた電極が接合された熱電素子を3mmの長さになるように切断した。なお、SUS304製のパンチにはパンチと熱電素子の反応防止のためBNスプレーを十分塗布した。 Thereafter, a SUS304 pipe having an outer diameter of 44 mm, a thickness of 1 mm, and a length of 45 mm is used for the outer peripheral electrode 152, and a SUS304 pipe having an outer diameter of 36 mm, a thickness of 1 mm, and a length of 45 mm is used for the inner peripheral electrode 151. % Of polyvinyl alcohol was mixed with titanium hydride powder and applied to the inner side of the outer peripheral electrode 152 and the outer side of the inner peripheral electrode 151, and the sintered body was set in the gap between the electrodes. 2 is set on carbon jigs 71 and 73 as shown in FIG. 2 so as to apply pressure only to the sintered body with a punch 72 made of SUS304 having an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a length of 100 mm. Then, the electrode and the thermoelectric element were joined in an argon gas at 570 ° C. for 45 minutes under a pressure of 5 Mpa. The thermoelectric element to which the obtained electrode was bonded was cut to a length of 3 mm. Note that BN spray was sufficiently applied to the punch made of SUS304 to prevent reaction between the punch and the thermoelectric element.
先に得られた外周電極151と内周電極152とを形成したn型焼結体(スクッテルダイト焼結体) 14と、SUS304製の外径44mm×肉厚1mm×厚み0.5mmの大径側にある第1の環状の電極部材192と、絶縁部材であるジルコニア製の外径42mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを1セットとし、また、外周電極151と内周電極152を形成したp型焼結体(スクッテルダイト焼結体) 13と、SUS304製の外径36mm×肉厚1mm×厚み0.5mmの小径側にある第2の環状の電極部材191と、ジルコニア製の外径44mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを他の1セットとし、これらのセットを順に交互に10セット積み重ねてSiO2で絶縁コーティングしたSUS304製の内管21と外管22の空隙部に挿入した。なお、外周電極151および内周電極152の管軸方向の両面に5wt%のポリビニルアルコールに水素化チタン8を混ぜたものを塗布した。その後図3に示すようにSUS304製のパンチ72を使用し、アルゴンガス中で、温度550℃、加圧力5Mpa、保持時間30分の熱間一軸プレスを行い、管状熱電モジュールを作製した。 An n-type sintered body (skutterudite sintered body) 14 formed with the outer peripheral electrode 151 and the inner peripheral electrode 152 obtained previously, and a large size of SUS304, outer diameter 44 mm × thickness 1 mm × thickness 0.5 mm. A combination of the first annular electrode member 192 on the radial side and the insulating member 16 made of zirconia, which is an insulating member made of zirconia having an outer diameter of 42 mm, a thickness of 3 mm, and a thickness of 0.5 mm, is used as one set. 151 and a p-type sintered body (skutterudite sintered body) 13 on which an inner peripheral electrode 152 is formed, and a second annular ring on the small diameter side of an outer diameter 36 mm × thickness 1 mm × thickness 0.5 mm made of SUS304. A combination of the electrode member 191 and the zirconia outer diameter 44 mm × thickness 3 mm × thickness 0.5 mm of the insulating member 16 is used as another set, and these sets are alternately stacked in order and insulated with SiO 2 . Coated inner tube made of SUS304 21 and the outer tube 22 were inserted into the gap. In addition, what mixed the titanium hydride 8 in 5 wt% polyvinyl alcohol was apply | coated to both surfaces of the pipe-axis direction of the outer periphery electrode 151 and the inner periphery electrode 152. FIG. Thereafter, as shown in FIG. 3, a SUS304 punch 72 was used, and hot uniaxial pressing was performed in argon gas at a temperature of 550 ° C., a pressurizing force of 5 Mpa, and a holding time of 30 minutes to produce a tubular thermoelectric module.
次に、上記で得た管状熱電モジュールを用いた熱電変換装置の内管に400℃のガスを流し、外側には20℃の冷却水を流し温度差を設けて発電試験を行った。この時の熱電変換の最大出力を、電子負荷装置を用い負荷抵抗を変化させて求めた。その結果、得られた出力は18Wであった。また、連続一週間の連続試験でも出力の低下は認められなかった。 Next, a 400 ° C. gas was allowed to flow through the inner tube of the thermoelectric conversion device using the tubular thermoelectric module obtained above, and a 20 ° C. cooling water was allowed to flow outside to provide a temperature difference to conduct a power generation test. The maximum output of thermoelectric conversion at this time was obtained by changing the load resistance using an electronic load device. As a result, the obtained output was 18 W. Also, no decrease in output was observed in the continuous test for one week.
(比較例1)
比較例1について説明する。なお、実施例1との違いは電極と熱電素子の接合に水素化チタンではなくはんだを用いた点である。
Bi-Te系熱電材料(n型材)の原料粉はSbI3を0.1wt%含むBi2Te2.85Se0.15組成となるように原料を秤量し、一方、Sb-Te系熱電材料(p型材)の原料粉はBi0.4Sb1.6Te3の組成となるように原料を秤量して、振動ミルによるメカニカルアロイングを行い合成した。得られた粉末(Bi-Te粉またはSb-Te粉)を外径41.6mm、内径36.5mm、厚さ45mmのリング状に加圧成形後、酸素含有率低減のため、水素中350℃で10時間の熱処理を行い、その後、n型材とp型材ともにホットプレスでアルゴンガス中、50Mpa、500℃、1時間の焼結にて外径41.8mm、内径36.2mm、厚さ40mmの焼結体を得たのち、素子の表面に無電解Ni-Pめっきを施した。
(Comparative Example 1)
Comparative Example 1 will be described. The difference from Example 1 is that solder was used instead of titanium hydride for joining the electrode and the thermoelectric element.
The raw material powder of Bi-Te thermoelectric material (n-type material) weighs the raw material so that it has a composition of Bi 2 Te 2.85 Se 0.15 containing 0.1 wt% of SbI 3 , while the Sb-Te thermoelectric material (p-type material) The raw material powder was synthesized by weighing the raw material so as to have a composition of Bi 0.4 Sb 1.6 Te 3 and performing mechanical alloying with a vibration mill. The obtained powder (Bi-Te powder or Sb-Te powder) was pressed into a ring shape with an outer diameter of 41.6 mm, an inner diameter of 36.5 mm, and a thickness of 45 mm, and then reduced to 350 ° C in hydrogen to reduce the oxygen content. After that, the n-type material and the p-type material were both hot-pressed in argon gas at 50 Mpa, 500 ° C., sintered for 1 hour with an outer diameter of 41.8 mm, an inner diameter of 36.2 mm, and a thickness of 40 mm. After obtaining a sintered body, the surface of the element was subjected to electroless Ni-P plating.
その後、外周電極152には、外径44mm×肉厚1mm×長さ45mmのSUS304製管に無電解Ni-Pめっきを施したものを、内周電極151には外径36mm×肉厚1mm×長さ45mmのSUS304製管に無電解Ni‐Pめっきを施したものを用い、はんだペーストを外周電極152の内側と、内周電極151の外側に塗布し、その電極間の空隙部に前記焼結体をセットした。そしてAr雰囲気、300℃10分の条件で電極と熱電素子の接合を行った。得られた電極が接合された熱電素子を3mmの長さになるように切断した。 Thereafter, the outer peripheral electrode 152 is an SUS304 pipe having an outer diameter of 44 mm, a wall thickness of 1 mm, and a length of 45 mm, and the inner electrode 151 is an outer diameter of 36 mm and a wall thickness of 1 mm. Using a 45 mm long SUS304 tube with electroless Ni-P plating, solder paste is applied to the inner side of the outer peripheral electrode 152 and the outer side of the inner peripheral electrode 151, and the above-mentioned firing is applied to the gap between the electrodes. A ligature was set. Then, the electrode and the thermoelectric element were joined in an Ar atmosphere at 300 ° C. for 10 minutes. The thermoelectric element to which the obtained electrode was bonded was cut to a length of 3 mm.
先に得られた外周電極151と内周電極152とを形成したn型焼結体(スクッテルダイト焼結体) 14と、SUS304製の外径44mm×肉厚1mm×厚み0.5mmの大径側にある第1の環状の電極部材192と、絶縁部材であるジルコニア製の外径42mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを1セットとし、また、外周電極151と内周電極152を形成したp型焼結体(スクッテルダイト焼結体) 13と、SUS304製の外径36mm×肉厚1mm×厚み0.5mmの小径側にある第2の環状の電極部材191と、ジルコニア製の外径44mm×肉厚3mm×厚み0.5mmの絶縁部材16を組み合わせたものを他の1セットとし、これらのセットを順に交互に10セット積み重ねてSiO2で絶縁コーティングしたSUS304製の内管21と外管22の空隙部に挿入した。なお、外周電極151および内周電極152の管軸方向の両面に5wt%のポリビニルアルコールに水素化チタン8を混ぜたものを塗布した。その後図3に示すようにSUS304製のパンチ72を使用し、アルゴンガス中で、温度250℃、加圧力5Mpa、保持時間20分の熱間一軸プレスを行い、管状熱電モジュールを作製した。 An n-type sintered body (skutterudite sintered body) 14 formed with the outer peripheral electrode 151 and the inner peripheral electrode 152 obtained previously, and a large size of SUS304, outer diameter 44 mm × thickness 1 mm × thickness 0.5 mm. A combination of the first annular electrode member 192 on the radial side and the insulating member 16 made of zirconia, which is an insulating member made of zirconia having an outer diameter of 42 mm, a thickness of 3 mm, and a thickness of 0.5 mm, is used as one set. 151 and a p-type sintered body (skutterudite sintered body) 13 on which an inner peripheral electrode 152 is formed, and a second annular ring on the small diameter side of an outer diameter 36 mm × thickness 1 mm × thickness 0.5 mm made of SUS304. A combination of the electrode member 191 and the zirconia outer diameter 44 mm × thickness 3 mm × thickness 0.5 mm of the insulating member 16 is used as another set, and these sets are alternately stacked in order and insulated with SiO 2 . Coated inner tube made of SUS304 21 and the outer tube 22 were inserted into the gap. In addition, what mixed the titanium hydride 8 in 5 wt% polyvinyl alcohol was apply | coated to both surfaces of the pipe-axis direction of the outer periphery electrode 151 and the inner periphery electrode 152. FIG. Thereafter, as shown in FIG. 3, a SUS304 punch 72 was used, and hot uniaxial pressing was performed in an argon gas at a temperature of 250 ° C., a pressing force of 5 Mpa, and a holding time of 20 minutes to produce a tubular thermoelectric module.
次に、上記で得た管状熱電モジュールの内側に400℃のガスを流し、外側には20℃の冷却水を流し温度差を設けて発電試験を行った。その結果、接合に用いたはんだが溶融してしまい、モジュールが破損してしまった。 Next, a 400 ° C. gas was allowed to flow inside the tubular thermoelectric module obtained above, and a 20 ° C. cooling water was allowed to flow outside to provide a temperature difference to conduct a power generation test. As a result, the solder used for joining melted and the module was damaged.
以上のように、実施例1乃至5と比較例1により、本発明の管状熱電モジュールは300℃以上の高温の廃熱を利用できることが分かった。また、製造については構成部品をセット毎にまとめ、これら空隙部に挿入した後、熱間一軸加圧によるプレス処理で一括で製造することができるので、容易に組み付けができて低コスト化が可能な構造である。また、実施例2によればNiめっきの効果が確認された。実施例3によれば絶縁のスペーサーが無くても同等の出力が得られることが確認された。実施例4では内管と外管を使用しなくとも出力が得られることが確認できた。実施例5では高温ではなく低温のLNGを用いても出力が得られることが確認された。実施例6では、BiTe材では無く別材料のスクッテルダイト材料でも出力が得られることが確認できた。 As described above, from Examples 1 to 5 and Comparative Example 1, it was found that the tubular thermoelectric module of the present invention can use high-temperature waste heat of 300 ° C. or higher. In addition, components can be manufactured in batches by collecting components into sets, inserting them into these gaps, and then pressing them with hot uniaxial pressing, enabling easy assembly and lower costs. Structure. Moreover, according to Example 2, the effect of Ni plating was confirmed. According to Example 3, it was confirmed that an equivalent output could be obtained without an insulating spacer. In Example 4, it was confirmed that an output could be obtained without using an inner tube and an outer tube. In Example 5, it was confirmed that the output could be obtained even if low temperature LNG was used instead of high temperature. In Example 6, it was confirmed that the output could be obtained not by the BiTe material but also by another skutterudite material.
本発明は、工場や自動車の廃熱などの高温熱源、またLNG基地局やサテライト基地などのLNG気化器で発生するLNGの気化熱を熱源とする発電システムに利用できる。 INDUSTRIAL APPLICABILITY The present invention can be used for a power generation system using a heat source such as a high-temperature heat source such as waste heat from a factory or an automobile, or LNG vaporization generated in an LNG vaporizer such as an LNG base station or a satellite base.
1:管状熱電モジュール
11:カーボン冶具
13:p型熱電変換素子
151:外周電極部材
152:内周電極部材
191:第1の電極部材
192:第2の電極部材
14:n型熱電変換素子
16:絶縁部材
18:チタン又は水素化チタン層
2:熱電変換装置
21:内管
22:外管
23:絶縁層
7:管状熱電モジュールの製造装置
71:カーボンダイ
72:SUS304製パンチ
73:カーボン割り型
8:水素化チタン
9:従来構造の管状モジュール
93:外管
94:内管
95:外周電極
96:内周電極
97:絶縁部材
1: tubular thermoelectric module 11: carbon jig 13: p-type thermoelectric conversion element 151: outer peripheral electrode member 152: inner peripheral electrode member 191: first electrode member 192: second electrode member 14: n-type thermoelectric conversion element 16: Insulating member 18: Titanium or titanium hydride layer 2: Thermoelectric converter 21: Inner tube 22: Outer tube 23: Insulating layer 7: Tubular thermoelectric module manufacturing device 71: Carbon die 72: SUS304 punch 73: Carbon split mold 8 : Titanium hydride 9: Tubular module 93 having conventional structure: Outer tube 94: Inner tube 95: Outer electrode 96: Inner electrode 97: Insulating member
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005110866A JP2006294738A (en) | 2005-04-07 | 2005-04-07 | Tube-like thermoelectric module and thermoelectric convertor using the same, and method of manufacturing thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005110866A JP2006294738A (en) | 2005-04-07 | 2005-04-07 | Tube-like thermoelectric module and thermoelectric convertor using the same, and method of manufacturing thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006294738A true JP2006294738A (en) | 2006-10-26 |
Family
ID=37415007
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005110866A Pending JP2006294738A (en) | 2005-04-07 | 2005-04-07 | Tube-like thermoelectric module and thermoelectric convertor using the same, and method of manufacturing thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006294738A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008261747A (en) * | 2007-04-12 | 2008-10-30 | Sumitomo Heavy Ind Ltd | Boiler monitoring device |
KR100972130B1 (en) * | 2009-04-02 | 2010-07-23 | 사또시게루 | Termoelement |
EP2439799A1 (en) * | 2010-10-05 | 2012-04-11 | Siemens Aktiengesellschaft | Thermoelectric converter and heat exchanger tubes |
JP2012518287A (en) * | 2009-02-19 | 2012-08-09 | エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング | Thermoelectric device |
JP2013514515A (en) * | 2009-12-16 | 2013-04-25 | ベール ゲーエムベーハー ウント コー カーゲー | Heat exchanger |
JP2013539599A (en) * | 2010-08-23 | 2013-10-24 | エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング | Semiconductor device for thermoelectric module and production method thereof |
WO2013186417A1 (en) * | 2012-06-15 | 2013-12-19 | Noriega Mosquera German Francisco | Electrical generator for exploiting heat reservoirs using a ring-based themoelectric system |
JP2014522626A (en) * | 2011-06-01 | 2014-09-04 | バレオ システム テルミク | Thermoelectric module and thermoelectric device, in particular automobile current generation thermoelectric module and thermoelectric device |
RU2528039C2 (en) * | 2008-11-24 | 2014-09-10 | Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх | Thermoelectric generator module and thermoelectric generator |
JP2015525459A (en) * | 2012-05-07 | 2015-09-03 | エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング | Semiconductor element for thermoelectric module and thermoelectric module |
WO2015149952A1 (en) * | 2014-04-03 | 2015-10-08 | Valeo Systemes Thermiques | Thermoelectric device and thermoelectric module, especially intended to generate an electric current in an automotive vehicle |
FR3019680A1 (en) * | 2014-04-03 | 2015-10-09 | Valeo Systemes Thermiques | THERMO ELECTRIC DEVICES AND THERMO ELECTRIC MODULE, IN PARTICULAR FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE |
JP2015195711A (en) * | 2014-03-27 | 2015-11-05 | パナソニックIpマネジメント株式会社 | Tubular thermoelectric power generation device |
JP2016529696A (en) * | 2013-07-04 | 2016-09-23 | バレオ システム テルミクValeo Systemes Thermiques | Thermoelectric devices intended specifically for generating electric currents in automobiles |
CN108565332A (en) * | 2018-04-26 | 2018-09-21 | 东华大学 | A kind of Vacuum Heat fulgurite |
CN110336489A (en) * | 2019-07-31 | 2019-10-15 | 华中科技大学 | A low-power regenerative semiconductor power generation device for natural gas decompression station |
JP2020058118A (en) * | 2018-10-01 | 2020-04-09 | ウシオ電機株式会社 | Thermoelectric power generation device |
JP2020150054A (en) * | 2019-03-12 | 2020-09-17 | 日立金属株式会社 | Manufacturing method of thermoelectric conversion material |
-
2005
- 2005-04-07 JP JP2005110866A patent/JP2006294738A/en active Pending
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008261747A (en) * | 2007-04-12 | 2008-10-30 | Sumitomo Heavy Ind Ltd | Boiler monitoring device |
RU2528039C2 (en) * | 2008-11-24 | 2014-09-10 | Эмитек Гезельшафт Фюр Эмиссионстехнологи Мбх | Thermoelectric generator module and thermoelectric generator |
JP2012518287A (en) * | 2009-02-19 | 2012-08-09 | エミテック ゲゼルシヤフト フユア エミツシオンス テクノロギー ミツト ベシユレンクテル ハフツング | Thermoelectric device |
US9184365B2 (en) | 2009-02-19 | 2015-11-10 | Emitec Gesellschaft Fuer Emissionstechnologie Mbh | Thermoelectric device |
KR100972130B1 (en) * | 2009-04-02 | 2010-07-23 | 사또시게루 | Termoelement |
JP2013514515A (en) * | 2009-12-16 | 2013-04-25 | ベール ゲーエムベーハー ウント コー カーゲー | Heat exchanger |
JP2013539599A (en) * | 2010-08-23 | 2013-10-24 | エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング | Semiconductor device for thermoelectric module and production method thereof |
US9166138B2 (en) | 2010-10-05 | 2015-10-20 | Siemens Aktiengesellschaft | Thermoelectric transducer and heat exchange pipe |
EP2439799A1 (en) * | 2010-10-05 | 2012-04-11 | Siemens Aktiengesellschaft | Thermoelectric converter and heat exchanger tubes |
WO2012045542A3 (en) * | 2010-10-05 | 2012-06-07 | Siemens Aktiengesellschaft | Thermoelectric transducer and heat exchange pipe |
JP2018050463A (en) * | 2011-06-01 | 2018-03-29 | バレオ システム テルミクValeo Systemes Thermiques | Thermoelectric module and thermoelectric device, especially, vehicle current generation thermoelectric module and thermoelectric device |
JP2014522626A (en) * | 2011-06-01 | 2014-09-04 | バレオ システム テルミク | Thermoelectric module and thermoelectric device, in particular automobile current generation thermoelectric module and thermoelectric device |
JP2015525459A (en) * | 2012-05-07 | 2015-09-03 | エミテック ゲゼルシヤフト フユア エミツシオンステクノロギー ミツト ベシユレンクテル ハフツング | Semiconductor element for thermoelectric module and thermoelectric module |
WO2013186417A1 (en) * | 2012-06-15 | 2013-12-19 | Noriega Mosquera German Francisco | Electrical generator for exploiting heat reservoirs using a ring-based themoelectric system |
JP2016529696A (en) * | 2013-07-04 | 2016-09-23 | バレオ システム テルミクValeo Systemes Thermiques | Thermoelectric devices intended specifically for generating electric currents in automobiles |
US9246075B2 (en) | 2014-03-27 | 2016-01-26 | Panasonic Intellectual Property Management Co., Ltd. | Tubular thermoelectric generation device |
JP2015195711A (en) * | 2014-03-27 | 2015-11-05 | パナソニックIpマネジメント株式会社 | Tubular thermoelectric power generation device |
CN106463601A (en) * | 2014-04-03 | 2017-02-22 | 法雷奥热系统公司 | Thermoelectric device and thermoelectric module, especially intended to generate electric current in automotive vehicle |
FR3019681A1 (en) * | 2014-04-03 | 2015-10-09 | Valeo Systemes Thermiques | THERMO ELECTRIC DEVICES AND THERMO ELECTRIC MODULE, IN PARTICULAR FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE |
WO2015149952A1 (en) * | 2014-04-03 | 2015-10-08 | Valeo Systemes Thermiques | Thermoelectric device and thermoelectric module, especially intended to generate an electric current in an automotive vehicle |
JP2017513227A (en) * | 2014-04-03 | 2017-05-25 | ヴァレオ システム テルミク | A thermoelectric device and a thermoelectric module adapted to generate a current, particularly in a motor vehicle |
FR3019680A1 (en) * | 2014-04-03 | 2015-10-09 | Valeo Systemes Thermiques | THERMO ELECTRIC DEVICES AND THERMO ELECTRIC MODULE, IN PARTICULAR FOR GENERATING AN ELECTRICAL CURRENT IN A MOTOR VEHICLE |
CN108565332A (en) * | 2018-04-26 | 2018-09-21 | 东华大学 | A kind of Vacuum Heat fulgurite |
JP2020058118A (en) * | 2018-10-01 | 2020-04-09 | ウシオ電機株式会社 | Thermoelectric power generation device |
JP7191289B2 (en) | 2018-10-01 | 2022-12-19 | ウシオ電機株式会社 | thermal generator |
JP2020150054A (en) * | 2019-03-12 | 2020-09-17 | 日立金属株式会社 | Manufacturing method of thermoelectric conversion material |
JP7363059B2 (en) | 2019-03-12 | 2023-10-18 | 株式会社プロテリアル | Manufacturing method of thermoelectric conversion material |
CN110336489A (en) * | 2019-07-31 | 2019-10-15 | 华中科技大学 | A low-power regenerative semiconductor power generation device for natural gas decompression station |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9865794B2 (en) | Thermoelectric devices with interface materials and methods of manufacturing the same | |
JP2006294738A (en) | Tube-like thermoelectric module and thermoelectric convertor using the same, and method of manufacturing thereof | |
US20170250334A1 (en) | Thermo-compression bonding of thermoelectric materials | |
US20080023057A1 (en) | Thermoelectric Conversion Module, and Thermoelectric Power Generating Device and Method, Exhaust Heat Recovery System, Solar Heat Utilization System, and Peltier Cooling and Heating System, Provided Therewith | |
JP6094136B2 (en) | Thermoelectric conversion element assembly, thermoelectric conversion module and manufacturing method thereof | |
US20140238459A1 (en) | Thermoelectric modules for an exhaust system | |
US20110017254A1 (en) | Thermoelectric modules with improved contact connection | |
CA2768902A1 (en) | Thermoelectric module | |
CN107681044A (en) | A kind of wide temperature range Thermoelectric Generator of multi-segment structure and preparation method | |
JPH0697512A (en) | Thermoelectric conversion element | |
CN109065697B (en) | Annular thermoelectric power generation device | |
JP2006086402A (en) | Tubular thermoelectric module and thermoelectric converting device | |
JP2001217469A (en) | Thermoelectric conversion element and its manufacturing method | |
CN109065700B (en) | A kind of preparation method of annular thermoelectric power generation device | |
JP4168398B2 (en) | Tubular thermoelectric module | |
JP4524382B2 (en) | Thermoelectric power generation elements that are subject to temperature differences | |
CN110098312B (en) | A connection method of segmented thermoelectric materials | |
JP2018093152A (en) | Thermoelectric power generation device | |
WO2006043402A1 (en) | Thermoelectric conversion module | |
TW201351733A (en) | Semiconductor element for a thermoelectric module, and thermoelectric module | |
JPH11298052A (en) | Thermoelectric element, thermoelectric material and method for producing thermoelectric material | |
CN110976863B (en) | Application of Chromium Nickel Austenitic Stainless Steel Alloys for Thermoelectric Material Electrodes and Mg3Sb2 Thermoelectric Joints | |
JP2009038323A (en) | Manufacturing method of thermoelectric conversion element | |
Caillat et al. | High efficiency segmented thermoelectric unicouples | |
JP2001189497A (en) | Thermoelectric conversion element and manufacturing method therefor |