[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006282424A - Hydrogen generator - Google Patents

Hydrogen generator Download PDF

Info

Publication number
JP2006282424A
JP2006282424A JP2005102144A JP2005102144A JP2006282424A JP 2006282424 A JP2006282424 A JP 2006282424A JP 2005102144 A JP2005102144 A JP 2005102144A JP 2005102144 A JP2005102144 A JP 2005102144A JP 2006282424 A JP2006282424 A JP 2006282424A
Authority
JP
Japan
Prior art keywords
catalyst
heat transfer
reforming
transfer plate
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005102144A
Other languages
Japanese (ja)
Other versions
JP4617966B2 (en
Inventor
Katsuzo Konakawa
勝蔵 粉川
Norio Yotsuya
規夫 肆矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005102144A priority Critical patent/JP4617966B2/en
Publication of JP2006282424A publication Critical patent/JP2006282424A/en
Application granted granted Critical
Publication of JP4617966B2 publication Critical patent/JP4617966B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an efficient system having improved reforming efficiency and a hydrogen generator capable of preventing the deterioration of a catalyst and having high durability and reliability by transferring the heat generated in a heating section to the whole catalyst in order to utilize the whole catalyst and to prevent an overload. <P>SOLUTION: A heat transfer plate 22 projected into a reforming section 8 is installed. Thereby, the heat generated at a combustor 5 is transferred to the whole catalyst, a sufficient performance can be secured, and the partial overheat of the catalyst or the partial reaction can be prevented. Accordingly, the efficient system having improved reforming efficiency and the hydrogen generator capable of preventing the deterioration of the catalyst and having high durability and reliability are obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、固体高分子形燃料電池の燃料として用いる水素を得る為の水素生成器に関する。   The present invention relates to a hydrogen generator for obtaining hydrogen used as a fuel for a polymer electrolyte fuel cell.

水素生成器は、最近開発が進められている固体高分子形燃料電池の燃料となる水素を生成するもので、この水素の製造法としては炭化水素の水蒸気改質法が多く使用されている。水蒸気改質法は、メタン、エタン、プロパン、ブタン、都市ガス、LPガス、天然ガス、その他の炭化水素ガスを水蒸気により改質して水素リッチな改質ガスを生成させる方法である。水蒸気改質法では改質部中での接触反応によりそれら炭化水素が水素リッチな改質ガスへ変えられる。そして、得られた水素リッチな改質ガスはCO除去部でCOを低減して利用している。   The hydrogen generator generates hydrogen to be used as a fuel for a polymer electrolyte fuel cell that is being developed recently, and a hydrocarbon steam reforming method is often used as a method for producing this hydrogen. The steam reforming method is a method in which methane, ethane, propane, butane, city gas, LP gas, natural gas, and other hydrocarbon gases are reformed with steam to generate a hydrogen-rich reformed gas. In the steam reforming method, these hydrocarbons are converted into hydrogen-rich reformed gas by a catalytic reaction in the reforming section. The obtained hydrogen-rich reformed gas is used by reducing CO in the CO removal section.

図4は、水蒸気改質器を用いた原料、水蒸気の供給から水素ガスの出口に至るまでを示すブロック図である。燃焼部を配した加熱部と改質触媒を配置した改質部とにより構成される。高温となった改質部では炭化水素が水蒸気と反応して水素リッチな改質ガスが生成される。   FIG. 4 is a block diagram showing a raw material using a steam reformer, from supply of steam to the outlet of hydrogen gas. It comprises a heating section having a combustion section and a reforming section having a reforming catalyst. In the reforming section that has reached a high temperature, the hydrocarbon reacts with the steam to produce a hydrogen-rich reformed gas.

改質部は、炭化水素を原料とする場合には500〜700℃の温度に加温することが必要であり、改質触媒としては例えばNi系、Ru系等の触媒が用いられる。改質触媒は、原料ガス中の硫黄化合物により被毒し性能劣化を来たすので、それらの硫黄化合物を除去するために脱硫部へ導入される。次いで、別途設けられた水蒸気発生部からの水蒸気を添加、混合して水蒸気改質器の改質部へ導入される。   When the hydrocarbon is used as a raw material, the reforming section needs to be heated to a temperature of 500 to 700 ° C. As the reforming catalyst, for example, a Ni-based or Ru-based catalyst is used. Since the reforming catalyst is poisoned by sulfur compounds in the raw material gas and deteriorates performance, it is introduced into the desulfurization section in order to remove those sulfur compounds. Next, steam from a steam generation section provided separately is added and mixed to be introduced into the reforming section of the steam reformer.

原料ガスがメタンである場合の改質反応は CH4+2H2O→CO2+4H2で示される。生成する改質ガス中には未反応のメタン、未反応の水蒸気、生成炭酸ガスのほか、一酸化炭素(CO)が発生して8〜15%程度含まれている。このため改質ガスは、この一酸化炭素を二酸化炭素と水素へ変えて除去するためにCO変成部にかけられる。CO変成部では例えばFe−Cr系触媒、Cu−Zn系触媒、あるいはPt触媒が用いられる。CO変成部中での反応はCO+H2O→CO2+H2で必要な水蒸気は改質部の残留水蒸気を利用する。そして、CO変成部から出る改質ガスは、未反応のメタンと余剰水蒸気と、水素と、二酸化炭素とからなる。しかし、この改質ガスには、COは完全には除去されず、1%程度以下ではあるがCOが含まれている。   The reforming reaction when the raw material gas is methane is represented by CH4 + 2H2O → CO2 + 4H2. The generated reformed gas contains about 8 to 15% of carbon monoxide (CO) generated in addition to unreacted methane, unreacted water vapor, and generated carbon dioxide. For this reason, the reformed gas is applied to the CO conversion section to remove the carbon monoxide by converting it to carbon dioxide and hydrogen. For example, a Fe—Cr based catalyst, a Cu—Zn based catalyst, or a Pt catalyst is used in the CO conversion portion. The reaction in the CO conversion part is CO + H 2 O → CO 2 + H 2, and the steam necessary for the steam uses the residual steam in the reforming part. The reformed gas exiting from the CO conversion section is composed of unreacted methane, excess steam, hydrogen, and carbon dioxide. However, this reformed gas does not completely remove CO, but contains CO although it is less than about 1%.

燃料電池に供給する燃料水素中のCOの許容濃度は10ppm程度であり、これを越えると電池性能が著しく劣化するので、CO成分は燃料電池へ導入する前にできる限り除去する必要がある。このため、改質ガスはCO変成部によりCO濃度を1%前後まで低下させた後、CO除去部にかけられる。CO除去部では空気などの酸化剤が添加され、2CO+O2→2CO2とCO2に変えることでCOを除去し、改質ガスのCO濃度を10ppm以下に低減させる。   The allowable concentration of CO in the fuel hydrogen supplied to the fuel cell is about 10 ppm, and if it exceeds this, the cell performance is significantly deteriorated. Therefore, it is necessary to remove the CO component as much as possible before introducing it into the fuel cell. For this reason, the reformed gas is applied to the CO removal section after the CO concentration is lowered to around 1% by the CO shift section. An oxidant such as air is added to the CO removing unit, and CO is removed by changing the CO gas from 2CO + O 2 → 2CO 2 and CO 2 to reduce the CO concentration of the reformed gas to 10 ppm or less.

従来、この方式の水素生成器は性能向上のために、原料と水蒸気を均一に混合させることに注目していた(例えば、特許文献1参照)。   Conventionally, this type of hydrogen generator has focused on uniformly mixing raw materials and water vapor in order to improve performance (see, for example, Patent Document 1).

図5は、水蒸気改質器の改質反応器の断面図である。改質反応器は、円筒状の容器1内の上部に、液体原料を気化しつつ別途供給される気体原料と均一混合した混合原料ガスとして改質反応部2に導く原料蒸発導入部3を備え、容器1内の下部には、改質触媒によって混合原料ガスを改質する改質反応部2と、改質反応部2に反応熱を供給する加熱部4とを備えている。そして、改質反応部2は、全体が円筒状に形成され、容器1の底部側に該容器1の底面との間に若干の空間を空けて、円筒状の容器1と同軸に配設されており、加熱部4は容器1の底面に設けられた燃焼器5と、この燃焼器5の燃焼ガスが容器1の軸に沿って上方に向けて通る燃焼ガス流路6と、この燃焼ガスを容器1の外に排気するために容器1の上面に設けた排気管7とで構成されている。   FIG. 5 is a cross-sectional view of the reforming reactor of the steam reformer. The reforming reactor is provided with a raw material evaporation introducing portion 3 that leads to the reforming reaction portion 2 as a mixed raw material gas that is uniformly mixed with a gaseous raw material that is separately supplied while vaporizing a liquid raw material, in the upper part of the cylindrical container 1. The lower part in the container 1 is provided with a reforming reaction part 2 for reforming the mixed raw material gas by the reforming catalyst and a heating part 4 for supplying reaction heat to the reforming reaction part 2. The reforming reaction section 2 is formed in a cylindrical shape as a whole, and is disposed coaxially with the cylindrical container 1 with a slight space between the bottom of the container 1 and the bottom surface of the container 1. The heating unit 4 includes a combustor 5 provided on the bottom surface of the container 1, a combustion gas passage 6 through which the combustion gas of the combustor 5 passes upward along the axis of the container 1, and the combustion gas. And an exhaust pipe 7 provided on the upper surface of the container 1 in order to exhaust the air from the container 1.

このため、改質反応器の改質原料即ち混合原料ガスは気体原料としてのメタンと液体原料としての水が気化されたスチーム(水)である。供給されたメタンに水が液滴化されて混入し、液滴下された水は細かい水滴となってメタンの流れに乗り、メタンと相俟って気液混相体となって、原料蒸発導入部3に供給される。この気液混相体は原料蒸発導入部3を流下して行く過程で、気液混相体中の水滴が気化(蒸発)して気液混相体は混合原料ガスとなって、反応部2に供給される。   For this reason, the reforming raw material of the reforming reactor, that is, the mixed raw material gas is steam (water) obtained by vaporizing methane as a gas raw material and water as a liquid raw material. Water is dropletized and mixed into the supplied methane, and the dropped water becomes fine water droplets and rides on the flow of methane. 3 is supplied. In the course of flowing down the raw material evaporation introducing unit 3, the gas / liquid mixed phase is vaporized (evaporated) in the gas / liquid mixed phase, and the gas / liquid mixed phase becomes mixed raw material gas, which is supplied to the reaction unit 2. Is done.

即ち、原料蒸発導入部3での蒸発は、第2成分であるメタンの存在により原料の流れ方向に沸点を順次変化しながら、メタン気相中に水分が飽和蒸気圧まで加湿していく蒸発形態であり、常に、一定の蒸発速度で安定した蒸発を実現させることができる。   That is, the evaporation in the raw material evaporation introducing unit 3 is an evaporation mode in which moisture is humidified to the saturated vapor pressure in the methane gas phase while the boiling point is sequentially changed in the flow direction of the raw material due to the presence of methane as the second component. Thus, stable evaporation can always be realized at a constant evaporation rate.

そのため、常に、均一混合された脈動の無い安定した混合原料ガスを供給することができる。又、脈動の無い安定した混合原料ガスが供給されるため、電池の電圧変動や改質反応部2の加熱部4の安定燃焼、即ちCOやNO等の発生が抑制されて、システムの運転を安定に行うことができる。又、改質反応部2に混合原料ガスとしての改質反応ガスが均一組成で供給されるため、従来のような、改質触媒への炭素析出や改質率の低下等が抑制される。
特開2003−119001号公報
Therefore, it is always possible to supply a uniform mixed raw material gas without pulsation that is uniformly mixed. In addition, since a stable mixed source gas without pulsation is supplied, battery voltage fluctuations and stable combustion of the heating unit 4 of the reforming reaction unit 2, that is, generation of CO, NO, and the like are suppressed, and the system is operated. It can be performed stably. Moreover, since the reforming reaction gas as the mixed raw material gas is supplied to the reforming reaction section 2 with a uniform composition, carbon deposition on the reforming catalyst and a decrease in the reforming rate are suppressed as in the conventional case.
JP 2003-119001 A

しかしながら、前記従来の構成では、改質部内を流れる原料と水蒸気とが混合したガスが触媒により反応する時の反応熱量が不足して、十分な性能の確保ができなかった。すなわち、十分に反応性能を確保するためには、触媒の各部分に反応に必要な熱量を常に供給する必要がある。触媒は加熱手段により触媒を充填した改質部の壁面から加熱し、内部の触媒は触媒粒の熱伝導と内部ガスの熱伝達により熱移動する。そのため、壁面に近い触媒と壁面に遠い触媒では大きく熱伝達量が異なる。他方、触媒の反応特性は温度に大きく相関する。   However, in the conventional configuration, the amount of heat of reaction when the gas mixed with the raw material flowing in the reforming section and water vapor reacts with the catalyst is insufficient, and sufficient performance cannot be ensured. That is, in order to ensure sufficient reaction performance, it is necessary to always supply the amount of heat necessary for the reaction to each part of the catalyst. The catalyst is heated from the wall surface of the reforming section filled with the catalyst by the heating means, and the internal catalyst is thermally transferred by heat conduction of the catalyst particles and heat transfer of the internal gas. Therefore, the amount of heat transfer is greatly different between a catalyst close to the wall surface and a catalyst far from the wall surface. On the other hand, the reaction characteristics of the catalyst are highly correlated with temperature.

例えば、一定量のガスと触媒において、700℃で90%反応する特性が、600℃で75%反応し、500℃で55%反応する様になる。原料と水蒸気が触媒の各部分に均一にに流れても、壁面に遠い触媒では、原料と水蒸気は触媒により吸熱反応するが加熱手段からの熱量が不足して温度が低下する。そのため、原料の触媒による水素改質反応が十分行われないガスを改質部から出て行くことになる。そのため、改質効率が低くなり、また、改質触媒への過度の負荷による劣化が生じ、長期信頼性を確保できなくシステム効率が低下するという課題を有していた。   For example, the characteristic of 90% reaction at 700 ° C. in a certain amount of gas and catalyst becomes 75% reaction at 600 ° C. and 55% reaction at 500 ° C. Even if the raw material and water vapor flow uniformly in each part of the catalyst, in the case of a catalyst far from the wall surface, the raw material and water vapor undergo an endothermic reaction by the catalyst, but the amount of heat from the heating means is insufficient and the temperature decreases. Therefore, a gas that does not sufficiently undergo the hydrogen reforming reaction by the raw material catalyst exits from the reforming section. For this reason, the reforming efficiency is lowered, and deterioration due to an excessive load on the reforming catalyst occurs, so that long-term reliability cannot be secured and system efficiency is lowered.

本発明は、前記従来の課題を解決するもので、改質部内部に突出した伝熱板を構成とすることにより、加熱部で発生した熱を改質部の触媒全体に伝熱して、触媒全体の活用と過負荷を防止することにより、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, and by forming a heat transfer plate protruding inside the reforming section, the heat generated in the heating section is transferred to the entire catalyst in the reforming section, and the catalyst The purpose of the present invention is to provide an efficient and reliable hydrogen generator by preventing the deterioration of the efficient system and catalyst by improving the reforming efficiency by preventing the entire utilization and overload.

前記従来の課題を解決するために、本発明の水素生成器は、原料を供給する手段と、水を供給する手段と、加熱手段と、触媒充填した改質部と、CO変成部と、CO除去部を順次接続し、前記加熱手段と前記改質部の接触部には、前記改質部内部に突出した伝熱板を構成としている。このことにより、加熱部で発生した熱は、前記改質部内部に突出した伝熱板を通り改質部内の触媒全体に伝熱できる。   In order to solve the above-mentioned conventional problems, the hydrogen generator of the present invention comprises a means for supplying a raw material, a means for supplying water, a heating means, a reforming section filled with a catalyst, a CO conversion section, and a CO conversion section. A removal part is connected sequentially, and a heat transfer plate protruding inside the reforming part is configured at a contact part between the heating means and the reforming part. As a result, the heat generated in the heating section can be transferred to the entire catalyst in the reforming section through the heat transfer plate protruding into the reforming section.

すなわち、改質部の壁面と前記伝熱板から加熱でき、壁面に近い触媒も壁面から遠い触媒も同じように加熱し、十分な熱伝達量が確保できる。そのため、改質部内を流れる原料と水蒸気とが混合したガスが触媒により反応する時の反応熱量を、この吸熱反応性能を確保するために、触媒の各部分に反応に必要な熱量を常に供給して、十分な性能の確保が可能となる。   That is, heating can be performed from the wall surface of the reforming unit and the heat transfer plate, and a catalyst close to the wall surface and a catalyst far from the wall surface can be heated in the same manner, and a sufficient amount of heat transfer can be ensured. Therefore, in order to secure the endothermic reaction performance, the amount of heat necessary for the reaction is always supplied to each part of the catalyst to ensure the reaction heat quantity when the gas mixed with the raw material flowing in the reforming section and the steam reacts with the catalyst. As a result, sufficient performance can be ensured.

また、触媒全体で均一に反応できることは、触媒の部分過熱や局部的反応を防止でき、耐久的に性能が維持できる。   Moreover, being able to react uniformly in the whole catalyst can prevent partial overheating and local reaction of the catalyst, and can maintain the performance in a durable manner.

本発明の水素生成器は、改質部内部に突出した伝熱板を構成としていることにより、加熱部で発生した熱を改質部の触媒全体に伝熱して、触媒全体の活用と過負荷を防止することにより、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器となる。   The hydrogen generator of the present invention is constituted by a heat transfer plate protruding inside the reforming section, so that heat generated in the heating section is transferred to the entire catalyst in the reforming section, and the entire catalyst is utilized and overloaded. By preventing the deterioration of the reforming efficiency, the efficient system and the deterioration of the catalyst can be prevented, and the hydrogen generator with high durability and reliability can be obtained.

第1の発明は、原料を供給する手段と、水を供給する手段と、加熱手段と、触媒充填した改質部と、CO変成部と、CO除去部を順次接続し、前記加熱手段と前記改質部の接触部には、前記改質部内部に突出した伝熱板を構成としている。   According to a first aspect of the present invention, a means for supplying a raw material, a means for supplying water, a heating means, a reforming section filled with a catalyst, a CO conversion section, and a CO removal section are sequentially connected, and the heating means and the The contact part of the reforming part is constituted by a heat transfer plate protruding inside the reforming part.

このことにより、加熱部で発生した熱は、前記改質部内部に突出した伝熱板を通り改質部内の触媒全体に伝熱できる。すなわち、改質部の壁面と前記伝熱板から加熱でき、壁面に近い触媒も壁面から遠い触媒も同じように加熱し、十分な熱伝達量が確保できる。そのため、改質部内を流れる原料と水蒸気とが混合したガスが触媒により反応する時の反応熱量を、この吸熱反応性能を確保するために、触媒の各部分に反応に必要な熱量を常に供給して、十分な性能の確保が可能となる。   As a result, the heat generated in the heating section can be transferred to the entire catalyst in the reforming section through the heat transfer plate protruding into the reforming section. That is, heating can be performed from the wall surface of the reforming unit and the heat transfer plate, and a catalyst close to the wall surface and a catalyst far from the wall surface can be heated in the same manner, and a sufficient amount of heat transfer can be ensured. Therefore, in order to secure the endothermic reaction performance, the amount of heat necessary for the reaction is always supplied to each part of the catalyst to ensure the reaction heat quantity when the gas mixed with the raw material flowing in the reforming section and the steam reacts with the catalyst. As a result, sufficient performance can be ensured.

すなわち、原料と水蒸気を触媒により水素に反応させる反応特性は温度に大きく相関する。触媒量を多くあるいは原料流量を減少させると反応は進むが、一定量のガスと触媒において、700℃で90%反応する特性が、600℃で75%反応し、500℃で55%反応する様になる。原料と水蒸気が触媒の各部分に均一にに流れた時、壁面に近い触媒は壁面から熱を十分に受けて原料と水蒸気は触媒により吸熱反応し、壁面から遠い触媒も同様に伝熱板から必要な熱を受けて原料と水蒸気は触媒により吸熱反応するため、反応に必要な熱量は足りて温度が低下せず維持できる。そのため、原料の触媒による水素改質反応は、触媒の各部分で十分に行われ、全てのガスは改質されて改質部から出て行くことになる。   That is, the reaction characteristic of reacting the raw material and water vapor with hydrogen by the catalyst greatly correlates with the temperature. The reaction proceeds when the amount of the catalyst is increased or the raw material flow rate is decreased, but the characteristic of 90% reaction at 700 ° C reacts with a certain amount of gas and catalyst, reacts 75% at 600 ° C and 55% at 500 ° C. become. When the raw material and water vapor flow uniformly in each part of the catalyst, the catalyst close to the wall surface receives sufficient heat from the wall surface, and the raw material and water vapor undergo endothermic reaction by the catalyst, and the catalyst far from the wall surface is similarly removed from the heat transfer plate. Since the raw material and water vapor undergo an endothermic reaction by the catalyst in response to the necessary heat, the amount of heat necessary for the reaction is sufficient and the temperature can be maintained without decreasing. Therefore, the hydrogen reforming reaction by the raw material catalyst is sufficiently performed in each part of the catalyst, and all the gas is reformed and leaves the reforming section.

また、触媒全体で均一に反応できることは、壁面から遠い部分の触媒の改質反応性能を確保するために改質部の設定温度を高くして壁面近くの触媒温度を過熱によるシンタリング等の劣化を生じる事が無く耐久的に性能が維持できる。   In addition, the ability to react uniformly over the entire catalyst is due to deterioration of sintering, etc. due to overheating of the catalyst temperature near the wall surface by increasing the set temperature of the reforming part in order to ensure the reforming reaction performance of the catalyst in the part far from the wall surface. The performance can be maintained in a durable manner.

よって、加熱部で発生した熱を改質部の触媒全体に伝熱して、触媒全体の活用と過負荷を防止することにより、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器となる。   Therefore, the heat generated in the heating section is transferred to the entire catalyst in the reforming section to prevent the use of the entire catalyst and overload, thereby preventing an efficient system and catalyst deterioration due to improved reforming efficiency. And a highly durable hydrogen generator.

第2の発明は、特に、第1の発明の水素生成器を伝熱板は、改質部に概略等間隔として複数個構成してある。そのために、改質部に充填された触媒は、複数の伝熱板により多数に分割配置でき、伝熱板を等間隔としたため触媒は体積を均一に分割する。このため、加熱部からの伝熱を触媒の各部分に均一に熱伝導が可能となり、触媒反応に必要な熱を十分に供給して触媒温度低下を生じることが無く、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高くできる。   In the second invention, in particular, in the hydrogen generator of the first invention, a plurality of heat transfer plates are formed at approximately equal intervals in the reforming section. For this purpose, the catalyst filled in the reforming section can be divided and arranged in a large number by a plurality of heat transfer plates. Since the heat transfer plates are equally spaced, the catalyst is uniformly divided in volume. For this reason, heat transfer from the heating unit can be uniformly conducted to each part of the catalyst, and the heat necessary for the catalytic reaction is sufficiently supplied so that the catalyst temperature does not decrease, thereby improving the reforming efficiency. Efficient system and catalyst deterioration can be prevented and durability and reliability can be increased.

第3の発明は、特に、第1の発明または第2の発明の水素生成器を伝熱板は、改質部内の触媒中を流れる原料ガスの流れ方向に平行に突出して構成したことにより、原料は、改質部に入ってから出るまでの間伝熱板により加熱が可能となり触媒反応を均一に促進できる。また、改質部を流れる原料ガスの流れ圧損を増加させることが無くシステムとして安定に保つことが出来る。   According to a third aspect of the invention, in particular, the heat transfer plate of the hydrogen generator of the first aspect of the invention or the second aspect of the invention is configured to protrude in parallel with the flow direction of the raw material gas flowing in the catalyst in the reforming section. The raw material can be heated by the heat transfer plate from the time it enters the reforming section until it leaves, and the catalytic reaction can be promoted uniformly. In addition, the system can be kept stable without increasing the flow pressure loss of the raw material gas flowing through the reforming section.

すなわち、原料の水蒸気による水素への改質は吸熱反応である。そのため、改質反応を均一に促進させるためには、反応している触媒近くのガスに熱を連続的に供給する必要がある。そこで、改質部に入った原料ガスを伝熱板の加熱手段により逐次加熱できる構成としたことにより、改質部の入口から出口までの間で原料の水素への改質が進み、より改質効率の向上により効率的なシステムとできる。   That is, the reforming of raw material into hydrogen by water vapor is an endothermic reaction. Therefore, in order to promote the reforming reaction uniformly, it is necessary to continuously supply heat to the gas near the reacting catalyst. Therefore, by adopting a configuration in which the raw material gas entering the reforming section can be sequentially heated by the heating means of the heat transfer plate, reforming of the raw material into hydrogen progresses from the inlet to the outlet of the reforming section, and is further improved. An efficient system can be achieved by improving quality efficiency.

第4の発明は、特に、第1〜3の発明のいずれかの発明の水素生成器を伝熱板は、その表面を凸凹として構成したことにより、伝熱面積の拡大と伝熱板近くを流れる原料ガス流れを乱し境界層を薄くでき、さらに触媒と伝熱板の接触面積を大きくすることが可能となり、加熱部から伝熱板に伝導した熱を触媒により熱伝導を促進でき、触媒反応に必要な熱を十分に供給して、より改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高くできる。   In the fourth aspect of the invention, in particular, the heat transfer plate of the hydrogen generator according to any one of the first to third aspects of the invention is configured such that the surface thereof is uneven, so that the heat transfer area is enlarged and the vicinity of the heat transfer plate is increased. The flow of the raw material gas is disturbed, the boundary layer can be thinned, the contact area between the catalyst and the heat transfer plate can be increased, and the heat conducted from the heating part to the heat transfer plate can be promoted by the catalyst. Sufficient heat required for the reaction can be supplied to prevent the deterioration of the efficient system and catalyst by improving the reforming efficiency, thereby improving the durability and reliability.

第5の発明は、特に、第1〜4の発明のいずれかの発明の水素生成器を伝熱板は、その表面に凸となる補助伝熱板を設け、前記補助伝熱板の板厚は前記伝熱板の板厚より薄くしたことにより、改質部を流れる原料ガスの流れ抵抗を増加することなく、触媒と伝熱板の接触面積をこの補助伝熱板の接触面積により格段に大きくすることが可能となり、加熱部から伝熱板に伝導した熱を触媒により熱伝導を促進でき、触媒反応に必要な熱を十分に供給して、より改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高くできる。   In the fifth aspect of the invention, in particular, the hydrogen generator according to any one of the first to fourth aspects of the invention is provided with an auxiliary heat transfer plate that is convex on the surface of the heat transfer plate, and the thickness of the auxiliary heat transfer plate Is thinner than the plate thickness of the heat transfer plate, so that the contact area between the catalyst and the heat transfer plate is greatly increased by the contact area of the auxiliary heat transfer plate without increasing the flow resistance of the raw material gas flowing through the reforming section. It is possible to increase the heat, the heat conducted from the heating part to the heat transfer plate can be accelerated by the catalyst, the heat necessary for the catalytic reaction is sufficiently supplied, and the efficient system by improving the reforming efficiency And the deterioration of the catalyst can be prevented and the durability and reliability can be increased.

第6の発明は、特に、第1〜5の発明のいずれかの発明の水素生成器を加熱手段に接した改質部の壁面と伝熱板を押し出し成型材等を用いて一体として構成したことにより、改質部の壁面と伝熱板は熱抵抗の低い構成となり、加熱部からの熱は伝熱板に温度低下なく伝導でき触媒の加熱を促進でき、触媒反応に必要な熱を十分に供給して、より改質効率の向上による効率的なシステムとなり、また、改質部の壁面と伝熱板の一体成型は、この密着信頼性の向上と、構成の簡略化による低コストが可能となる。   In the sixth aspect of the invention, in particular, the hydrogen generator according to any one of the first to fifth aspects of the invention is integrally formed by using an extrusion molding material or the like on the wall surface of the reforming part in contact with the heating means and the heat transfer plate. As a result, the wall of the reforming section and the heat transfer plate have a low thermal resistance, and the heat from the heating section can be conducted to the heat transfer plate without lowering the temperature, and the heating of the catalyst can be promoted. To improve the efficiency of reforming, and the integral molding of the wall of the reforming part and the heat transfer plate can improve the adhesion reliability and reduce the cost by simplifying the configuration. It becomes possible.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiment.

(実施の形態1)
図1は、本発明の第1の実施形態における水素生成器における改質部の断面図を示すものであり、図2は改質部の横断面図である。水素生成器全体は、図4に示した様に原料を供給する手段と、水を供給する手段と、加熱手段を有する改質部と、CO変成部と、CO除去部を順次接続した構成として、生成した水素ガスを燃料電池に接続して利用する。
(Embodiment 1)
FIG. 1 shows a cross-sectional view of a reforming section in a hydrogen generator according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the reforming section. As shown in FIG. 4, the entire hydrogen generator has a structure in which a raw material supply means, a water supply means, a reforming section having a heating means, a CO conversion section, and a CO removal section are sequentially connected. The generated hydrogen gas is used by connecting to a fuel cell.

図1において、8は、都市ガスを原料として燃料電池発電装置に供給する水素を生成する改質部であり、9は、都市ガスに連結した原料を供給する手段、10は、水蒸気として水を供給する手段であり、触媒容器11に連結して設けてある。   In FIG. 1, 8 is a reforming unit that generates hydrogen to be supplied to a fuel cell power generation apparatus using city gas as a raw material, 9 is a means for supplying the raw material connected to the city gas, and 10 is water as water vapor. It is a means for supplying and is connected to the catalyst container 11.

12は、例えば、鉄板やセラミックス等の支持体の担体にニッケルもしくはルテニウムを主成分とする触媒を表面に担持させた多数の触媒粒で充填した触媒層で、この触媒層12で原料ガス2を反応させることにより、水素と二酸化炭素および一酸化炭素からなる生成ガスを反応生成する。この生成反応は500〜700℃程度の高温で生じる吸熱反応である。このため、加熱手段として燃焼器5により高温の燃焼ガスを供給して水蒸気を含む原料ガスと触媒層12を加熱している。燃焼器5は、都市ガス(天然ガス)や燃料電池から排出されるオフガス(未反応水素ガス)、または都市ガスとオフガスを混合して燃料として燃料管13から供給してディストリビュータ14から噴出し、燃焼用空気は空気管15から供給して空気噴出部16から噴出することにより燃焼を行っている。18は、燃焼器5によって生じる火炎19が触媒容器11に直接触れることを避け、さらに燃焼ガス20の流路を規定するための燃焼筒である。燃焼ガス20は、触媒容器11の周囲に沿って流れ、排気管7より改質部8の外部に排出される。   No. 12 is a catalyst layer filled with a large number of catalyst particles having a catalyst mainly composed of nickel or ruthenium supported on a support of a support such as an iron plate or ceramics. By reacting, a product gas composed of hydrogen, carbon dioxide, and carbon monoxide is produced by reaction. This production reaction is an endothermic reaction occurring at a high temperature of about 500 to 700 ° C. For this reason, high temperature combustion gas is supplied from the combustor 5 as heating means to heat the raw material gas containing water vapor and the catalyst layer 12. The combustor 5 is city gas (natural gas), off-gas (unreacted hydrogen gas) discharged from the fuel cell, or city gas and off-gas are mixed and supplied as fuel from the fuel pipe 13 and ejected from the distributor 14. Combustion air is combusted by being supplied from an air pipe 15 and ejected from an air ejection part 16. Reference numeral 18 denotes a combustion cylinder for preventing the flame 19 generated by the combustor 5 from directly touching the catalyst container 11 and further defining the flow path of the combustion gas 20. The combustion gas 20 flows along the periphery of the catalyst container 11 and is discharged from the exhaust pipe 7 to the outside of the reforming unit 8.

水蒸気改質部8の中で、都市ガスに連結した原料を供給する手段9と水蒸気として水を供給する手段10により供給された原料ガスは、触媒容器11に流入し、触媒容器11内の触媒層12で原料ガスは水素と二酸化炭素および一酸化炭素に反応生成して、生成ガス出口21からCO変成部、CO除去部、燃料電池(図示せず)へと順次接続してある。   In the steam reforming unit 8, the raw material gas supplied by the means 9 for supplying the raw material connected to the city gas and the means 10 for supplying water as the steam flows into the catalyst container 11, and the catalyst in the catalyst container 11 is supplied. In the layer 12, the raw material gas is produced by reacting with hydrogen, carbon dioxide and carbon monoxide, and is sequentially connected from the product gas outlet 21 to a CO conversion unit, a CO removal unit, and a fuel cell (not shown).

そして、改質部8は、加熱手段である燃焼器5と改質部8の接触部には、改質部8の内部に突出した伝熱板22を設けてある。伝熱板22は、熱伝導性能の良い金属等材料で構成しその一端は改質部8の壁面に密接させてある。本実施例では、金属板をL状に曲げ一端を触媒容器11に溶接して密着させ、他端は触媒層12内を触媒容器11の外壁近くまで突状している。そして、本実施例の伝熱板22は、改質部8に概略等間隔として複数個構成し、また、改質部8内の触媒中を流れる原料ガスの流れ方向に平行に突出して設け、そして、伝熱板22は、図2に示すように改質部8の触媒層12を流れ方向に多数に分割する様に、触媒層12の各触媒と伝熱板22を均一に近づける配置とする構成とする。   The reforming unit 8 is provided with a heat transfer plate 22 protruding inside the reforming unit 8 at a contact portion between the combustor 5 and the reforming unit 8 serving as heating means. The heat transfer plate 22 is made of a material such as metal having good heat conduction performance, and one end thereof is in close contact with the wall surface of the reforming unit 8. In this embodiment, the metal plate is bent in an L shape, and one end is welded and brought into close contact with the catalyst container 11, and the other end protrudes in the catalyst layer 12 to near the outer wall of the catalyst container 11. A plurality of heat transfer plates 22 of the present embodiment are configured in the reforming unit 8 at approximately equal intervals, and provided so as to protrude in parallel with the flow direction of the raw material gas flowing in the catalyst in the reforming unit 8; As shown in FIG. 2, the heat transfer plate 22 is arranged so that the catalyst of the catalyst layer 12 and the heat transfer plate 22 are uniformly brought close to each other so as to divide the catalyst layer 12 of the reforming unit 8 into a large number in the flow direction. The configuration is as follows.

CO変成部は、生成する改質ガス中には未反応のメタン、未反応の水蒸気、生成炭酸ガスのほか、一酸化炭素(CO)が発生して8〜15%程度含まれている。このため改質ガスは、この一酸化炭素を二酸化炭素と水素へ変えて除去するためにCO変成部を設ける。CO変成部では例えばFe−Cr系触媒、Cu−Zn系触媒、あるいはPt触媒が用いられ、約300℃程度で反応が行われる。   In the reformed gas to be produced, the CO shift portion contains about 8 to 15% of carbon monoxide (CO) generated in addition to unreacted methane, unreacted water vapor and produced carbon dioxide. For this reason, the reformed gas is provided with a CO conversion section for removing the carbon monoxide by converting it to carbon dioxide and hydrogen. For example, an Fe—Cr based catalyst, a Cu—Zn based catalyst, or a Pt catalyst is used in the CO conversion portion, and the reaction is performed at about 300 ° C.

CO変成部中での反応は CO+H2O→CO2+H2 で必要な水蒸気は改質部8の残留水蒸気を利用する。そして、CO変成部から出る改質ガスは、未反応のメタンと余剰水蒸気と、水素と、二酸化炭素とからなる。しかし、この改質ガスには、COは完全には除去されず、1%程度以下ではあるがCOが含まれている。燃料電池に供給する燃料水素中のCOの許容濃度は10ppm程度であり、これを越えると電池性能が著しく劣化するので、CO成分は燃料電池へ導入する前にできる限り除去する必要がある。このため、改質ガスはCO変成部によりCO濃度を1%前後まで低下させた後、CO除去部を設ける。CO除去部は、一酸化炭素を選択的に酸化する触媒が担持されており、空気などの酸化剤が添加され、2CO+O2→2CO2 とCO2に変えることでCOを除去し、改質ガスのCO濃度を10ppm以下に低減させる。このような構成と動作で、定常時は原料ガスから水素に改質して燃料電池を運転し発電を継続する。   For the reaction in the CO conversion section, the steam necessary for CO + H 2 O → CO 2 + H 2 uses the residual steam in the reforming section 8. The reformed gas exiting from the CO conversion section is composed of unreacted methane, excess steam, hydrogen, and carbon dioxide. However, this reformed gas does not completely remove CO, but contains CO although it is less than about 1%. The allowable concentration of CO in the fuel hydrogen supplied to the fuel cell is about 10 ppm, and if it exceeds this, the cell performance is significantly deteriorated. Therefore, it is necessary to remove the CO component as much as possible before introducing it into the fuel cell. For this reason, the reformed gas is provided with a CO removal section after the CO concentration is lowered to around 1% by the CO shift section. The CO removal unit carries a catalyst that selectively oxidizes carbon monoxide, and an oxidant such as air is added to remove CO by changing from 2CO + O2 → 2CO2 and CO2, and the CO concentration of the reformed gas Is reduced to 10 ppm or less. With such a configuration and operation, in a steady state, the raw material gas is reformed to hydrogen, the fuel cell is operated, and power generation is continued.

以上のように構成された水素生成器について、以下その動作、作用を説明する。   The operation and action of the hydrogen generator configured as described above will be described below.

運転時、都市ガスに連結した原料を供給する手段9と水蒸気として水を供給する手段10により触媒容器11に原料ガスとして供給する。触媒容器11に入った原料ガスは、充填された多数の触媒層12によって水素の多い改質ガスになる反応を行い生成ガス出口21に至る。この反応は吸熱反応であるため、常に加熱することにより反応が続く。   During operation, the raw material gas is supplied to the catalyst container 11 by means 9 for supplying the raw material connected to the city gas and means 10 for supplying water as water vapor. The raw material gas that has entered the catalyst container 11 undergoes a reaction to become a reformed gas with a large amount of hydrogen by the filled catalyst layers 12 and reaches the product gas outlet 21. Since this reaction is an endothermic reaction, the reaction continues by always heating.

加熱部である燃焼器5で発生した熱は、改質部8の触媒容器11内部に突出した伝熱板22を通り改質部内の触媒層12全体に伝熱できる。すなわち、触媒層12は改質部の触媒容器11の壁面と伝熱板22から加熱でき、壁面に近い触媒も壁面から遠い触媒も同じように加熱し、十分な熱伝達量が確保できる。そのため、改質部8内を流れる原料と水蒸気とが混合したガスが触媒により反応する時の反応熱量を、この吸熱反応性能を確保するために、触媒層12の各部分に反応に必要な熱量を常に供給して、十分な性能の確保が可能となる。   Heat generated in the combustor 5 serving as a heating unit can be transferred to the entire catalyst layer 12 in the reforming unit through the heat transfer plate 22 protruding into the catalyst container 11 of the reforming unit 8. That is, the catalyst layer 12 can be heated from the wall surface of the catalyst container 11 and the heat transfer plate 22 in the reforming section, and the catalyst close to the wall surface and the catalyst far from the wall surface can be heated in the same manner, so that a sufficient amount of heat transfer can be ensured. Therefore, the amount of heat required for the reaction in each part of the catalyst layer 12 in order to ensure the endothermic reaction performance, the amount of reaction heat when the gas mixed with the raw material flowing in the reforming unit 8 and water vapor reacts with the catalyst. Is always supplied, and sufficient performance can be secured.

すなわち、原料と水蒸気を触媒により水素に反応させる反応特性は温度に大きく相関する。触媒量を多くあるいは原料流量を減少させると反応は進むが、一定量のガスと触媒において、700℃で90%反応する特性が、600℃で75%反応し、500℃で55%反応する様になる。原料と水蒸気が触媒の各部分に均一にに流れた時、壁面に近い触媒は壁面から熱を十分に受けて原料と水蒸気は触媒により吸熱反応し、壁面から遠い触媒も同様に伝熱板22から必要な熱を受けて原料と水蒸気は触媒により吸熱反応するため、反応に必要な熱量は足りて温度が低下せず維持できる。そのため、原料の触媒による水素改質反応は、触媒の各部分で十分に行われ、全てのガスは改質されて改質部から出て行くことになる。   That is, the reaction characteristic of reacting the raw material and water vapor with hydrogen by the catalyst greatly correlates with the temperature. The reaction proceeds when the amount of the catalyst is increased or the raw material flow rate is decreased, but the characteristic of 90% reaction at 700 ° C reacts with a certain amount of gas and catalyst, reacts 75% at 600 ° C and 55% at 500 ° C. become. When the raw material and water vapor flow uniformly in each part of the catalyst, the catalyst close to the wall surface sufficiently receives heat from the wall surface, and the raw material and water vapor undergo endothermic reaction by the catalyst, and the catalyst far from the wall surface similarly heats the heat transfer plate 22. Since the raw material and water vapor undergo an endothermic reaction by the catalyst in response to the necessary heat, the amount of heat necessary for the reaction is sufficient and the temperature can be maintained without decreasing. Therefore, the hydrogen reforming reaction by the raw material catalyst is sufficiently performed in each part of the catalyst, and all the gas is reformed and leaves the reforming section.

また、触媒層11の触媒全体で均一に反応できることは、壁面から遠い部分の触媒の改質反応性能を確保するために改質部8の設定温度を高くして壁面近くの触媒温度を過熱によるシンタリング等の劣化を生じる事が無く耐久的に性能が維持できる。   Further, the fact that the entire catalyst of the catalyst layer 11 can react uniformly means that the set temperature of the reforming unit 8 is increased and the catalyst temperature near the wall surface is overheated in order to ensure the reforming reaction performance of the catalyst far from the wall surface. Performance can be maintained in a durable manner without causing deterioration such as sintering.

よって、加熱部の燃焼器5で発生した熱を改質部8の触媒層12の触媒全体に伝熱して、触媒全体の活用と過負荷を防止することにより、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器となる。   Therefore, the heat generated in the combustor 5 of the heating unit is transferred to the entire catalyst of the catalyst layer 12 of the reforming unit 8 to prevent the utilization and overload of the entire catalyst, thereby improving the efficiency of reforming. It is a durable and reliable hydrogen generator that prevents deterioration of the system and catalyst.

また、伝熱板22は、改質部8の触媒容器11の触媒層12を概略等間隔として複数個構成してある。そのために、改質部の触媒容器11に充填された触媒は、複数の伝熱板22により多数に分割配置でき、伝熱板22を等間隔としたため触媒は体積を均一に分割する。このため、加熱部の燃焼器5からの伝熱を触媒の各部分に均一に熱伝導が可能となり、触媒反応に必要な熱を十分に供給して触媒温度低下を生じることが無く、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高くできる。   In addition, the heat transfer plate 22 includes a plurality of catalyst layers 12 of the catalyst container 11 of the reforming unit 8 at approximately equal intervals. Therefore, the catalyst filled in the catalyst container 11 of the reforming section can be divided and arranged in a large number by the plurality of heat transfer plates 22. Since the heat transfer plates 22 are equally spaced, the catalyst is uniformly divided in volume. For this reason, heat transfer from the combustor 5 of the heating unit can be uniformly conducted to each part of the catalyst, and the heat necessary for the catalytic reaction is sufficiently supplied so that the catalyst temperature does not decrease, and reforming is possible. Efficient system with improved efficiency and deterioration of catalyst can be prevented and durability and reliability can be increased.

また、伝熱板22は、改質部8の触媒容器11内の触媒中を流れる原料ガスの流れ方向に平行に突出して構成したことにより、原料は、触媒容器11に入ってから出るまでの間伝熱板22により加熱が可能となり触媒反応を均一に促進できる。また、改質部の触媒容器11を流れる原料ガスの流れ圧損を増加させることが無くシステムとして安定に保つことが出来る。すなわち、原料の水蒸気による水素への改質は吸熱反応である。そのため、改質反応を均一に促進させるためには、反応している触媒近くのガスに熱を連続的に供給する必要がある。そこで、改質部8の触媒容器11に入った原料ガスを伝熱板22の加熱効果により逐次加熱できる構成としたことにより、改質部8の入口から出口までの間で原料の水素への改質が進み、より改質効率の向上により効率的なシステムとできる。   Further, the heat transfer plate 22 is configured to protrude in parallel with the flow direction of the raw material gas flowing in the catalyst in the catalyst container 11 of the reforming unit 8, so that the raw material passes from entering the catalyst container 11 to exiting. Heat can be heated by the intermediate heat transfer plate 22 and the catalytic reaction can be promoted uniformly. Further, the flow pressure loss of the raw material gas flowing through the catalyst container 11 of the reforming section is not increased, and the system can be kept stable. That is, the reforming of raw material into hydrogen by water vapor is an endothermic reaction. Therefore, in order to promote the reforming reaction uniformly, it is necessary to continuously supply heat to the gas near the reacting catalyst. Therefore, by adopting a configuration in which the raw material gas that has entered the catalyst container 11 of the reforming unit 8 can be sequentially heated by the heating effect of the heat transfer plate 22, the raw material gas is transferred to the raw material hydrogen between the inlet and the outlet of the reforming unit 8. As reforming progresses, the system can be made more efficient by improving reforming efficiency.

また、伝熱板22は、その表面をプレス加工や成型により凸凹として構成することにより、伝熱面積の拡大と伝熱板近くを流れる原料ガス流れを乱し境界層を薄くできる。そのため、さらに触媒と伝熱板22の接触面積を大きくすることが可能となり、加熱部の燃焼器5から伝熱板22に伝導した熱を触媒層12の触媒により熱伝導を促進でき、触媒反応に必要な熱を十分に供給して、より改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高くできる。   Further, the surface of the heat transfer plate 22 is configured to be uneven by pressing or molding, thereby expanding the heat transfer area and disturbing the flow of the raw material gas flowing near the heat transfer plate, thereby making the boundary layer thin. Therefore, the contact area between the catalyst and the heat transfer plate 22 can be further increased, and heat conduction from the combustor 5 of the heating unit to the heat transfer plate 22 can be promoted by the catalyst of the catalyst layer 12, so that the catalytic reaction By sufficiently supplying the necessary heat, it is possible to prevent deterioration of the efficient system and catalyst by improving the reforming efficiency and to improve the durability and reliability.

(実施の形態2)
図3は、本発明の第2の実施形態における水素生成器における改質部の断面図を示すものである。実施の形態1と異なるところは、伝熱板22は、伝熱板22の表面に凸となる補助伝熱板23を設けてあり、補助伝熱板23の板厚は伝熱板22の板厚より薄くして構成してある。本実施例では補助伝熱板23を円筒状として伝熱板22のおのおのと密着させてある。そして、加熱手段である燃焼器5に接した改質部8の触媒容器11壁面と伝熱板22を押し出し成型材等を用いて一体として構成してある。本実施例では、触媒容器11と伝熱板22と補助伝熱板23を一体の押し出し成型材で筒状に構成し、この上下を別部材を取り付けた構成を示している。
(Embodiment 2)
FIG. 3 shows a cross-sectional view of the reforming section in the hydrogen generator in the second embodiment of the present invention. The difference from the first embodiment is that the heat transfer plate 22 is provided with an auxiliary heat transfer plate 23 that is convex on the surface of the heat transfer plate 22, and the thickness of the auxiliary heat transfer plate 23 is the plate of the heat transfer plate 22. It is made thinner than the thickness. In this embodiment, the auxiliary heat transfer plate 23 has a cylindrical shape and is in close contact with each of the heat transfer plates 22. And the catalyst container 11 wall surface of the reforming part 8 which contacted the combustor 5 which is a heating means, and the heat-transfer plate 22 are comprised integrally using the extrusion molding material. In this embodiment, the catalyst container 11, the heat transfer plate 22, and the auxiliary heat transfer plate 23 are formed in a cylindrical shape by an integral extruded material, and the upper and lower portions are attached with separate members.

このことにより、伝熱板22は、その表面に凸となる補助伝熱板23を設け、補助伝熱板23の板厚は伝熱板22の板厚より薄くしたことにより、改質部8の触媒容器11内の触媒層12を流れる原料ガスの流れ抵抗を増加することない。伝熱板22を流れる熱は、一部が触媒層12に放熱し、残りの熱は補助伝熱板23に流れる。そのため、熱貫流量から補助伝熱板23の板厚は伝熱板22の板厚より薄くしても熱量的には減少しない。そして、補助伝熱板23を厚くすると、原料ガスが流れる触媒層12の断面積を減少して流れ抵抗が増加する。また、触媒層12の触媒と伝熱板22の接触面積をこの補助伝熱板23の接触面積の追加により格段に大きくすることが可能となり、加熱部である燃焼器5から伝熱板22に伝導した熱を触媒により熱伝導を促進でき、触媒反応に必要な熱を十分に供給して、より改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高くできる。   Thus, the heat transfer plate 22 is provided with a convex auxiliary heat transfer plate 23 on the surface thereof, and the thickness of the auxiliary heat transfer plate 23 is made thinner than the plate thickness of the heat transfer plate 22. The flow resistance of the raw material gas flowing through the catalyst layer 12 in the catalyst container 11 is not increased. Part of the heat flowing through the heat transfer plate 22 is radiated to the catalyst layer 12, and the remaining heat flows to the auxiliary heat transfer plate 23. Therefore, even if the plate thickness of the auxiliary heat transfer plate 23 is made thinner than the plate thickness of the heat transfer plate 22 due to the heat flow rate, the amount of heat does not decrease. When the auxiliary heat transfer plate 23 is thickened, the flow resistance increases by reducing the cross-sectional area of the catalyst layer 12 through which the raw material gas flows. In addition, the contact area between the catalyst of the catalyst layer 12 and the heat transfer plate 22 can be remarkably increased by adding the contact area of the auxiliary heat transfer plate 23, so that the combustor 5 serving as a heating unit can be changed to the heat transfer plate 22. Heat conduction can be promoted by the catalyst using the catalyst, sufficient heat for the catalysis reaction can be supplied, and efficient system and improvement of the reforming efficiency can be prevented and deterioration of the catalyst can be prevented, resulting in high durability and reliability. .

また、加熱手段である燃焼器5に接した改質部8の触媒容器11の壁面と伝熱板22を押し出し成型材等を用いて一体として構成したことにより、触媒容器11の壁面と伝熱板22は、接触部に生じる熱抵抗の低い構成となり、燃焼器5からの熱は伝熱板22に温度低下なく伝導でき触媒の加熱を促進でき、触媒反応に必要な熱を十分に供給して、より改質効率の向上による効率的なシステムとなり、また、改質部8の壁面と伝熱板22の一体成型は、この密着信頼性の向上と、部品点数の低減、組み立て工数の低減等、構成の簡略化による低コストが可能となる。   Further, the wall surface of the catalyst container 11 and the heat transfer plate 22 of the reforming section 8 in contact with the combustor 5 serving as a heating means are integrally formed using an extrusion molding material or the like. The plate 22 is configured to have a low thermal resistance generated in the contact portion, and heat from the combustor 5 can be conducted to the heat transfer plate 22 without lowering the temperature, can accelerate the heating of the catalyst, and sufficiently supplies the heat necessary for the catalytic reaction. Thus, the reforming efficiency is improved and the system becomes more efficient. Also, the integral molding of the wall surface of the reforming section 8 and the heat transfer plate 22 improves the adhesion reliability, reduces the number of parts, and reduces the number of assembly steps. Thus, the cost can be reduced by simplifying the configuration.

以上のように、本発明にかかる水素生成器は、改質部内部に突出した伝熱板を構成していることにより、加熱部で発生した熱は、改質部内部に突出した伝熱板を通り改質部内の触媒全体に伝熱でき、吸熱反応性能に反応に必要な熱量を常に供給して、十分な性能の確保が可能となり、また、触媒全体で均一に反応できるので、触媒の部分過熱や局部的反応を防止でき、改質効率の向上による効率的なシステムと触媒の劣化を防止して耐久信頼性の高い水素生成器を提供でき、燃料電池の水素源等の用途に適応できる。   As described above, the hydrogen generator according to the present invention constitutes the heat transfer plate that protrudes inside the reforming section, so that the heat generated in the heating section is heat transfer plate that protrudes inside the reforming section. Heat can be transferred to the entire catalyst in the reforming section, and the amount of heat necessary for the reaction can be constantly supplied to the endothermic reaction performance to ensure sufficient performance, and the entire catalyst can react uniformly. It can prevent partial overheating and local reaction, and can provide an efficient system and catalyst deterioration due to improved reforming efficiency to provide a highly durable hydrogen generator, suitable for applications such as fuel cell hydrogen sources it can.

本発明の実施の形態1における水素生成器における改質部の縦断面図1 is a longitudinal sectional view of a reforming section in a hydrogen generator in Embodiment 1 of the present invention. 本発明の実施の形態1における水素生成器における改質部の横断面図Cross-sectional view of the reforming section in the hydrogen generator in Embodiment 1 of the present invention 本発明の実施の形態2における水素生成器における改質部の横断面図Cross-sectional view of the reforming section in the hydrogen generator in Embodiment 2 of the present invention 水蒸気改質器を用いた原料、水蒸気の供給から水素ガスの出口に至るまでを示すブロック図Block diagram showing everything from raw material supply using steam reformer, steam supply to hydrogen gas outlet 従来の水素生成器における改質部の断面図Sectional view of the reforming section in a conventional hydrogen generator

符号の説明Explanation of symbols

5 燃焼器
8 改質部
9 原料を供給する手段
10 水を供給する手段
11 触媒容器
12 触媒層
21 生成ガス出口
22 伝熱板
23 補助伝熱板
DESCRIPTION OF SYMBOLS 5 Combustor 8 Reforming part 9 Raw material supply means 10 Water supply means 11 Catalyst container 12 Catalyst layer 21 Product gas outlet 22 Heat transfer plate 23 Auxiliary heat transfer plate

Claims (6)

原料を供給する手段と、水を供給する手段と、加熱手段と、触媒充填した改質部と、CO変成部と、CO除去部を順次接続し、前記加熱手段と前記改質部の接触部には、前記改質部内部に突出した伝熱板を構成したことを特徴とする水素生成器。 A means for supplying a raw material, a means for supplying water, a heating means, a reforming section filled with a catalyst, a CO conversion section, and a CO removal section are sequentially connected, and the contact section between the heating means and the reforming section. The hydrogen generator is characterized in that a heat transfer plate protruding inside the reforming section is formed. 伝熱板は、改質部に概略等間隔として複数個構成した請求項1に記載の水素生成器。 The hydrogen generator according to claim 1, wherein a plurality of heat transfer plates are configured in the reforming section at approximately equal intervals. 伝熱板は、改質部内の触媒中を流れる原料ガスの流れ方向に平行に突出して構成した請求項1または2に記載の水素生成器。 The hydrogen generator according to claim 1, wherein the heat transfer plate is configured to protrude in parallel with a flow direction of the raw material gas flowing in the catalyst in the reforming section. 伝熱板は、その表面を凸凹として構成した請求項1〜3のいずれか1項に記載の水素生成器。 The hydrogen generator according to any one of claims 1 to 3, wherein the heat transfer plate is configured such that a surface thereof is uneven. 伝熱板は、その表面に凸となる補助伝熱板を設け、前記補助伝熱板の板厚は前記伝熱板の板厚より薄くして構成した請求項1〜4のいずれか1項に記載の水素生成器。 The heat transfer plate is provided with an auxiliary heat transfer plate that is convex on the surface thereof, and the thickness of the auxiliary heat transfer plate is made thinner than the plate thickness of the heat transfer plate. The hydrogen generator described in 1. 加熱手段に接した改質部の壁面と伝熱板を押し出し成型材等を用いて一体として構成した請求項1〜5のいずれか1項に記載の水素生成器。 The hydrogen generator according to any one of claims 1 to 5, wherein a wall surface of the reforming portion in contact with the heating means and a heat transfer plate are integrally formed using an extrusion molding material or the like.
JP2005102144A 2005-03-31 2005-03-31 Hydrogen generator Expired - Fee Related JP4617966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102144A JP4617966B2 (en) 2005-03-31 2005-03-31 Hydrogen generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102144A JP4617966B2 (en) 2005-03-31 2005-03-31 Hydrogen generator

Publications (2)

Publication Number Publication Date
JP2006282424A true JP2006282424A (en) 2006-10-19
JP4617966B2 JP4617966B2 (en) 2011-01-26

Family

ID=37404725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102144A Expired - Fee Related JP4617966B2 (en) 2005-03-31 2005-03-31 Hydrogen generator

Country Status (1)

Country Link
JP (1) JP4617966B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209006A (en) * 2008-03-05 2009-09-17 Aisin Seiki Co Ltd Gas treatment apparatus for fuel cell
JP2011207726A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system
JP2018065736A (en) * 2016-10-21 2018-04-26 エルジー エレクトロニクス インコーポレイティド Fuel reforming device
JP2019059668A (en) * 2016-06-16 2019-04-18 京セラ株式会社 Reformer, cell stack device, fuel cell module, and fuel cell apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102101A (en) * 1988-10-12 1990-04-13 Fuji Electric Co Ltd Reformer for fuel cell
JPH04265147A (en) * 1991-02-19 1992-09-21 Fuji Electric Co Ltd Fuel reformer
JPH1111901A (en) * 1997-06-24 1999-01-19 Fuji Electric Co Ltd Reforming device for fuel cell power generation unit
JP2002187705A (en) * 2000-10-10 2002-07-05 Tokyo Gas Co Ltd Single tube cylindrical reformer
JP2003226506A (en) * 2002-02-06 2003-08-12 Mitsubishi Electric Corp Reformer for fuel cell
JP2003286003A (en) * 2002-03-27 2003-10-07 Mitsubishi Heavy Ind Ltd Reformer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02102101A (en) * 1988-10-12 1990-04-13 Fuji Electric Co Ltd Reformer for fuel cell
JPH04265147A (en) * 1991-02-19 1992-09-21 Fuji Electric Co Ltd Fuel reformer
JPH1111901A (en) * 1997-06-24 1999-01-19 Fuji Electric Co Ltd Reforming device for fuel cell power generation unit
JP2002187705A (en) * 2000-10-10 2002-07-05 Tokyo Gas Co Ltd Single tube cylindrical reformer
JP2003226506A (en) * 2002-02-06 2003-08-12 Mitsubishi Electric Corp Reformer for fuel cell
JP2003286003A (en) * 2002-03-27 2003-10-07 Mitsubishi Heavy Ind Ltd Reformer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009209006A (en) * 2008-03-05 2009-09-17 Aisin Seiki Co Ltd Gas treatment apparatus for fuel cell
JP2011207726A (en) * 2010-03-30 2011-10-20 Jx Nippon Oil & Energy Corp Hydrogen production apparatus and fuel cell system
JP2019059668A (en) * 2016-06-16 2019-04-18 京セラ株式会社 Reformer, cell stack device, fuel cell module, and fuel cell apparatus
US11456473B2 (en) 2016-06-16 2022-09-27 Kyocera Corporation Reformer, cell stack apparatus, fuel cell module, and fuel cell apparatus
JP2018065736A (en) * 2016-10-21 2018-04-26 エルジー エレクトロニクス インコーポレイティド Fuel reforming device
US10418653B2 (en) 2016-10-21 2019-09-17 Lg Electronics Inc. Fuel reforming device with heat storage member

Also Published As

Publication number Publication date
JP4617966B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
JP2006160602A (en) Small cylindrical reformer
JP2015517175A (en) Catalytically heated fuel processor including a replaceable structured support for supporting a catalyst for a fuel cell
JP5154272B2 (en) Fuel cell reformer
JP4933818B2 (en) Operation method of solid oxide fuel cell system
WO2001019727A1 (en) Apparatus for producing hydrogen gas and fuel cell system using the same
JP5160389B2 (en) Multi-cylinder steam reformer for fuel cells
JP4617966B2 (en) Hydrogen generator
JP4013692B2 (en) Reformer steam generator for fuel cell generator
WO2007077791A1 (en) Indirect internal reforming solid oxide fuel cell
US11063283B2 (en) Solid oxide fuel cell system configured for higher hydrocarbon fuels
WO2005077820A1 (en) Fuel reformer
JP2007200709A (en) Solid oxide fuel cell stack and its operation method
JP2005294207A (en) Fuel cell system
JP5329944B2 (en) Steam reformer for fuel cell
JP5428531B2 (en) Hydrogen production equipment
JP5244488B2 (en) Fuel cell reformer
JP2009062223A (en) Reforming apparatus
JP4902165B2 (en) Fuel cell reformer and fuel cell system comprising the fuel cell reformer
JP4940567B2 (en) Polymer electrolyte fuel cell system
JP2007210844A (en) Hydrogen generator
JPH0881202A (en) Methanol reformer for fuel cell
JP5140361B2 (en) Fuel cell reformer
JP2005216499A (en) Hydrogen generator
JP5658897B2 (en) Reforming apparatus and fuel cell system
JP5111040B2 (en) Fuel cell reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071129

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20071212

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees