JP2006256895A - Glass microballoon and method for producing the same - Google Patents
Glass microballoon and method for producing the same Download PDFInfo
- Publication number
- JP2006256895A JP2006256895A JP2005075349A JP2005075349A JP2006256895A JP 2006256895 A JP2006256895 A JP 2006256895A JP 2005075349 A JP2005075349 A JP 2005075349A JP 2005075349 A JP2005075349 A JP 2005075349A JP 2006256895 A JP2006256895 A JP 2006256895A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- hollow body
- particle size
- less
- mass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000011521 glass Substances 0.000 title claims abstract description 125
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000002245 particle Substances 0.000 claims abstract description 64
- 239000000203 mixture Substances 0.000 claims abstract description 21
- 229910052708 sodium Inorganic materials 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims abstract description 6
- 239000002861 polymer material Substances 0.000 claims description 21
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 239000003513 alkali Substances 0.000 claims description 10
- 238000010828 elution Methods 0.000 claims description 10
- 239000000945 filler Substances 0.000 claims description 9
- 239000000567 combustion gas Substances 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 13
- 239000011347 resin Substances 0.000 abstract description 13
- 229920005989 resin Polymers 0.000 abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 9
- 239000011248 coating agent Substances 0.000 abstract 1
- 238000000576 coating method Methods 0.000 abstract 1
- 239000002994 raw material Substances 0.000 description 15
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 14
- 239000000843 powder Substances 0.000 description 12
- 238000005187 foaming Methods 0.000 description 10
- 230000000704 physical effect Effects 0.000 description 10
- 239000003973 paint Substances 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 239000006185 dispersion Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000013585 weight reducing agent Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 238000007873 sieving Methods 0.000 description 3
- 229910018068 Li 2 O Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 2
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- 239000004566 building material Substances 0.000 description 2
- 239000011362 coarse particle Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000002706 hydrostatic effect Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 102100027708 Astrotactin-1 Human genes 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 101000936741 Homo sapiens Astrotactin-1 Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- FUFJGUQYACFECW-UHFFFAOYSA-L calcium hydrogenphosphate Chemical compound [Ca+2].OP([O-])([O-])=O FUFJGUQYACFECW-UHFFFAOYSA-L 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 235000019700 dicalcium phosphate Nutrition 0.000 description 1
- 229940095079 dicalcium phosphate anhydrous Drugs 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 1
- 229910052808 lithium carbonate Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 150000004686 pentahydrates Chemical class 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C11/00—Multi-cellular glass ; Porous or hollow glass or glass particles
- C03C11/002—Hollow glass particles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
Abstract
Description
本発明は、極めて粒度が小さく、耐水性に優れ、かつ塗料や樹脂などの高分子材料への分散安定性に優れたガラス微小中空体及びその製造方法に関する。 The present invention relates to a glass microhollow having an extremely small particle size, excellent water resistance, and excellent dispersion stability in a polymer material such as a paint or resin, and a method for producing the same.
ガラス微小中空体は、一般にガラスバルーン、ガラスバブルという名称でも呼ばれており、低比重であること、微細であること、比較的高強度であることなどの特徴を生かし、各種の素材に添加することにより、軽量化、断熱性能の付与のために使用されている。ガラス微小中空体が使用される分野の例として、特に、自動車、船舶、航空機などの移動体用塗料や部材、パテ、樹脂成形材料、各種建築材料、紙粘土などの広範な用途に広がっている。 Glass hollow bodies are generally called glass balloons and glass bubbles, and are added to various materials taking advantage of their low specific gravity, fineness, and relatively high strength. Therefore, it is used for weight reduction and heat insulation performance. As an example of the field in which glass micro hollow bodies are used, it has spread to a wide range of applications such as paints and members for mobile bodies such as automobiles, ships, aircraft, putty, resin molding materials, various building materials, paper clay, etc. .
近年、移動体用の各種の素材の軽量化が望まれているなか、特に、塗料や樹脂材料などの高分子材料中にガラス微小中空体が破壊されずに均一に分散することにより、塗料や樹脂材料などの高分子材料がいずれの部分でも均一な物性を有することが望まれている。 In recent years, weight reduction of various materials for moving bodies has been desired, and in particular, glass micro-hollow bodies are uniformly dispersed without being broken in polymer materials such as paints and resin materials. It is desired that a polymer material such as a resin material has uniform physical properties at any part.
一方、ガラス微小中空体については、幾つかの特許が出願されている。特許文献1には、発泡成分としてSO3を含有するホウ珪酸ガラス粉末を原料とし、火炎中にこの原料ガラス粉末を通過させて製造されたガラス微小中空体が開示されている。このガラス微小中空体は、粒子密度は0.5g/cm3相当であり、耐圧強度(体積が10%減少する静水圧力)は1400kg/cm2相当である。しかし、かかるガラス微小中空体は、平均粒径40〜50μmであり、粒度分布における、通過積算割合90%(D90)が80μmと粗い粒子が多く含まれている。 On the other hand, several patents have been filed for glass hollow bodies. Patent Document 1 discloses a glass microhollow body manufactured by using a borosilicate glass powder containing SO 3 as a foaming component as a raw material and passing the raw glass powder through a flame. This glass microhollow body has a particle density equivalent to 0.5 g / cm 3 and a compressive strength (hydrostatic pressure at which the volume is reduced by 10%) is equivalent to 1400 kg / cm 2 . However, such a glass microhollow body has an average particle diameter of 40 to 50 μm, and contains a large amount of coarse particles having a passing cumulative ratio 90% (D90) of 80 μm in the particle size distribution.
また、特許文献2には、粒子密度が0.3〜0.4g/cm3であり、耐圧強度が600kg/cm2相当のガラス微小中空体が開示されている。しかし、この場合のガラス微小中空体は、耐圧強度が不充分であるばかりでなく、平均粒子径が45μmであり、D90の粒子径は65μmとまだ粗い粒子が多く含まれている。 Patent Document 2 discloses a glass microhollow body having a particle density of 0.3 to 0.4 g / cm 3 and a compressive strength of 600 kg / cm 2 or equivalent. However, the glass micro hollow body in this case has not only insufficient pressure resistance, but also has an average particle diameter of 45 μm and a particle diameter of D90 of 65 μm, which contains many coarse particles.
さらに、特許文献3には、粒子径の小さなガラス微小中空体として、粒子密度が0.485g/cm3、耐圧強度が660kg/cm2、平均粒径が9.5μm、D90の粒子径は24μmのガラス微小中空体が開示されている。しかし、該特許文献3のガラス微小中空体は原料であるガラスフリットを発泡させて得られる発泡品を篩にて分級することにより得ている。従って、歩留りや篩操作の点からして経済的ではない。 Further, Patent Document 3 discloses that a glass micro hollow body having a small particle diameter has a particle density of 0.485 g / cm 3 , a pressure strength of 660 kg / cm 2 , an average particle diameter of 9.5 μm, and a D90 particle diameter of 24 μm. A glass micro hollow body is disclosed. However, the glass micro hollow body of Patent Document 3 is obtained by classifying a foamed product obtained by foaming a glass frit as a raw material with a sieve. Therefore, it is not economical in terms of yield and sieving operation.
また、上記のような従来のガラス微小中空体の場合、ガラス微小中空体を高分子材料中に添加したときに、高分子材料中における分散が必ずしも円滑でないために、ガラス微小中空体が高分子材料中に均一に分散せず、偏って含まれる現象が見られる。この結果、得られるガラス微小中空体を含有する高分子材料は均一な物性を有しないことになる。また、添加した高分子材料の表面平滑性の向上や、微細な素材部品への添加も要望されている。
上記した従来技術に鑑み、本発明は、ガラス微小中空体を高分子材料に添加したときに、高分子材料中における分散が円滑にかつ均一に分散し、その結果、得られるガラス微小中空体を含有する高分子材料は均一な物性を有し、また、微細な素材部品への添加でき、素材の表面平滑性も向上するガラス微小中空体及び該ガラス微小中空体の収率のよい製造方法を提供することを目的とする。 In view of the above-described prior art, when the glass micro-hollow body is added to the polymer material, the present invention allows the dispersion in the polymer material to be smoothly and uniformly dispersed. A glass microhollow body that has uniform physical properties, can be added to fine material parts, and improves the surface smoothness of the material, and a method for producing the glass microhollow body with a high yield The purpose is to provide.
本発明者は、鋭意研究を進めたところ、特定の組成、特定の粒度分布及び特定の粒子密度をガラス微小中空体にもたしめることにより、上記の目的を達成できることを見出し、本発明に到達した。
かくして、本発明は、下記の要旨を有する新規なガラス微小中空体及びその製造方法にある。
(1)SiO2:60〜80質量%、Na2O:2〜12.5質量%、CaO:5〜15質量%、B2O3:4〜15質量%及びSO3:0.05〜1質量%を含み、かつB2O3/Na2O(質量比)が1.2〜3.5であるガラスの組成を有し、レーザー散乱式粒度測定による粒度分布における、D90が30μm以下であり、D50が10μm以下であり、かつ粒子密度が0.8〜1.2g/cm3であることを特徴とするガラス微小中空体。
(2)アルカリ溶出度が0.08ミリ当量/g以下である上記(1)に記載のガラス微小中空体。
(3)前記D90が20μm以下であり、D50が2〜7μmであり、かつ粒子密度が0.9〜1.1g/cm3である上記(1)又は(2)に記載のガラス微小中空体。
(4)ガラス微小中空体が、高分子材料のフィラーとして使用される上記(1)〜(3)のいずれかに記載のガラス微小中空体。
(5)SiO2:58〜75質量%、Na2O:3〜12.5質量%、CaO:5〜15質量%、B2O3:8〜15質量%及びSO3:0.05〜1質量%を含み、かつB2O3/Na2O(質量比)が1.7〜4である組成を有し、レーザー散乱式粒度測定による粒
度分布における、D90が20μm以下であり、かつD50が8μm以下であるガラスフリットを火焔中に供給し発泡させる、上記(1)〜(4)のいずれかに記載のガラス微小中空体の製造方法。
(6)ガラスフリットを、該ガラスフリット1kg当り1〜8m3の空気中に分散させ、燃焼ガスと混合して火焔中に供給する上記(5)に記載のガラス微小中空体の製造方法。
(7)ガラスフリットのD90が15μm以下、かつD50が2〜7μmである上記(5)又は(6)に記載のガラス微小中空体の製造方法。
As a result of diligent research, the present inventor has found that the above object can be achieved by imparting a specific composition, a specific particle size distribution, and a specific particle density to a glass microhollow body. did.
Thus, the present invention resides in a novel glass microhollow body having the following gist and a method for producing the same.
(1) SiO 2: 60~80 wt%, Na 2 O: 2~12.5 wt%, CaO: 5 to 15 wt%, B 2 O 3: 4~15 wt% and SO 3: 0.05 to It has a composition of glass containing 1% by mass and B 2 O 3 / Na 2 O (mass ratio) of 1.2 to 3.5, and D90 is 30 μm or less in the particle size distribution by laser scattering particle size measurement. D50 is 10 μm or less, and the particle density is 0.8 to 1.2 g / cm 3 .
(2) The glass micro hollow body according to (1), wherein the alkali elution degree is 0.08 meq / g or less.
(3) The glass micro hollow body according to (1) or (2), wherein the D90 is 20 μm or less, the D50 is 2 to 7 μm, and the particle density is 0.9 to 1.1 g / cm 3. .
(4) The glass microhollow body according to any one of (1) to (3), wherein the glass microhollow body is used as a filler for a polymer material.
(5) SiO 2: 58~75 wt%, Na 2 O: 3~12.5 wt%, CaO: 5 to 15 wt%, B 2 O 3: 8~15 wt% and SO 3: 0.05 to D90 is 20 μm or less in a particle size distribution by laser scattering particle size measurement, having a composition containing 1% by mass and B 2 O 3 / Na 2 O (mass ratio) of 1.7 to 4. The manufacturing method of the glass micro hollow body in any one of said (1)-(4) which supplies and foams glass frit whose D50 is 8 micrometers or less in a flame.
(6) The method for producing a glass microhollow according to (5), wherein the glass frit is dispersed in 1 to 8 m 3 of air per kg of the glass frit, mixed with the combustion gas, and supplied into the flame.
(7) The manufacturing method of the glass micro hollow body as described in said (5) or (6) whose D90 of glass frit is 15 micrometers or less and D50 is 2-7 micrometers.
本発明のガラス微小中空体は特定の微細な粒度及び粒度分布を有し、かつ特定の粒子密度も有し添加される高分子材料の比重との差がないために、高分子材料に添加したときに、高分子材料中における分散が円滑にかつ均一に分散する結果、得られるガラス微小中空体を含有する高分子材料は均一な物性を有する。また、特定の微細な粒度及び粒度分布を有するので、微細な高分子材料の素材部品へ添加でき、表面平滑性も向上した素材が得られる。また、本発明のガラス微小中空体は、特定の組成を有するために耐水性に優れ、アルカリ溶出度が小さいので、樹脂などの高分子材料に添加した場合に樹脂が発泡したり、成形の際の流動性が阻害されない。さらに、本発明によれば、このようなガラス微小中空体の収率のよい製造方法も提供される。 The glass micro hollow body of the present invention has a specific fine particle size and particle size distribution, and also has a specific particle density, so that there is no difference from the specific gravity of the added polymer material. Sometimes, the dispersion in the polymer material is smoothly and uniformly dispersed. As a result, the resulting polymer material containing the glass microhollow body has uniform physical properties. Moreover, since it has a specific fine particle size and particle size distribution, a material that can be added to a raw material component of a fine polymer material and has improved surface smoothness can be obtained. In addition, since the glass micro hollow body of the present invention has a specific composition, it has excellent water resistance and low alkali elution, so that when added to a polymer material such as a resin, the resin foams or is molded. The fluidity of is not disturbed. Furthermore, according to this invention, the manufacturing method with a sufficient yield of such a glass micro hollow body is also provided.
本発明のガラス微小中空体は、ガラスの組成として、SiO2:60〜80質量%、Na2O:2〜12.5質量%、CaO:5〜15質量%B2O3:4〜15質量%、及びSO3:0.05〜1質量%を含み、かつB2O3/Na2O(質量比)が1.2〜3.5を有する。かかる組成を有することにより、上記した特性に到達できるとともに、吸湿性が小さいので耐水性が大きく、またアルカリ溶出度の小さい微小中空体になる。また、微小中空体を樹脂などに混入した場合にも樹脂が発泡したり、成形時の流動性が低下し成形性などが悪くなるのを抑制できる。 The glass micro hollow body of the present invention has a glass composition of SiO 2 : 60 to 80% by mass, Na 2 O: 2 to 12.5% by mass, CaO: 5 to 15% by mass B 2 O 3 : 4 to 15 mass%, and SO 3: 0.05 to 1 comprises mass%, and B 2 O 3 / Na 2 O ( weight ratio) having 1.2 to 3.5. By having such a composition, the above-described characteristics can be reached, and since the hygroscopic property is small, the water resistance is large, and a micro hollow body having a small alkali elution degree is obtained. Further, even when a minute hollow body is mixed in a resin or the like, it is possible to suppress the foaming of the resin or the deterioration of the moldability and the like due to the decrease in fluidity during molding.
なかでも、本発明のガラス微小中空体は、ガラスの組成として、SiO2:65〜75質量%、Na2O:3〜6質量%、CaO:8〜13質量%、B2O3:6〜8.5質量%、及びSO3:0.05〜1質量%を含み、かつB2O3/Na2O(質量比)が1.35〜3である組成を有するのが好ましい。また、全アルカリ金属の酸化物は2〜12.5質量%、好ましくは4〜8質量%であり、全アルカリ土類金属の酸化物は5〜15質量%、好ましくは8〜15質量%であるのが好適である。 Among them, glass microballoons of the present invention, the composition of the glass, SiO 2: 65 to 75 wt%, Na 2 O: 3~6 wt%, CaO: 8 to 13 wt%, B 2 O 3: 6 8.5 wt%, and SO 3: 0.05 to 1 comprises mass%, and B 2 O 3 / Na 2 O ( weight ratio) preferably has a composition which is 1.35 to 3. The total alkali metal oxide is 2 to 12.5% by mass, preferably 4 to 8% by mass, and the total alkaline earth metal oxide is 5 to 15% by mass, preferably 8 to 15% by mass. Preferably there is.
また、ガラス微小中空体を形成するガラスは、次のような他の成分を含むことができ、それにより、ガラス微小中空体の特性を改善することができる。K2O:0〜3質量%、好ましくは0.5〜1.5質量%、Li2O:0〜3質量%、好ましくは0.5〜1.2質量%、MgO:0〜3質量%、好ましくは0〜1.5質量%、ZnO:0〜3質量%、好ましくは1.0〜2.5質量%、Al2O3:0〜3質量%、好ましくは0.5〜1.5質量%、P2O5:0〜3質量%、好ましくは1.1〜2.0質量%、Sb2O3:0〜1質量%、As2O3:0〜1質量%。 Moreover, the glass which forms a glass micro hollow body can contain the following other components, Thereby, the characteristic of a glass micro hollow body can be improved. K 2 O: 0 to 3% by weight, preferably from 0.5 to 1.5 wt%, Li 2 O: 0 to 3% by weight, preferably from 0.5 to 1.2 wt%, MgO: 0 to 3 mass %, preferably 0 to 1.5 wt%, ZnO: 0 to 3% by weight, preferably from 1.0 to 2.5 wt%, Al 2 O 3: 0~3 wt%, preferably 0.5 to 1 .5 wt%, P 2 O 5: 0~3 wt%, preferably from 1.1 to 2.0 wt%, Sb 2 O 3: 0~1 wt%, As 2 O 3: 0~1 wt%.
ガラス微小中空体の粒度分布は、ガラス微小中空体の粒子密度、耐圧強度及び添加素材の物性に与える影響が大きい。本発明でガラス微小中空体は、レーザー散乱式粒度測定又はJIS標準篩による粒度分布における、通過積算割合D90が30μm以下であることが必要である。このD90が、30μmを超える場合には、薄膜塗料などの微細な高分子材料に添加した場合に、表面の平滑性などの特性を低下させる。D90は20μm以下が好ましく、特には17μm以下が好ましい。また、ガラス微小中空体のレーザー散乱式粒度測定による粒度分布における、通過積算割合D50(平均粒径ともいう)も本発明では所定の範囲にあることが必要であり、D50は10μm以下、好ましくは8μm以下が好適である。 The particle size distribution of the glass microhollow body has a great influence on the particle density, pressure strength, and physical properties of the additive material of the glass microhollow body. In the present invention, the glass micro-hollow body needs to have a passing cumulative ratio D90 of 30 μm or less in the particle size distribution by laser scattering particle size measurement or JIS standard sieve. When this D90 exceeds 30 μm, when added to a fine polymer material such as a thin film paint, characteristics such as surface smoothness are deteriorated. D90 is preferably 20 μm or less, and particularly preferably 17 μm or less. Further, in the present invention, it is necessary that the accumulated cumulative ratio D50 (also referred to as an average particle diameter) in the particle size distribution by laser scattering particle size measurement of the glass microhollow body is within a predetermined range, and D50 is 10 μm or less, preferably 8 μm or less is suitable.
また、本発明のガラス微小中空体の粒子密度は0.8〜1.2g/cm3である必要であり、粒子密度が1.2g/cm3より大きいと、ガラス微小中空体が高分子材料中に沈んでしまい、また、0.8g/cm3よりも小さいと、逆にガラス微小中空体が高分子材料中に浮いてしまうため、円滑かつ均一な分散が困難になり、高分子材料中におけるガラス微小中空体の粒子が偏って存在することになる。これは、ガラス微小中空体と高分子材料の密度との差が大きいために重力の影響を受けるためと思われる。その結果、得られる高分子材料の物性が不均一になり、所望の特性が得られない。なかでも、ガラス微小中空体の粒子密度は0.9〜1.1g/cm3が好ましい。 The particle density of the glass microballoons of the present invention is required to be 0.8~1.2g / cm 3, and the particle density is greater than 1.2 g / cm 3, glass microballoons polymeric material If it is less than 0.8 g / cm 3 , the glass micro-hollow body will float in the polymer material, making it difficult to disperse smoothly and uniformly. In this case, the particles of the glass micro-hollow body are unevenly present. This seems to be due to the influence of gravity due to the large difference between the density of the glass micro hollow body and the polymer material. As a result, the physical properties of the resulting polymer material become non-uniform and desired characteristics cannot be obtained. In particular, the particle density of the glass microhollow body is preferably 0.9 to 1.1 g / cm 3 .
また、本発明のガラス微小中空体は、アルカリ溶出度が小さく、好ましくは0.08ミリ当量/g以下、特には、0.06ミリ当量/g以下を有する。これにより、ガラス微小中空体は、吸水性が改善され、また、樹脂に添加した場合に、樹脂が発泡したり、成形の際の流動性を阻害されたりすることがない。 Moreover, the glass micro hollow body of the present invention has a low alkali elution degree, preferably 0.08 meq / g or less, particularly 0.06 meq / g or less. Thereby, the water absorption of the glass micro hollow body is improved, and when added to the resin, the resin does not foam or the fluidity during molding is not hindered.
本発明のガラス微小中空体の製造方法は限定されることはないが、好ましくは、以下のようにして製造される。すなわち、本発明では、SiO2:58〜75質量%、Na2O:3〜12.5質量%、CaO:5〜15質量%、B2O3:8〜15質量%及びSO3:0.05〜1質量%を含み、かつB2O3/Na2Oが1.7〜4である組成を有するガラスフリットを使用することにより製造される。かかる組成を有するガラスフリットは、ガラス微小中空体を製造する際の発泡率が適度であり、また、得られるガラス微小中空体の粒子密度やアルカリ溶出を小さくするのに効果的である。 Although the manufacturing method of the glass micro hollow body of this invention is not limited, Preferably, it manufactures as follows. That is, in the present invention, SiO 2: 58 to 75 wt%, Na 2 O: from 3 to 12.5 wt%, CaO: 5 to 15 wt%, B 2 O 3: 8~15 wt% and SO 3: 0 It is manufactured by using a glass frit having a composition containing 0.05 to 1% by mass and B 2 O 3 / Na 2 O being 1.7 to 4. The glass frit having such a composition has an appropriate foaming rate when producing a glass microhollow body, and is effective for reducing the particle density and alkali elution of the obtained glass microhollow body.
上記ガラスフリットは、なかでも、SiO2:58〜70質量%、Na2O:3〜8質量%、CaO:7〜12質量%、B2O3:11〜15質量%、及びSO3:0.05〜1質量%を含み、かつB2O3/Na2Oが1.35〜3である組成を有するのが好ましい。また、全アルカリ金属の酸化物は3〜15質量%、好ましくは3〜10質量%であり、全アルカリ土類金属の酸化物は5〜15質量%、好ましくは7〜12質量%であるのが好適である。 The glass frit, among others, SiO 2: 58 to 70 wt%, Na 2 O: 3 to 8 wt%, CaO: 7 to 12 wt%, B 2 O 3: 11~15 wt%, and SO 3: It is preferable to have a composition containing 0.05 to 1% by mass and having B 2 O 3 / Na 2 O of 1.35 to 3 . Further, the total alkali metal oxide is 3 to 15% by mass, preferably 3 to 10% by mass, and the total alkaline earth metal oxide is 5 to 15% by mass, preferably 7 to 12% by mass. Is preferred.
また、ガラスフリットは、次のような他の成分を含むことができ、それにより、製造されるガラス微小中空体の特性を制御することができる。K2O:0〜3質量%、好ましくは0.5〜1.5質量%、Li2O:0〜3質量%、好ましくは0.5〜1.2質量%、MgO:0〜3質量%、好ましくは0〜1.5質量%、ZnO:0〜3質量%、好ましくは1.0〜2.5質量%、Al2O3:0〜3質量%、好ましくは0.5〜1.5質量%、P2O5:0〜3質量%、好ましくは1.2〜2.0質量%、Sb2O3:0〜1質量%、As2O3:0〜1質量%。 In addition, the glass frit can contain other components such as the following, thereby controlling the characteristics of the glass microhollow body to be produced. K 2 O: 0 to 3% by weight, preferably from 0.5 to 1.5 wt%, Li 2 O: 0 to 3% by weight, preferably from 0.5 to 1.2 wt%, MgO: 0 to 3 mass %, preferably 0 to 1.5 wt%, ZnO: 0 to 3% by weight, preferably from 1.0 to 2.5 wt%, Al 2 O 3: 0~3 wt%, preferably 0.5 to 1 .5 wt%, P 2 O 5: 0~3 wt%, preferably from 1.2 to 2.0 wt%, Sb 2 O 3: 0~1 wt%, As 2 O 3: 0~1 wt%.
ガラスフリットの粒度分布は、得られるガラス微小中空体の粒度分布を始めその特性に影響を与えるので重要である。ガラスフリットの粒子径はD90が20μm以下が好ましく、特には15μm以下が好適である。D90が20μmより大きくなると、発泡後に得られるガラス微小中空体の粒度分布として優れた所望の範囲のものが得られない。また、原料ガラスフリットの平均粒子径D50も発泡後の粒子密度に影響し、D50は8μm以下、特には、2〜7μmが好適である。 The particle size distribution of the glass frit is important because it affects the properties of the obtained glass microhollow body, including the particle size distribution. The particle size of the glass frit is preferably D90 of 20 μm or less, particularly preferably 15 μm or less. When D90 is larger than 20 μm, it is not possible to obtain an excellent desired particle size distribution of the glass microhollow body obtained after foaming. Further, the average particle diameter D50 of the raw glass frit also affects the particle density after foaming, and D50 is preferably 8 μm or less, particularly 2 to 7 μm.
上記のガラスフリットを発泡させてガラス微小中空体を製造する手段は好ましくは次のような手段が採用される。まず、ガラスフリットを、ガラスフリット1kgに当り1〜8m3の空気中に分散させる。次いで、このガラスフリットを分散し手含む空気をLPGなどの燃焼ガスと混合(燃焼ガスと空気との混合ガスに対する空気の体積比は好ましくは7〜21)し、該混合物を1000〜1200℃の火炎中に供給し、該火焔中を0.1〜5秒間通過せしめることにより行われる。この場合、ガラスフリットの分散に使用される上記空気の割合は、ガラスフリット1kg当り、空気2〜7m3であるのが特に好ましい。かくした場合、ガラスフリットの発泡率が70%以上、特には75%以上にてガラス微小中空体が得られるとともに、ガラス微小中空体は粒度のそろったものが篩操作を行うことなく高い歩留りで安定して得られる。もちろん、必要に応じて、篩による分級を行い、更なる粒度分布の調整を行ってもよい。なお、上記発泡率とは、ガラスフリットの発泡工程から得られる無発泡品を含む全生産物の重さに対する水浮上品であるガラス微小中空体の重さの百分率を意味する。 As a means for producing the glass micro hollow body by foaming the glass frit, the following means is preferably employed. First, the glass frit is dispersed in 1 to 8 m 3 of air per 1 kg of the glass frit. Next, the air containing the glass frit dispersed therein is mixed with a combustion gas such as LPG (the volume ratio of air to the mixed gas of combustion gas and air is preferably 7 to 21), and the mixture is mixed at 1000 to 1200 ° C. It is performed by supplying into a flame and allowing it to pass through the flame for 0.1 to 5 seconds. In this case, the ratio of the air used for dispersion of the glass frit is particularly preferably 2 to 7 m 3 per kg of the glass frit. In this case, a glass micro hollow body can be obtained when the foaming ratio of the glass frit is 70% or more, particularly 75% or more, and the glass micro hollow body has a high yield without performing a sieving operation. Obtained stably. Of course, if necessary, classification with a sieve may be performed to further adjust the particle size distribution. In addition, the said foaming rate means the percentage of the weight of the glass micro hollow body which is a water floating product with respect to the weight of all the products containing the non-foamed product obtained from the foaming process of a glass frit.
次に、実施例を挙げて本発明を更に具体的に説明するが、これは例示であって、本発明の解釈を制限するものではない。なお、以下において、ガラス組成の分析、アルカリ溶出度、ガラス微小中空体の粒度分布、粒子密度、及び体積破壊率は、次のようにして求めた。
・ガラス組成の分析:
蛍光X線分析又はICP発光分析により各成分の定量分析を行った。
・アルカリ溶出度 :
ガラス微小中空体の水浮上品(バブル)をANS/ASTN D3100−78に従って測定した。
・ガラス微小中空体の粒度分布:
レーザー散乱式粒度測定装置又はJIS標準篩による篩い分けによる方法により測定した。
・ガラス微小中空体の粒子密度:
ガス置換式測定方法により測定した。
・ガラス微小中空体の体積破壊率:
静水圧力をかけ、その圧力を負荷する前後の試料密度の体積変化率を求め、次の式に従って算出した。
体積破壊率=(圧力負荷後の密度−圧力負荷前の密度)×100
/圧力負荷後の密度
EXAMPLES Next, although an Example is given and this invention is demonstrated further more concretely, this is an illustration and does not restrict | limit the interpretation of this invention. In the following, analysis of glass composition, alkali elution degree, particle size distribution of glass micro-hollow body, particle density, and volume fracture rate were obtained as follows.
・ Analysis of glass composition:
Each component was quantitatively analyzed by fluorescent X-ray analysis or ICP emission analysis.
・ Alkali elution:
The water floating product (bubble) of the glass micro hollow body was measured according to ANS / ASTN D3100-78.
・ Particle size distribution of glass micro hollow body:
It measured by the method by sieving with a laser scattering type particle size measuring device or a JIS standard sieve.
-Particle density of glass hollow body:
It was measured by a gas displacement measurement method.
・ Volume fracture ratio of glass micro hollow body:
A hydrostatic pressure was applied, and the volume change rate of the sample density before and after loading the pressure was determined and calculated according to the following formula.
Volume fracture rate = (density after pressure load−density before pressure load) × 100
/ Density after pressure loading
実施例1、2
以下の原料物質を混合し、坩堝に入れ、炉内温度1300℃にて4時間溶解した。次いで、溶解物を水槽に投入して急冷し、水砕ガラスフリット8000gを得た。
二酸化珪素:5281g、 石灰:1263g、 ほう砂(5水塩):2591g、 酸化アルミニウム:32g、第二リン酸カルシウム:436g、炭酸リチウム:145g、 炭酸カリウム:123g、 酸化亜鉛:85g、ボウ硝 :38g
Examples 1 and 2
The following raw materials were mixed, put in a crucible, and melted at a furnace temperature of 1300 ° C. for 4 hours. Next, the melted product was put into a water bath and rapidly cooled to obtain 8000 g of a granulated glass frit.
Silicon dioxide: 5281 g, Lime: 1263 g, Borax (pentahydrate): 2591 g, Aluminum oxide: 32 g, Dibasic calcium phosphate: 436 g, Lithium carbonate: 145 g, Potassium carbonate: 123 g, Zinc oxide: 85 g, Bow nitrate: 38 g
水砕ガラスフリットの水を切り150℃に保持した乾燥機にて2時間乾燥させた。乾燥後、このガラスフリット8kgをアルミナボールミル40kgとともに乾式ボールミルにて投入し、表1に記載した粒度分布(D90,D50)になるように粉砕した。粉砕されたガラスフリットを本発明では原料パウダーと呼ぶ。なお、原料パウダーは、以下の組成(単位;質量%)を有していた。
SiO2:62.5 Na2O: 6.8 LiO2: 0.7
K2O : 1.0 CaO :10.1 ZnO: 1.0
B2O3:14.9 Al2O3: 0.6 P2O5: 2.1
SO3 : 0.2
B2O3/Na2O:2.19(質量比)
The water of the granulated glass frit was drained and dried for 2 hours in a drier maintained at 150 ° C. After drying, 8 kg of this glass frit was put in a dry ball mill together with 40 kg of alumina ball mill, and pulverized so as to have a particle size distribution (D90, D50) shown in Table 1. The ground glass frit is referred to as a raw material powder in the present invention. The raw material powder had the following composition (unit: mass%).
SiO 2: 62.5 Na 2 O: 6.8 LiO 2: 0.7
K 2 O: 1.0 CaO: 10.1 ZnO: 1.0
B 2 O 3 : 14.9 Al 2 O 3 : 0.6 P 2 O 5 : 2.1
SO 3 : 0.2
B 2 O 3 / Na 2 O: 2.19 (mass ratio)
上記原料パウダーを25g/分の投入量で、80リットル/分の空気中に分散させ、さらに、空気及びLPGの混合ガス(空気/LPGの体積比:21)420リットル/分とともに連続的に発泡炉に供給し、急冷後、バッグフィルターにより直ちに捕集した。捕集されたガラス微小中空体は、分級操作を施さずに、粒度分布、粒子密度、及び体積破壊率を測定した結果を表1に記載する。また、このガラス微小中空体は以下の組成(単位;質量%)を有し、アルカリ溶出度は0.07ミリ当量/gであった。
SiO2:72.1 Na2O: 4.1 LiO2: 0.5
K2O : 0.8 CaO :10.9 ZnO: 1.0
B2O3: 8.4 Al2O3: 0.6 P2O5: 1.5
SO3 : 0.1
B2O3/Na2O:2.0(質量比)
The raw material powder is dispersed in air at 80 liters / minute at an input rate of 25 g / minute, and further foamed continuously with 420 liters / minute of a mixed gas of air and LPG (air / LPG volume ratio: 21). The product was supplied to the furnace, immediately cooled, and immediately collected by a bag filter. Table 1 shows the results of measuring the particle size distribution, the particle density, and the volume fracture rate of the collected glass hollow bodies without performing classification operation. Moreover, this glass micro hollow body had the following composition (unit; mass%), and the alkali elution degree was 0.07 meq / g.
SiO 2: 72.1 Na 2 O: 4.1 LiO 2: 0.5
K 2 O: 0.8 CaO: 10.9 ZnO: 1.0
B 2 O 3 : 8.4 Al 2 O 3 : 0.6 P 2 O 5 : 1.5
SO 3 : 0.1
B 2 O 3 / Na 2 O: 2.0 (mass ratio)
実施例3、4
実施例1と同様な方法で、以下の原料調合を使用して原料パウダーを製造し、該原料パウダーを使用し、実施例1と同様にして、ガラス微小中空体を製造した。
SiO2:60.8 Na2O: 7.7 LiO2: 0.7
K2O : 1.0 CaO :10.1 ZnO: 1.0
B2O3:14.7 Al2O3: 0.6 P2O5: 2.1
SO3 : 0.6
B2O3/Na2O:1.91(質量比)
Examples 3 and 4
In the same manner as in Example 1, a raw material powder was produced using the following raw material formulation, and a glass microhollow was produced in the same manner as in Example 1 using the raw material powder.
SiO 2 : 60.8 Na 2 O: 7.7 LiO 2 : 0.7
K 2 O: 1.0 CaO: 10.1 ZnO: 1.0
B 2 O 3 : 14.7 Al 2 O 3 : 0.6 P 2 O 5 : 2.1
SO 3 : 0.6
B 2 O 3 / Na 2 O: 1.91 (mass ratio)
製造されたガラス微小中空体は以下の組成を有し、また、アルカリ溶出度は0.07ミリ当量/gであった。
SiO2:72.1 Na2O: 4.5 LiO2: 0.5
K2O : 0.8 CaO :11.1 ZnO: 1.0
B2O3: 8.3 Al2O3: 0.6 P2O5: 1.4
SO3 : 0.2
B2O3/Na2O:1.84(質量比)
表1に製造された原料パウダー及びガラス微小中空体の物性を示す。
The produced glass microhollow body had the following composition, and the alkali elution degree was 0.07 meq / g.
SiO 2 : 72.1 Na 2 O: 4.5 LiO 2 : 0.5
K 2 O: 0.8 CaO: 11.1 ZnO: 1.0
B 2 O 3: 8.3 Al 2 O 3: 0.6 P 2 O 5: 1.4
SO 3 : 0.2
B 2 O 3 / Na 2 O: 1.84 (mass ratio)
Table 1 shows the physical properties of the raw material powder and the glass micro hollow body produced.
比較例1、2
実施例1と同様に実施したが、粉砕条件を変えることにより、表1に記載の粒径分布をもつ原料パウダーを製造した。該原料パウダーを使用し、実施例1と同様にして、ガラス微小中空体を製造した。表1に製造されたガラス微小中空体の物性を合わせて示す。
Comparative Examples 1 and 2
Although it implemented like Example 1, the raw material powder which has the particle size distribution of Table 1 was manufactured by changing grinding | pulverization conditions. Using this raw material powder, a glass microhollow was produced in the same manner as in Example 1. Table 1 shows the physical properties of the manufactured glass microhollows.
比較例3
実施例3と同様に実施したが、粉砕条件を変えることにより、表1に記載の粒径分布をもつ原料パウダーを製造した。該原料パウダーを使用し、実施例1と同様にして、ガラス微小中空体を製造した。表1に製造されたガラス微小中空体の物性を合わせて示す。
Comparative Example 3
Although it implemented like Example 3, the raw material powder which has a particle size distribution of Table 1 was manufactured by changing grinding | pulverization conditions. Using this raw material powder, a glass microhollow was produced in the same manner as in Example 1. Table 1 shows the physical properties of the manufactured glass microhollows.
本発明によるガラス微小中空体は、上記の優れた特性を有するために、例えば、車輌外装板用SMC、注型品、流し込み成形品、薄板成形品などの樹脂成形品、薄膜塗料、断熱塗料などの各種塗料などの高分子材料中に添加した場合に、極めて均一な物性を有し、また、平滑な樹脂の成形品の表面や塗装面が得られるとともに、所望の軽量化効果または断熱効果が得られる。また、低誘電率化充填材などの複合材料として厚みや平滑性などが規制される用途に対しても使用できる。 Since the glass micro hollow body according to the present invention has the above-mentioned excellent properties, for example, SMC for vehicle exterior plates, cast products, cast molded products, resin molded products such as thin plate molded products, thin film paints, heat insulating paints, etc. When added to various polymer materials such as various paints, it has extremely uniform physical properties, and a smooth resin molded product surface and painted surface can be obtained, and the desired weight reduction effect or heat insulation effect can be obtained. can get. It can also be used for applications where thickness, smoothness, etc. are regulated as a composite material such as a low dielectric constant filler.
本発明のガラス微小中空体の用途は、上記用途に限定されず、セメント、モルタル、合成木材、アルミニウムやマグネシウムなどの低融点の金属や合金などの軽量化充填材、建材の断熱軽量化充填材、爆薬の増感用充填材、電気絶縁層充填材、防音充填材、化粧料充填材、濾過材、ブラストメディアおよびスペーサーなどの種々の分野、用途にも使用できる。また、平均粒子径が90〜110μm程度の大きなガラス中空体と混合して使用すれば、大粒子間の間隙を本発明のガラス微小中空体が埋めることができ、より高い軽量化、断熱効果、低誘電率化効果が得られる。 The use of the glass micro-hollow body of the present invention is not limited to the above-mentioned use, but light weight fillers such as cement, mortar, synthetic wood, low melting point metals and alloys such as aluminum and magnesium, and heat insulating and light weight fillers for building materials. It can also be used in various fields and applications such as explosive sensitizing fillers, electrical insulating layer fillers, soundproofing fillers, cosmetic fillers, filter media, blast media and spacers. In addition, if mixed with a large glass hollow body having an average particle diameter of about 90 to 110 μm, the glass microhollow body of the present invention can fill the gaps between large particles, resulting in higher weight reduction, heat insulation effect, A low dielectric constant effect can be obtained.
Claims (7)
%、B2O3:4〜15質量%及びSO3:0.05〜1質量%を含み、かつB2O3/
Na2O(質量比)が1.2〜3.5であるガラスの組成を有し、レーザー散乱式粒度測
定による粒度分布における、D90が30μm以下であり、D50が10μm以下であり、かつ粒子密度が0.8〜1.2g/cm3以下であることを特徴とするガラス微小中空体。 SiO 2: 60-80 wt%, Na 2 O: 2~12.5 wt%, CaO: 5 to 15 wt%, B 2 O 3: 4~15 wt% and SO 3: 0.05 to 1 wt% And B 2 O 3 /
Particles having a glass composition with Na 2 O (mass ratio) of 1.2 to 3.5, D90 of 30 μm or less, D50 of 10 μm or less, and particle size distribution in particle size distribution by laser scattering particle size measurement A glass micro hollow body having a density of 0.8 to 1.2 g / cm 3 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005075349A JP2006256895A (en) | 2005-03-16 | 2005-03-16 | Glass microballoon and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005075349A JP2006256895A (en) | 2005-03-16 | 2005-03-16 | Glass microballoon and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006256895A true JP2006256895A (en) | 2006-09-28 |
Family
ID=37096543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005075349A Withdrawn JP2006256895A (en) | 2005-03-16 | 2005-03-16 | Glass microballoon and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006256895A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014108897A (en) * | 2012-11-30 | 2014-06-12 | Nippon Sheet Glass Co Ltd | Glass filler |
WO2018136353A1 (en) * | 2017-01-18 | 2018-07-26 | 3M Innovative Properties Company | Coating compositions comprising hollow ceramic microspheres and films therefrom |
WO2019060492A1 (en) * | 2017-09-20 | 2019-03-28 | 3M Innovative Properties Company | Coating compositions comprising hollow glass microspheres and films therefrom |
EP2523912B1 (en) * | 2010-01-12 | 2020-01-15 | Liaver GmbH&Co. Kg | Expanded glass granules and the use thereof |
JP2021143089A (en) * | 2020-03-12 | 2021-09-24 | 太平洋セメント株式会社 | Inorganic oxide hollow particles |
-
2005
- 2005-03-16 JP JP2005075349A patent/JP2006256895A/en not_active Withdrawn
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2523912B1 (en) * | 2010-01-12 | 2020-01-15 | Liaver GmbH&Co. Kg | Expanded glass granules and the use thereof |
JP2014108897A (en) * | 2012-11-30 | 2014-06-12 | Nippon Sheet Glass Co Ltd | Glass filler |
WO2018136353A1 (en) * | 2017-01-18 | 2018-07-26 | 3M Innovative Properties Company | Coating compositions comprising hollow ceramic microspheres and films therefrom |
WO2019060492A1 (en) * | 2017-09-20 | 2019-03-28 | 3M Innovative Properties Company | Coating compositions comprising hollow glass microspheres and films therefrom |
JP2021143089A (en) * | 2020-03-12 | 2021-09-24 | 太平洋セメント株式会社 | Inorganic oxide hollow particles |
JP7421378B2 (en) | 2020-03-12 | 2024-01-24 | 太平洋セメント株式会社 | Inorganic oxide hollow particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6531222B1 (en) | Fine hollow glass sphere and method for preparing the same | |
CN104612356B (en) | A kind of inorganic heat-insulating decorative building panel | |
Hasheminia et al. | Preparation and characterisation of diopside-based glass–ceramic foams | |
Liao et al. | Glass foam from the mixture of reservoir sediment and Na2CO3 | |
CN103249684B (en) | Hollow microspheres and the method preparing hollow microspheres | |
EP1160212A1 (en) | Hollow glass microspheres and method for producing the same | |
KR20140011352A (en) | Hollow microspheres | |
JP6771078B1 (en) | Alumina particle material and its manufacturing method | |
CA2606446A1 (en) | Glass microbubble-containing syntactic foams, explosives, and method of making | |
Mucsi et al. | Physical characteristics and technology of glass foam from waste cathode ray tube glass | |
EP3022161B1 (en) | Glass microbubbles and method of making a raw product comprising the glass microbubbles | |
JP2002037645A (en) | Micro hollow aluminosilicate glass spherical body and method for producing the same | |
AU2013272132B2 (en) | Low density glass particles with low boron content | |
JP2002087831A (en) | Micro hollow glass sphere and method for producing the same | |
Qu et al. | High porosity glass foams from waste glass and compound blowing agent | |
Hisham et al. | Effect of ark clam shell on crystal growth and mechanical evaluation of foam glass-ceramic derived from cullet glass waste | |
JP2006256895A (en) | Glass microballoon and method for producing the same | |
CN112209735A (en) | Method for manufacturing high-strength foamed ceramic | |
JP2006193373A (en) | Fine glass bubble and method of manufacturing the same | |
JP2009280475A (en) | Method for producing high melting point glass-reused product, and foam glass | |
JP2002029764A (en) | Micro hollow glass sphere and method for producing the same | |
CN111116223A (en) | Preparation method of foamed ceramic and foamed ceramic | |
JP2001172031A (en) | Light-weight fine filler and molded product containing it | |
JP2021532048A (en) | Hollow spherical glass particles | |
JP7148030B2 (en) | Method for producing sintered ore and sintered ore |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080603 |