JP2006193373A - Fine glass bubble and method of manufacturing the same - Google Patents
Fine glass bubble and method of manufacturing the same Download PDFInfo
- Publication number
- JP2006193373A JP2006193373A JP2005006511A JP2005006511A JP2006193373A JP 2006193373 A JP2006193373 A JP 2006193373A JP 2005006511 A JP2005006511 A JP 2005006511A JP 2005006511 A JP2005006511 A JP 2005006511A JP 2006193373 A JP2006193373 A JP 2006193373A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- hollow body
- mass
- particle size
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C11/00—Multi-cellular glass ; Porous or hollow glass or glass particles
- C03C11/002—Hollow glass particles
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
Abstract
Description
本発明は、高強度で、かつ微小なガラス中空体に関する。 The present invention relates to a high-strength and fine glass hollow body.
ガラス微小中空体は、一般にガラスバルーン、ガラスバブルという名称でも呼ばれており、微小であること、中空であること、比較的高強度であり、耐水性などにも優れていることなどの特徴を生かし、各種の素材に添加することにより、軽量化、断熱性能の付与のために使用されている。ガラス微小中空体が使用される分野の例として、特に、自動車、船舶、航空機などの移動体用塗料、パテ、樹脂成形材料、各種建築材料、紙粘土などの用途に広がっている。 A glass micro hollow body is generally called a glass balloon or a glass bubble, and has features such as being minute, hollow, relatively high strength, and excellent in water resistance. It is used for weight saving and heat insulation performance by adding to various materials. As an example of the field in which glass micro hollow bodies are used, it has spread to applications such as paints for moving bodies such as automobiles, ships and aircraft, putty, resin molding materials, various building materials, and paper clay.
一方、近年特に、移動体用の各種の素材の軽量化が望まれている中、素材に添加した際ガラス微小中空体が破壊しないことが重要な要素となる。微小中空体が破壊してしまうと、ガラス中空体はガラスの殻のみとなり、その密度はガラスの密度の2.5g/cm3程度になってしまい、軽量化どころか逆になってしまう。また、素材の表面平滑性の向上や、微細な素材部品への添加も望まれており、ガラス微小中空体としてその粒子径をさらに微細にすることが要望されている。 On the other hand, especially in recent years, when various materials for moving bodies are desired to be reduced in weight, it is an important factor that the glass micro hollow body does not break when added to the materials. If the micro hollow body breaks, the glass hollow body becomes only the glass shell, and the density becomes about 2.5 g / cm 3 of the density of the glass, which is reversed rather than the weight reduction. Moreover, the improvement of the surface smoothness of a raw material and the addition to a fine raw material component are also desired, and it is desired to make the particle diameter further fine as a glass micro hollow body.
従来、ガラス中空体については、いくつかの特許が出願されている。特許文献1では、発泡成分としてSO3を含有するホウ珪酸ガラス粉末を原料とし、火炎中にこの原料ガラス粉末を通過させて製造されたガラス微小中空体が開示されている。このガラス中空体は、粒子密度は0.5g/cm3相当であり、耐圧強度(体積が10%減少する静水圧力)は1400kg/cm2相当である。しかし、かかるガラス中空体は、平均粒径40〜50μmであり、粒度分布における、通過積算割合90%(D90)が80μmと粗い粒子が多く含まれている。 Conventionally, several patents have been filed for glass hollow bodies. Patent Document 1 discloses a glass microhollow body manufactured by using a borosilicate glass powder containing SO 3 as a foaming component as a raw material and passing the raw glass powder through a flame. This glass hollow body has a particle density equivalent to 0.5 g / cm 3 and a compressive strength (hydrostatic pressure at which the volume is reduced by 10%) is equivalent to 1400 kg / cm 2 . However, such a glass hollow body has an average particle diameter of 40 to 50 μm, and contains a large amount of coarse particles with a passing cumulative ratio 90% (D90) of 80 μm in the particle size distribution.
また、特許文献2には、粒子密度が0.3〜0.4g/cm3であり、耐圧強度が600kg/cm2相当のガラス中空体が示されている。しかし、この場合のガラス中空体も、耐圧強度が不充分であるばかりでなく、平均粒子径が45μmであり、D90の粒子径は65μmとまだ粗い粒子が多く含まれている。 Patent Document 2 discloses a hollow glass body having a particle density of 0.3 to 0.4 g / cm 3 and a compressive strength of 600 kg / cm 2 . However, the glass hollow body in this case is not only insufficient in pressure resistance, but also has an average particle diameter of 45 μm and a particle diameter of D90 of 65 μm, which contains many coarse particles.
さらに、特許文献3には、粒子径の小さなガラス中空体として、粒子密度が0.485g/cm3、耐圧強度が660kg/cm2、平均粒径が9.5μm、D90の粒子径は24μmのガラス中空体が示されている。しかし、該特許文献3のガラス中空体は耐圧強度が不充分である上に、微小中空体は、原料であるガラスフリットを発泡させて得られる発泡品を篩にて分級することにより得ている。従って、歩留りや篩操作の点からして経済的ではない。 Furthermore, in Patent Document 3, as a glass hollow body having a small particle diameter, the particle density is 0.485 g / cm 3 , the pressure strength is 660 kg / cm 2 , the average particle diameter is 9.5 μm, and the particle diameter of D90 is 24 μm. A glass hollow body is shown. However, the glass hollow body of Patent Document 3 has insufficient pressure strength, and the micro hollow body is obtained by classifying a foamed product obtained by foaming a glass frit as a raw material with a sieve. . Therefore, it is not economical in terms of yield and sieving operation.
上記した従来技術に鑑み、本発明は、微細な素材部品への添加や、素材の表面平滑性の向上に貢献できる極めて小さい粒子径を有し、粒子密度が小さく、かつ破壊強度が大きいガラス微小中空体及び該ガラス微小中空体の収率のよい製造方法を提供することを目的とするものである。 In view of the above-described conventional technology, the present invention has a very small particle diameter that can contribute to the addition to fine material parts and the improvement of the surface smoothness of the material, and has a small particle density and a high breaking strength. An object of the present invention is to provide a hollow body and a method for producing the glass microhollow body with good yield.
本発明者は、鋭意研究を進めたところ、上記の目的とする特性を満足する特定の組成を有するホウ珪酸ガラスからなる新規な高強度のガラス微小中空体、及びその製造方法を到達したもので、本発明は下記の要旨を有する。
(1)SiO2:60〜80質量%、Na2O:2〜12.5質量%、CaO:5〜15質量%B2O3:6〜15質量%、及びSO3:0.05〜1質量%を含み、かつB2O3/Na2O(質量比)が1.2〜3.5であるガラスの組成を有し、レーザー散乱式粒度測定による粒度分布における、D90が50μm以下、粒子密度が0.55〜0.75g/cm3であり、かつ静水圧力500kg/cm2での体積破壊率が2%以下であることを特徴とする高強度微小ガラス中空体。
(2)レーザー散乱式粒度測定による粒度分布における、D90が45μm以下であり、かつ静水圧力600kg/cm2での体積破壊率が2%以下である上記(1)に記載の高強度微小ガラス中空体。
(3)アルカリ溶出度が0.08ミリ当量/g以下である上記(1)又は(2)に記載の高強度微小ガラス中空体。
(4)SiO2:58〜75質量%、Na2O:3〜12.5質量%、CaO:5〜15質量%、B2O3:11〜15質量%及びSO3:0.05〜1質量%を含み、かつB2O3/Na2O(質量比)(質量比)が1.7〜4である組成を有し、レーザー散乱式粒度測定による粒度分布における、D90が35μm以下であり、かつ平均粒子径D50が15〜20μmであるガラスフリットを発泡させる請求項1〜3のいずれかに記載の高強度微小ガラス中空体の製造方法。
(5)ガラスフリットのレーザー散乱式粒度測定による粒度分布における、通過積算割合D90が35μm以下、かつ平均粒子径D50が15〜20μmであるガラスフリットを発泡させる上記(4)に記載の高強度微小ガラス中空体の製造方法。
As a result of diligent research, the present inventor has arrived at a novel high-strength glass microhollow body made of borosilicate glass having a specific composition that satisfies the above-mentioned target characteristics, and a method for producing the same. The present invention has the following gist.
(1) SiO 2: 60~80 wt%, Na 2 O: 2 to 12.5 wt%, CaO: 5 to 15 wt% B 2 O 3: 6~15 wt%, and SO 3: 0.05 to It has a glass composition containing 1% by mass and B 2 O 3 / Na 2 O (mass ratio) of 1.2 to 3.5, and D90 in a particle size distribution by laser scattering particle size measurement is 50 μm or less. A high-strength micro glass hollow body having a particle density of 0.55 to 0.75 g / cm 3 and a volume fracture rate of 2% or less at a hydrostatic pressure of 500 kg / cm 2 .
(2) The high-strength micro glass hollow according to (1) above, wherein D90 is 45 μm or less and the volume fracture rate at a hydrostatic pressure of 600 kg / cm 2 is 2% or less in the particle size distribution by laser scattering particle size measurement. body.
(3) The high-strength micro glass hollow body according to (1) or (2), wherein the alkali elution degree is 0.08 meq / g or less.
(4) SiO 2: 58~75 wt%, Na 2 O: 3~12.5 wt%, CaO: 5 to 15 wt%, B 2 O 3: 11~15% by weight and SO 3: 0.05 to It has a composition containing 1% by mass and B 2 O 3 / Na 2 O (mass ratio) (mass ratio) of 1.7 to 4, and D90 is 35 μm or less in the particle size distribution by laser scattering particle size measurement. The method for producing a high-strength fine glass hollow body according to any one of claims 1 to 3, wherein a glass frit having an average particle diameter D50 of 15 to 20 µm is foamed.
(5) The high-strength microscopic material as described in (4) above, in which the glass frit having a passing cumulative ratio D90 of 35 μm or less and an average particle diameter D50 of 15 to 20 μm is foamed in the particle size distribution by laser scattering particle size measurement of the glass frit. A method for producing a hollow glass body.
本発明によれば、微細な素材部品への添加や、素材の表面平滑性の向上に貢献できる極めて小さい粒子径を有し、粒子密度が小さく、かつ破壊強度が大きい新規なガラス微小中空体及び該ガラス微小中空体の収率のよい製造方法が提供される。 According to the present invention, a novel glass microhollow body having an extremely small particle diameter that can contribute to the addition to fine material parts and the improvement of surface smoothness of the material, a small particle density, and a high breaking strength, and A method for producing the glass microhollow body with high yield is provided.
本発明のガラス微小中空体は、ガラスの組成として、SiO2:60〜80質量%、Na2O:2〜12.5質量%、CaO:5〜15質量%B2O3:6〜15質量%、及びSO3:0.05〜1質量%を含み、かつB2O3/Na2O(質量比)が1.2〜3.5を有する。かかる組成を有することにより、上記した特性が到達できるとともに、吸湿性が小さく、またアルカリ溶出度の小さい微小中空体になる。また、微小中空体を樹脂などに混入した場合にも樹脂が発泡したり、成形時の流動性が低下し、成形性などの低下を抑制できる。 The glass micro hollow body of the present invention has a glass composition of SiO 2 : 60 to 80% by mass, Na 2 O: 2 to 12.5% by mass, CaO: 5 to 15% by mass B 2 O 3 : 6 to 15 mass%, and SO 3: 0.05 to 1 comprises mass%, and B 2 O 3 / Na 2 O ( weight ratio) having 1.2 to 3.5. By having such a composition, the above-described characteristics can be achieved, and a micro hollow body having a low hygroscopic property and a low alkali elution degree can be obtained. In addition, even when a minute hollow body is mixed in a resin or the like, the resin is foamed, the fluidity at the time of molding is reduced, and a decrease in moldability or the like can be suppressed.
なかでも、本発明のガラス微小中空体は、ガラスの組成として、SiO2:65〜75質量%、Na2O:3〜6質量%、CaO:8〜13質量%、B2O3:7〜12質量%、及びSO3:0.05〜1質量%を含み、かつB2O3/Na2O(質量比)が1.35〜3である組成を有するのが好ましい。また、全アルカリ金属の酸化物は2〜12.5質量%、好ましくは4〜8質量%であり、全アルカリ土類金属の酸化物は5〜15質量%、好ましくは8〜15質量%であるのが好適である。 Among them, glass microballoons of the present invention, the composition of the glass, SiO 2: 65 to 75 wt%, Na 2 O: 3~6 wt%, CaO: 8 to 13 wt%, B 2 O 3: 7 12 wt%, and SO 3: 0.05 to 1 comprises mass%, and B 2 O 3 / Na 2 O ( weight ratio) preferably has a composition which is 1.35 to 3. The total alkali metal oxide is 2 to 12.5% by mass, preferably 4 to 8% by mass, and the total alkaline earth metal oxide is 5 to 15% by mass, preferably 8 to 15% by mass. Preferably there is.
また、ガラス微小中空体を形成するガラスは、次のような他の成分を含むことができ、それにより、ガラス微小中空体の特性を制御することができる。K2O:0〜3質量%、好ましくは0.5〜1.5質量%、Li2O:0〜3質量%、好ましくは0.5〜1.2質量%、MgO:0〜3質量%、好ましくは0〜1.5質量%、ZnO:0〜3質量%、好ましくは1.0〜2.5質量%、Al2O3:0〜3質量%、好ましくは0.5〜1.5質量%、P2O5:0〜3質量%、好ましくは1.1〜2.0質量%、Sb2O3:0〜1質量%、As2O3:0〜1質量%。 Moreover, the glass which forms a glass micro hollow body can contain the following other components, and, thereby, the characteristic of a glass micro hollow body can be controlled. K 2 O: 0 to 3% by weight, preferably from 0.5 to 1.5 wt%, Li 2 O: 0 to 3% by weight, preferably from 0.5 to 1.2 wt%, MgO: 0 to 3 mass %, preferably 0 to 1.5 wt%, ZnO: 0 to 3% by weight, preferably from 1.0 to 2.5 wt%, Al 2 O 3: 0~3 wt%, preferably 0.5 to 1 .5 wt%, P 2 O 5: 0~3 wt%, preferably from 1.1 to 2.0 wt%, Sb 2 O 3: 0~1 wt%, As 2 O 3: 0~1 wt%.
本発明のガラス微小中空体は、レーザー散乱式粒度測定又はJIS標準篩による粒度分布における、通過積算割合D90が50μm以下であることが必要である。この粒度分布は、ガラス微小中空体粒子密度、耐圧強度そして最終製品の品質に与える影響は大きく、D90が、50μmを超える場合には、一般に粒子密度も小さく、耐圧強度も小さくなり、射出成形のような高圧下での使用は困難となる場合が大きい。D90は45μm以下が好ましく、特には42μm以下が好ましい。また、ガラス微小中空体のレーザー散乱式粒度測定による粒度分布における、通過積算割合D50は、好ましくは25〜35μm、特に好ましくは25〜30μmが好適である。 The glass micro hollow body of the present invention is required to have a passing cumulative ratio D90 of 50 μm or less in the particle size distribution by laser scattering particle size measurement or JIS standard sieve. This particle size distribution has a large effect on the glass micro hollow body particle density, pressure strength and quality of the final product. When D90 exceeds 50 μm, the particle density is generally small and the pressure strength is small. Use under such high pressure is often difficult. D90 is preferably 45 μm or less, and particularly preferably 42 μm or less. Moreover, the passage integration ratio D50 in the particle size distribution by the laser scattering particle size measurement of the glass micro hollow body is preferably 25 to 35 μm, particularly preferably 25 to 30 μm.
また、本発明のガラス微小中空体は、粒子密度が0.55〜0.75g/cm3が必要であり、なかでも、0.55〜0.65g/cm3が好ましい。粒子密度が0.75g/cm3より大きい場合には、素材に添加した場合、軽量効果が小さくなる。また、粒子密度が0.55g/cm3より小さい場合には、ガラス微小中空体を素材に添加し、射出成形などのような高圧力にて成形する場合、中空体が破壊し、十分な軽量効果を得ることが困難となる。射出成形部品の軽量化にこのようなガラス微小中空体を使用する場合、射出成形圧力に注意しなくてはならない。微小中空体が破壊してしまうと、ガラス中空体はガラスの殻のみとなり、密度は2.5g/cm3となってしまう。ガラス中空体の破壊が大きいと、通常、添加する樹脂の密度より大きくなり、軽量ではなく、かえって素材の密度は重くなってしまう。 The glass microballoons of the present invention, the particle density is required 0.55~0.75g / cm 3, among them, preferably 0.55~0.65g / cm 3. When the particle density is greater than 0.75 g / cm 3 , the light weight effect is reduced when added to the material. In addition, when the particle density is smaller than 0.55 g / cm 3, when the glass micro hollow body is added to the material and molded at a high pressure such as injection molding, the hollow body is broken and sufficiently light weight It becomes difficult to obtain an effect. When such a glass micro hollow body is used to reduce the weight of an injection molded part, attention must be paid to the injection molding pressure. If the micro hollow body breaks, the glass hollow body becomes only the glass shell, and the density becomes 2.5 g / cm 3 . When the destruction of the glass hollow body is large, it usually becomes larger than the density of the resin to be added, and it is not lightweight, but rather the density of the material becomes heavy.
本発明者の研究によると、ガラス微小中空体を含む素材を射出成形などにより成形する場合、ガラス微小中空体の強度は、静水圧力500kg/cm2での体積破壊率が2%以下が必要であり、好ましくは、静水圧力600kg/cm2での体積破壊率が2%以下必要であることが判明した。上記の静水圧力が500kg/cm2より小さい場合には、高い圧力で成形する場合、成形品の比重が大きくなってしまう。一方、ガラス微小中空体の強度は大きい方が望ましいが、通常、強度が大きくすると粒子密度も大きくなるので、体積破壊率が2%以下になる静水圧力は、1200kg/cm2以下、好ましくは1000kg/cm2以下が好ましい。 According to the inventor's research, when a material containing a glass microhollow body is molded by injection molding or the like, the strength of the glass microhollow body requires a volume fracture rate of 2% or less at a hydrostatic pressure of 500 kg / cm 2. It was found that the volume fracture rate at a hydrostatic pressure of 600 kg / cm 2 is preferably 2% or less. When the hydrostatic pressure is less than 500 kg / cm 2 , the specific gravity of the molded product becomes large when molding is performed at a high pressure. On the other hand, it is desirable that the strength of the glass micro-hollow body is large. However, since the particle density increases as the strength increases, the hydrostatic pressure at which the volume fracture rate is 2% or less is 1200 kg / cm 2 or less, preferably 1000 kg. / Cm 2 or less is preferable.
また、本発明のガラス微小中空体は、アルカリ溶出度が小さく,0.08ミリ当量/g以下、特には、0.06ミリ当量/g以下を有する。これにより、ガラス微小中空体は、吸水性が改善され、また、樹脂に添加した場合に、樹脂が発泡したり、成形の際の流動性を阻害されたりすることがない。 Moreover, the glass micro hollow body of this invention has a small alkali elution degree, and has 0.08 meq / g or less, In particular, 0.06 meq / g or less. Thereby, the water absorption of the glass micro hollow body is improved, and when added to the resin, the resin does not foam or the fluidity during molding is not hindered.
本発明のガラス微小中空体の製造方法は限定されることはないが、好ましくは、以下のようにして製造される。すなわち、本発明では、SiO2:58〜75質量%、Na2O:3〜12.5質量%、CaO:5〜15質量%、B2O3:11〜15質量%及びSO3:0.05〜1質量%を含み、かつB2O3/Na2Oが1.7〜4である組成を有するガラスフリットを使用することにより製造される。かかる組成を有するガラスフリットは、ガラス微小中空体を製造する際の発泡率も適度であり、また、得られるガラス微小中空体の粒子密度やアルカリ溶出を小さくするのに効果的である。 Although the manufacturing method of the glass micro hollow body of this invention is not limited, Preferably, it manufactures as follows. That is, in the present invention, SiO 2: 58~75 wt%, Na 2 O: from 3 to 12.5 wt%, CaO: 5 to 15 wt%, B 2 O 3: 11~15% by weight and SO 3: 0 It is manufactured by using a glass frit having a composition containing 0.05 to 1% by mass and B 2 O 3 / Na 2 O being 1.7 to 4. The glass frit having such a composition has an appropriate foaming rate when producing a glass microhollow body, and is effective in reducing the particle density and alkali elution of the obtained glass microhollow body.
上記ガラスフリットは、なかでも、SiO2:58〜70質量%、Na2O:3〜8質量%、CaO:7〜12質量%、B2O3:12〜19質量%、及びSO3:0.05〜1質量%を含み、かつB2O3/Na2Oが1.35〜3である組成を有するのが好ましい。また、全アルカリ金属の酸化物は3〜15質量%、好ましくは3〜10質量%であり、全アルカリ土類金属の酸化物は5〜15質量%、好ましくは7〜12質量%であるのが好適である。 Among these glass frit, SiO 2 : 58 to 70% by mass, Na 2 O: 3 to 8% by mass, CaO: 7 to 12% by mass, B 2 O 3 : 12 to 19% by mass, and SO 3 : It is preferable to have a composition containing 0.05 to 1% by mass and having B 2 O 3 / Na 2 O of 1.35 to 3 . Further, the total alkali metal oxide is 3 to 15% by mass, preferably 3 to 10% by mass, and the total alkaline earth metal oxide is 5 to 15% by mass, preferably 7 to 12% by mass. Is preferred.
また、ガラスフリットは、次のような他の成分を含むことができ、それにより、製造されるガラス微小中空体の特性を制御することができる。K2O:0〜3質量%、好ましくは0.5〜1.5質量%、Li2O:0〜3質量%、好ましくは0.5〜1.2質量%、MgO:0〜3質量%、好ましくは0〜1.5質量%、ZnO:0〜3質量%、好ましくは1.0〜2.5質量%、Al2O3:0〜3質量%、好ましくは0.5〜1.5質量%、P2O5:0〜3質量%、好ましくは1.2〜2.0質量%、Sb2O3:0〜1質量%、As2O3:0〜1質量%。 In addition, the glass frit can contain other components such as the following, thereby controlling the characteristics of the glass microhollow body to be produced. K 2 O: 0 to 3% by weight, preferably from 0.5 to 1.5 wt%, Li 2 O: 0 to 3% by weight, preferably from 0.5 to 1.2 wt%, MgO: 0 to 3 mass %, preferably 0 to 1.5 wt%, ZnO: 0 to 3% by weight, preferably from 1.0 to 2.5 wt%, Al 2 O 3: 0~3 wt%, preferably 0.5 to 1 .5 wt%, P 2 O 5: 0~3 wt%, preferably from 1.2 to 2.0 wt%, Sb 2 O 3: 0~1 wt%, As 2 O 3: 0~1 wt%.
ガラスフリットの粒度分布は、得られるガラス微小中空体に影響を与えるので重要である。ガラスフリットの粒子径はD90が35μm以下が好ましい。D90が35μmより大きくなると、発泡後に得られるガラス微小中空体の粒度分布として所望の範囲のものが得られない。また、原料ガラスフリットの平均粒子径D50も発泡後の粒子密度に大きく影響し、D50は15〜20μmが好ましく、特には17〜20μmが好適である。D50が、15μmより小さい場合には、得られるガラス微小中空体の粒子密度が大きくなり、軽量充填材としては不適である。また、D50が20μmを超えると、粒子密度は小さくなるが、耐圧強度が弱くなり射出成形用軽量充填材として使用することは困難である。 The particle size distribution of the glass frit is important because it affects the resulting glass microhollow body. The particle size of the glass frit is preferably D90 of 35 μm or less. When D90 is larger than 35 μm, the desired particle size distribution of the glass micro hollow body obtained after foaming cannot be obtained. The average particle diameter D50 of the raw glass frit also greatly affects the particle density after foaming, and D50 is preferably 15 to 20 μm, and particularly preferably 17 to 20 μm. When D50 is smaller than 15 μm, the particle density of the obtained glass microhollow body is increased, which is not suitable as a lightweight filler. On the other hand, when D50 exceeds 20 μm, the particle density becomes small, but the pressure resistance becomes weak and it is difficult to use as a lightweight filler for injection molding.
上記の原料ガラスフリットを発泡させてガラス微小中空体を製造する手段は既知のものが使用できる。例えば、1000〜1200℃の火炎中を0.1〜5秒間通過せしめることにより、発泡率が70%以上、特には75%以上にてガラス微小中空体が製造される。なお、ここで発泡率とは、ガラスフリットの発泡工程から得られる無発泡品を含む生産物における水浮上品であるガラス微小中空体の重さの百分率を意味する。 Known means can be used as the means for producing the glass micro hollow body by foaming the raw glass frit. For example, by passing through a flame of 1000 to 1200 ° C. for 0.1 to 5 seconds, a glass micro hollow body is produced with a foaming rate of 70% or more, particularly 75% or more. Here, the foaming rate means the percentage of the weight of the glass micro hollow body that is a water floating product in a product including a non-foamed product obtained from the foaming process of the glass frit.
本発明のガラス微小中空体の製造で特徴的なことは、ガラスフリットを発泡させて得られる発泡品を篩にて分級しなくとも、D90が50μm以下、粒子密度が0.55〜0.75g/cm3であり、かつ静水圧力500kg/cm2での体積破壊率が2%以下の高強度微小ガラス中空体が得られることにある。従って、本発明の場合、目的とする、小さい粒子径を有し、粒子密度が小さく、かつ破壊強度が大きいガラス微小中空体が、篩操作を行うことなく高い歩留が得られる。もちろん、必要に応じて、篩による分級を行い、更なる粒度分布の調整を行ってもよい。 What is characteristic in the production of the glass micro hollow body of the present invention is that the D90 is 50 μm or less and the particle density is 0.55 to 0.75 g even if the foamed product obtained by foaming the glass frit is not classified with a sieve. / Cm 3 , and a high strength micro glass hollow body having a volume fracture rate of 2% or less at a hydrostatic pressure of 500 kg / cm 2 is obtained. Therefore, in the case of the present invention, a desired glass microhollow body having a small particle diameter, a small particle density, and a high breaking strength can obtain a high yield without performing a sieving operation. Of course, if necessary, classification with a sieve may be performed to further adjust the particle size distribution.
次に、実施例を挙げて本発明を更に具体的に説明するが、これは例示であって、本発明の解釈についてこれを制限するものではない。なお、以下において、
ガラス組成の分析、アルカリ溶出度、ガラス微小中空体の粒度分布、粒子密度、及び体積破壊率は、次のようにして求めた。
ガラス組成の分析:
蛍光X線分析又はICP発光分析により各成分の定量分析を行った。
アルカリ溶出度 :
ガラス微小中空体の水浮上品(バブル)をANS/ASTN D3100−78に従って測定した。
ガラス微小中空体の粒度分布:
レーザー散乱式粒度測定装置又はJIS標準篩による篩い分けによる方法により測定した。
ガラス微小中空体の粒子密度:
ガス置換式測定方法により測定した。
ガラス微小中空体の体積破壊率:
静水圧力をかけ、その圧力を負荷する前後の試料密度の体積変化率を求め、次の式に従って算出した。
体積破壊率=(圧力負荷後の密度−圧力負荷前の密度)×100
/圧力負荷後の密度
EXAMPLES Next, although an Example is given and this invention is demonstrated further more concretely, this is an illustration and does not restrict | limit this about the interpretation of this invention. In the following,
Analysis of the glass composition, alkali elution degree, particle size distribution of the glass microhollow body, particle density, and volume fracture rate were determined as follows.
Analysis of glass composition:
Each component was quantitatively analyzed by fluorescent X-ray analysis or ICP emission analysis.
Alkaline dissolution rate:
The water floating product (bubble) of the glass micro hollow body was measured according to ANS / ASTN D3100-78.
Particle size distribution of glass micro hollow body:
It measured by the method by sieving with a laser scattering type particle size measuring device or a JIS standard sieve.
Particle density of glass micro hollow body:
It was measured by a gas displacement measurement method.
Volume fracture rate of glass micro hollow body:
A hydrostatic pressure was applied, and the volume change rate of the sample density before and after loading the pressure was determined and calculated according to the following formula.
Volume fracture rate = (density after pressure load−density before pressure load) × 100
/ Density after pressure loading
実施例1〜3
以下の原料物質を混合し、坩堝に入れ、炉内温度1300℃にて4時間溶解した。次いで、溶解物を水槽に投入して急冷し、水砕ガラスフリット8000gを得た。
二酸化珪素:5030g、 石灰:1210g、
ほう砂(5水塩):2590g、 酸化アルミニウム:30g
第二リン酸カルシウム:339g、炭酸リチウム:138g
炭酸カリウム:118g 酸化亜鉛:82g
ボウ硝 :36g
Examples 1-3
The following raw materials were mixed, put in a crucible, and melted at a furnace temperature of 1300 ° C. for 4 hours. Next, the melted product was put into a water bath and rapidly cooled to obtain 8000 g of a granulated glass frit.
Silicon dioxide: 5030 g, lime: 1210 g,
Borax (pentahydrate): 2590g, Aluminum oxide: 30g
Dicalcium phosphate: 339 g, Lithium carbonate: 138 g
Potassium carbonate: 118 g Zinc oxide: 82 g
Bow glass: 36g
水砕ガラスフリットの水を切り150℃に保持した乾燥機にて2時間乾燥させた。乾燥後、このガラスフリット8kgをアルミナボールミル40kgとともに乾式ボールミルにて投入し、表1に記載した粒度分布(D90,D50)になるように粉砕した。粉砕されたガラスフリットを本発明では原料パウダーと呼ぶ。なお、原料パウダーは、以下の組成(単位;質量%)を有していた。
SiO2:62.3 Na2O: 7.2 LiO2: 0.7
K2O : 1.0 CaO :10.1 ZnO: 1.0
B2O3:14.9 Al2O3: 0.4 P2O5: 2.2
SO3 : 0.2
B2O3/Na2O:2.1(質量比)
The water of the granulated glass frit was drained and dried for 2 hours in a drier maintained at 150 ° C. After drying, 8 kg of this glass frit was put in a dry ball mill together with 40 kg of alumina ball mill, and pulverized so as to have a particle size distribution (D90, D50) shown in Table 1. The ground glass frit is referred to as a raw material powder in the present invention. The raw material powder had the following composition (unit: mass%).
SiO 2: 62.3 Na 2 O: 7.2 LiO 2: 0.7
K 2 O: 1.0 CaO: 10.1 ZnO: 1.0
B 2 O 3 : 14.9 Al 2 O 3 : 0.4 P 2 O 5 : 2.2
SO 3 : 0.2
B 2 O 3 / Na 2 O: 2.1 (mass ratio)
原料パウダーを25g/分の投入量で、空気及びLPGの混合ガス(空気/LPGの体積比=21)500リットル/分とともに連続的に発泡炉に供給し、急冷後、バッグフィルターにより直ちに捕集した。捕集されたガラス微小中空体は、分級操作を施さずに、粒度分布、粒子密度、及び体積破壊率を測定した結果を表1に記載する。また、このガラス微小中空体は以下の組成(単位;質量%)を有し,アルカリ溶出度は0.07ミリ当量/gであった。
SiO2:72.2 Na2O: 4.2 LiO2:0.5
K2O : 0.8 CaO :11.1 ZnO: 1.0
B2O3: 8.2 Al2O3: 0.6 P2O5:1.3
SO3 : 0.1
B2O3/Na2O:2.0(質量比)
The raw material powder is continuously supplied to the foaming furnace at 500 g / min with a mixed gas of air and LPG (air / LPG volume ratio = 21) at an input rate of 25 g / min, and immediately cooled and collected by a bag filter. did. Table 1 shows the results of measuring the particle size distribution, the particle density, and the volume fracture rate of the collected glass hollow bodies without performing classification operation. Moreover, this glass micro hollow body had the following composition (unit; mass%), and the alkali elution degree was 0.07 milliequivalent / g.
SiO 2: 72.2 Na 2 O: 4.2 LiO 2: 0.5
K 2 O: 0.8 CaO: 11.1 ZnO: 1.0
B 2 O 3 : 8.2 Al 2 O 3 : 0.6 P 2 O 5 : 1.3
SO 3 : 0.1
B 2 O 3 / Na 2 O: 2.0 (mass ratio)
実施例4〜5
ボウ硝の調合量を30gとしたほかは実施例1と同様に実施し、表1に記載の粒径分布をもつ原料パウダーを製造した。該原料パウダーを使用し、実施例1と同様にして、ガラス微小中空体を製造した。表1に製造された原料パウダー及びガラス微小中空体の物性を示す。
Examples 4-5
The raw material powder having the particle size distribution shown in Table 1 was manufactured in the same manner as in Example 1 except that the amount of bow glass was 30 g. Using this raw material powder, a glass microhollow was produced in the same manner as in Example 1. Table 1 shows the physical properties of the raw material powder and the glass micro hollow body produced.
比較例1、2
実施例1と同様に実施したが、粉砕条件を変えることにより、表1に記載の粒径分布をもつ原料パウダーを製造した。該原料パウダーを使用し、実施例1と同様にして、ガラス微小中空体を製造した。表1に製造された原料パウダー及びガラス微小中空体の物性を示す。
Comparative Examples 1 and 2
Although it implemented like Example 1, the raw material powder which has the particle size distribution of Table 1 was manufactured by changing grinding | pulverization conditions. Using this raw material powder, a glass microhollow was produced in the same manner as in Example 1. Table 1 shows the physical properties of the raw material powder and the glass micro hollow body produced.
比較例3
実施例4と同様に実施したが、粉砕条件を変えることにより、表1に記載の粒径分布をもつ原料パウダーを製造した。該原料パウダーを使用し、実施例1と同様にして、ガラス微小中空体を製造した。表1に製造された原料パウダー及びガラス微小中空体の物性を示す。
Comparative Example 3
Although it implemented like Example 4, the raw material powder which has a particle size distribution of Table 1 was manufactured by changing grinding | pulverization conditions. Using this raw material powder, a glass microhollow was produced in the same manner as in Example 1. Table 1 shows the physical properties of the raw material powder and the glass micro hollow body produced.
本発明によるガラス微小中空体は、優れた粒子特性および粒度特性を有しており、かつ十分な粒子強度を有しており、樹脂成形部品、例えば自動車外装板用SMCや断熱塗料用などの充填材として使用した場合に、極めて平滑な樹脂の成形体の表面や塗装面が得られるとともに、所望の軽量化効果または断熱効果が得られる。また、低誘電率化充填材などの複合材料の厚みを規制される用途に対しても、幅広く使用できる。 The glass micro hollow body according to the present invention has excellent particle characteristics and particle size characteristics, and has sufficient particle strength, and is used for filling resin molded parts such as SMC for automobile exterior boards and heat insulating paints. When used as a material, an extremely smooth resin molding surface or painted surface can be obtained, and a desired lightening effect or heat insulation effect can be obtained. Moreover, it can be widely used for applications in which the thickness of a composite material such as a low dielectric constant filler is regulated.
本発明の微小中空ガラス球状体の用途は、上記用途に限定されず、セメント、モルタル、合成木材、アルミニウムやマグネシウムなどの低融点の金属や合金などの軽量化充填材、建材の断熱軽量化充填材、爆薬の増感用充填材、電気絶縁層充填材、防音充填材、化粧料充填材、濾過材、ブラストメディアおよびスペーサーなどさまざまな分野、用途に極めて好適に使用できる。また、平均粒子径が90〜110μm程度の大きな中空ガラス球状体と混合使用すれば、大粒子間の間隙を本微小中空ガラス球状体が埋めることができ、より高い軽量化、断熱効果、低誘電率化効果が得られる。 Applications of the hollow glass spheres of the present invention are not limited to the above-mentioned applications, but light weight fillers such as cement, mortar, synthetic wood, low melting point metals and alloys such as aluminum and magnesium, and heat insulation and light weight filling of building materials. Materials, explosive sensitizing fillers, electrical insulating layer fillers, soundproofing fillers, cosmetic fillers, filter media, blast media and spacers can be used very suitably in various fields and applications. Moreover, if mixed with a large hollow glass sphere having an average particle diameter of about 90 to 110 μm, the space between the large particles can be filled with the present small hollow glass sphere, resulting in higher weight reduction, heat insulation effect, and low dielectric constant. A rate-raising effect is obtained.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005006511A JP2006193373A (en) | 2005-01-13 | 2005-01-13 | Fine glass bubble and method of manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005006511A JP2006193373A (en) | 2005-01-13 | 2005-01-13 | Fine glass bubble and method of manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006193373A true JP2006193373A (en) | 2006-07-27 |
Family
ID=36799742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005006511A Withdrawn JP2006193373A (en) | 2005-01-13 | 2005-01-13 | Fine glass bubble and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006193373A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280446A (en) * | 2008-05-22 | 2009-12-03 | Kagoshima Prefecture | High strength vitreous light filler material and method for producing the same |
CN101704632B (en) * | 2009-11-30 | 2012-08-29 | 中国建材国际工程有限公司 | Preparation method of high-strength low-density hollow glass bead |
JP2013538176A (en) * | 2010-09-08 | 2013-10-10 | スリーエム イノベイティブ プロパティズ カンパニー | Glass bubbles, composite material thereby, and method for producing glass bubbles |
KR20140011352A (en) * | 2011-03-07 | 2014-01-28 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Hollow microspheres |
WO2013184307A3 (en) * | 2012-06-06 | 2014-12-24 | 3M Innovative Properties Company | Low density glass particles with low boron content |
-
2005
- 2005-01-13 JP JP2005006511A patent/JP2006193373A/en not_active Withdrawn
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009280446A (en) * | 2008-05-22 | 2009-12-03 | Kagoshima Prefecture | High strength vitreous light filler material and method for producing the same |
CN101704632B (en) * | 2009-11-30 | 2012-08-29 | 中国建材国际工程有限公司 | Preparation method of high-strength low-density hollow glass bead |
JP2013538176A (en) * | 2010-09-08 | 2013-10-10 | スリーエム イノベイティブ プロパティズ カンパニー | Glass bubbles, composite material thereby, and method for producing glass bubbles |
JP2016169152A (en) * | 2010-09-08 | 2016-09-23 | スリーエム イノベイティブ プロパティズ カンパニー | Glass bubbles, composites therefrom, and method of making glass bubbles |
KR20140011352A (en) * | 2011-03-07 | 2014-01-28 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Hollow microspheres |
JP2014510011A (en) * | 2011-03-07 | 2014-04-24 | スリーエム イノベイティブ プロパティズ カンパニー | Hollow microsphere |
WO2013184307A3 (en) * | 2012-06-06 | 2014-12-24 | 3M Innovative Properties Company | Low density glass particles with low boron content |
AU2013272132B2 (en) * | 2012-06-06 | 2015-11-05 | 3M Innovative Properties Company | Low density glass particles with low boron content |
US9540276B2 (en) | 2012-06-06 | 2017-01-10 | 3M Innovative Properties Company | Low density glass particles with low boron content |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6531222B1 (en) | Fine hollow glass sphere and method for preparing the same | |
CN104612356B (en) | A kind of inorganic heat-insulating decorative building panel | |
US8609244B2 (en) | Engineered low-density heterogeneous microparticles and methods and formulations for producing the microparticles | |
US20190309201A1 (en) | Sintered abrasive particle comprising oxides present in bauxite | |
US4143202A (en) | Ash coated cellular glass pellet | |
US10414689B2 (en) | Chemical composition for production of hollow spherical glass particles with high compressive strength | |
CA2557244A1 (en) | Method for the production of a foamed glass granulate | |
JP2002087831A (en) | Microhollow glass spherical body and method for manufacturing the same | |
JP2002037645A (en) | Fine hollow aluminosilicate glass ball and its manufacturing method | |
Lu et al. | Preparation of closed-cell Mg foams using SiO2-coated CaCO3 as blowing agent in atmosphere | |
JP2007320805A (en) | Hard foamed pearlite and its manufacturing method | |
CA2950785C (en) | Granulated slag products and processes for their production | |
JP2006193373A (en) | Fine glass bubble and method of manufacturing the same | |
CN105948467B (en) | A kind of preparation method of easy fired low-density and high-strength foam glass | |
WO2015009461A2 (en) | Glass microbubbles, raw product, and methods of making the same | |
AU2013272132A1 (en) | Low density glass particles with low boron content | |
CN108483929A (en) | Glass ceramics and preparation method thereof are melted in a kind of foaming for interior wall | |
CN112209735A (en) | Method for manufacturing high-strength foamed ceramic | |
JP2006256895A (en) | Glass microballoon and method for producing the same | |
JP3165626U (en) | Foam glass spherical particles | |
JP7516344B2 (en) | Hollow spherical glass particles | |
JP2002029764A (en) | Fine hollow glass spherical body and method of producing the same | |
CN109734323A (en) | A kind of high pressure-bearing low-density hollow glass bead and preparation method | |
JP2001172031A (en) | Lightweight microfiller and molded product comprising the same compounded therein | |
CN111116223A (en) | Preparation method of foamed ceramic and foamed ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080401 |