JP2006244018A - Individual health promotion support method, and system therefor - Google Patents
Individual health promotion support method, and system therefor Download PDFInfo
- Publication number
- JP2006244018A JP2006244018A JP2005057265A JP2005057265A JP2006244018A JP 2006244018 A JP2006244018 A JP 2006244018A JP 2005057265 A JP2005057265 A JP 2005057265A JP 2005057265 A JP2005057265 A JP 2005057265A JP 2006244018 A JP2006244018 A JP 2006244018A
- Authority
- JP
- Japan
- Prior art keywords
- health
- health promotion
- information
- support method
- promotion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
Description
本発明は、システム利用者の健康診断情報と食事摂取情報をもとにシステム利用者が健康増進を行う上で有用な栄養管理情報や健康食品の提示を行う健康増進支援方法とそのシステムに関する。 The present invention relates to a health promotion support method and system for presenting nutritional management information and health food useful for the system user to promote health based on health diagnosis information and meal intake information of the system user.
食事は個人の健康増進において最も基本的で重要な因子であるにもかかわらず、病院などの施設を除き日常の食生活で適切に栄養管理される場面は意外と少ない。その理由として、昨今の食事メニューが多彩になり健康を維持・増進するために必要な栄養素がどの程度含まれているのか判断しにくくなっていることが挙げられよう。このような状況においていわゆるサプリメントと呼ばれる健康食品が多数市場に出回るようになり、個人の日常の栄養管理にとって必要な情報がないままに摂取している例も見られる。 Despite being the most fundamental and important factor in promoting personal health, there are surprisingly few occasions where proper nutritional management is performed in daily diets except in hospitals and other facilities. The reason is that it has become difficult to judge how much nutrients are necessary to maintain and improve health due to the variety of recent meal menus. Under such circumstances, many health foods called so-called supplements are on the market, and there are cases where they are consumed without the information necessary for daily nutritional management of individuals.
一方、個人の健康に関する情報は定期健康診断や人間ドックで得られるが、これらの情報も日常の生活のなかであまり活かされているとはいえない。そこで、最近個人の日常の健康管理を支援するシステムや栄養管理を支援するシステムが提案されている。例えば、非特許文献1には、糖尿病が気になる人の食事内容を携帯端末のカメラで撮影しその映像データをインターネット経由でサービスサイトに送信すると、栄養士が食事内容を判断しシステムの利用者にアドバイスをするサービスが開示されている。
On the other hand, information on personal health can be obtained through regular health checkups and medical checkups, but it cannot be said that such information is also utilized in daily life. Therefore, recently, a system that supports daily health management of individuals and a system that supports nutrition management have been proposed. For example, in Non-Patent
しかし、必要な栄養素量は生活環境や体質などによって個人ごとに異なると考えられ、栄養管理支援サービスとしては個々人に適した栄養管理情報や健康食品を提示することが必要である。また食事の摂取は生活習慣としてある期間にわたる情報が必要であり、システムの利用者が増えてくると人手での分析には限界がでてくる。さらに、栄養管理情報や健康食品の提示に基づいてシステム利用者が健康増進を図る場合に、その実施効果を継続的に確認することでシステム利用者の健康増進の意欲が高まると考えられる。 However, the amount of necessary nutrients is considered to vary from individual to individual depending on the living environment and constitution, and as a nutrition management support service, it is necessary to present nutrition management information and health food suitable for each individual. In addition, food intake requires information over a period of time as a lifestyle habit, and as the number of users of the system increases, there is a limit to manual analysis. Furthermore, when the system user intends to promote health based on the presentation of nutritional management information and health food, it is considered that the willingness of the system user to promote health is enhanced by continuously confirming the implementation effect.
従って本発明の課題は、システム利用者の健康診断情報と自動的に解析される栄養摂取情報から、システム利用者に適した固有の栄養管理情報と健康食品の提示を行い、その栄養管理情報と健康食品の提示に基づく健康増進実施の効果を継続的に確認することができる個人健康増進支援方法およびそのシステムを提供することである。 Accordingly, the problem of the present invention is to present unique nutrition management information and health food suitable for the system user from the system user's health diagnosis information and automatically analyzed nutrition intake information. To provide an individual health promotion support method and system capable of continuously confirming the effect of health promotion based on the presentation of health foods.
前記の課題を解決するためになされた本発明に係る個人健康増進支援方法およびシステムは、健康増進を行う人の健康診断情報と食事摂取情報に基づき該健康増進を行う人に適した栄養管理情報および健康食品を提示する個人健康増進支援方法であって、該食事摂取情報は撮影手段を具備した携帯電話などの携帯端末で食事内容を撮影した映像としてインターネットを介して栄養管理サーバに送信され、栄養素量がコンピュータにより自動解析され、さらに提示した栄養管理情報および健康食品に基づく健康増進実施の効果が該健康増進を行う人の日常の健康情報から継続的に確認できる手段を具備することを特徴とする。 The personal health promotion support method and system according to the present invention made to solve the above-described problems are nutrition management information suitable for a person who performs health promotion based on health diagnosis information and dietary intake information of the person who performs health promotion. And a personal health promotion support method for presenting health foods, wherein the meal intake information is transmitted to the nutrition management server via the Internet as an image of meal contents taken by a portable terminal such as a mobile phone equipped with a photographing means, The nutrient amount is automatically analyzed by a computer, and further provided with means for continuously confirming the effect of health promotion based on the presented nutrition management information and health food from the daily health information of the person who performs the health promotion. And
本発明に係る個人健康増進支援方法およびそのシステムを利用することにより、システム利用者は自身の生活環境や体質に適合した栄養管理情報や健康食品を知ることができ、またそれらの情報に基づき健康増進を実施した効果を継続的に確認することができる。 By using the personal health promotion support method and system according to the present invention, the system user can know nutritional management information and health foods suitable for his / her living environment and constitution, and health based on such information. The effect of the promotion can be confirmed continuously.
図1は本発明の個人健康増進支援方法およびそのシステムの概念を示す図である。このシステムの利用者はまず、自身の健康診断データの管理をシステムの運用を行うサービスプロバイダーに付託する。システム利用者の健康診断データは栄養管理サーバの健診データベースに蓄積され、システム利用者の食事摂取情報からシステム利用者に適した栄養管理情報や健康食品を割り出すために参照される。 FIG. 1 is a diagram showing the concept of the personal health promotion support method and system of the present invention. Users of this system first entrust the management of their own health check data to a service provider who operates the system. The system user's health checkup data is stored in a health checkup database of the nutrition management server, and is referred to in order to find out nutrition management information and health food suitable for the system user from the system user's meal intake information.
システム利用者は毎日の食事の内容を携帯電話カメラで撮影し、映像データとして栄養管理サーバに送信する。このとき、1つ以上の既知の大きさ、色、形を持った基準物体を同時に撮影する(図2参照)。これらの基準物体の映像データは、食事内容の映像から被写体の大きさ、色、形などの特徴抽出を行い食品名やその量を推定するときの基準となる。システム利用者が携帯電話など携帯端末のカメラで食事内容を撮影するときは被写体までの距離、角度、光量などが一定でなく、基準物体がないと食品名やその量の推定が難しい。食品名とその量の推定が行われると、それに基づき摂取した栄養素量を算定できる。この食事摂取情報からの栄養素量の解析はある一定の期間行われ、その情報は栄養管理サーバの栄養摂取データベースに蓄積される。 The system user captures the contents of daily meals with a mobile phone camera and transmits it to the nutrition management server as video data. At this time, one or more reference objects having known sizes, colors, and shapes are simultaneously photographed (see FIG. 2). The video data of these reference objects serves as a reference for estimating the name of the food and its quantity by extracting features such as the size, color, and shape of the subject from the meal content video. When a system user captures meal contents with a camera of a mobile terminal such as a mobile phone, the distance to the subject, the angle, the amount of light, etc. are not constant, and it is difficult to estimate the food name and its amount without a reference object. Once the name of the food and its amount are estimated, the amount of nutrients consumed can be calculated based on that. The analysis of the nutrient amount from the meal intake information is performed for a certain period, and the information is accumulated in the nutrient intake database of the nutrition management server.
次のステップとして、栄養摂取データベースに蓄積されたシステム利用者の栄養摂取データと健診データベースに蓄積されたシステム利用者の健康診断データを照合し、システム利用者が健康増進するために適した固有の栄養管理情報や健康食品が割り出され、栄養管理情報/健康食品データベースに蓄積される。これらの情報は、システム利用者の携帯電話などの携帯端末に通知される。 As the next step, the system user's nutrition intake data accumulated in the nutrition intake database is collated with the system user's health diagnosis data accumulated in the medical examination database, so that the system user can improve their health. Nutritional management information and health foods are determined and stored in the nutritional management information / health food database. Such information is notified to a portable terminal such as a cellular phone of the system user.
これらの情報に基づきシステム利用者が健康増進を実施する場合、システム利用者はその効果を確認するために、システム利用者の生体情報を表す1つ以上の健康データ項目と提示した健康食品の摂取など健康増進実施項目を含む生活情報を表す1つ以上の生活データ項目からなる日常の健康情報を携帯電話などの携帯端末を用いて健康管理サーバに送信する。これらの情報は健康/生活データベースに蓄積され、以下に示すアルゴリズム(図3参照)で解析される。 When a system user implements health promotion based on this information, the system user confirms the effect by ingesting one or more health data items representing the biometric information of the system user and the presented health food. Daily health information consisting of one or more life data items representing life information including health promotion implementation items, etc. is transmitted to a health management server using a mobile terminal such as a mobile phone. These pieces of information are stored in the health / life database and analyzed by the following algorithm (see FIG. 3).
pnをある健康データ項目のn日におけるデータ、eiをある生活データ項目のi日におけるデータでとする。それぞれn日、i日の何日か前のデータをpm,ejとし、例えば次の量を定義する。
Δpnm=pn-pm (1)
et ij=ei+ei-1+・・・+ej (2)
eij=(ei+ei-1+・・・+ej)/(i-j+1) (3)
ここで、Δpnmはある任意の期間における健康データの変化である。これを任意のある期間で割れば健康データの変化率になる。et ijはある任意の期間における生活データの加算(単純加算)値であり、eijはある任意の期間における生活データの平均(単純平均)値である。
n日とi日は一般的に同日ではなく、図3に示したように遅延期間sを定義する。また任意の期間n-mとi-jは必ずしも同一期間である必要はない。次に、任意の期間n-mとi-j,および遅延期間sをパラメータとし、多くの時系列データを基にn,iを変化させて、Δpnmとet ijもしくはeijとの時系列相関をみる(図3の散布図参照)。ここで、生活データ項目の何日かの加算が意味を持つ場合にはet ij、何日かの平均が意味をもつ場合には、eijを採用する。このとき相関係数は、任意の期間n-mとi-j, 遅延期間sの値によって変化するので、最大の相関を示すn-m, i-j, sの組み合わせ(n-m)max,(i-j)max,smaxを見つける。(n-m)maxと(i-j)maxが大きいほど、生活データ項目の長期間にわたるデータが健康データ項目の現在値に大きな影響を与えることになり、小さいほど生活データ項目の短期間におけるデータが健康データ項目の現在値に大きな影響を与えることになる。また、smaxが大きほど生活データ項目の影響が遅れて健康データ項目のデータに現れ、小さいほど生活データ項目の影響がすぐに健康データ項目のデータに反映されるということになる。次に、(i-j)max,smaxの値を基に1つ以上の生活データ項目についてet ijもしくはeijを計算し、これらを入力変数とし、pnをターゲット変数として、決定木生成アルゴリズムにより決定木を生成する。さらにこの決定木をもとに健康データ項目と生活データ項目の相関ルールを抽出する。ここで生活データ項目には、栄養管理サーバから提示された健康食品の摂取など健康増進実施項目が含まれており、健康増進実施の効果が健康データ項目との間の相関ルールとして表現される。
Let p n be the data on day n of a health data item and e i be the data on day i of a life data item. The data of some days before n days and i days before is defined as p m , e j , for example, and the following quantities are defined.
Δp nm = p n -p m (1)
e t ij = e i + e i-1 + ・ ・ ・ + e j (2)
e ij = (e i + e i-1 + ... + e j ) / (i-j + 1) (3)
Here, Δp nm is a change in health data in an arbitrary period. Dividing this by any given period gives the rate of change in health data. e t ij is an addition (simple addition) value of life data in an arbitrary period, and e ij is an average (simple average) value of life data in an arbitrary period.
The days n and i are generally not the same day, but a delay period s is defined as shown in FIG. Further, the arbitrary periods nm and ij are not necessarily the same period. Next, using arbitrary periods nm and ij and delay period s as parameters, changing n and i based on a large amount of time-series data, the time-series correlation between Δp nm and e t ij or e ij is observed. (See scatter diagram in FIG. 3). Here, e t ij is the case with the meaning of some days of the addition of life data item, when the average of several days has a meaning, to adopt the e ij. At this time, the correlation coefficient changes depending on the values of the arbitrary period nm, ij, and delay period s, so find the combination of nm, ij, s that shows the maximum correlation (nm) max , (ij) max , s max . The larger the (nm) max and (ij) max , the longer the long-term data of the life data item will have a greater effect on the current value of the health data item, and the smaller the data in the short term of the life data item, the health data. This will greatly affect the current value of the item. In addition, the larger the s max , the later the influence of the life data item appears in the health data item data, and the smaller the s max , the sooner the influence of the life data item is reflected in the health data item data. Next, based on the values of (ij) max and s max , e t ij or e ij is calculated for one or more life data items, these are used as input variables, and p n is used as a target variable, and a decision tree generation algorithm To generate a decision tree. Furthermore, based on this decision tree, a correlation rule between health data items and life data items is extracted. Here, the life data items include health promotion implementation items such as the intake of health food presented from the nutrition management server, and the effect of the health promotion implementation is expressed as a correlation rule with the health data items.
ここで、生活データ項目を、システム利用者に適した栄養管理情報と健康食品の提示に基づく健康増進実施項目に限定しないのは、注目する健康データ項目によっては影響を与える他の生活データ項目もあり総合的に健康データ項目と生活データ項目の相関を抽出する必要があるためである。 Here, life data items are not limited to health promotion implementation items based on presentation of nutrition management information and health foods suitable for system users. This is because it is necessary to extract the correlation between health data items and life data items comprehensively.
以下、本発明の実施例を示す。本実施例におけるシステム利用者は、健康診断時に貧血気味であることと、やや血圧がやや高いことが指摘された。約1ヶ月間に亘り携帯電話カメラにより撮影した食事内容が映像として栄養管理サーバに送信され、映像データが解析された。ここで、システム利用者から送信された食事内容の映像には、一辺の長さが2cmでそれぞれ赤、青、緑の3原色の色彩を持つ3つの立方体が基準物体として同時に撮影されている。これらの基準物体はシステムのサービスプロバイダーから事前にシステム利用者に配布されている。ここでは基準物体の映像データを参照し、被写体(食事内容)までの距離、角度、被写体の色、形を判断して食事内容の映像データを解析した。食品名を推定するための具体的な映像データの解析には、食品名の判っている多くの映像データから色彩解析およびテクスチャ解析を行い、色彩特徴量およびテクスチャ特徴量を学習データとしたニューラルネットワークの手法を用いた。解析の結果、栄養素として鉄分はやや不足しているが、血圧を上げる要因はみられなかった。そこで、システム利用者の携帯電話に、健康増進項目として鉄分を多く含む食品の摂取と血圧を下げる効果のあるサプリメントの摂取が提示された。 Examples of the present invention will be described below. It was pointed out that the system user in the present example was anemic at the time of the medical examination and the blood pressure was slightly high. The meal contents taken by the mobile phone camera for about one month were transmitted as an image to the nutrition management server, and the image data was analyzed. Here, in the meal content image transmitted from the system user, three cubes each having a side length of 2 cm and having three primary colors of red, blue, and green are simultaneously photographed as reference objects. These reference objects are distributed to system users in advance by the system service provider. Here, the video data of the meal content was analyzed by referring to the video data of the reference object and judging the distance to the subject (meal content), the angle, the color and shape of the subject. For the analysis of specific video data to estimate the food name, color analysis and texture analysis are performed from many video data with known food names, and the neural network using the color feature and texture feature as learning data The method of was used. As a result of the analysis, iron was slightly lacking as a nutrient, but no factor was found to increase blood pressure. Therefore, the intake of foods containing a lot of iron and supplements that have the effect of lowering blood pressure were presented on the mobile phone of system users as health promotion items.
システム利用者は、健康増進を図るため鉄分を多く含む食品の摂取と降圧効果のあるとされているサプリメントの摂取を開始した。本実施例においてシステム利用者は、比較的高額といえるサプリメントの摂取効果を確認するために、健康データ項目として血圧を、生活データ項目としてサプリメントの摂取量、運動による消費カロリー、アルコール摂取量、睡眠時間、睡眠の深さ、ストレスを選び、日常のデータを自己の携帯電話から健康管理サーバに送信し、健康/生活データベースに蓄積した。 System users have started taking foods that contain high amounts of iron and supplements that are considered to have antihypertensive effects to improve health. In this embodiment, in order to confirm the effect of supplement intake, which can be said to be relatively expensive, the system user uses blood pressure as a health data item, supplement intake as a life data item, calories consumed by exercise, alcohol intake, sleep Time, depth of sleep, and stress were selected, and daily data was sent from the mobile phone to the health management server and stored in the health / life database.
健康/生活データベースからシステム利用者の最小血圧、サプリメント摂取量、運動による消費カロリー、アルコール摂取量、睡眠時間、睡眠の深さ、およびストレスの約3ヶ月間にわたるデータを健康管理サーバに取り込み、前記アルゴリズムによる時系列データ解析により決定木を生成した。ここでは、生活情報を表すサプリメント摂取量、運動による消費カロリー、アルコール摂取量、睡眠時間、ストレスを入力変数項目とし、生体情報を現す最小血圧をターゲット変数項目として決定木を生成した。最小血圧は数値データであるため、最小血圧のデータ値の大きさにより「高い」「中間」「低い」の3つのシンボル値に分けてターゲット変数とした。実際に用いた入力変数は以下の通りである。睡眠の深さについては睡眠時間に重みをつけるデータ項目として取り扱った。 From the health / life database, data for about 3 months of system users' minimum blood pressure, supplement intake, calories consumed by exercise, alcohol intake, sleep time, depth of sleep, and stress is taken into the health management server, A decision tree is generated by time series data analysis by algorithm. Here, a decision tree was generated with supplement intake representing life information, calorie consumption due to exercise, alcohol intake, sleep time, and stress as input variable items, and minimum blood pressure representing biological information as target variable items. Since the minimum blood pressure is numerical data, the target variable is divided into three symbol values of “high”, “intermediate”, and “low” depending on the size of the data value of the minimum blood pressure. The input variables actually used are as follows. The depth of sleep was treated as a data item that weights sleep time.
(1) サプリメント摂取量:
血圧測定日の前日から5日前までのデータの単純加算値が最小血圧と最大の相関を示した。この5日間の単純加算値をサプリメント摂取量5と表示し入力変数とした。
(2)運動による消費カロリー:
血圧測定日の前日と2日前のデータの単純加算値が最小血圧値と最大の相関を示した。この加算値を総消費カロリー2と表示し入力変数とした。
(1) Supplement intake:
The simple addition value of the data from the day before the blood pressure measurement day to 5 days before showed the maximum correlation with the minimum blood pressure. This 5-day simple addition value was displayed as supplement intake 5 and used as an input variable.
(2) Calories burned by exercise:
The simple addition value of the data on the day before and 2 days before the blood pressure measurement day showed the maximum correlation with the minimum blood pressure value. This added value was displayed as
(3)アルコール摂取量:
血圧測定日の2日前と3日前のデータの加算値が最小血圧値と最大の相関を示した。この例ではアルコール摂取量は1〜5の5段階のシンボル値(1が最も多く、5が最も少ない)で表現されているので段階を表す数字の逆数をデータとしている。例えば2日間が3と4の場合、アルコール摂取量=1/3+1/4=0.58とした。この加算値をアルコール摂取量2と表示し入力変数とした。
(3) Alcohol intake:
The added value of the
(4)睡眠時間:
血圧測定日の前日から5日前までのデータの重みつき加算値が最小血圧値と最大の相関を示した。ここでの重みは睡眠の深さによるものである。この例では睡眠の深さは1〜3の3段階のシンボル値(1.ぐっすり、2.やや浅い、3.よく眠れなかった)で表現されているので、この段階によって一日の睡眠時間に重みをつけた。具体的には、一日の睡眠時間を眠りの深さの段階を示す数字の平方根で割った。例えば、睡眠時間は7時間であるが眠りがやや浅かった場合には7/√2時間とした。この5日間の重みつき加算値を睡眠時間5と表示し入力変数とした。
(4) Sleep time:
The weighted addition value of the data from the day before the blood pressure measurement day to 5 days before showed the maximum correlation with the minimum blood pressure value. The weight here is due to the depth of sleep. In this example, the depth of sleep is expressed by three levels of symbol values from 1 to 3 (1. sound, 2. slightly shallow, 3. couldn't sleep well). Weighted. Specifically, the sleep time of the day was divided by the square root of the number indicating the depth of sleep. For example, if the sleep time is 7 hours but the sleep is slightly shallow, it is set to 7 / √2 hours. This 5-day weighted addition value was displayed as sleep time 5 and used as an input variable.
(5)ストレス:
血圧測定日の前日から3日前までのデータの平均値の逆数が最小血圧値と最大の相関を示した。この例ではストレスはシステム利用者の指定により1〜3の3段階のシンボル値(1.多い、2.普通、3.少ない)で表現されているので平均値の逆数をとった。例えば3日間が(2.普通、3.少ない、3.少ない)の場合、ストレス=1/((2+3+3)/3)=0.38 とした。この値をストレス3と表示し入力変数とした。
(5) Stress:
The reciprocal of the average value of the data from the previous day to the third day before the blood pressure measurement day showed the maximum correlation with the minimum blood pressure value. In this example, the stress is expressed by symbol values in three stages (1 is high, 2. normal, 3. low) as specified by the system user, so the inverse of the average value is taken. For example, when 3 days is (2. normal, 3. less, 3. less), stress = 1 / ((2 + 3 + 3) / 3) = 0.38. This value was displayed as
ここで得られた決定木から抽出された最小血圧と生活データ項目の相関ルールを以下に示す。サプリメント摂取量以外の他の生活データ項目も含む形となっているがいずれもサプリメント摂取と最小血圧低下との相関を示唆しており、これにより健康増進実施の効果が確認された。 The correlation rule between the minimum blood pressure extracted from the decision tree obtained here and the life data item is shown below. Other lifestyle data items other than supplement intake are included, but all of them suggest a correlation between supplement intake and a decrease in minimum blood pressure, confirming the effect of health promotion.
(1)総消費カロリー2が633kcal以上でサプリメント摂取量5が6g以上であると最小血圧は低くなる傾向がある。
(2)アルコール摂取量が0.58以下でサプリメント摂取量5が6g以上であると最小血圧は低くなる傾向がある。
(3)睡眠時間5が25.1時間以上でサプリメント摂取量5が6g以上であると最小血圧は低くなる傾向がある。
(1) If the
(2) If the alcohol intake is 0.58 or less and the supplement intake 5 is 6 g or more, the minimum blood pressure tends to be low.
(3) If the sleep time 5 is 25.1 hours or more and the supplement intake 5 is 6 g or more, the minimum blood pressure tends to be low.
なお本実施において、健康増進実施の効果を確認するために、健康データ項目をターゲット変数とし健康増進実施項目を含む生活データ項目を入力変数とする決定木を生成し健康データ項目と生活データ項目の相関ルールを抽出したが、健康データ項目と生活データ項目からなるデータセットを時系列のトランザクションとする時系列相関ルール解析によっても健康データ項目と生活データ項目の相関ルールを抽出ことは用意に類推できる。 In this implementation, in order to confirm the effect of health promotion implementation, a decision tree is generated with health data items as target variables and life data items including health promotion implementation items as input variables. Although the association rules are extracted, it is possible to analogize the extraction of the association rules between the health data items and the life data items by time series association rule analysis using the data set of the health data items and the life data items as a time series transaction. .
1 個人健康増進支援サービスプロバイダー
2 システム利用者
3 栄養管理サーバ
4 健康管理サーバ
5 健診データベース
6 栄養摂取データベース
7 栄養管理情報/健康食品データベース
8 健康/生活データベース
9 携帯電話
10 食事内容
11 基準物体
1 Personal health promotion
Claims (7)
請求項1から請求項3に記載の個人健康増進支援方法およびそのシステム。 The nutrition management information and health food suitable for the person who promotes health are presented to a portable terminal such as a mobile phone of the person who performs the health promotion via the Internet. Item 4. A personal health promotion support method and system according to Item 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005057265A JP2006244018A (en) | 2005-03-02 | 2005-03-02 | Individual health promotion support method, and system therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005057265A JP2006244018A (en) | 2005-03-02 | 2005-03-02 | Individual health promotion support method, and system therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006244018A true JP2006244018A (en) | 2006-09-14 |
Family
ID=37050388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005057265A Pending JP2006244018A (en) | 2005-03-02 | 2005-03-02 | Individual health promotion support method, and system therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006244018A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010057552A (en) * | 2008-09-01 | 2010-03-18 | Omron Healthcare Co Ltd | Management apparatus of biological index |
DE112011101126T5 (en) | 2010-03-29 | 2013-01-17 | Omron Healthcare Co., Ltd. | Health management support device, health management support system and health management support program |
WO2013174055A1 (en) * | 2012-05-21 | 2013-11-28 | Lee Wen-Ching | Health management service system and method therefor |
WO2014188480A1 (en) * | 2013-05-20 | 2014-11-27 | 株式会社日立製作所 | Health promotion support system, management server, and terminal device |
JP6112591B1 (en) * | 2016-10-20 | 2017-04-12 | ジャパンモード株式会社 | Creative crop supply system |
US10679002B2 (en) | 2017-04-13 | 2020-06-09 | International Business Machines Corporation | Text analysis of narrative documents |
CN115130006A (en) * | 2022-08-04 | 2022-09-30 | 北京富通智康科技有限公司 | User portrayal method based on health management label |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002149828A (en) * | 2000-11-10 | 2002-05-24 | Olympus Optical Co Ltd | System, device and method for remote nutritional consultation, and imaging device |
JP2002259571A (en) * | 2001-03-02 | 2002-09-13 | Kobayashi Pharmaceut Co Ltd | Service center of health information |
-
2005
- 2005-03-02 JP JP2005057265A patent/JP2006244018A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002149828A (en) * | 2000-11-10 | 2002-05-24 | Olympus Optical Co Ltd | System, device and method for remote nutritional consultation, and imaging device |
JP2002259571A (en) * | 2001-03-02 | 2002-09-13 | Kobayashi Pharmaceut Co Ltd | Service center of health information |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010057552A (en) * | 2008-09-01 | 2010-03-18 | Omron Healthcare Co Ltd | Management apparatus of biological index |
DE112011101126T5 (en) | 2010-03-29 | 2013-01-17 | Omron Healthcare Co., Ltd. | Health management support device, health management support system and health management support program |
WO2013174055A1 (en) * | 2012-05-21 | 2013-11-28 | Lee Wen-Ching | Health management service system and method therefor |
WO2014188480A1 (en) * | 2013-05-20 | 2014-11-27 | 株式会社日立製作所 | Health promotion support system, management server, and terminal device |
GB2529328A (en) * | 2013-05-20 | 2016-02-17 | Hitachi Ltd | Health promotion support system, management server, and terminal device |
JP6047232B2 (en) * | 2013-05-20 | 2016-12-21 | 株式会社日立製作所 | Health promotion support system and management server |
JPWO2014188480A1 (en) * | 2013-05-20 | 2017-02-23 | 株式会社日立製作所 | Health promotion support system and management server |
JP6112591B1 (en) * | 2016-10-20 | 2017-04-12 | ジャパンモード株式会社 | Creative crop supply system |
JP2018067177A (en) * | 2016-10-20 | 2018-04-26 | ジャパンモード株式会社 | Intake substance search system |
US10679002B2 (en) | 2017-04-13 | 2020-06-09 | International Business Machines Corporation | Text analysis of narrative documents |
CN115130006A (en) * | 2022-08-04 | 2022-09-30 | 北京富通智康科技有限公司 | User portrayal method based on health management label |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Perez et al. | Evidence-based obesity treatment interventions for Latino adults in the US: a systematic review | |
Sookrah et al. | A DASH diet recommendation system for hypertensive patients using machine learning | |
CN110349647A (en) | Dietary management method, system, electronic equipment and storage medium | |
Collier | Intermittent fasting: the next big weight loss fad | |
Martín-Rodríguez et al. | Advances in Understanding the Interplay between Dietary Practices, Body Composition, and Sports Performance in Athletes | |
CN108597572A (en) | a kind of intelligent health planning system | |
Funderburk et al. | Healthy behaviors through behavioral design–obesity prevention | |
Cokorilo et al. | An intervention of 12 weeks of Nordic walking and recreational walking to improve cardiorespiratory capacity and fitness in older adult women | |
Lau et al. | Trends in beef intake in the United States: analysis of the national health and nutrition examination survey, 2001–2018 | |
JP2006244018A (en) | Individual health promotion support method, and system therefor | |
Takeuchi et al. | Using social media to change eating habits without conscious effort | |
Mabweazara et al. | A six week contextualised physical activity intervention for women living with HIV and AIDS of low socioeconomic status: a pilot study | |
JP2004302498A (en) | Dietary habit modification support device | |
Huang et al. | Design and implementation of a dynamic healthcare system for weight management and health promotion | |
JP6083661B1 (en) | Health management server, health management server control method, and health management program | |
KR20210052123A (en) | Method for providing user-customized food information service and server using the same | |
Nakamoto et al. | Prediction of mental state from food images | |
US20230223130A1 (en) | Non-transitory computer-readable storage medium, information processing apparatus, and information processing method | |
Freeman et al. | In the ‘Plant-Based’Era, Patients with Chronic Kidney Disease Should Focus on Eating Healthy | |
KR20200005030A (en) | An individualized dietary supplements ingredients determination system based on analysis of intake foods and activities and method for the same | |
Geraads et al. | Vulpes mathisoni, sp. nov., a new fox from the Pliocene Mursi Formation of southern Ethiopia and its contribution to the origin of African foxes | |
JP2006085459A (en) | Cooking information provision system | |
JP2009217703A (en) | Lifestyle habit improvement support system | |
CN105718741A (en) | Wise disease inspection and wise healthcare service platform system and method | |
Purdom et al. | Low energy availability (LEA) and hypertension in Black division I collegiate athletes: A novel pilot study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080228 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080228 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100706 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101109 |