JP2006131662A - Polyimide resin composition and polyimide film - Google Patents
Polyimide resin composition and polyimide film Download PDFInfo
- Publication number
- JP2006131662A JP2006131662A JP2004319109A JP2004319109A JP2006131662A JP 2006131662 A JP2006131662 A JP 2006131662A JP 2004319109 A JP2004319109 A JP 2004319109A JP 2004319109 A JP2004319109 A JP 2004319109A JP 2006131662 A JP2006131662 A JP 2006131662A
- Authority
- JP
- Japan
- Prior art keywords
- chemical formula
- diamine
- acid anhydride
- polyimide
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- IGSBHTZEJMPDSZ-UHFFFAOYSA-N CC(CC(CC(CC1)CC(C)C1N)CC1)C1N Chemical compound CC(CC(CC(CC1)CC(C)C1N)CC1)C1N IGSBHTZEJMPDSZ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Abstract
Description
本発明は、フィルム基板、保護膜等、光学部材(液晶ディスプレイ、有機ELディスプレイ等)に用いられるポリイミド樹脂組成物及びポリイミドフィルムに係り、特に、透明性を保持しつつ寸法安定性に優れるポリイミド樹脂組成物及びポリイミドフィルムに関する。 The present invention relates to a polyimide resin composition and a polyimide film used for optical members (liquid crystal display, organic EL display, etc.) such as a film substrate and a protective film, and in particular, a polyimide resin excellent in dimensional stability while maintaining transparency. The present invention relates to a composition and a polyimide film.
高度情報化社会の進展に伴い、情報伝達装置に利用される半導体機器、光通信機器、表示装置の技術進捗は目覚ましく、それに伴い関連するオプトエレクトロニクス分野の研究開発が活発に行われている。これらを支える光学材料として、ポリマ材料はガラスなどの無機材料に比べて、デバイスや装置の軽量化、小型化、フレキシブル性などのニーズを満足し得ることから、光ファイバ、マイクロレンズ、LCD(液晶ディスプレイ)などの表示装置用部材、光ディスク、導波路等の様々な分野で適用が進んでいる。 With the progress of the advanced information society, the technological progress of semiconductor devices, optical communication devices, and display devices used in information transmission devices has been remarkable, and research and development in the related optoelectronics field has been actively conducted accordingly. As an optical material that supports these, polymer materials can satisfy the needs of devices and devices such as weight reduction, miniaturization, and flexibility compared to inorganic materials such as glass. Application is progressing in various fields such as members for display devices such as displays), optical disks, and waveguides.
光学用途の透明プラスチック材料としては、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)、透明ABS樹脂、ポリエーテルサルフォン(PES)、PET等が挙げられるが、前記の装置に用いる場合、その組み立て工程において熱プロセスを経由することが多いため、前述の材料では耐熱性が不足することがある。そこで、耐熱性に優れるポリイミドが着目される。 Examples of the transparent plastic material for optical use include polycarbonate (PC), polymethyl methacrylate (PMMA), transparent ABS resin, polyethersulfone (PES), PET, and the like. In many cases, the above-mentioned materials are insufficient in heat resistance. Therefore, attention is focused on polyimide having excellent heat resistance.
ただし、電子回路基材などに多く用いられている汎用のポリイミド、例えば、ピロメリット酸二無水物と4,4’−ジアミノジフェニルエーテルから合成されるポリイミド樹脂や、3,3’,4,4’ビフェニルテトラカルボン酸二無水物と4,4’−ジアミノジフェニルエーテルから合成されるポリイミド樹脂等に代表される芳香族ポリイミドは、通常無色透明性を有していない。 However, general-purpose polyimides often used for electronic circuit substrates, for example, polyimide resins synthesized from pyromellitic dianhydride and 4,4′-diaminodiphenyl ether, and 3,3 ′, 4,4 ′ Aromatic polyimides typified by polyimide resins and the like synthesized from biphenyltetracarboxylic dianhydride and 4,4′-diaminodiphenyl ether usually do not have colorless transparency.
ポリイミドに透明性を付与する一般的な手法としては、ポリイミド骨格中に、脂肪族系材料、フッ素系材料等を導入する方法が挙げられる。例えば、特許文献1では、脂環式テトラカルボン酸無水物成分に、3,3’,4,4’オキシジフタル酸無水物、ヘキサヒドロ無水ピロメリット酸無水物等を導入し、ジアミン成分にシロキサン含有ジアミンを用いることにより、透明なポリイミドを得ている。特許文献2,3においては、3,3’,4,4’オキシジフタル酸無水物と脂肪族のジアミンを用いて透明フィルム、液晶配向膜等に適用する透明なポリイミドを得ている。 A general method for imparting transparency to polyimide includes a method of introducing an aliphatic material, a fluorine-based material, or the like into the polyimide skeleton. For example, in Patent Document 1, 3,3 ′, 4,4′oxydiphthalic anhydride, hexahydropyromellitic anhydride, etc. are introduced into the alicyclic tetracarboxylic anhydride component, and a siloxane-containing diamine is introduced into the diamine component. By using this, a transparent polyimide is obtained. In Patent Documents 2 and 3, transparent polyimides to be applied to transparent films, liquid crystal alignment films and the like are obtained using 3,3 ', 4,4'oxydiphthalic anhydride and aliphatic diamines.
しかしながら、これらの透明なポリイミドでは、通常熱膨張係数(線膨張係数)が大きく、寸法安定性に劣るという問題がある。このため、例えばフィルム作製後に、フィルム上に配線パターン、蒸着層等を形成した場合に割れ、剥がれ等の不具合が発生することがある。無色透明性を保持しながら、熱膨張係数の増大を抑え、寸法安定性に優れるポリイミドは見出されていない。 However, these transparent polyimides usually have a large thermal expansion coefficient (linear expansion coefficient) and are inferior in dimensional stability. For this reason, when a wiring pattern, a vapor deposition layer, etc. are formed on a film after film production, for example, problems, such as a crack and peeling, may occur. A polyimide that suppresses an increase in the coefficient of thermal expansion and is excellent in dimensional stability while maintaining colorless transparency has not been found.
そこで、本発明の目的は、透明性を保持しつつ、熱膨張係数を低下させることにより、寸法安定性に優れたポリイミド樹脂組成物及びポリイミドフィルムを提供することにある。 Then, the objective of this invention is providing the polyimide resin composition and polyimide film which were excellent in dimensional stability by reducing a thermal expansion coefficient, maintaining transparency.
本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、酸無水物とジアミンの反応により得られるポリイミド樹脂組成物において、上記酸無水物として化学式(1)と化学式(2)及び/又は化学式(3)からなる2種類以上の酸無水物を含み、上記ジアミンとして化学式(4)、化学式(5)、化学式(6)のうち1種以上から選択されるジアミンを含み、化学式(1)の含有量が上記酸無水物と上記ジアミンの合計含有量の20〜40モル%であるポリイミド樹脂組成物である。 The present invention has been devised to achieve the above object, and the invention of claim 1 is a polyimide resin composition obtained by the reaction of an acid anhydride and a diamine, wherein the acid anhydride is represented by the chemical formula (1) Diamine selected from one or more of chemical formula (4), chemical formula (5), and chemical formula (6) as the diamine, including two or more acid anhydrides of chemical formula (2) and / or chemical formula (3) And a content of the chemical formula (1) is 20 to 40 mol% of the total content of the acid anhydride and the diamine.
請求項2の発明は、酸無水物とジアミンの反応により得られるポリイミド樹脂組成物において、上記酸無水物として化学式(1)と化学式(2)及び/又は化学式(3)からなる2種類以上の酸無水物を含み、上記ジアミンとして化学式(4)、化学式(5)、化学式(6)のうち1種以上から選択されるジアミンを含み、化学式(1)の含有量が上記酸無水物と上記ジアミンの合計含有量の20〜40モル%であるポリイミド樹脂組成物であって、そのポリイミド樹脂組成物を厚さ100±5μmのフィルムとしたときの線膨張係数が30〜60ppm/Kであるポリイミド樹脂組成物である。 The invention of claim 2 is the polyimide resin composition obtained by the reaction of an acid anhydride and a diamine, wherein the acid anhydride comprises two or more kinds of chemical formulas (1) and (2) and / or chemical formula (3). An acid anhydride is included, and the diamine includes a diamine selected from one or more of chemical formula (4), chemical formula (5), and chemical formula (6), and the content of chemical formula (1) is the above acid anhydride and the above Polyimide resin composition having a total content of diamine of 20 to 40 mol%, and having a linear expansion coefficient of 30 to 60 ppm / K when the polyimide resin composition is a film having a thickness of 100 ± 5 μm It is a resin composition.
請求項3の発明は、上記ポリイミド樹脂組成物のポリスチレン換算の重量平均分子量が20000〜200000である請求項1または2記載のポリイミド樹脂組成物である。 The invention according to claim 3 is the polyimide resin composition according to claim 1 or 2, wherein the polyimide resin composition has a polystyrene equivalent weight average molecular weight of 20,000 to 200,000.
請求項4の発明は、酸無水物とジアミンの反応により得られるポリイミド樹脂組成物を用いて作製したポリイミドフィルムにおいて、上記酸無水物として化学式(1)と化学式(2)及び/又は化学式(3)からなる2種類以上の酸無水物を含み、上記ジアミンとして化学式(4)、化学式(5)、化学式(6)のうち1種以上から選択されるジアミンを含み、化学式(1)の含有量が上記酸無水物と上記ジアミンの合計含有量の20〜40モル%であるポリイミド樹脂組成物を用いて作製したポリイミドフィルムである。 In the polyimide film produced using the polyimide resin composition obtained by reaction of an acid anhydride and a diamine, the chemical formula (1), the chemical formula (2) and / or the chemical formula (3) The diamine contains a diamine selected from one or more of the chemical formula (4), the chemical formula (5), and the chemical formula (6), and the content of the chemical formula (1). Is a polyimide film prepared using a polyimide resin composition that is 20 to 40 mol% of the total content of the acid anhydride and the diamine.
請求項5の発明は、フィルム厚が100±5μmにおいて、線膨張係数が30〜60ppm/Kであり、全光線透過率が90%以上である請求項4記載のポリイミドフィルムである。 The invention according to claim 5 is the polyimide film according to claim 4, wherein the film thickness is 100 ± 5 μm, the linear expansion coefficient is 30 to 60 ppm / K, and the total light transmittance is 90% or more.
請求項6の発明は、上記ポリイミド樹脂組成物のポリスチレン換算の重量平均分子量が20000〜200000である請求項4または5記載のポリイミドフィルムである。 The invention according to claim 6 is the polyimide film according to claim 4 or 5, wherein the polyimide resin composition has a polystyrene equivalent weight average molecular weight of 20,000 to 200,000.
本発明によれば、透明性を保持しつつ、寸法安定性に優れたポリイミドフィルムを提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the polyimide film excellent in dimensional stability can be provided, maintaining transparency.
以下、本発明の好適な実施の形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described.
本実施の形態に係るポリイミド樹脂組成物は、酸無水物とジアミンの反応により得られるポリイミド樹脂組成物であり、
酸無水物(酸成分)として、化学式(1)で表される3,3’,4,4’オキシジフタル酸無水物(ODPA)と化学式(2)で表される3,3’,4,4’ベンゾフェノンテトラカルボン酸二無水物(BTDA)及び/又は化学式(3)で表される3,3’,4,4’ビフェニルテトラカルボン酸二無水物(BPDA)からなる2種類以上の芳香族成分であるテトラカルボン酸二無水物を含み、
ジアミン(ジアミン成分)として、化学式(4)で表される4,4−ジアミノ−ジシクロヘキシルメタン(DAHM)、化学式(5)で表される3,3’−ジメチル−4,4’−ジアミノ−ジシクロヘキシルメタン(DMHM)、化学式(6)で表される1,4−ビス(3−アミノプロピル)ピペラジン(BAPZ)のうち1種以上から選択される環状構造を有する脂肪族ジアミンを含み、
化学式(1)で表されるODPAの含有量が、酸無水物とジアミンの合計含有量の20〜40、好ましくは25〜37.5モル%である。
The polyimide resin composition according to the present embodiment is a polyimide resin composition obtained by a reaction between an acid anhydride and a diamine,
As an acid anhydride (acid component), 3,3 ′, 4,4 ′ oxydiphthalic anhydride (ODPA) represented by the chemical formula (1) and 3,3 ′, 4,4 represented by the chemical formula (2) 'Two or more aromatic components comprising benzophenonetetracarboxylic dianhydride (BTDA) and / or 3,3', 4,4'biphenyltetracarboxylic dianhydride (BPDA) represented by chemical formula (3) A tetracarboxylic dianhydride that is
As diamine (diamine component), 4,4-diamino-dicyclohexylmethane (DAHM) represented by the chemical formula (4), 3,3′-dimethyl-4,4′-diamino-dicyclohexyl represented by the chemical formula (5) Including an aliphatic diamine having a cyclic structure selected from one or more of methane (DMHM) and 1,4-bis (3-aminopropyl) piperazine (BAPZ) represented by the chemical formula (6);
The content of ODPA represented by the chemical formula (1) is 20 to 40, preferably 25 to 37.5 mol% of the total content of acid anhydride and diamine.
酸成分として化学式(1)、化学式(2)、化学式(3)でそれぞれ表される芳香族成分を含ませる理由は、酸成分として脂肪族成分(例えば、1,2,3,4−シクロペンタンテトラカルボン酸二無水物(CPDA)など)を用いた場合、(比較例6)で後述するように、透明性は得られるものの、熱膨張係数が高く、所望の低い熱膨張係数が得られないからである。 The reason why the aromatic component represented by the chemical formula (1), the chemical formula (2), or the chemical formula (3) is included as the acid component is that the aliphatic component (for example, 1,2,3,4-cyclopentane, for example) When tetracarboxylic dianhydride (CPDA) or the like is used, as will be described later in (Comparative Example 6), although transparency is obtained, the coefficient of thermal expansion is high and a desired low coefficient of thermal expansion cannot be obtained. Because.
酸成分を2種類以上含ませる理由は、酸成分が1成分の場合、(比較例1)、(比較例2)で後述するように、ポリイミドワニス(ワニス)の溶解性が劣る、酸無水物とジアミンの反応が進まない等の問題が発生するからである。しかし、本実施の形態のように、酸成分を2種類以上含み、かつODPAの含有量を限定した2段階反応でポリイミドを合成することにより、透明性、低熱膨張性を保持しつつ、良好なポリイミドフィルムを作製できるワニスを得ることができる。 The reason for including two or more acid components is that when the acid component is one component, the solubility of the polyimide varnish (varnish) is poor, as will be described later in (Comparative Example 1) and (Comparative Example 2). This is because problems such as the reaction of diamine with diamine do not proceed. However, as in this embodiment, by synthesizing polyimide by a two-step reaction including two or more types of acid components and limiting the content of ODPA, the transparency and low thermal expansibility are maintained and good. A varnish capable of producing a polyimide film can be obtained.
ここで、2段階反応とは、実施例1〜7で後述するように、全ての酸無水物と全てのジアミンを一度に反応させるのではなく、ある酸無水物とジアミンを1対1で反応させた後、別の酸無水物とジアミンを1対1で反応させることをいう。 Here, as will be described later in Examples 1 to 7, the two-step reaction does not react all acid anhydrides and all diamines at once, but reacts a certain acid anhydride and diamine one-on-one. And then reacting another acid anhydride and diamine on a one-to-one basis.
ODPAの含有量を酸無水物とジアミンの合計含有量の20〜40モル%とする理由を説明する。酸成分の中でODPAは、透明性の発現に対して効果が高いが、熱膨張係数が高くなる問題がある。一方、BTDA、BPDAを用いることにより、熱膨張係数は低下するが、透明性に劣る問題がある。そこで、ODPAとBTDA及び/又はBPDAを併用することにより、透明性を保持しながら、熱膨張係数を低下させることができる。 The reason why the content of ODPA is 20 to 40 mol% of the total content of acid anhydride and diamine will be described. Among the acid components, ODPA has a high effect on the expression of transparency, but has a problem that the thermal expansion coefficient becomes high. On the other hand, the use of BTDA and BPDA reduces the thermal expansion coefficient, but has a problem of poor transparency. Therefore, by using ODPA in combination with BTDA and / or BPDA, the thermal expansion coefficient can be lowered while maintaining transparency.
ODPAの含有量が酸無水物とジアミンの合計含有量の40モル%を超える多い場合、(比較例7)で後述するように、熱膨張係数が高くなり、ODPAの含有量が酸無水物とジアミンの合計含有量の20モル%未満と少ない場合、(比較例5)で後述するように、透明性が低くなる。したがって、ポリイミド樹脂組成物やポリイミドフィルムの高い透明性と低熱膨張性の両立を満足するには、ODPAの含有量を酸無水物とジアミンの合計含有量の20〜40モル%の範囲にする。 When the content of ODPA is more than 40 mol% of the total content of acid anhydride and diamine, as will be described later in (Comparative Example 7), the coefficient of thermal expansion increases, and the content of ODPA is When it is less than 20 mol% of the total content of diamine, the transparency is lowered as described later in (Comparative Example 5). Therefore, in order to satisfy both the high transparency and low thermal expansion properties of the polyimide resin composition and the polyimide film, the content of ODPA is set in the range of 20 to 40 mol% of the total content of acid anhydride and diamine.
本実施の形態では、低熱膨張性を発現する酸無水物としてBTDAやBPDAを用いる例で説明するが、BTDAやBPDAの代わりに、BTDAやBPDAと同等の低熱膨張性を発現するテトラカルボン酸二無水物を用いてもよい。 In this embodiment, an example of using BTDA or BPDA as an acid anhydride that exhibits low thermal expansibility will be described. Instead of BTDA or BPDA, a tetracarboxylic acid diester that exhibits low thermal expansibility equivalent to BTDA or BPDA is used. Anhydrides may be used.
ポリイミド樹脂組成物としては、上述したポリイミド樹脂組成物を厚さ100±5μmのフィルムとしたときの線膨張係数αが30〜60ppm/K(×10-6/K)であるとよい。 The polyimide resin composition preferably has a linear expansion coefficient α of 30 to 60 ppm / K (× 10 −6 / K) when the above-described polyimide resin composition is a film having a thickness of 100 ± 5 μm.
ポリイミド樹脂組成物としては、上述したポリイミド樹脂組成物のポリスチレン換算の重量平均分子量Mwが20000〜200000であるとよい。 As a polyimide resin composition, the polystyrene conversion weight average molecular weight Mw of the polyimide resin composition mentioned above is good in it being 20000-200000.
ここで、重量平均分子量Mwをポリスチレン換算で求めたのは、ポリスチレン換算が一般的な分子量測定装置における測定条件であり、分子量測定装置の検量線をポリスチレンの標準試料を用いて作製しているためである。 Here, the reason why the weight average molecular weight Mw was calculated in terms of polystyrene is that polystyrene conversion is a measurement condition in a general molecular weight measuring apparatus, and the calibration curve of the molecular weight measuring apparatus is prepared using a standard sample of polystyrene. It is.
分子量Mwを20000〜200000とする理由を説明する。ワニスからポリイミドフィルムを成型する際、ポリイミドの分子量を調整する必要がある。分子量Mwが20000未満と低い場合、(比較例3)で後述するように、フィルムに割れ等が発生し、フィルムとして成型することができない。また、分子量Mwが200000を超える高い場合には、(比較例4)で後述するように、ワニス粘度が高くなり、基板上にワニスをキャストすることが困難となる。良好なフィルムを得るには、分子量Mwを20000〜200000の範囲にする。 The reason why the molecular weight Mw is set to 20000 to 200000 will be described. When molding a polyimide film from a varnish, it is necessary to adjust the molecular weight of the polyimide. When the molecular weight Mw is as low as less than 20000, as will be described later in (Comparative Example 3), the film is cracked and cannot be molded as a film. On the other hand, when the molecular weight Mw is higher than 200000, as will be described later in (Comparative Example 4), the varnish viscosity becomes high and it becomes difficult to cast the varnish on the substrate. In order to obtain a good film, the molecular weight Mw is set in the range of 20000 to 200000.
また、本実施の形態に係るポリイミド樹脂組成物を用いて膜体を作製することで、ポリイミドフィルムが得られる。 Moreover, a polyimide film is obtained by producing a film body using the polyimide resin composition according to the present embodiment.
ポリイミドフィルムとしては、フィルム厚が100±5μmにおいて、線膨張係数が30〜60ppm/Kであり、全光線透過率Tが90%以上であるとよい。 As a polyimide film, when the film thickness is 100 ± 5 μm, the linear expansion coefficient is 30 to 60 ppm / K, and the total light transmittance T is preferably 90% or more.
ポリイミドフィルムを作製するためのポリイミド樹脂組成物としては、ポリスチレン換算の重量平均分子量Mwが20000〜200000であるとよい。 As a polyimide resin composition for producing a polyimide film, it is good in the weight average molecular weight Mw of polystyrene conversion being 20000-200000.
本実施の形態の作用を説明する。 The operation of the present embodiment will be described.
本実施の形態に係るポリイミド樹脂組成物は、酸成分として透明性を発現する成分であるODPAと低熱膨張性を発現する成分であるBTDA及び/又はBPDAを含み、ジアミン成分として環状構造を有するジアミンを含み、ODPAの含有量が酸無水物とジアミンの合計含有量の20〜40モル%である。 The polyimide resin composition according to the present embodiment includes ODPA, which is a component that exhibits transparency as an acid component, and BTDA and / or BPDA, which is a component that exhibits low thermal expansion, and a diamine having a cyclic structure as a diamine component. And the content of ODPA is 20 to 40 mol% of the total content of acid anhydride and diamine.
これにより、ほとんど着色のない透明なポリイミド樹脂組成物において、透明性を保持しつつ、熱膨張係数を低下させることができる。 Thereby, in a transparent polyimide resin composition with almost no coloring, the thermal expansion coefficient can be lowered while maintaining transparency.
したがって、本実施の形態に係るポリイミド樹脂組成物を用いて膜体を形成することで、透明性を保持しつつ、低い熱膨張係数を有する(例えば、フィルム厚が100±5μmにおいて、線膨張係数が30〜60ppm/Kであり、全光線透過率Tが90%以上である)寸法安定性に優れたポリイミドフィルムを作製できる。 Therefore, by forming a film body using the polyimide resin composition according to the present embodiment, the film body has a low thermal expansion coefficient while maintaining transparency (for example, when the film thickness is 100 ± 5 μm, the linear expansion coefficient is Is 30 to 60 ppm / K, and the total light transmittance T is 90% or more.) A polyimide film having excellent dimensional stability can be produced.
このポリイミドフィルムを用いることで、その上に形成される配線パターン、蒸着膜等の各種の構造に、製造や組み立て工程時の熱プロセスを経た後においても、剥離、割れ、脱落等の不具合が生じることはなく、要求される機能を発揮することができる。 By using this polyimide film, various structures such as wiring patterns and vapor deposition films formed on it have defects such as peeling, cracking, and dropping even after undergoing a thermal process during the manufacturing and assembly process. It is possible to perform the required function.
本実施の形態に係るポリイミド樹脂組成物及びポリイミドフィルムは、耐熱透明性が要求される液晶ディスプレイ(例えば、液晶用配向膜)、有機ELディスプレイ等の表示装置分野で特に利用価値が高い。 The polyimide resin composition and the polyimide film according to the present embodiment are particularly useful in the field of display devices such as liquid crystal displays (for example, liquid crystal alignment films) and organic EL displays that require heat-resistant transparency.
(実施例1)(酸無水物とジアミンの合計含有量に対するODPAの含有量:25モル%)
攪拌器を取り付けた500mLの4つ口のセパラブルフラスコに、シリコンコック付のトラップを備えた玉付き冷却管を取り付けた。フラスコ内にBPDAを8.83g(30mM)、DMHMを4.77g(20mM)を入れ、γ−カプロラクトン0.68g、ピリジン0.95g、N-メチル-2-ピロリドン(NMP)100g、トルエン20gを加えた。窒素雰囲気中で15分攪拌した後、180℃に昇温させたオイルバスにフラスコを浸し1時間攪拌した。
(Example 1) (Content of ODPA with respect to total content of acid anhydride and diamine: 25 mol%)
A condenser tube with a ball equipped with a trap with a silicon cock was attached to a 500 mL four-neck separable flask equipped with a stirrer. Into the flask, 8.83 g (30 mM) of BPDA, 4.77 g (20 mM) of DMHM were added, 0.68 g of γ-caprolactone, 0.95 g of pyridine, 100 g of N-methyl-2-pyrrolidone (NMP), and 20 g of toluene. added. After stirring for 15 minutes in a nitrogen atmosphere, the flask was immersed in an oil bath heated to 180 ° C. and stirred for 1 hour.
その後オイルバスからフラスコを外し、室温まで冷却させた後、ODPAを9.31g(30mM)、DMHMを9.54g(40mM)、NMP71.6g、トルエン14.3gを加えた。その後再び180℃まで昇温した後、3時間攪拌しワニスを得た。この際反応中に生成する水はシリコンコックより適宜取り除いた。 Then, after removing the flask from the oil bath and allowing it to cool to room temperature, 9.31 g (30 mM) of ODPA, 9.54 g (40 mM) of DMHM, 71.6 g of NMP, and 14.3 g of toluene were added. Thereafter, the temperature was raised again to 180 ° C., followed by stirring for 3 hours to obtain a varnish. At this time, water generated during the reaction was appropriately removed from the silicon cock.
GPC(ゲル透過クロマトグラフ分析)装置を用い、得られた樹脂溶液のポリスチレン換算の重量平均分子量Mwを測定したところ、約7万であった。また、ワニスをガラス基板上にアプリケータを用いて塗布し、恒温槽で乾燥し溶媒を除去した。ガラス基板よりフィルムを剥がし、得られたフィルムの赤外吸収スペクトルを測定したところ、波数が1715cm-1および1785cm-1のところでイミド環の特性吸収が認められた。 The weight average molecular weight Mw in terms of polystyrene of the obtained resin solution was measured using a GPC (gel permeation chromatographic analysis) apparatus, and it was about 70,000. Moreover, the varnish was apply | coated using the applicator on the glass substrate, it dried with the thermostat, and the solvent was removed. When the film was peeled off from the glass substrate and the infrared absorption spectrum of the obtained film was measured, characteristic absorption of the imide ring was observed at wave numbers of 1715 cm −1 and 1785 cm −1 .
合成されたワニスをメタノール中に入れ再沈殿させ、沈殿した樹脂をガラスフィルターを用いてメタノールで5回洗浄した。洗浄した樹脂を減圧乾燥によりメタノールを除去し、ポリイミド樹脂粉末を得た。この樹脂粉末をN,N−ジメチルアセトアミドに再溶解させ、固形分量25重量%のポリイミドワニスを調製した。このワニスを用いてキャスト法により厚さ約100μのポリイミドフィルムを作製した。このフィルムの全光線透過率Tを測定したところ90.2%であった。また熱膨張係数αは41ppm/K(常温〜150℃)を得た。 The synthesized varnish was put into methanol and reprecipitated, and the precipitated resin was washed with methanol 5 times using a glass filter. Methanol was removed from the washed resin by drying under reduced pressure to obtain a polyimide resin powder. This resin powder was redissolved in N, N-dimethylacetamide to prepare a polyimide varnish having a solid content of 25% by weight. A polyimide film having a thickness of about 100 μm was produced by casting using this varnish. The total light transmittance T of this film was measured and found to be 90.2%. The thermal expansion coefficient α was 41 ppm / K (normal temperature to 150 ° C.).
(実施例2)(酸無水物とジアミンの合計含有量に対するODPAの含有量:37.5モル%)
実施例1と同様の装置を用い、ODPAを18.61g(60mM)、DMHMを9.54g(40mM)をフラスコに入れ、γ−カプロラクトン0.91g、ピリジン1.27g、NMP100g、トルエン20gを加えた。
(Example 2) (Content of ODPA with respect to total content of acid anhydride and diamine: 37.5 mol%)
Using the same apparatus as in Example 1, put 18.61 g (60 mM) of ODPA and 9.54 g (40 mM) of DMHM in the flask, add 0.91 g of γ-caprolactone, 1.27 g of pyridine, 100 g of NMP, and 20 g of toluene. It was.
実施例1と同様に180℃で1時間、加熱攪拌し、その後室温まで冷却し、BTDAを6.44g(20mM)、DMHMを9.54g(40mM)入れ、NMP65.0g、トルエン13.0gを加えた。180℃まで再加熱し3時間反応させた。得られたポリイミドワニスの重量平均分子量Mwを測定したところ、約12万であった。 In the same manner as in Example 1, the mixture was heated and stirred at 180 ° C. for 1 hour, then cooled to room temperature, and 6.44 g (20 mM) of BTDA and 9.54 g (40 mM) of DMHM were added, and 65.0 g of NMP and 13.0 g of toluene were added. added. The mixture was reheated to 180 ° C. and reacted for 3 hours. When the weight average molecular weight Mw of the obtained polyimide varnish was measured, it was about 120,000.
実施例1と同様の方法でポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスとした。このワニスを用いて厚さ約100μmのポリイミドフィルムを作製した。このフィルムの全光線透過率Tを測定したところ90.8%、熱膨張係数αは52ppm/K(常温〜150℃)を得た。 A polyimide resin powder was prepared in the same manner as in Example 1, and redissolved in N, N-dimethylacetamide to obtain a varnish. A polyimide film having a thickness of about 100 μm was produced using this varnish. When the total light transmittance T of this film was measured, it was 90.8%, and thermal expansion coefficient (alpha) obtained 52 ppm / K (normal temperature-150 degreeC).
(実施例3)(酸無水物とジアミンの合計含有量に対するODPAの含有量:37.5モル%)
実施例1と同様の装置を用い、ODPAを18.61g(60mM)、DMHMを9.54g(40mM)をフラスコに入れ、γ−カプロラクトン0.91g、ピリジン1.27g、NMP100g、トルエン20gを加えた。
(Example 3) (Content of ODPA with respect to total content of acid anhydride and diamine: 37.5 mol%)
Using the same apparatus as in Example 1, put 18.61 g (60 mM) of ODPA and 9.54 g (40 mM) of DMHM in the flask, add 0.91 g of γ-caprolactone, 1.27 g of pyridine, 100 g of NMP, and 20 g of toluene. It was.
実施例1と同様に180℃で1時間、加熱攪拌し、その後室温まで冷却し、BPDAを5.88g(20mM)、DMHMを9.54g(40mM)入れ、NMP62.8g、トルエン12.6gを加えた。180℃まで再加熱し3時間反応させた。得られたポリイミドワニスの重量平均分子量Mwを測定したところ、約8万であった。 In the same manner as in Example 1, the mixture was heated and stirred at 180 ° C. for 1 hour, then cooled to room temperature, 5.88 g (20 mM) of BPDA and 9.54 g (40 mM) of DMHM were added, 62.8 g of NMP, and 12.6 g of toluene were added. added. The mixture was reheated to 180 ° C. and reacted for 3 hours. When the weight average molecular weight Mw of the obtained polyimide varnish was measured, it was about 80,000.
実施例1と同様の方法でポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスとした。このワニスを用いて厚さ約100μmのポリイミドフィルムを作製した。このフィルムの全光線透過率Tを測定したところ90.5%、熱膨張係数αは45ppm/K(常温〜150℃)を得た。 A polyimide resin powder was prepared in the same manner as in Example 1, and redissolved in N, N-dimethylacetamide to obtain a varnish. A polyimide film having a thickness of about 100 μm was produced using this varnish. When the total light transmittance T of this film was measured, it was 90.5%, and the thermal expansion coefficient α was 45 ppm / K (normal temperature to 150 ° C.).
(実施例4)(酸無水物とジアミンの合計含有量に対するODPAの含有量:25モル%)
実施例1と同様の装置を用い、BPDAを8.83g(30mM)、DMHMを4.77g(20mM)をフラスコに入れ、γ−カプロラクトン0.68g、ピリジン0.95g、NMP100g、トルエン20gを加えた。
(Example 4) (Content of ODPA with respect to total content of acid anhydride and diamine: 25 mol%)
Using the same apparatus as in Example 1, 8.83 g (30 mM) of BPDA and 4.77 g (20 mM) of DMHM were placed in a flask, and 0.68 g of γ-caprolactone, 0.95 g of pyridine, 100 g of NMP, and 20 g of toluene were added. It was.
実施例1と同様に180℃で1時間、加熱攪拌し、その後室温まで冷却し、ODPAを9.31g(30mM)、DMHMを9.54g(40mM)入れ、NMP71.6g、トルエン14.3gを加えた。180℃まで再加熱し5時間反応させた。得られたポリイミドワニスの重量平均分子量Mwを測定したところ、約16万であった。 In the same manner as in Example 1, the mixture was heated and stirred at 180 ° C. for 1 hour, and then cooled to room temperature. 9.31 g (30 mM) of ODPA, 9.54 g (40 mM) of DMHM were added, 71.6 g of NMP, and 14.3 g of toluene were added. added. The mixture was reheated to 180 ° C. and reacted for 5 hours. When the weight average molecular weight Mw of the obtained polyimide varnish was measured, it was about 160,000.
実施例1と同様の方法でポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスを用いて厚さ約100μmのポリイミドフィルムを作製した。このフィルムの全光線透過率Tを測定したところ90.1%、熱膨張係数αは36ppm/K(常温〜150℃)を得た。 A polyimide resin powder was prepared in the same manner as in Example 1, redissolved in N, N-dimethylacetamide, and a polyimide film having a thickness of about 100 μm was prepared using varnish. When the total light transmittance T of this film was measured, it was 90.1%, and the thermal expansion coefficient α was 36 ppm / K (normal temperature to 150 ° C.).
(実施例5)(酸無水物とジアミンの合計含有量に対するODPAの含有量:37.5モル%)
実施例1と同様の装置を用い、ODPAを18.61g(60mM)、DAHMを8.41g(40mM)をフラスコに入れ、γ−カプロラクトン0.91g、ピリジン1.27g、NMP100g、トルエン20gを加えた。
(Example 5) (Content of ODPA with respect to total content of acid anhydride and diamine: 37.5 mol%)
Using the same apparatus as in Example 1, put 18.61 g (60 mM) of ODPA and 8.41 g (40 mM) of DAHM in the flask, add 0.91 g of γ-caprolactone, 1.27 g of pyridine, 100 g of NMP, and 20 g of toluene. It was.
実施例1と同様に180℃で1時間、加熱攪拌し、その後室温まで冷却し、BTDAを6.44g(20mM)、DAHMを8.41g(40mM)入れ、NMP56.0g、トルエン11.2gを加えた。180℃まで再加熱し3時間反応させた。得られたポリイミドワニスの重量平均分子量Mwを測定したところ、約10万であった。 In the same manner as in Example 1, the mixture was heated and stirred at 180 ° C. for 1 hour, then cooled to room temperature, and 6.44 g (20 mM) of BTDA and 8.41 g (40 mM) of DAHM were added, and 56.0 g of NMP and 11.2 g of toluene were added. added. The mixture was reheated to 180 ° C. and reacted for 3 hours. When the weight average molecular weight Mw of the obtained polyimide varnish was measured, it was about 100,000.
実施例1と同様の方法でポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスとした。このワニスを用いて厚さ約100μmのフィルムを作製した。このフィルムの全光線透過率Tを測定したところ91.0%、熱膨張係数αは55ppm/K(常温〜150℃)を得た。 A polyimide resin powder was prepared in the same manner as in Example 1, and redissolved in N, N-dimethylacetamide to obtain a varnish. A film having a thickness of about 100 μm was prepared using this varnish. When the total light transmittance T of this film was measured, it was 91.0%, and thermal expansion coefficient (alpha) obtained 55 ppm / K (normal temperature-150 degreeC).
(実施例6)(酸無水物とジアミンの合計含有量に対するODPAの含有量:37.5モル%)
実施例1と同様の装置を用い、ODPAを18.61g(60mM)、DAHMを8.41g(40mM)をフラスコに入れ、γ−カプロラクトン0.91g、ピリジン1.27g、NMP100g、トルエン20gを加えた。
(Example 6) (Content of ODPA with respect to total content of acid anhydride and diamine: 37.5 mol%)
Using the same apparatus as in Example 1, put 18.61 g (60 mM) of ODPA and 8.41 g (40 mM) of DAHM in the flask, add 0.91 g of γ-caprolactone, 1.27 g of pyridine, 100 g of NMP, and 20 g of toluene. It was.
これらを180℃で1時間、加熱攪拌し、その後室温まで冷却した。次にBPDAを5.88g(20mM)、DAHMを8.41g(40mM)入れ、NMP53.7g、トルエン10.7gを加えた。180℃まで再加熱し3時間反応させた。得られたポリイミドワニスの重量平均分子量Mwを測定したところ、約8万であった。 These were heated and stirred at 180 ° C. for 1 hour, and then cooled to room temperature. Next, 5.88 g (20 mM) of BPDA and 8.41 g (40 mM) of DAHM were added, and 53.7 g of NMP and 10.7 g of toluene were added. The mixture was reheated to 180 ° C. and reacted for 3 hours. When the weight average molecular weight Mw of the obtained polyimide varnish was measured, it was about 80,000.
実施例1と同様の方法でポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスとした。このワニスを用いて厚さ約100μmのフィルムを作製した。このフィルムの全光線透過率Tを測定したところ91.5%、熱膨張係数αは50ppm/K(常温〜150℃)が得られた。 A polyimide resin powder was prepared in the same manner as in Example 1, and redissolved in N, N-dimethylacetamide to obtain a varnish. A film having a thickness of about 100 μm was prepared using this varnish. When the total light transmittance T of this film was measured, it was 91.5%, and the thermal expansion coefficient α was 50 ppm / K (from room temperature to 150 ° C.).
(実施例7)(酸無水物とジアミンの合計含有量に対するODPAの含有量:25モル%)(1/2BPDA+1/2ODPA+BAPZ)
実施例1と同様の装置を用い、BPDAを8.83g(30mM)、BAPZを4.01g(20mM)をフラスコに入れ、γ-カプロラクトン0.68g、ピリジン0.95g、NMP100g、トルエン20gを加えた。
(Example 7) (Content of ODPA with respect to total content of acid anhydride and diamine: 25 mol%) (1 / 2BPDA + 1/2 ODPA + BAPZ)
Using the same apparatus as in Example 1, 8.83 g (30 mM) of BPDA and 4.01 g (20 mM) of BAPZ were placed in a flask, and 0.68 g of γ-caprolactone, 0.95 g of pyridine, 100 g of NMP, and 20 g of toluene were added. It was.
これを180℃で1時間加熱攪拌し、その後室温まで戻し、ODPAを9.31g(30mM)、BAPZを8.01g(40mM)入れ、NMP40.0g、トルエン8.0gを加えた。180℃まで再加熱し10時間反応させた。得られたポリイミドワニスの重量平均分子量Mwを測定したところ、約10万となった。 This was heated and stirred at 180 ° C. for 1 hour, and then returned to room temperature. 9.31 g (30 mM) of ODPA and 8.01 g (40 mM) of BAPZ were added, and 40.0 g of NMP and 8.0 g of toluene were added. The mixture was reheated to 180 ° C. and reacted for 10 hours. When the weight average molecular weight Mw of the obtained polyimide varnish was measured, it was about 100,000.
実施例1と同様の方法でポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスを用いて厚さ約100μmのフィルムを作製し、全光線透過率Tを測定したところ90.1%、熱膨張係数αは55ppm/K(常温〜150℃)を得た。 A polyimide resin powder was prepared in the same manner as in Example 1, and redissolved in N, N-dimethylacetamide to prepare a film having a thickness of about 100 μm using varnish, and the total light transmittance T was measured. 1% and thermal expansion coefficient (alpha) obtained 55 ppm / K (normal temperature-150 degreeC).
(比較例1)(酸無水物とジアミンの合計含有量に対するODPAの含有量:0モル%)
実施例1と同様の装置を用い、BPDAを8.83g(30mM)、DMHMを4.47g(20mM)をフラスコに入れ、γ−カプロラクトン0.68g、ピリジン0.95g、NMP100g、トルエン20gを加えた。
(Comparative Example 1) (Content of ODPA with respect to total content of acid anhydride and diamine: 0 mol%)
Using the same apparatus as in Example 1, 8.83 g (30 mM) of BPDA and 4.47 g (20 mM) of DMHM were placed in a flask, and 0.68 g of γ-caprolactone, 0.95 g of pyridine, 100 g of NMP, and 20 g of toluene were added. It was.
窒素雰囲気中で15分攪拌した後、180℃に加熱し、1時間攪拌した。その後室温まで冷却し、BPDAを8.83g(30mM)、DMHMを9.54g(40mM)入れ、NMP68.9g、トルエン13.8gを加えた。180℃まで再加熱し、3時間反応させ、重量平均分子量Mw約6万のポリイミドワニスを得た。 After stirring for 15 minutes in a nitrogen atmosphere, the mixture was heated to 180 ° C. and stirred for 1 hour. After cooling to room temperature, 8.83 g (30 mM) of BPDA and 9.54 g (40 mM) of DMHM were added, and 68.9 g of NMP and 13.8 g of toluene were added. It was reheated to 180 ° C. and reacted for 3 hours to obtain a polyimide varnish having a weight average molecular weight Mw of about 60,000.
実施例1と同様にワニスをメタノール中で再沈殿させ、ポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスを作製したが、ワニスの粘度が増加し、1日以内で固化したため、フィルム作製に至らなかった。 As in Example 1, the varnish was reprecipitated in methanol to prepare a polyimide resin powder, which was re-dissolved in N, N-dimethylacetamide to prepare a varnish, but the viscosity of the varnish increased and solidified within one day. Therefore, film production was not achieved.
反応溶媒であるNMPに再溶解させワニスを作製しフィルム化したところ、表面に凹凸のあるフィルムとなり成膜性に問題が発生し、またフィルムに着色が観察された。なおNMP溶媒のワニスにおいても1ヶ月以内で固化し保存安定性に問題があった。 When it was redissolved in NMP as a reaction solvent to produce a varnish and formed into a film, it became a film with irregularities on the surface, causing problems in film formability, and coloring was observed on the film. The NMP solvent varnish also solidified within one month and had a problem in storage stability.
(比較例2)(酸無水物とジアミンの合計含有量に対するODPAの含有量:0モル%)
実施例1と同様の装置を用い、BTDAを19.33g(60mM)、DMHMを14.31g(60mM)をフラスコに入れ、γ−カプロラクトン0.61g、ピリジン0.95g、NMP125.9g、トルエン25.2gを加えた。これらを180℃で、加熱攪拌し反応させた。その結果、反応溶液に濁りが発生し、正常なワニスを得ることが出来なかった
(比較例3)(酸無水物とジアミンの合計含有量に対するODPAの含有量:25モル%)
実施例1と同様の装置を用い、BPDAを8.83g(30mM)、脂肪族ジアミンとしてDMHMを4.47g(20mM)をフラスコに入れ、γ−カプロラクトン0.68g、ピリジン0.95g、NMP100g、トルエン20gを加えた。
(Comparative example 2) (Content of ODPA with respect to total content of acid anhydride and diamine: 0 mol%)
Using the same apparatus as in Example 1, 19.33 g (60 mM) of BTDA and 14.31 g (60 mM) of DMHM were put in a flask, 0.61 g of γ-caprolactone, 0.95 g of pyridine, 125.9 g of NMP, toluene 25 .2 g was added. These were heated and stirred at 180 ° C. for reaction. As a result, turbidity was generated in the reaction solution, and a normal varnish could not be obtained. (Comparative Example 3) (ODPA content: 25 mol% relative to the total content of acid anhydride and diamine)
Using the same apparatus as in Example 1, 8.83 g (30 mM) of BPDA and 4.47 g (20 mM) of DMHM as an aliphatic diamine were placed in a flask, 0.68 g of γ-caprolactone, 0.95 g of pyridine, 100 g of NMP, Toluene 20g was added.
実施例1と同様に180℃で1時間、加熱攪拌し、その後室温まで冷却し、ODPAを9.31g(30mM)、DMHMを9.54g(40mM)入れ、NMP71.6g、トルエン14.3gを加えた。180℃まで再加熱し、45分反応させ、重量平均分子量Mw約1万のポリイミドワニスを得た。ワニスをメタノール中で再沈殿させ、ポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスとした。このワニスを用いてフィルム作製を試みたが、基板よりフィルムを引き剥がす際に、割れ、切れが発生し、十分な強度を有するフィルムに作製できなかった。 In the same manner as in Example 1, the mixture was heated and stirred at 180 ° C. for 1 hour, and then cooled to room temperature. 9.31 g (30 mM) of ODPA, 9.54 g (40 mM) of DMHM were added, 71.6 g of NMP, and 14.3 g of toluene were added. added. It was reheated to 180 ° C. and reacted for 45 minutes to obtain a polyimide varnish having a weight average molecular weight Mw of about 10,000. The varnish was reprecipitated in methanol to produce a polyimide resin powder, which was redissolved in N, N-dimethylacetamide to obtain a varnish. Film production was attempted using this varnish, but when the film was peeled off from the substrate, it was cracked and cut, and could not be produced into a film having sufficient strength.
(比較例4)(酸無水物とジアミンの合計含有量に対するODPAの含有量:25モル%)
実施例1と同様の装置を用い、BPDAを8.83g(30mM)、脂肪族ジアミンとしてDMHMを4.47g(20mM)をフラスコに入れ、γ−カプロラクトン0.68g、ピリジン0.95g、NMP100g、トルエン20gを加えた。
(Comparative Example 4) (Content of ODPA with respect to total content of acid anhydride and diamine: 25 mol%)
Using the same apparatus as in Example 1, 8.83 g (30 mM) of BPDA and 4.47 g (20 mM) of DMHM as an aliphatic diamine were placed in a flask, 0.68 g of γ-caprolactone, 0.95 g of pyridine, 100 g of NMP, Toluene 20g was added.
実施例1と同様に180℃で1時間、加熱攪拌し、その後室温まで冷却し、ODPAを9.31g(30mM)、DMHMを9.54g(40mM)入れ、NMP71.6g、トルエン14.3gを加えた。180℃まで再加熱し反応させた。反応時間10時間程度で、粘度の増加により攪拌器のトルク許容値を越え、攪拌ができなくなった。このワニスの分子量を測定した所、重量平均分子量Mw約25万であった。この高粘度ポリイミドワニスを高速攪拌器を用いてメタノール中に粉末状に再沈殿させ、実施例1と同様の方法でポリイミド樹脂粉末を作製した。この樹脂粉末をN,N−ジメチルアセトアミドに再溶解させワニスとした。樹脂の濃度20重量%のワニスを用いてフィルム作製を試みたが、粘度が高く、ワニスを基板にキャストすることが困難であり、均一なフィルムを得ることができなかった。 In the same manner as in Example 1, the mixture was heated and stirred at 180 ° C. for 1 hour, and then cooled to room temperature. 9.31 g (30 mM) of ODPA, 9.54 g (40 mM) of DMHM were added, 71.6 g of NMP, and 14.3 g of toluene were added. added. The reaction was reheated to 180 ° C. In the reaction time of about 10 hours, the increase in the viscosity exceeded the allowable torque value of the stirrer, and stirring became impossible. When the molecular weight of the varnish was measured, the weight average molecular weight Mw was about 250,000. This high-viscosity polyimide varnish was reprecipitated in methanol using a high-speed stirrer, and a polyimide resin powder was produced in the same manner as in Example 1. This resin powder was redissolved in N, N-dimethylacetamide to obtain a varnish. An attempt was made to produce a film using a varnish having a resin concentration of 20% by weight, but the viscosity was high and it was difficult to cast the varnish to a substrate, and a uniform film could not be obtained.
(比較例5)(酸無水物とジアミンの合計含有量に対するODPAの含有量:12.5モル%)
実施例1と同様の装置を用い、BPDAを17.65g(60mM)、DMHMを9.54g(40mM)をフラスコに入れ、γ−カプロラクトン0.91g、ピリジン1.27g、NMP100g、トルエン20gを加えた。
(Comparative Example 5) (ODPA content: 12.5 mol% relative to the total content of acid anhydride and diamine)
Using the same apparatus as in Example 1, 17.65 g (60 mM) of BPDA and 9.54 g (40 mM) of DMHM were placed in a flask, and 0.91 g of γ-caprolactone, 1.27 g of pyridine, 100 g of NMP, and 20 g of toluene were added. It was.
実施例1と同様に180℃で1時間、加熱攪拌し、その後室温まで冷却し、ODPAを6.20g(20mM)、DMHMを9.54g(40mM)入れ、NMP59.8g、トルエン12.0gを加えた。180℃まで再加熱し5時間反応させた。得られたポリイミドワニスの重量平均分子量Mwを測定したところ、約10万であった。 In the same manner as in Example 1, the mixture was heated and stirred at 180 ° C. for 1 hour, then cooled to room temperature, and 6.20 g (20 mM) of ODPA and 9.54 g (40 mM) of DMHM were added, and 59.8 g of NMP and 12.0 g of toluene were added. added. The mixture was reheated to 180 ° C. and reacted for 5 hours. When the weight average molecular weight Mw of the obtained polyimide varnish was measured, it was about 100,000.
ポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに溶解させワニスを用いて厚さ約100μmのフィルムを作製した。このフィルムの全光線透過率Tを測定したところ88%、熱膨張係数αは43ppm/K(常温〜150℃)を得た。 A polyimide resin powder was prepared, dissolved in N, N-dimethylacetamide, and a film having a thickness of about 100 μm was prepared using varnish. When the total light transmittance T of this film was measured, it was 88%, and thermal expansion coefficient (alpha) obtained 43 ppm / K (normal temperature-150 degreeC).
(比較例6)(酸無水物とジアミンの合計含有量に対するODPAの含有量:0モル%)
実施例1と同様の装置を用い、CPDAを12.61g(60mM)、DMHMを14.31g(60mM)をフラスコに入れ、γ−カプロラクトン0.61g、ピリジン0.95g、NMP99.0g、トルエン19.8gを加えた。これらを180℃で30時間、加熱攪拌し反応させた。得られたポリイミドワニスの重量平均分子量Mwを測定したところ、約7万であった。
(Comparative Example 6) (Content of ODPA with respect to total content of acid anhydride and diamine: 0 mol%)
Using the same apparatus as in Example 1, 12.61 g (60 mM) of CPDA and 14.31 g (60 mM) of DMHM were placed in a flask, 0.61 g of γ-caprolactone, 0.95 g of pyridine, 99.0 g of NMP, toluene 19 .8 g was added. These were reacted by heating and stirring at 180 ° C. for 30 hours. When the weight average molecular weight Mw of the obtained polyimide varnish was measured, it was about 70,000.
実施例1と同様の方法でポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスとした。このワニスを用いて厚さ約100μmのフィルムを作製した。このフィルムの全光線透過率Tを測定したところ91.5%、熱膨張係数αは75ppm/K(常温〜150℃)であった。 A polyimide resin powder was prepared in the same manner as in Example 1, and redissolved in N, N-dimethylacetamide to obtain a varnish. A film having a thickness of about 100 μm was prepared using this varnish. When the total light transmittance T of this film was measured, it was 91.5%, and the thermal expansion coefficient α was 75 ppm / K (normal temperature to 150 ° C.).
(比較例7)(酸無水物とジアミンの合計含有量に対するODPAの含有量:45モル%)
実施例1と同様の装置を用い、ODPAを18.61g(60mM)、DAHMを8.41g(40mM)をフラスコに入れ、γ−カプロラクトン0.91g、ピリジン1.27g、NMP100.0g、トルエン20.0gを加えた。
(Comparative Example 7) (Content of ODPA with respect to total content of acid anhydride and diamine: 45 mol%)
Using the same apparatus as in Example 1, 18.61 g (60 mM) of ODPA and 8.41 g (40 mM) of DAHM were placed in a flask, 0.91 g of γ-caprolactone, 1.27 g of pyridine, 100.0 g of NMP, toluene 20 0.0 g was added.
これらを180℃で1時間、加熱攪拌し、その後室温まで冷却した。次にBPDAを2.35g(8mM)、ODPAを3.72g(12mM)、DAHMを8.41g(40mM)入れ、NMP54.5g、トルエン10.9gを加えた。180℃まで再加熱し3時間反応させた。得られたポリイミドワニスの重量平均分子量Mwを測定したところ、約8万であった。 These were heated and stirred at 180 ° C. for 1 hour, and then cooled to room temperature. Next, 2.35 g (8 mM) of BPDA, 3.72 g (12 mM) of ODPA, and 8.41 g (40 mM) of DAHM were added, and 54.5 g of NMP and 10.9 g of toluene were added. The mixture was reheated to 180 ° C. and reacted for 3 hours. When the weight average molecular weight Mw of the obtained polyimide varnish was measured, it was about 80,000.
実施例1と同様の方法でポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスとした。このワニスを用いて厚さ約100μmのフィルムを作製した。このフィルムの全光線透過率Tを測定したところ91.1%、熱膨張係数αは63ppm/K(常温〜150℃)が得られた。 A polyimide resin powder was prepared in the same manner as in Example 1, and redissolved in N, N-dimethylacetamide to obtain a varnish. A film having a thickness of about 100 μm was prepared using this varnish. When the total light transmittance T of this film was measured, it was 91.1%, and the thermal expansion coefficient α was 63 ppm / K (normal temperature to 150 ° C.).
(比較例8)(酸無水物とジアミンの合計含有量に対するODPAの含有量:50モル%)(OPDA+DAHM)
実施例1と同様の装置を用い、ODPAを23.54g(80mM)、DMHMを16.82g(80mM)をフラスコに入れ、γ−カプロラクトン0.91g、ピリジン1.27g、NMP149.9g、トルエン30.0gを加えた。窒素雰囲気中で15分攪拌した後、180℃に加熱し、7時間攪拌し反応させた。重量平均分子量約6万のポリイミドワニスを得た。
(Comparative Example 8) (Content of ODPA with respect to total content of acid anhydride and diamine: 50 mol%) (OPDA + DAHM)
Using the same apparatus as in Example 1, 23.54 g (80 mM) of ODPA and 16.82 g (80 mM) of DMHM were placed in a flask, 0.91 g of γ-caprolactone, 1.27 g of pyridine, 149.9 g of NMP, 30 toluene. 0.0 g was added. After stirring for 15 minutes in a nitrogen atmosphere, the mixture was heated to 180 ° C. and stirred for 7 hours to be reacted. A polyimide varnish having a weight average molecular weight of about 60,000 was obtained.
実施例1と同様の方法でポリイミド樹脂粉末を作製し、N,N−ジメチルアセトアミドに再溶解させワニスとした。このワニスを用いて厚さ約100μmのフィルムを作製し、このフィルムの全光線透過率Tを測定したところ91.3%、熱膨張係数αは68ppm/K(常温〜150℃)が得られた。
A polyimide resin powder was prepared in the same manner as in Example 1, and redissolved in N, N-dimethylacetamide to obtain a varnish. Using this varnish, a film having a thickness of about 100 μm was prepared, and the total light transmittance T of this film was measured. .
Claims (6)
The polyimide film according to claim 4 or 5, wherein the polyimide resin composition has a polystyrene-equivalent weight average molecular weight of 20,000 to 200,000.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319109A JP2006131662A (en) | 2004-11-02 | 2004-11-02 | Polyimide resin composition and polyimide film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004319109A JP2006131662A (en) | 2004-11-02 | 2004-11-02 | Polyimide resin composition and polyimide film |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006131662A true JP2006131662A (en) | 2006-05-25 |
Family
ID=36725499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004319109A Pending JP2006131662A (en) | 2004-11-02 | 2004-11-02 | Polyimide resin composition and polyimide film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006131662A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007316625A (en) * | 2006-04-25 | 2007-12-06 | Jsr Corp | Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display device |
WO2009016083A1 (en) * | 2007-08-02 | 2009-02-05 | Basf Se | Degradation accelerator for polymers and polymer article comprising it |
JP2009175684A (en) * | 2007-12-26 | 2009-08-06 | Chisso Corp | Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element |
JP2010002501A (en) * | 2008-06-18 | 2010-01-07 | Jsr Corp | Liquid crystal alignment agent and liquid crystal display element |
JP2010066577A (en) * | 2008-09-11 | 2010-03-25 | Jsr Corp | Liquid crystal orientation agent and liquid crystal display element |
JP2010202852A (en) * | 2009-02-06 | 2010-09-16 | Hitachi Chem Co Ltd | Adhesion improver, resin composition, and method for producing laminate of the same and adherend |
CN101928398A (en) * | 2009-06-23 | 2010-12-29 | 日东电工株式会社 | Polyimide compound and method for making and by the optical thin film and the optical waveguides of its acquisition |
CN101935533A (en) * | 2009-06-25 | 2011-01-05 | 智索株式会社 | Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device |
JP2011137061A (en) * | 2009-12-28 | 2011-07-14 | Manac Inc | Iodine-supporting polyimide |
JP2017514972A (en) * | 2014-05-15 | 2017-06-08 | コーロン インダストリーズ インク | Polyimide and film using the same |
-
2004
- 2004-11-02 JP JP2004319109A patent/JP2006131662A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007316625A (en) * | 2006-04-25 | 2007-12-06 | Jsr Corp | Vertical alignment type liquid crystal aligning agent and vertical alignment type liquid crystal display device |
WO2009016083A1 (en) * | 2007-08-02 | 2009-02-05 | Basf Se | Degradation accelerator for polymers and polymer article comprising it |
JP2009175684A (en) * | 2007-12-26 | 2009-08-06 | Chisso Corp | Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display element |
TWI447145B (en) * | 2008-06-18 | 2014-08-01 | Jsr Corp | Liquid crystal alignment agent and liquid crystal display element |
JP2010002501A (en) * | 2008-06-18 | 2010-01-07 | Jsr Corp | Liquid crystal alignment agent and liquid crystal display element |
JP2010066577A (en) * | 2008-09-11 | 2010-03-25 | Jsr Corp | Liquid crystal orientation agent and liquid crystal display element |
KR101567605B1 (en) | 2008-09-11 | 2015-11-09 | 제이에스알 가부시끼가이샤 | Liquid crystal aligning agent and liquid crystal display device |
JP2010202852A (en) * | 2009-02-06 | 2010-09-16 | Hitachi Chem Co Ltd | Adhesion improver, resin composition, and method for producing laminate of the same and adherend |
CN101928398A (en) * | 2009-06-23 | 2010-12-29 | 日东电工株式会社 | Polyimide compound and method for making and by the optical thin film and the optical waveguides of its acquisition |
CN101928398B (en) * | 2009-06-23 | 2013-06-12 | 日东电工株式会社 | Polyimide compound, preparation method therefor, and optical film and optical waveguide produced by employing the compound |
US8470959B2 (en) | 2009-06-23 | 2013-06-25 | Nitto Denko Corporation | Polyimide compound, preparation method therefor, and optical film and optical waveguide produced by employing the compound |
JP2011028223A (en) * | 2009-06-25 | 2011-02-10 | Chisso Corp | Liquid crystal aligning agent, liquid crystal alignment layer, and liquid crystal display device |
CN101935533A (en) * | 2009-06-25 | 2011-01-05 | 智索株式会社 | Liquid crystal aligning agent, liquid crystal aligning film and liquid crystal display device |
JP2011137061A (en) * | 2009-12-28 | 2011-07-14 | Manac Inc | Iodine-supporting polyimide |
JP2017514972A (en) * | 2014-05-15 | 2017-06-08 | コーロン インダストリーズ インク | Polyimide and film using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI770374B (en) | Polyimide, polyimide solution, polyimide, polyimide film, laminate and flexible device, and method for producing polyimide film | |
TWI468436B (en) | Polyimide film | |
JP2019090047A (en) | Polyimide precursor resin composition | |
JP2010202729A (en) | Polyimide precursor resin composition for flexible device substrates and method for producing flexible device using the same, and flexible device | |
TWI728163B (en) | Polyimide, polyimide solution, polyimide, polyimide film, laminate and flexible device, and manufacturing method of polyimide film | |
KR20170080532A (en) | Composition for preparing transparent polymer filman article including polyimide or poly(imide-amide) copoplymer, articletransparent polymer film, and electronic device including the same | |
JP2019500487A (en) | Polyamic acid composition to which alicyclic monomer is applied, and transparent polyimide film using the same | |
CN110606949B (en) | Colorless transparent polyimide film containing fluorine and Cardo structure and preparation method thereof | |
JP2021533237A (en) | Light-transmitting polyimide | |
JPH03121132A (en) | New polyimide | |
JP2018028052A (en) | Polyimide precursor and polyimide | |
JP2011111596A (en) | Manufacturing method of polyimide film, and polyimide film | |
JP2006131662A (en) | Polyimide resin composition and polyimide film | |
JP7084755B2 (en) | A method for producing a polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate and a flexible device, and a polyimide film. | |
JPWO2019131896A1 (en) | Polyimide, polyimide solution composition, polyimide film, and substrate | |
JP7349253B2 (en) | A polyamic acid, a polyamic acid solution, a polyimide, a polyimide film, a laminate, a flexible device, and a method for producing a polyimide film. | |
JP2011148955A (en) | Method for producing polyimide film, and the resultant polyimide film | |
WO2018163884A1 (en) | Transparent electrode substrate film and method for producing same | |
JP7000652B2 (en) | A laminate for manufacturing a flexible display and a method for manufacturing a flexible display using the same. | |
TWI809172B (en) | Polyimide precursor composition, polyimide film, and flexible device and process for preparing the same | |
TWI809173B (en) | Polyimide precursor composition and method for preparing the same, polyimide film, and flexible device and process for preparing the same | |
KR20150021296A (en) | Polyimide and method for producing same | |
TW202212419A (en) | Polyimide precursor, polyimide precursor composition, polyimide film, manufacturing method thereof, and use thereof | |
JP2022115823A (en) | Polyimide precursor and polyimide | |
KR102592065B1 (en) | Composition for forming flexible device substrates |