[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006196710A - 半導体素子の製造方法 - Google Patents

半導体素子の製造方法 Download PDF

Info

Publication number
JP2006196710A
JP2006196710A JP2005006868A JP2005006868A JP2006196710A JP 2006196710 A JP2006196710 A JP 2006196710A JP 2005006868 A JP2005006868 A JP 2005006868A JP 2005006868 A JP2005006868 A JP 2005006868A JP 2006196710 A JP2006196710 A JP 2006196710A
Authority
JP
Japan
Prior art keywords
wafer
tape
layer
manufacturing
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005006868A
Other languages
English (en)
Inventor
Hiroshi Tamenori
啓 爲則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2005006868A priority Critical patent/JP2006196710A/ja
Publication of JP2006196710A publication Critical patent/JP2006196710A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】ウェハ表面に厚い粘着層を有する表面保護テープを貼り付けてウェハ表面のポリイミド保護膜による凹凸形状を緩和することによって、ウェハが割れるのを防ぎながら薄い半導体素子を作製すること。
【解決手段】半導体ウェハ31のポリイミド保護膜32による凹凸を有する表面に、基材層26と軟化材層20と粘着剤層25を備えた厚い表面保護テープ24を貼り付け、刃先の温度が50〜80℃程度になるように加熱した切断カッターを用いて、表面保護テープ24をウェハ外周に沿って切断する。その後、表面保護テープ24を加熱し、軟化材層20を変形させて、基材層26の表面をほぼ平坦にする。表面保護テープ24を貼り付けた状態のまま、ウェハ裏面を研削加工して薄ウェハにする。そして、ダイシングを行う直前まで、半導体ウェハ31に表面保護テープ24を貼り付けた状態のまま、各種処理を行う。
【選択図】 図1

Description

この発明は、ウェハ裏面の処理が必要な半導体素子の製造方法に関し、特に表面デバイス側にポリイミド保護膜のような10μm以上の高さの凹凸形状を有する絶縁ゲート型バイポーラトランジスタ等の電力用半導体素子の製造方法に関する。
従来より、コンピュータや通信機器の主要部分には、多数のトランジスタや抵抗等を、電気回路を構成するようにむすびつけて、1チップ上に集積した集積回路(IC)が多用されている。このようなICの中で、電力用半導体素子を含むものは、パワーICと呼ばれている。電力用半導体素子の一つに、絶縁ゲート型バイポーラトランジスタ(以下、IGBTとする)がある。
IGBTは、MOSFET(絶縁ゲート型電界効果トランジスタ)の高速スイッチング特性および電圧駆動特性と、バイポーラトランジスタの低オン電圧特性を有するワンチップのパワー素子である。その応用範囲は、汎用インバータ、ACサーボ、無停電電源(UPS)またはスイッチング電源などの産業分野から、電子レンジ、炊飯器またはストロボなどの民生機器分野へと拡大してきている。また、新しいチップ構造を用いた、より低オン電圧のIGBTが開発されており、IGBTを用いた応用装置の低損失化や高効率化が図られてきている。
IGBTには、パンチスルー(以下、PTとする)型、ノンパンチスルー(以下、NPTとする)型、フィールドストップ(以下、FSとする)型の構造があり、nチャネル型の縦型二重拡散構造のものが主流である。従って、本明細書では、nチャネル型IGBTを例にして説明するが、pチャネル型IGBTでも同様である。
PT型IGBTは、p+半導体基板上にn+バッファ層とn-活性層をエピタキシャル成長させたエピタキシャルウェハを用いて形成される。そのため、例えば耐圧600V系の素子では、活性層の厚さは70μm程度であるが、基板を含む総厚さは200〜300μm程度になる。PT型IGBTでは、n-活性層中の空乏層がn+バッファ層に到達する。
図16は、低ドーズ量の浅いp+コレクタ層(低注入p+コレクタ)を有するNPT型IGBTの1/2セル分の構成を示す断面図である。一般に、NPT型IGBTの作製には、FZウェハが用いられる。FZウェハとは、フローティングゾーン法により作製された半導体のインゴットから切り出されたウェハのことである。図16に示すように、例えばFZウェハよりなるn-半導体基板を活性層1とし、その表面側に、p+ベース領域2が選択的に形成されている。
ベース領域2の表面層には、n+エミッタ領域3が選択的に形成されている。また、基板表面上には、ゲート酸化膜4を介してゲート電極5が形成されている。エミッタ電極6は、エミッタ領域3およびベース領域2に接触しているとともに、層間絶縁膜7によりゲート電極5から絶縁されている。基板裏面には、p+コレクタ層8およびコレクタ電極9が形成されている。
NPT型の場合には、活性層1の厚さがPT型よりも厚くなるが、素子全体としては、PT型の素子に比べて、大幅に薄くなる(100μm程度)。そして、正孔の注入率を制御することができるので、ライフタイム制御を行わなくても、高速スイッチングが可能である。また、エピタキシャルウェハを用いずに、FZウェハを用いているため、安価である。
図17は、FS型IGBTの1/2セル分の構成を示す断面図である。FS型IGBTの作製には、通常、FZウェハが用いられるが、p+エピタキシャルウェハが用いられることもある。図17に示すように、基板表面側の素子構造は、図16に示すNPT型の素子と同じである。基板裏面側には、n-活性層1とp+コレクタ層8との間に、n+バッファ層10が設けられている。FS型の場合、素子全体の厚さは70μm程度である。そして、ノンパンチスルー型と同様に、ライフタイム制御が不要である。
また、オン電圧をより一層、低減するため、チップ表面に狭く深い溝を形成し、この溝の側面にMOSFETを形成したトレンチ構造と、FS型構造を組み合わせた構造のIGBTも提案されている。このように薄いFS型IGBTまたはそれに類似したデバイスの製造方法として、以下に説明するように、FZウェハを研磨する方法と、エピタキシャルウェハを研磨する方法が知られている。
図18〜図22は、従来のFZウェハを用いたFS型IGBTの製造方法を説明するための断面図である。まず、活性層1となるn-FZウェハの表面側に、ベース領域、エミッタ領域、ゲート酸化膜、ゲート電極、層間絶縁膜、エミッタ電極および絶縁保護膜(図17では、省略)よりなる表面側素子構造部11を形成する(図18)。
ゲート酸化膜は、例えばSiO2でできている。ゲート電極は、例えばポリシリコンでできている。層間絶縁膜は、例えばBPSGでできている。エミッタ電極は、例えばアルミ・シリコン膜でできている。アルミ・シリコン膜は、安定した接合性を有する低抵抗配線を実現するために、400〜500℃程度の低温で熱処理される。絶縁保護膜は、例えばポリイミド膜でできている。
ついで、ウェハ表面に表面側素子構造部11を保護するための表面保護テープを貼り付けてから、ウェハの裏面を、バックグラインド、ポリシュあるいはエッチング等(以下、これらをまとめてバックグラインド等とする)の加工方法を単独または組み合わせて研削し、ウェハを所望の厚さ、例えば70μmの厚さとする(図19)。なお、エッチングの場合、厳密には研削ではないが、本明細書では、ウェハを薄くする手段については問わないので、エッチングを含めて研削とする。
ついで、ウェハの裏面から、例えばn型不純物であるリンと、p型不純物であるボロンをイオン注入し、電気炉またはレーザアニール法により350〜500℃の熱処理(アニール)を行い、ウェハ裏面側にバッファ層10およびコレクタ層8を形成する(図20)。ついで、ウェハ表面にポリイミド保護膜を形成する。その後、ウェハの裏面、すなわちコレクタ層8の表面に、アルミニウム、チタン、ニッケルおよび金などの複数の金属を蒸着し、コレクタ電極9を形成する(図21)。
最後に、コレクタ電極9側にダイシングテープ12を貼り付けてダイシングを行い、ウェハを複数のチップ13に切断する(図22)。各チップ13は、そのコレクタ電極9が装置の固定部材に半田付けされ、かつエミッタ電極等の表面電極にアルミワイヤ電極が超音波ワイヤボンディング装置により固着されることにより、種々の装置に実装される。
図23〜図27は、従来のエピタキシャルウェハを用いたFS型IGBTの製造方法を説明するための断面図である。まず、バッファ層10となるn+半導体基板上に、活性層1となるエピタキシャル層を成長させたエピタキシャルウェハを用意する。そして、そのエピタキシャルウェハのエピタキシャル層側の表面に、ベース領域、エミッタ領域、ゲート酸化膜、ゲート電極、層間絶縁膜、エミッタ電極および絶縁保護膜よりなる表面側素子構造部11を形成する(図23)。
ゲート酸化膜は、例えばSiO2でできている。ゲート電極は、例えばポリシリコンでできている。層間絶縁膜は、例えばBPSGでできている。エミッタ電極は、例えばアルミ・シリコン膜でできている。アルミ・シリコン膜は、安定した接合性を有する低抵抗配線を実現するために、400〜500℃程度の低温で熱処理される。絶縁保護膜は、例えばポリイミド膜でできている。エピタキシャルウェハを用いた場合には、表面側素子構造部11を形成する際の拡散工程においてn層が拡散していく。
ついで、ウェハ表面に表面側素子構造部11を保護するための表面保護テープを貼り付けてから、バックグラインド等により、ウェハを例えば70μmの厚さにし、n+半導体基板が例えば10μmの厚さで残るようにする(図24)。ついで、ウェハの裏面から、例えばp型不純物であるボロンをイオン注入し、電気炉で350〜500℃のアニールを行い、コレクタ層8を形成する(図25)。ついで、ウェハ表面にポリイミド保護膜を形成する。その後、ウェハの裏面、すなわちコレクタ層8の表面に、アルミニウム、チタン、ニッケルおよび金などの複数の金属を蒸着し、コレクタ電極9を形成する(図26)。
最後に、コレクタ電極9側にダイシングテープ12を貼り付けてダイシングを行い、ウェハを複数のチップ13に切断する(図27)。各チップ13は、そのコレクタ電極9が装置の固定部材に半田付けされ、かつエミッタ電極等の表面電極にアルミワイヤ電極が超音波ワイヤボンディング装置により固着されることにより、種々の装置に実装される。
一般に、従来より用いられている表面保護テープは、例えば、135μmの厚さの基材と15μmの厚さの粘着剤とを組み合わせた構成のものである。また、表面保護テープとして、融点105℃以下のホットメルト層を少なくとも有し、半導体ウェハ表面に加熱して貼り付けられるホットメルトシートが公知である(例えば、特許文献1参照。)。
特開2000−38556号公報
しかしながら、図18〜図22または図23〜図27に示す製造プロセスに従って70μm程度の厚さの薄型デバイスを作製しようとすると、ウェハ裏面のバックグラインドやウェハ裏面からのイオン注入やウェハ裏面に対する熱処理等を行う際に、ウェハが反ってしまい、それが原因でウェハが割れるという問題が発生するなど、製造プロセスの技術的課題が多い。すなわち、従来の製造プロセスでは、表面側素子構造部11を形成した後、ウェハ裏面の研削から最終工程となる裏面電極の成膜に至るまで、ウェハ単体で処理を行う。
その場合、デバイスの総厚さが100μmよりも薄くなるように加工すると、ウェハが薄いため、ウェハが割れやすくなってしまい、ウェハ割れの不良率の増加を招く。また、ウェハが薄いと、ポリイミド保護膜の応力によってウェハが大きく反りやすい。そのため、薄いウェハに対してポリイミド保護膜を形成するのは困難である。
従って、バックグラインド等によってウェハ裏面を研削する前に、ウェハ表面にポリイミド保護膜を形成しておく必要がある。しかし、この場合には、次のような種々の不具合が生じる。例えば、表面側素子構造部11を保護するポリイミド保護膜は、ウェハに作製された複数のチップの素子形成領域を囲むように各チップの外周に沿って形成される。
つまり、図28に示すように、ウェハ14の表面には、ポリイミド保護膜16よりなる格子状の凸条部がダイシングラインに沿って設けられており、この凸条部と、この凸条部に囲まれる複数の凹部とからなる凹凸が形成されている。この凹凸による段差の高さは、10〜20μm程度であり、凹部の大きさは、数〜十数mm角程度である。一方、従来の表面保護テープ17は、数μm程度の高さの段差に対する緩和性能しか有していない。
従って、ウェハ14の表面に従来の表面保護テープ17を貼り付けても、ポリイミド保護膜16によりウェハ表面に生じた段差の約90%程度の高さの段差が残ってしまい、バックグラインド等によるウェハ裏面の研削加工を行っただけでも割れるウェハが多発してしまう。そのため、図15に比較例として示すように、例えば直径6インチのウェハに対して、ウェハ表面にポリイミド保護膜16による凹凸を形成してから、ウェハ裏面を研削し、コレクタ電極9となる金属を蒸着した後のウェハの割れ率は、ウェハが薄いと極めて高い。従って、従来の製造プロセスにおいて、ポリイミド保護膜を形成してからウェハ裏面の研削を行うことは、事実上、不可能である。
また、たとえウェハ表面の凹凸が小さくても、従来の表面保護テープを用いてウェハを100μm程度の厚さまで研削すると、研削面のシリコンの加工応力(圧縮応力)と、表面保護テープのテンションによる応力(逆面の引っ張り応力)により、例えば直径6インチのウェハでは、その反り量は7〜10mm程度になる。その結果、この反りによって、ウェハが割れてしまう。
上記特許文献1に開示されたホットメルトシートは、ウェハ表面の凹凸によく追従して、ウェハと保護保持用シートとが隙間なく接着され、ウェハ裏面の研削加工時における、ウェハパターン面への研削水や異物の浸入、加工ミス、ディンプルの発生、ウェハ割れなどを防ぐためのものである。上記特許文献1には、バンプが点在するウェハに対してホットメルトシートを貼り付けた実施例が開示されているが、数〜十数mm角程度の凹部とダイシングラインに沿う格子状の凸条部とからなる凹凸による段差を緩和することについては、何ら記載されていない。従って、このような大きな凹部と高い凸部を有するウェハ表面に特許文献1のホットメルトシートを貼り付けても、平坦なシート表面が得られるか否かは不明である。
この発明は、上述した従来技術による問題点を解消するため、表面デバイス側にポリイミド保護膜等による凹凸形状を有するウェハの裏面をバックグラインド等により研削してデバイス厚の薄いIGBT等の半導体素子を製造するにあたって、ウェハ表面に厚い粘着層を有する表面保護テープを貼り付けてウェハ表面の凹凸形状を緩和することによって、ウェハが割れるのを防ぎながら半導体素子を作製することができる半導体素子の製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するため、請求項1の発明にかかる半導体素子の製造方法は、半導体ウェハの凹凸を有する表面に、基材層と前記凹凸による段差よりも厚い粘着層を備えたテープを、該粘着層がウェハ表面に接するように貼り付けた後、常温よりも高く、かつ前記粘着層の構成材が付着する温度よりも低い温度に加熱された切断カッターを用いて、前記半導体ウェハの外周に沿って前記テープを切断することを特徴とする。
この請求項1の発明によれば、適当な温度に加熱された切断カッターを用いてテープを切断することによって、テープの粘着層が厚くても、テープの切断中に粘着層の構成材が切断カッターに付着するのが抑制される。一般に、テープの粘着層が厚いと、テープ切断面に粘着層の構成材が大量に存在することになり、その構成材が切断カッターの動きに引きずられて塊となり、切断カッターに付着しやすい。
そのため、図29に示すように、テープ切断時に、その塊がウェハ14の外周近傍部分のテープ表面に異物18として付着する可能性が高くなる。テープ表面に異物が付着していると、バックグラインド工程中にウェハが割れてしまい、良品率の低下を招くという不具合が発生する。それに対して、本発明では、上述したように、粘着層の構成材よりなる異物の付着を抑制することができるので、バックグラインド工程中にウェハが割れるのを防ぐことができる。
また、請求項2の発明にかかる半導体素子の製造方法は、請求項1に記載の発明において、テープ切断時に前記切断カッターを50℃以上80℃以下の温度にすることを特徴とする。この請求項2の発明によれば、切断カッターを50℃以上の温度にすることによって、切断カッターの鋭い切れ味が得られるので、テープの基材(例えば、PET基材)が微小な削りカスとなってウェハに付着するのを防ぐことができる。また、切断カッターの寿命が短くなるのを防ぐことができる。
一方、切断カッターを80℃以下の温度にすることによって、粘着層の構成材よりなる大きな異物が発生するのを抑制することができる。従来のように切断カッターの温度を90〜100℃程度の高温にすると、粘着層の構成材が切断カッターに付着して堆積しやすいため、600μm以上の大きさの異物を生じることがある。それに対して、本発明では、切断カッターの温度が低いので、粘着層の構成材が切断カッターに付着して堆積しても、大きくならずに分散される。
また、請求項3の発明にかかる半導体素子の製造方法は、請求項1または2に記載の発明において、前記粘着層は、粘着剤よりなる粘着剤層と、前記基材層の構成材よりも軟質で、かつ加熱により粘度が低下する樹脂材料よりなる軟化材層を有し、該軟化材層は、前記粘着剤層と前記基材層の間に設けられていることを特徴とする。
また、請求項4の発明にかかる半導体素子の製造方法は、請求項3に記載の発明において、テープ切断後、該テープを加熱して前記軟化材層を変形させることにより前記基材層の表面をほぼ平坦にすることを特徴とする。
また、請求項5の発明にかかる半導体素子の製造方法は、請求項4に記載の発明において、さらに、前記テープの基材層の表面をほぼ平坦にした後、該テープを貼り付けた状態のまま、前記半導体ウェハの裏面を研削加工して薄ウェハにすることを特徴とする。
請求項3〜5の発明によれば、テープを加熱することによって、テープの軟化材層が低粘度化して変形するので、テープ表面の凹凸の高さがウェハ表面の凹凸の高さの10%程度になる。つまり、テープによりウェハ表面の凹凸が緩和されるので、テープ表面がほぼ平坦になる。従って、ウェハの裏面を研削する際にウェハが割れるのを防ぐことができる。
本発明にかかる半導体素子の製造方法によれば、ポリイミド保護膜の形成によりできた凹凸形状を有するウェハ表面にバックグラインド用のテープを貼り付け、このテープを適当な温度、例えば50〜80℃に加熱した切断カッターを用いて切断することによって、切断中のテープの構成材が異物となってテープ表面に付着するのを防ぐことができる。その後、加熱してテープの表面を平坦化することによって、ウェハ割れを防ぎながら、バックグラインド等を行ってデバイス厚の薄いIGBT等の半導体素子を製造することができる。従って、バックグラインド等を行う際の割れ不良率が極めて低くなるという効果を奏する。また、ウェハ裏面の研削後、蒸着による裏面電極の形成工程までを、反り量の小さいプロセスで進めることができるという効果を奏する。
以下に添付図面を参照して、この発明にかかる半導体素子の製造方法の好適な実施の形態を詳細に説明する。特に限定しないが、ここでは、nドープのエピタキシャルウェハを用いてFS型IGBTを作製する場合を例にして説明する。また、ウェハの、表面側素子構造部が形成される側の面をウェハ表面とし、その反対側の面をウェハ裏面とする。
図2〜図8は、本発明の実施の形態にかかる半導体素子の製造方法を説明するための図である。なお、図2〜図8においては、表面側素子構造部の詳細な構成の図示を省略する。まず、n+半導体基板21の上に、エピタキシャル層22を成長させたエピタキシャルウェハの表面側、すなわちエピタキシャル層22の表面に、SiO2等のゲート酸化膜とポリシリコン等からなるゲート電極を堆積し、これらを加工する。
そして、その表面にBPSG等の層間絶縁膜を堆積し、これを加工することによって、絶縁ゲート構造を作製する。つづいて、p+ベース層を形成し、その中にn+エミッタ層を形成する。そして、アルミ・シリコン膜等からなる表面電極、すなわちエミッタ電極を形成し、400〜500℃程度で熱処理を行って、アルミ・シリコン膜等を安定した接合性を有する低抵抗配線とする。その上全面に、ポリイミド等の絶縁保護膜を積層する。
さらに、ウェハ表面に、個々のチップ外周に沿う格子状のポリイミド保護膜を形成する。ここまでで、ウェハ表面に表面側素子構造部23ができあがる(図2)。この表面側素子構造部23を作製する際の拡散工程において、エピタキシャル層22にn型不純物が拡散し、エピタキシャル層22が活性層となる。
ここで、ウェハ表面にポリイミド保護膜が形成された様子を図9に模式的に示す。図9において、半導体ウェハ31内の格子状の太い実線がポリイミド保護膜32であり、縦横に伸びるポリイミド保護膜32により囲まれる複数の矩形領域は、個々のチップの素子形成領域33である。
図10は、図9の切断線A−Aにおける模式的な断面構成を示す図であるが、同図に示すように、各素子形成領域33の大きさは、例えば数〜十数mm角程度である。また、ポリイミド保護膜32は、ウェハ表面のアルミ・シリコン膜34から例えば10〜20μm程度の高さで突出している。
表面側素子構造部23の完成後、図3に示すように、表面側素子構造部23の表面に、バックグラインド時に表面側素子構造部23を保護するための表面保護テープ24を貼り付ける。表面保護テープ24としては、特に限定しないが、例えば三井化学株式会社製の265HRC−BH20または295HRC−CCHという型番のテープを用いることができる。
265HRC−BH20は、50μmの厚さのポリエチレンテレフタレート(PET)製基材と195μmの厚さの軟化材と20μmの厚さの粘着剤とで構成されている。一方、295HRC−CCHは、50μmの厚さのポリエチレンテレフタレート(PET)製基材と195μmの厚さの軟化材と50μmの厚さの粘着剤とで構成されている。
いずれの表面保護テープにおいても、軟化材は、ポリエチレンテレフタレート(PET)製基材よりも軟質の樹脂材料でできており、100℃以下の温度で容易に粘度が低下するという特性を有する。ここでは、265HRC−BH20を用いた場合を例にして説明するが、295HRC−CCHを用いた場合も同様である。また、具体例として挙げた上記2種類のテープに限らず、同等の機能を有する他のテープを用いることもできる。
テープ貼り付け装置としては、特に限定しないが、例えば従来同様、日東精機株式会社製のDR8500−IIという装置や、株式会社タカトリ製のATM−1100Eという装置を用いることができる。表面保護テープ24の切断は、低温で行うのが望ましく、常温で表面保護テープ24を切断するのが適している。その理由は、従来のようにカッター温度が90〜100℃程度の高温で表面保護テープの切断を行うと、テープの粘着剤が切断カッターに付着し、それが集まって塊となるため、異物の発生原因となるからである。
この異物には、粘着剤だけでなく、前記軟化材も含まれている。粘着剤等の異物のサイズは600μm以上にもなることがあり、このような大きさの異物が表面保護テープの表面に付着した場合、ウェハ裏面の研削加工時にウェハが割れることがある。それに対して、常温で表面保護テープを切断することにより、粘着剤等の異物が分散されるので、大きな異物の発生には至らない。
しかし、切断カッターの刃先を常温にして表面保護テープ24を切断しようとすると、切れ味が鈍くなるという新たな問題が発生する。切断カッターの切れ味が悪いと、切断カッターの寿命が短くなってしまう。また、特に、上記2種類のテープでは、その基材にポリエチレンテレフタレート(PET)が用いられているため、ポリエチレンテレフタレート(PET)の微小な削りカスが発生し、それがウェハに付着してしまうことがある。
そこで、切断カッターの鋭い切れ味を保ちつつ、粘着剤等の異物の発生を抑制するには、表面保護テープ24を切断する際に切断カッターを適当な温度に保つ必要がある。上述した2種類のテープに対して適当なカッター温度は、刃先の実測値で50〜80℃程度である。その理由は、本発明者らが、25枚のウェハに対して、カッター温度を20〜100℃の範囲で10℃おきに変化させて上述した2種類のテープの切断実験を行い、発生した異物のサイズと数を調べた結果、刃先の実測値が50〜80℃程度であれば、異物の発生数が極めて少ないことがわかったからである。その実験結果を、図11に示す。
なお、切断カッターを適当な温度に保つためには、カッターのテープ切断の障害とならない箇所にヒータを当接させればよい。また、所望の温度範囲への制御は、温度センサ等の手段により検出した検出値に基づいて、前記ヒータのパワーを加減させればよく、かかる方法に限るものでもない。
図12は、表面保護テープ24を貼り付けた状態を示す断面図である。図12に示すように、表面保護テープ24を貼り付けただけでは、表面保護テープ24は、ポリイミド保護膜32による凹凸に沿って波板状になり、その凹凸を十分に吸収しているとはいえない。例えば、ウェハ表面の凹凸の高さが12〜13μm程度の場合、表面保護テープ24の表面には7〜8μm程度の高さの凹凸が残ってしまう。なお、図12において、符号25、符号26および符号20は、それぞれ表面保護テープ24の粘着剤層、基材層および軟化材層である。
そこで、ホットプレートやオーブン炉を用いて表面保護テープ24を加熱する。ホットプレートを用いる場合には、加熱温度は50〜120℃程度の範囲の温度であるのが適当である。その理由は、本発明者らが、ウェハ表面にポリイミド保護膜32による12μmの高さの凹凸が形成されたウェハを、20〜130℃の種々の温度で3分間、加熱した後に、ウェハ厚さが70μmとなるようにバックグラインドを行った結果、50〜120℃程度の範囲の温度であれば、凹凸の緩和率が約70%以上であり、バックグラインドの良品率が90%以上であったからである。
ただし、本発明者らの実験によれば、あまり急速に加熱すると、ウェハ表面のポリイミド保護膜32による凹凸の緩和性能が低下することが判明している。実験の結果、70℃で1〜5分程度、加熱すれば、十分にポリイミド保護膜32による凹凸を緩和することができることがわかった。この加熱条件であれば、凹凸の緩和率が約90%以上であり、バックグラインドの良品率は98%以上であった。
加熱によって、加熱前の表面保護テープ24の粘着剤層25とウェハ表面の凹凸との間に存在していた気泡は、徐々に消滅する。この気泡の消滅に伴って、表面保護テープ24の基材層26の表面の凹凸は、徐々に小さくなり、最終的には、図1に示すように、ウェハ表面の凹凸の高さの10%程度の高さになる。
ここで、図13に、図9の切断線B−Bにおける断面構成を拡大して模式的に示すように、ポリイミド保護膜32の中央部には、約80μm幅のダイシングラインとなる凹部が存在するが、その幅が極めて狭いので、表面保護テープ24の基材層26の表面が平坦になることに対しては、ほとんど影響がない。なお、気泡が消滅するメカニズムについては、空気が粘着剤層25へ取り込まれることが原因であるのか、気圧が低かったことが原因であるのかは、明確になっていない。
表面保護テープ24として265HRC−BH20を用いた実施例では、図14に示すように、加熱前の段差緩和率が十数%であったのに対して、70℃で1〜5分程度の加熱を行った後には90%以上であった。比較として、従来の表面保護テープでは、粘着剤層が厚いほど段差緩和率も大きくなるが、粘着剤層の厚さを150μmにしても段差緩和率は60%を超える程度であった。
以上のようにして表面保護テープ24の表面を平坦化した後、図4に示すように、バックグラインド装置によりn+半導体基板21の研削加工を行い、表面側素子構造部23を含むウェハ全体の厚さが所望の厚さ、例えば70μmであり、かつn+半導体基板21が例えば10μmの厚さで残るようにする。
その研削加工において、表面保護テープ24の基材層26が高い剛性を有していることと、上述した加熱処理により表面保護テープ24の軟化材層20が低粘度化してテープ貼り付け時のテープテンションが緩和されていることにより、ウェハの厚さが100μmになるまで研削加工を行った場合のウェハの反り量は、2mm程度まで軽減される。また、ウェハの反り量は、加熱時間の長短によって異なるが、70℃で5分間、加熱した場合のウェハの反り量は、1mm以下となる。従って、ウェハの薄板加工における良品率が高くなる。
+半導体基板21を研削加工した後、その研削面に対してスピンエッチャーやディップ方式のエッチングを行い、研削面に生じた破砕層を除去する。ここで、表面保護テープ24の粘着剤、軟化材および基材は、ともに高い耐酸性を有している。従って、研削面をエッチングする際に、表面保護テープ24の基材や軟化材や粘着剤が大量に溶け出すことはない。
ついで、ウェハの裏面から、例えばp型不純物であるボロン等を、ドーズ量が例えば1×1013〜1×1015cm-2で、加速電圧が例えば20k〜100keVでイオン注入する。イオン注入時の高真空において、表面保護テープ24の粘着剤層25、軟化材層20および基材層26からのカーボンなどの不純物の発生は微量であり、全く問題ない。
その後、ウェハ裏面にレーザを照射してアニールを行い、コレクタ層となるp+層27を形成する(図5)。特に限定しないが、ここでは、レーザとして、XeClパルスレーザ(波長:308nm、半値幅:49ns、周波数:100Hz)を用いる。そして、例えば一回の照射エリアを約1mm角とし、50%〜90%オーバーラップさせて照射する。
このレーザアニールによって、ウェハ裏面のp+層27のみを活性化させることができるので、表面保護テープ24に用いられている有機系材料が分解または炭化してしまうのを防ぎながら熱処理を行うことができる。なお、XeClに代えて、YAG2ω、YAG3ω、XeFやKrFを用いてもよい。
ついで、ウェハ裏面に、例えばアルミニウム、チタン、ニッケルおよび金などの複数の金属を蒸着し、コレクタ電極となる裏面電極28を形成する(図6)。その際、表面保護テープ24に用いられている有機系材料の分解または炭化を防ぐため、低温スパッタ法により金属膜の蒸着を行うのが適当である。また、スパッタ時の高真空において、表面保護テープ24の粘着剤層25、軟化材層20および基材層26からのカーボンなどの不純物の発生は微量であり、全く問題ない。
ついで、ウェハ裏面に一般的なダイシングテープ29を貼り付ける。そして、表面側素子構造部23の表面から表面保護テープ24を剥離させて、表面保護テープ24を取り除く(図7)。テープ剥離装置としては、従来同様の装置を用いることができる。なお、表面保護テープ24の剥離後にダイシングテープ29を貼り付けるようにしてもよいが、ウェハ単体では割れやすいことに鑑みれば、ダイシングテープ29を貼り付けた後に表面保護テープ24を剥離させるのが望ましい。
その後、ウェハを複数のチップ30に切断する(図8)。図示省略するが、各チップ30は、裏面電極28を介して配線基板等の固定部材に半田付けされる。そして、各チップ30のウェハ表面側の電極には、アルミワイヤ電極が超音波ワイヤボンディング装置により固着される。
図15は、本発明者らが例えば直径6インチのウェハに対して、ウェハ表面にポリイミド保護膜32による凹凸を形成し、表面保護テープ24の貼り付けおよび加熱を行ってから、ウェハ裏面を研削し、裏面電極28となる金属を蒸着した後のウェハ(実施例)の割れ率と、ウェハ裏面の研削後のウェハ厚さとの関係を調べた結果を示している。図15より、実施例では、ウェハの厚さが60μm程度であっても、ウェハの割れ率は、1〜2%程度である。
以上説明したように、実施の形態によれば、ウェハ表面に貼り付けられた表面保護テープ24を、適当な温度、例えば50〜80℃に加熱した切断カッターを用いて切断することによって、切断中のテープの粘着剤や軟化材が異物となってテープ表面に付着するのを防ぐことができる。また、ウェハ表面に貼り付けられた表面保護テープ24を加熱することによって、表面保護テープ24の軟化材層20が低粘度化して変形し、表面保護テープ24の表面がほぼ平坦化されるので、ウェハ表面のポリイミド保護膜32による凹凸を緩和することができる。従って、ウェハが割れるのを防ぎながら、バックグラインド等を行ってデバイス厚の薄いIGBT等の半導体素子を製造することができ、バックグラインド等を行う際の割れ不良率を極めて低くすることができる。
また、表面保護テープ24が、ダイシングを行う直前まで、ウェハに貼り付けられているので、種々の処理を行う際に各種処理装置へウェハを搬送し、処理を行う際に、衝撃等によってウェハが割れるのを防ぐことができる。さらに、ウェハ裏面の研削後、金属の蒸着による裏面電極の形成工程までを、反り量の小さいプロセスで進めることができるので、裏面研削後に用いられる各種装置に何ら変更を加えなくても、厚いウェハと同様に処理することができる。従って、処理装置の改造費用が不要になる。
以上において、本発明は、上述した実施の形態に限らず、種々変更可能である。例えば、表面保護テープ24は、高い耐酸性と高い耐熱性を有していれば、上述した2つのテープに限らない。また、表面保護テープ24を加熱する際に、オーブン炉や近赤外線ランプを用いることができる。さらに、同様の製造プロセスにより、FZウェハを用いたNPT型のIGBTやFS型のIGBTを作製することもできる。また、半導体素子の表面構成は問わないので、半導体素子の表面側素子構造部23はプレーナ型でもトレンチ型でもよい。
また、本発明は、バックグラインド後のウェハの厚さが70μmであるIGBTに限らず、ウェハ裏面をバックグラインドしてウェハ厚さを200μm以下にする工程を有する例えば電力用の半導体素子の製造方法にも適用できる。さらに、本発明は、電力用の高耐圧半導体素子に限らず、一般的な低耐圧の制御用半導体素子の製造にも適用することができる。近時、ICチップを内蔵したICカードや、携帯電話等の小型携帯機器の薄型化などに伴い、IC部品に薄さが要求されていることに鑑みれば、本発明を低耐圧の制御用半導体素子の製造に適用することは極めて有効である。さらにまた、本発明は、高価な設備投資をせずに薄型のシリコンウェハを容易に作製することにも応用可能である。
以上のように、本発明にかかる半導体素子の製造方法は、デバイス厚の薄い半導体素子を製造するのに有用であり、特に、汎用インバータ、ACサーボ、無停電電源(UPS)またはスイッチング電源などの産業分野や、電子レンジ、炊飯器またはストロボなどの民生機器分野に用いられるIGBT等の電力用半導体素子の製造に適している。
ウェハ表面に貼り付けた表面保護テープの加熱後の様子を模式的に示す断面図である。 本発明の実施の形態にかかる半導体素子の製造方法を説明するための断面図である。 本発明の実施の形態にかかる半導体素子の製造方法を説明するための断面図である。 本発明の実施の形態にかかる半導体素子の製造方法を説明するための断面図である。 本発明の実施の形態にかかる半導体素子の製造方法を説明するための断面図である。 本発明の実施の形態にかかる半導体素子の製造方法を説明するための断面図である。 本発明の実施の形態にかかる半導体素子の製造方法を説明するための断面図である。 本発明の実施の形態にかかる半導体素子の製造方法を説明するための断面図である。 ウェハ表面にポリイミド保護膜が形成された様子を模式的に示す平面図である。 図9の切断線A−Aにおける構成を模式的に示す断面図である。 異物のサイズおよび数と切断カッターの温度との関係を示す特性図である。 ウェハ表面に表面保護テープを貼り付けた状態を模式的に示す断面図である。 図9の切断線B−Bにおける構成を模式的に示す断面図である。 ウェハ表面の段差緩和率と表面保護テープの粘着剤層の厚さとの関係を示す特性図である。 裏面電極蒸着後のウェハ割れ率と裏面研削後のウェハ厚さとの関係を示す特性図である。 NPT型IGBTの構成を示す断面図である。 FS型IGBTの構成を示す断面図である。 従来のFZウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来のFZウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来のFZウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来のFZウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来のFZウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来のエピタキシャルウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来のエピタキシャルウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来のエピタキシャルウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来のエピタキシャルウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来のエピタキシャルウェハを用いたFS型IGBTの製造方法を説明するための断面図である。 従来の表面保護テープをウェハ表面に貼り付けた状態を模式的に示す断面図である。 表面保護テープの切断時に生じる異物の付着部位を示す平面図である。
符号の説明
20 軟化材層
24 表面保護テープ
25 粘着剤層
26 基材層
28 裏面電極
30 チップ
31 半導体ウェハ
32 ポリイミド保護膜
33 素子形成領域


Claims (5)

  1. 半導体ウェハの凹凸を有する表面に、基材層と前記凹凸による段差よりも厚い粘着層を備えたテープを、該粘着層がウェハ表面に接するように貼り付けた後、常温よりも高く、かつ前記粘着層の構成材が付着する温度よりも低い温度に加熱された切断カッターを用いて、前記半導体ウェハの外周に沿って前記テープを切断することを特徴とする半導体素子の製造方法。
  2. テープ切断時に前記切断カッターを50℃以上80℃以下の温度にすることを特徴とする請求項1に記載の半導体素子の製造方法。
  3. 前記粘着層は、粘着剤よりなる粘着剤層と、前記基材層の構成材よりも軟質で、かつ加熱により粘度が低下する樹脂材料よりなる軟化材層を有し、該軟化材層は、前記粘着剤層と前記基材層の間に設けられていることを特徴とする請求項1または2に記載の半導体素子の製造方法。
  4. テープ切断後、該テープを加熱して前記軟化材層を変形させることにより前記基材層の表面をほぼ平坦にすることを特徴とする請求項3に記載の半導体素子の製造方法。
  5. さらに、前記テープの基材層の表面をほぼ平坦にした後、該テープを貼り付けた状態のまま、前記半導体ウェハの裏面を研削加工して薄ウェハにすることを特徴とする請求項4に記載の半導体素子の製造方法。


JP2005006868A 2005-01-13 2005-01-13 半導体素子の製造方法 Pending JP2006196710A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005006868A JP2006196710A (ja) 2005-01-13 2005-01-13 半導体素子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005006868A JP2006196710A (ja) 2005-01-13 2005-01-13 半導体素子の製造方法

Publications (1)

Publication Number Publication Date
JP2006196710A true JP2006196710A (ja) 2006-07-27

Family

ID=36802537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005006868A Pending JP2006196710A (ja) 2005-01-13 2005-01-13 半導体素子の製造方法

Country Status (1)

Country Link
JP (1) JP2006196710A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084525A1 (de) 2011-02-23 2012-08-23 Mitsubishi Electric Corp. Verfahren zur Herstellung einer Halbleitervorrichtung
CN103035520A (zh) * 2012-08-13 2013-04-10 上海华虹Nec电子有限公司 Igbt器件的制作方法
WO2013136411A1 (ja) * 2012-03-12 2013-09-19 三菱電機株式会社 真空吸着ステージ、半導体ウエハのダイシング方法およびアニール方法
WO2014038310A1 (ja) * 2012-09-07 2014-03-13 富士電機株式会社 半導体素子の製造方法
JP2014212154A (ja) * 2013-04-17 2014-11-13 富士電機株式会社 半導体装置の製造方法
JP2014216344A (ja) * 2013-04-22 2014-11-17 株式会社ディスコ ウエーハの加工方法
JP2016143833A (ja) * 2015-02-04 2016-08-08 住友重機械工業株式会社 レーザアニール方法及びレーザアニール装置
US9653412B1 (en) 2015-12-15 2017-05-16 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
CN108269741A (zh) * 2018-01-11 2018-07-10 上海华虹宏力半导体制造有限公司 晶圆研磨方法
CN110890281A (zh) * 2018-09-11 2020-03-17 三菱电机株式会社 半导体装置的制造方法
JP7586034B2 (ja) 2021-09-03 2024-11-19 株式会社デンソー 半導体装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011084525A1 (de) 2011-02-23 2012-08-23 Mitsubishi Electric Corp. Verfahren zur Herstellung einer Halbleitervorrichtung
US20120214278A1 (en) * 2011-02-23 2012-08-23 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
KR101309675B1 (ko) * 2011-02-23 2013-09-23 미쓰비시덴키 가부시키가이샤 반도체장치의 제조방법
US8574962B2 (en) * 2011-02-23 2013-11-05 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
DE102011084525B4 (de) * 2011-02-23 2018-01-04 Mitsubishi Electric Corp. Verfahren zur Herstellung einer Halbleitervorrichtung
WO2013136411A1 (ja) * 2012-03-12 2013-09-19 三菱電機株式会社 真空吸着ステージ、半導体ウエハのダイシング方法およびアニール方法
CN103035520A (zh) * 2012-08-13 2013-04-10 上海华虹Nec电子有限公司 Igbt器件的制作方法
WO2014038310A1 (ja) * 2012-09-07 2014-03-13 富士電機株式会社 半導体素子の製造方法
CN104221131A (zh) * 2012-09-07 2014-12-17 富士电机株式会社 半导体元件的制造方法
JPWO2014038310A1 (ja) * 2012-09-07 2016-08-08 富士電機株式会社 半導体素子の製造方法
US9870938B2 (en) 2012-09-07 2018-01-16 Fuji Electric Co., Ltd. Semiconductor element producing method by flattening protective tape
US8999814B2 (en) 2013-04-17 2015-04-07 Fuji Electric Co., Ltd. Semiconductor device fabricating method
JP2014212154A (ja) * 2013-04-17 2014-11-13 富士電機株式会社 半導体装置の製造方法
JP2014216344A (ja) * 2013-04-22 2014-11-17 株式会社ディスコ ウエーハの加工方法
JP2016143833A (ja) * 2015-02-04 2016-08-08 住友重機械工業株式会社 レーザアニール方法及びレーザアニール装置
DE102016222005A1 (de) 2015-12-15 2017-06-22 Mitsubishi Electric Corporation Verfahren der Fertigung einer Halbleitervorrichtung
US9653412B1 (en) 2015-12-15 2017-05-16 Mitsubishi Electric Corporation Method of manufacturing semiconductor device
DE102016222005B4 (de) 2015-12-15 2024-01-18 Mitsubishi Electric Corporation Verfahren der Fertigung einer Halbleitervorrichtung
CN108269741A (zh) * 2018-01-11 2018-07-10 上海华虹宏力半导体制造有限公司 晶圆研磨方法
CN110890281A (zh) * 2018-09-11 2020-03-17 三菱电机株式会社 半导体装置的制造方法
US10811368B2 (en) 2018-09-11 2020-10-20 Mitsubishi Electric Corporation Method for manufacturing semiconductor device
CN110890281B (zh) * 2018-09-11 2023-08-18 三菱电机株式会社 半导体装置的制造方法
DE102019213504B4 (de) 2018-09-11 2024-05-08 Mitsubishi Electric Corporation Verfahren zum Herstellen einer Halbleitervorrichtung
JP7586034B2 (ja) 2021-09-03 2024-11-19 株式会社デンソー 半導体装置

Similar Documents

Publication Publication Date Title
JP5599342B2 (ja) 半導体装置の製造方法
US8324044B2 (en) Method of producing a semiconductor device with an aluminum or aluminum alloy electrode
JP4665429B2 (ja) 半導体素子の製造方法
US9870938B2 (en) Semiconductor element producing method by flattening protective tape
JP4360077B2 (ja) 半導体素子の製造方法
JP2007158320A (ja) 半導体装置およびその製造方法
JP5668270B2 (ja) 半導体素子の製造方法
JP2006196710A (ja) 半導体素子の製造方法
JP2007036211A (ja) 半導体素子の製造方法
JP5839768B2 (ja) 半導体装置の製造方法
JP4525048B2 (ja) 半導体装置の製造方法
JP5217114B2 (ja) 半導体素子の製造方法
KR20130108058A (ko) 반도체 장치의 제조 방법
JP4572529B2 (ja) 半導体素子の製造方法
JP2007329234A (ja) 半導体素子の製造方法
JP5867609B2 (ja) 半導体装置の製造方法
JP4337637B2 (ja) 半導体素子の製造方法
JP5772670B2 (ja) 逆阻止型半導体素子の製造方法
JP3960174B2 (ja) 半導体装置の製造方法
JP4830253B2 (ja) 半導体素子の製造方法
JP2004296817A (ja) 半導体装置の製造方法
JP5428149B2 (ja) 半導体素子の製造方法
JP2005005672A (ja) 半導体素子の製造方法および発泡剥離装置
JP5857575B2 (ja) 半導体装置の製造方法
JP2006059929A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091112

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20091112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100302