[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2006075883A - Method for manufacturing h-section steel with projection - Google Patents

Method for manufacturing h-section steel with projection Download PDF

Info

Publication number
JP2006075883A
JP2006075883A JP2004264360A JP2004264360A JP2006075883A JP 2006075883 A JP2006075883 A JP 2006075883A JP 2004264360 A JP2004264360 A JP 2004264360A JP 2004264360 A JP2004264360 A JP 2004264360A JP 2006075883 A JP2006075883 A JP 2006075883A
Authority
JP
Japan
Prior art keywords
flange
cooling
stop temperature
mass
protrusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004264360A
Other languages
Japanese (ja)
Inventor
Hidemi Aoki
秀未 青木
Yoshiaki Maki
義明 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004264360A priority Critical patent/JP2006075883A/en
Publication of JP2006075883A publication Critical patent/JP2006075883A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an H-section steel with projections which has excellent toughness independently of the thickness of a flange and the variations of characteristic values such as toughness like that and strength are small. <P>SOLUTION: When manufacturing the H-section steel with the projections which has the projections on the outer surface of a flange, cooling stopping temperature is set from the range of 500-750°C in accordance with the thickness of the flange and also the outer surface and inner surface of the flange are water-cooled in the range of 0≤( the volume of cooling water to the outer surface of the flange/the volume of cooling water to the inner surface of the flange )≤3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、突起付H形鋼の製造方法に関し、特にフランジの外面および内面の冷却方法に工夫を加えることによって、靱性を向上させると共に、かかる靱性や強度等の特性値のばらつきの低減を図ろうとするものである。   The present invention relates to a method of manufacturing a H-shaped steel with protrusions, and in particular, by improving the cooling method for the outer and inner surfaces of the flange, the toughness is improved and the variation in the characteristic values such as toughness and strength is reduced. It is something to try.

路面覆工板として用いられるH形鋼は、路上を通行する自動車や歩行者のスリップや転倒を防止するために、フランジ表面に突起が設けられている。
また、鉄筋コンクリート構造物において、強度的に鉄筋の過密配筋が必要となる場合、この過密配筋によって施工性が悪化し、工期が長期化するだけでなく、コスト高となるため、鉄筋の代わりに突起を設けたH形鋼をフランジ外面に用いる場合がある。
The H-section steel used as a road surface covering plate is provided with protrusions on the flange surface in order to prevent slipping and falling of automobiles and pedestrians passing on the road.
In addition, in a reinforced concrete structure, if reinforcing bar reinforcement is required due to strength, the overwork arrangement deteriorates workability and not only lengthens the construction period but also increases the cost. In some cases, H-shaped steel provided with protrusions on the outer surface of the flange is used.

このようなフランジ外面に突起を有するH形鋼は、ロール表面に溝を有するロールを用いて、熱間圧延を施すことにより製造される。しかしながら、熱間圧延によってH形鋼に突起を安定して形成するのは容易ではない。
例えば、特許文献1では、覆工板に用いられる突起付H形鋼を製造する場合、突起を形成するための溝付ロールの溝の配置や圧下量の配分などを適正化することによって、その安定製造を図っている。
Such H-shaped steel having protrusions on the outer surface of the flange is manufactured by hot rolling using a roll having grooves on the roll surface. However, it is not easy to stably form protrusions on the H-shaped steel by hot rolling.
For example, in Patent Document 1, when manufacturing a H-shaped steel with a projection used for a lining plate, by optimizing the arrangement of the groove of the grooved roll for forming the projection and the distribution of the reduction amount, We are aiming for stable production.

ところで、従来の突起付H形鋼において、覆工板として用いられる場合の必要性能は、JIS G 3101「一般構造用圧延鋼材」に規定されている SS400の性能で満足されていた。
また、鉄筋の代替として用いられる場合には、JIS G 3106「溶接構造用圧延鋼材」に規定されている SM490YAの性能で満足されていた。
By the way, in the conventional H-shaped steel with protrusions, the required performance when used as a lining plate was satisfied by the performance of SS400 defined in JIS G 3101 “General structural rolled steel”.
In addition, when used as a substitute for reinforcing bars, the performance of SM490YA specified in JIS G 3106 “Rolled steel for welded structures” was satisfied.

しかしながら、上記したSS400およびSM490YAでは、その性能に関し、引張強度、耐力、延びといった機械的性質については保証すべき基準値が設けられているものの、鋼材の靱性を表わす衝撃吸収エネルギー値については特に要求されていない。
そのため、従来の突起付H形鋼は、靱性に関しては必ずしも優れた性能を有しているわけではなかった。
However, in the above-mentioned SS400 and SM490YA, although there are standard values that should be guaranteed for mechanical properties such as tensile strength, proof stress, and elongation, there is a special requirement for the impact absorption energy value that represents the toughness of steel materials. It has not been.
Therefore, the conventional H-shaped steel with protrusions does not necessarily have excellent performance with respect to toughness.

ところが、近年、鉄筋の代替材として使用される突起付H形鋼に関しては、寒冷地で使用されたり、また従来よりも厚肉のH形鋼の適用が求められるようになってきた。
これらの用途に適用する場合には、構造体の性能を保証するために、構造体の主要部材である突起付H形鋼に対して、靱性の保証が要求されるようになってきた。
However, in recent years, the H-shaped steel with protrusions used as an alternative material for reinforcing bars has been used in cold districts, and the application of thicker H-shaped steel than ever has been required.
When applied to these applications, in order to guarantee the performance of the structure, it has been required to guarantee toughness for the H-shaped steel with protrusions, which is the main member of the structure.

従来の突起付H形鋼は、SS400やSM490YAなどの機械的性能をそなえる範囲で、できるだけ低コストで突起を安定して形成できるような成分と製造方法が採用されてきた。
SS400やSM490YAの機械的性能を保証するには、特別な合金を多く含まない一般的な炭素鋼で十分であるが、突起を安定して形成するには、突起を有しないH形鋼に比べて高温での圧延が必要となるため、一般的な炭素鋼では十分な靱性が得られないという問題があった。
すなわち、一般的な炭素鋼を高温で圧延すると、オーステナイトの粗粒再結晶域で圧延が終了するため、変態完了後のフェライト・パーライト組織が粗粒組織となり、その結果、十分な靱性が得られなかったのである。
In conventional H-shaped steel with protrusions, components and manufacturing methods have been adopted so that protrusions can be stably formed at as low a cost as possible within the range of mechanical performance such as SS400 and SM490YA.
In order to guarantee the mechanical performance of SS400 and SM490YA, general carbon steel that does not contain many special alloys is sufficient, but in order to form protrusions stably, compared to H-section steel without protrusions. Since rolling at a high temperature is required, there is a problem that sufficient toughness cannot be obtained with general carbon steel.
That is, when a general carbon steel is rolled at a high temperature, the rolling is completed in the austenite coarse grain recrystallization region, so that the ferrite pearlite structure after the transformation is completed becomes a coarse grain structure, and as a result, sufficient toughness is obtained. There was no.

上記の問題を解決する手段として、特許文献2において、突起を形成するのに必要かつ十分な圧延温度を定め、この圧延温度の下でも十分な靱性値を得られるように、鋼材の成分組成を調整すると共に、圧延後に加速冷却を行うことにより、必要最小限のコストアップで、突起の安定形成と、引張り強さ、降伏点および延びの確保、さらには靱性(衝撃吸収エネルギー値)の改善を図っている。
具体的には、フランジ厚が16mm以上の突起付H形鋼において、突起を形成する際の仕上圧延のフランジ温度を800℃以上とし、この条件下でも0℃における衝撃吸収エネルギー vEo:27J以上を保証するために、厳密に成分組成を調整すると共に、圧延後の加速冷却を冷却速度:6〜40℃/s、冷却停止温度:500〜750℃の条件で行うものである。
As means for solving the above problems, in Patent Document 2, the necessary and sufficient rolling temperature for forming the protrusions is determined, and the steel component composition is set so that sufficient toughness value can be obtained even under this rolling temperature. By adjusting and performing accelerated cooling after rolling, stable formation of protrusions, securing of tensile strength, yield point and elongation, and improvement of toughness (impact absorption energy value) can be achieved with the minimum cost increase. I am trying.
Specifically, in H-shaped steel with protrusions with a flange thickness of 16 mm or more, the final rolling flange temperature when forming protrusions is 800 ° C or higher, and even under this condition, impact absorption energy at 0 ° C vEo: 27J or higher In order to guarantee, the component composition is strictly adjusted, and accelerated cooling after rolling is performed under conditions of a cooling rate: 6 to 40 ° C./s and a cooling stop temperature: 500 to 750 ° C.

しかしながら、上記特許文献2では、板厚に応じた具体的な冷却条件については特に考慮が払われていないため、冷却停止温度が500〜750℃の範囲に収まっている場合でも、製品の厚みによっては、所望の機械的性質が得られない場合があった。   However, in the above-mentioned Patent Document 2, since no particular consideration is given to the specific cooling conditions according to the plate thickness, even if the cooling stop temperature is in the range of 500 to 750 ° C., it depends on the thickness of the product. In some cases, desired mechanical properties could not be obtained.

一方、H形鋼のフランジの冷却については、例えば特許文献3に記載されているように、フランジの外面側(突起付H形鋼の場合の突起を形成する側)から冷却水を噴射することによって冷却するのが一般的である。
しかしながら、突起付H形鋼において、突起を形成した側から冷却水の噴射を行うと、突起の山に冷却水が衝突するケースと突起の谷に冷却水が衝突するケースがランダムに発生する。このため、鋼材の長手方向での温度不均一が発生し、鋼材全体を所望の管理温度範囲内に制御することは極めて難しい。
そのため、冷却不足による強度不足部分や過冷却による強度過大部分が発生し、不適合製品が発生する場合があった。
On the other hand, for cooling the flange of the H-shaped steel, as described in Patent Document 3, for example, the cooling water is injected from the outer surface side of the flange (the side forming the protrusion in the case of the H-shaped steel with a protrusion). It is common to cool by.
However, in the H-shaped steel with protrusions, when the cooling water is jetted from the side where the protrusions are formed, a case where the cooling water collides with the ridges of the protrusions and a case where the cooling water collides with the valleys of the protrusions occur randomly. For this reason, temperature nonuniformity occurs in the longitudinal direction of the steel material, and it is extremely difficult to control the entire steel material within a desired management temperature range.
For this reason, insufficient strength due to insufficient cooling and excessive strength due to overcooling may occur, resulting in non-conforming products.

特開昭50−124861号公報Japanese Patent Laid-Open No. 50-124861 特願2003−045847号明細書Japanese Patent Application No. 2003-045847 特許第2837056号公報Japanese Patent No. 2837056

本発明は、上記の問題を有利に解決するもので、H形鋼のフランジ厚に応じて、冷却停止温度を管理すると共に、フランジの内・外面の冷却水量を適宜調整することによって、フランジ厚にかかわりなく、優れた靱性を得ると共に、かかる靱性や強度等の特性値のばらつきを低減させた、突起付H形鋼の有利な製造方法を提案することを目的とするものである。   The present invention advantageously solves the above-mentioned problem. By controlling the cooling stop temperature according to the flange thickness of the H-shaped steel and adjusting the cooling water amount on the inner and outer surfaces of the flange as appropriate, the flange thickness Regardless of this, an object is to propose an advantageous method for producing a H-shaped steel with projections, in which excellent toughness is obtained and variations in such characteristic values as toughness and strength are reduced.

すなわち、本発明の要旨構成は次のとおりである。
(1)フランジ外面に突起を有する突起付H形鋼の製造に際し、フランジ厚に応じて500〜750℃の範囲から冷却停止温度を設定すると共に、0≦(フランジ外面の冷却水量/フランジ内面の冷却水量)≦3の範囲でフランジの外面および内面を水冷することを特徴とする突起付H形鋼の製造方法。
That is, the gist configuration of the present invention is as follows.
(1) When manufacturing H-shaped steel with protrusions with protrusions on the outer surface of the flange, set the cooling stop temperature from the range of 500 to 750 ° C according to the flange thickness, and 0 ≦ (cooling water amount on the outer surface of flange / inner surface of the flange A method for producing an H-shaped steel with projections, wherein the outer surface and the inner surface of the flange are water-cooled in the range of (cooling water amount) ≦ 3.

(2)C:0.12〜0.15mass%、
Si:0.25〜0.40mass%、
Mn:1.40〜1.60mass%、
Nb:0.020 〜0.040 mass%、
V:0.015 〜0.040 mass%および
Ni:0.10〜0.30mass%
を含有し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間圧延によりH形鋼に成形するに際し、フランジ外面に突起を付与する仕上げ圧延温度を 800℃以上にすると共に、その後の冷却を、冷却開始時のフランジ温度:800 ℃以上、冷却速度:6〜40℃/sの条件下で行うものとし、その際、フランジ厚に応じて500〜750℃の範囲から冷却停止温度を設定すると共に、0≦(フランジ外面の冷却水量/フランジ内面の冷却水量)≦3の範囲でフランジの外面および内面を水冷することを特徴とする、突起付H形鋼の製造方法。
(2) C: 0.12 to 0.15 mass%,
Si: 0.25 ~ 0.40mass%,
Mn: 1.40-1.60 mass%
Nb: 0.020 to 0.040 mass%,
V: 0.015-0.040 mass% and
Ni: 0.10 ~ 0.30mass%
When the steel material having the composition of Fe and inevitable impurities is formed into H-shaped steel by hot rolling, the finish rolling temperature for imparting protrusions to the outer surface of the flange is set to 800 ° C. or higher, and thereafter Cooling shall be performed under the conditions of the flange temperature at the start of cooling: 800 ° C or higher and the cooling rate: 6-40 ° C / s. In this case, the cooling stop temperature is set from 500 to 750 ° C depending on the flange thickness. A method for producing a projection-shaped H-section steel, characterized in that the outer surface and the inner surface of the flange are water-cooled within a range of 0 ≦ (amount of cooling water on the outer surface of the flange / amount of cooling water on the inner surface of the flange) ≦ 3.

フランジ厚tfに応じて、冷却停止温度を下記のとおりに設定することを特徴とする上記(1)または(2)記載の突起付H形鋼の製造方法。

tf<30mm 冷却停止温度:600〜750℃
30mm≦tf<35mm 冷却停止温度:580〜730℃
35mm≦tf<40mm 冷却停止温度:560〜700℃
40mm≦tf 冷却停止温度:500〜650℃
According to the flange thickness tf, the cooling stop temperature is set as follows, and the method for producing the H-shaped steel with projection according to (1) or (2) above.
Record
tf <30mm Cooling stop temperature: 600 ~ 750 ℃
30mm ≦ tf <35mm Cooling stop temperature: 580 ~ 730 ℃
35mm ≦ tf <40mm Cooling stop temperature: 560 ~ 700 ℃
40mm ≦ tf Cooling stop temperature: 500 ~ 650 ℃

本発明によれば、フランジ冷却時の温度のバラツキを小さくすることができ、その結果フランジの機械的性質のバラツキも抑えられるので、不良品の発生率が減少できる。
従って、本発明によれば、優れた靱性を有する突起付H形鋼をより低コストで製造できるだけでなく、納期までに安定して供給することができる。
According to the present invention, the variation in temperature at the time of cooling the flange can be reduced. As a result, the variation in the mechanical properties of the flange can be suppressed, so that the incidence of defective products can be reduced.
Therefore, according to the present invention, the H-shaped steel with protrusions having excellent toughness can be manufactured at a lower cost, and can be stably supplied by the delivery date.

以下、本発明を具体的に説明する。
まず、本発明の好適成分組成範囲について述べると、次のとおりである。
C:0.12〜0.15mass%
Cは、低コストで強度を得るのに有利な元素であるので、0.12mass%以上含有させることが好ましい。しかしながら、含有量が0.15mass%を超えると靱性の低下を招くので、Cは0.12〜0.15mass%程度とするのが好適である。
なお、C量を低く抑えたことによる機械的強度の低下については、後述するNbおよびVで補償することができる。
The present invention will be specifically described below.
First, the preferred component composition range of the present invention will be described as follows.
C: 0.12-0.15 mass%
Since C is an element advantageous for obtaining strength at low cost, it is preferably contained in an amount of 0.12 mass% or more. However, if the content exceeds 0.15 mass%, the toughness is reduced, so C is preferably about 0.12 to 0.15 mass%.
Note that a decrease in mechanical strength caused by keeping the C amount low can be compensated by Nb and V described later.

Si:0.25〜0.40mass%
Siは、脱酸剤として0.25mass%以上含有させることが好ましい。しかしながら、含有量が0.40mass%を超えると靱性の低下を招くので、Siは0.25〜0.40mass%程度とするのが好適である。
Si: 0.25 ~ 0.40mass%
Si is preferably contained in an amount of 0.25 mass% or more as a deoxidizer. However, if the content exceeds 0.40 mass%, the toughness is reduced, so Si is preferably about 0.25 to 0.40 mass%.

Mn:1.40〜1.60mass%
Mnは、強度と靱性を向上させるために1.40mass%以上含有させることが好ましい。しかしながら、含有量が1.60mass%を超えるとJIS 規格値外れとなるので、Mnは1.40〜1.60mass%程度とするのが好適である。
Mn: 1.40 to 1.60 mass%
Mn is preferably contained in an amount of 1.40 mass% or more in order to improve strength and toughness. However, if the content exceeds 1.60 mass%, the JIS standard value is deviated, so Mn is preferably set to about 1.40 to 1.60 mass%.

Nb:0.020 〜0.040 mass%
Nbは、炭窒化物を形成することによって、引張り強さや降伏点の向上に有効に寄与するが、含有量が 0.020mass%に満たないとその添加効果に乏しく、一方 0.040mass%を超えると靱性が劣化するので、Nbは 0.020〜0.040 mass%程度とするのが好適である。
Nb: 0.020 to 0.040 mass%
Nb contributes effectively to the improvement of tensile strength and yield point by forming carbonitride, but if the content is not less than 0.020 mass%, its additive effect is poor, while if it exceeds 0.040 mass%, toughness Therefore, Nb is preferably about 0.020 to 0.040 mass%.

V:0.015 〜0.040 mass%
Vも、Nbと同様、炭窒化物の形成によって、引張り強さや降伏点を向上させる有用元素であるが、含有量が 0.015mass%に満たないとその添加効果に乏しく、一方 0.040mass%を超えると延びが低下するので、Vは 0.015〜0.040 mass%程度とするのが好適である。
V: 0.015-0.040 mass%
V, like Nb, is a useful element that improves the tensile strength and yield point by the formation of carbonitrides. However, if the content is less than 0.015 mass%, the addition effect is poor, whereas it exceeds 0.040 mass%. Therefore, V is preferably about 0.015 to 0.040 mass%.

Ni:0.10〜0.30mass%
Niは、靱性の向上のために0.10mass%以上含有させることが好ましい。しかしながら、含有量の増加と共にコストアップの弊害が生じるので、Niは0.10〜0.30mass%程度とするのが好適である。
Ni: 0.10 ~ 0.30mass%
Ni is preferably contained in an amount of 0.10 mass% or more for improving toughness. However, since an increase in the content causes an adverse effect of cost increase, it is preferable that Ni is about 0.10 to 0.30 mass%.

次に、本発明の好適製造条件について説明する。
鋼の溶製法および鋳造法については特に制限はなく、従来公知の方法いずれもが適合する。また、H形鋼に成形するための熱間圧延条件も特に制限されることはなく、常法に従って行えば良い。
但し、フランジ外面に突起を付与するための仕上げ圧延温度およびその後の冷却(加速冷却)については、以下の条件を満足させることが好ましい。
Next, preferred manufacturing conditions of the present invention will be described.
There is no restriction | limiting in particular about the melting method and casting method of steel, All the conventionally well-known methods are suitable. Further, the hot rolling conditions for forming the H-shaped steel are not particularly limited, and may be performed according to a conventional method.
However, it is preferable that the following conditions are satisfied for the finish rolling temperature and the subsequent cooling (accelerated cooling) for imparting protrusions to the flange outer surface.

仕上げ圧延温度:800 ℃以上
この仕上げ温度が 800℃に満たないと、安定して突起を形成することが難しいので、 800℃以上とすることが好ましい。
Finishing rolling temperature: 800 ° C. or higher If this finishing temperature is less than 800 ° C., it is difficult to stably form protrusions.

冷却開始時のフランジ温度:800 ℃以上
仕上げ圧延時の鋼材の温度は、突起を安定して形成する目的から、上述したとおり 800℃以上としているため、圧延直後の鋼材のフランジ温度も 800℃以上となる。本発明では、圧延直後に鋼材の冷却を開始することによって生産能率の低下を防止することを目的としているので、冷却開始時のフランジ温度も 800℃以上とすることが好ましい。
Flange temperature at the start of cooling: 800 ° C or higher Since the temperature of the steel during finish rolling is 800 ° C or higher as described above for the purpose of stably forming protrusions, the flange temperature of the steel immediately after rolling is also 800 ° C or higher. It becomes. In the present invention, the purpose is to prevent the reduction in production efficiency by starting the cooling of the steel material immediately after rolling, so the flange temperature at the start of cooling is preferably set to 800 ° C. or higher.

冷却速度:6〜40℃/s
冷却速度は、これを制御することによって変態挙動を制御し、所望の組織形態とすることができる。フェライト変態によるフェライト・パーライト組織を得て、フェライト分率の向上により引張り強さや降伏点を向上させるためには、6℃/s以上の冷却速度とすることが好ましい。しかしながら、冷却速度が40℃/sを超えて大きくなると変態挙動が変化し、ベイナイト変態あるいはマルテンサイト変態が生じて引張り強さが上昇し過ぎる弊害が生じるので、冷却速度は6〜40℃/s程度とするのが好適である。
Cooling rate: 6 ~ 40 ℃ / s
By controlling the cooling rate, the transformation behavior can be controlled by controlling this, and the desired tissue morphology can be obtained. In order to obtain a ferrite pearlite structure by ferrite transformation and improve the tensile strength and yield point by improving the ferrite fraction, it is preferable to set the cooling rate to 6 ° C./s or more. However, if the cooling rate increases beyond 40 ° C / s, the transformation behavior changes, and the bainite transformation or martensite transformation occurs, resulting in an adverse effect of excessive increase in tensile strength, so the cooling rate is 6-40 ° C / s. It is preferable to set the degree.

冷却停止温度:500〜750 ℃
本発明では、この冷却停止温度を、フランジ厚に応じて500〜750℃の範囲から的確に選択することが重要である。
ここに、全体としての冷却停止温度範囲を500〜750℃の範囲に限定した理由は次のとおりである。
加速冷却における冷却停止温度を低下させることは、フェライト・パーライト変態において組織を微細化する効果があり、靱性の向上と共に引張り強さや降伏点の向上を図るためには、冷却停止温度は 750℃以下とする必要がある。しかしながら、冷却停止温度が 500℃未満になるとフランジの傘折れ形状が大きくなるだけでなく、引張り強さが上昇し過ぎる弊害が生じるので、冷却停止温度は 500〜750 ℃の範囲に制御するものとした。
Cooling stop temperature: 500 ~ 750 ℃
In the present invention, it is important to accurately select the cooling stop temperature from the range of 500 to 750 ° C. according to the flange thickness.
The reason why the cooling stop temperature range as a whole is limited to the range of 500 to 750 ° C. is as follows.
Decreasing the cooling stop temperature in accelerated cooling has the effect of refining the structure in the ferrite-pearlite transformation, and the cooling stop temperature is 750 ° C or lower in order to improve the toughness and the tensile strength and yield point. It is necessary to. However, if the cooling stop temperature is less than 500 ° C, not only will the flange bend shape increase, but the tensile strength will increase too much, so the cooling stop temperature should be controlled in the range of 500-750 ° C. did.

フランジ外・内面の冷却水量比(フランジ外面の冷却水量/フランジ内面の冷却水量):0〜3
また、本発明では、フランジ外面および内面に対する冷却水量の比を、0≦(フランジ外面の冷却水量/フランジ内面の冷却水量)≦3の範囲で調整することが重要である。
H形鋼の冷却に際し、フランジ外面側からのみ冷却した場合、冷却停止温度のばらつきは、およそ±100℃であり、機械的性質を満足するための冷却停止温度の管理範囲(150℃)から外れる場合が生じる。
従って、冷却停止温度を管理範囲内に制御するためには、フランジ外面側の冷却の比率を抑制し(好ましくは75%以下)、一方冷却停止温度のばらつきを発生しにくいフランジ内面側からの冷却を増強する(好ましくは25%以上)ことが望ましい。
従って、理想的にはフランジ内面側からの冷却を100%とすることであるが、フランジ内面側の冷却のみでは所望の冷却能力が得られない場合があるので、かような場合にはフランジ外面側からの冷却を併用するわけである。
Cooling water amount ratio between the outer and inner surfaces of the flange (cooling water amount on the outer surface of the flange / cooling water amount on the inner surface of the flange): 0 to 3
In the present invention, it is important to adjust the ratio of the cooling water amount to the outer surface and the inner surface of the flange in a range of 0 ≦ (cooling water amount on the outer surface of the flange / cooling water amount on the inner surface of the flange) ≦ 3.
When cooling the H-shaped steel, if it is cooled only from the outer surface side of the flange, the variation in the cooling stop temperature is approximately ± 100 ° C, which is outside the control range (150 ° C) of the cooling stop temperature to satisfy the mechanical properties. Cases arise.
Therefore, in order to control the cooling stop temperature within the control range, the cooling ratio on the outer surface side of the flange is suppressed (preferably 75% or less), while the cooling from the inner surface side of the flange is less likely to cause variations in the cooling stop temperature. It is desirable to enhance (preferably 25% or more).
Therefore, ideally, the cooling from the inner surface of the flange should be 100%, but the desired cooling capacity may not be obtained only by cooling the inner surface of the flange. Cooling from the side is used together.

ちなみに、フランジ厚tfに応じた好適な冷却停止温度は次のとおりである。
tf<30mm 冷却停止温度:600〜750℃
30mm≦tf<35mm 冷却停止温度:580〜730℃
35mm≦tf<40mm 冷却停止温度:560〜700℃
40mm≦tf 冷却停止温度:500〜650℃
Incidentally, the suitable cooling stop temperature according to the flange thickness tf is as follows.
tf <30mm Cooling stop temperature: 600 ~ 750 ℃
30mm ≦ tf <35mm Cooling stop temperature: 580 ~ 730 ℃
35mm ≦ tf <40mm Cooling stop temperature: 560 ~ 700 ℃
40mm ≦ tf Cooling stop temperature: 500 ~ 650 ℃

上記したような成分調整および制御冷却を行うことにより、フランジ厚が16mm以上の突起付H形鋼において、仕上げ圧延温度:800 ℃以上の条件下で安定して突起が形成できるだけでなく、引張り強さが 490 MPa以上、610 MPa 以下、降伏点が 355 MPa以上、延びが19%以上、そして0℃における衝撃吸収エネルギー V0 が27J以上という優れた機械的性能を、かような特性値のバラツキなしに安定して得ることができる。 By adjusting the components and controlling cooling as described above, in the H-shaped steel with protrusions with a flange thickness of 16mm or more, not only can the protrusions be stably formed under the condition of the finish rolling temperature of 800 ° C or more, but also the tensile strength Excellent mechanical performance with a characteristic value of 490 MPa or more, 610 MPa or less, a yield point of 355 MPa or more, an elongation of 19% or more, and an impact absorption energy V E 0 at 0 ° C of 27 J or more. It can be obtained stably without variation.

なお、本発明で対象とする突起付H形鋼は、そのフランジ厚が特に限定されることはないが、本発明は、突起高さの形成効率が低下するとされる、フランジ厚が16mm以上(好ましくは42mm以下)の厚肉のH形鋼に適用して特に好適である。   In addition, although the flange thickness of the H-shaped steel with projections targeted in the present invention is not particularly limited, the present invention is said to have a flange thickness of 16 mm or more (the formation efficiency of the projection height is reduced) ( It is particularly suitable when applied to a thick H-shaped steel (preferably 42 mm or less).

表1〜4に示す成分組成になる鋼材を、同じく表1〜4に示す種々の冷却方法並びに種々の冷却停止温度条件下で熱間圧延することにより、断面寸法(ウェブ高さ×フランジ幅×ウェブ厚×フランジ厚)が350×333×35×40(mm)、340×328×30×35(mm)、332×324×26×31(mm)、320×323×25×25(mm)の突起付H形鋼を製造した。なお、冷却速度は全長で6〜40℃/sとなるようにした。
かくして得られた突起付H形鋼の突起高さ、引張り強さ、降伏点、延びおよび0℃における衝撃吸収エネルギーvEoについて調べた結果を、表1〜4に併記する。
なお、かかる特性値の測定は、鋼材の先端部(Top)、中央部(Mid)および尾端部(Bot)について行い、そのバラツキを測定した。
また、突起高さの要求性能下限値は2.1mm、引張り強さ、降伏点、延びおよび0℃にお ける衝撃吸収エネルギーvEoの許容値はそれぞれ、490〜610MPa、355MPa以上、19%以上、27J以上である。
The steel materials having the component compositions shown in Tables 1 to 4 are hot-rolled under various cooling methods and various cooling stop temperature conditions that are also shown in Tables 1 to 4, so that cross-sectional dimensions (web height × flange width × Web thickness x flange thickness) is 350 x 333 x 35 x 40 (mm), 340 x 328 x 30 x 35 (mm), 332 x 324 x 26 x 31 (mm), 320 x 323 x 25 x 25 (mm) H-shaped steel with protrusions was manufactured. The cooling rate was 6 to 40 ° C./s over the entire length.
The results of examining the protrusion height, tensile strength, yield point, elongation, and impact absorption energy vEo at 0 ° C. of the H-shaped steel with protrusions thus obtained are also shown in Tables 1 to 4.
Such characteristic values were measured for the tip (Top), center (Mid), and tail (Bot) of the steel material, and the variation was measured.
The lower limit of the required performance of the protrusion height is 2.1 mm, and the allowable values of tensile strength, yield point, elongation, and impact absorption energy vEo at 0 ° C are 490 to 610 MPa, 355 MPa or more, 19% or more, 27 J, respectively. That's it.

Figure 2006075883
Figure 2006075883

Figure 2006075883
Figure 2006075883

Figure 2006075883
Figure 2006075883

Figure 2006075883
Figure 2006075883

Figure 2006075883
Figure 2006075883

Figure 2006075883
Figure 2006075883

表1〜4から明らかなように、発明例はいずれも長手位置3ケ所において、フランジ厚の如何にかかわらず、突起高さが2.1mm以上を満足するだけでなく、引張り強さ≧490MPa、降伏点≧355MPa、延び≧19%および0℃における衝撃吸収エネルギーvEo≧27Jを満足しており、衝撃靱性値を保証した突起付H形鋼として十分使用に耐え得る。
また、発明例はいずれも、長手方向における各特性値のバラツキが小さい。
As is apparent from Tables 1 to 4, all of the invention examples were not only satisfied with a projection height of 2.1 mm or more at three longitudinal positions, regardless of the flange thickness, but also had a tensile strength of ≧ 490 MPa, yield. It satisfies the point ≧ 355 MPa, the elongation ≧ 19%, and the impact absorption energy vEo ≧ 27 J at 0 ° C., and can sufficiently withstand use as a protuberance-shaped H-section steel with a guaranteed impact toughness value.
In addition, all the inventive examples have small variations in the characteristic values in the longitudinal direction.

Claims (3)

フランジ外面に突起を有する突起付H形鋼の製造に際し、フランジ厚に応じて500〜750℃の範囲から冷却停止温度を設定すると共に、0≦(フランジ外面の冷却水量/フランジ内面の冷却水量)≦3の範囲でフランジの外面および内面を水冷することを特徴とする突起付H形鋼の製造方法。   When manufacturing H-shaped steel with protrusions on the outer surface of the flange, set the cooling stop temperature from 500 to 750 ° C depending on the flange thickness, and 0 ≤ (cooling water amount on the outer surface of the flange / cooling water amount on the inner surface of the flange) A method for producing a projection-shaped H-section steel, wherein the outer surface and the inner surface of the flange are water-cooled within a range of ≦ 3. C:0.12〜0.15mass%、
Si:0.25〜0.40mass%、
Mn:1.40〜1.60mass%、
Nb:0.020 〜0.040 mass%、
V:0.015 〜0.040 mass%および
Ni:0.10〜0.30mass%
を含有し、残部はFeおよび不可避的不純物の組成になる鋼材を、熱間圧延によりH形鋼に成形するに際し、フランジ外面に突起を付与する仕上げ圧延温度を 800℃以上にすると共に、その後の冷却を、冷却開始時のフランジ温度:800 ℃以上、冷却速度:6〜40℃/sの条件下で行うものとし、その際、フランジ厚に応じて500〜750℃の範囲から冷却停止温度を設定すると共に、0≦(フランジ外面の冷却水量/フランジ内面の冷却水量)≦3の範囲でフランジの外面および内面を水冷することを特徴とする、突起付H形鋼の製造方法。
C: 0.12-0.15 mass%
Si: 0.25 ~ 0.40mass%,
Mn: 1.40-1.60 mass%
Nb: 0.020 to 0.040 mass%,
V: 0.015-0.040 mass% and
Ni: 0.10 ~ 0.30mass%
When the steel material having the composition of Fe and inevitable impurities is formed into H-shaped steel by hot rolling, the finish rolling temperature for imparting protrusions to the outer surface of the flange is set to 800 ° C. or higher, and thereafter Cooling shall be performed under the conditions of the flange temperature at the start of cooling: 800 ° C or higher and the cooling rate: 6-40 ° C / s. In this case, the cooling stop temperature is set from 500 to 750 ° C depending on the flange thickness. A method for producing a projection-shaped H-section steel, characterized in that the outer surface and the inner surface of the flange are water-cooled within a range of 0 ≦ (amount of cooling water on the outer surface of the flange / amount of cooling water on the inner surface of the flange) ≦ 3.
フランジ厚tfに応じて、冷却停止温度を下記のとおりに設定することを特徴とする請求項1または2記載の突起付H形鋼の製造方法。

tf<30mm 冷却停止温度:600〜750℃
30mm≦tf<35mm 冷却停止温度:580〜730℃
35mm≦tf<40mm 冷却停止温度:560〜700℃
40mm≦tf 冷却停止温度:500〜650℃
The method for producing a H-shaped steel with projection according to claim 1 or 2, wherein the cooling stop temperature is set as follows according to the flange thickness tf.
Record
tf <30mm Cooling stop temperature: 600 ~ 750 ℃
30mm ≦ tf <35mm Cooling stop temperature: 580 ~ 730 ℃
35mm ≦ tf <40mm Cooling stop temperature: 560 ~ 700 ℃
40mm ≦ tf Cooling stop temperature: 500 ~ 650 ℃
JP2004264360A 2004-09-10 2004-09-10 Method for manufacturing h-section steel with projection Withdrawn JP2006075883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004264360A JP2006075883A (en) 2004-09-10 2004-09-10 Method for manufacturing h-section steel with projection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004264360A JP2006075883A (en) 2004-09-10 2004-09-10 Method for manufacturing h-section steel with projection

Publications (1)

Publication Number Publication Date
JP2006075883A true JP2006075883A (en) 2006-03-23

Family

ID=36155773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004264360A Withdrawn JP2006075883A (en) 2004-09-10 2004-09-10 Method for manufacturing h-section steel with projection

Country Status (1)

Country Link
JP (1) JP2006075883A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210118926A (en) 2019-01-31 2021-10-01 제이에프이 스틸 가부시키가이샤 H-beam with projections and manufacturing method thereof
KR20210118925A (en) 2019-01-31 2021-10-01 제이에프이 스틸 가부시키가이샤 H-beam with projections and manufacturing method thereof
JP2022027236A (en) * 2020-07-31 2022-02-10 Jfeスチール株式会社 H-shape steel with protrusion and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210118926A (en) 2019-01-31 2021-10-01 제이에프이 스틸 가부시키가이샤 H-beam with projections and manufacturing method thereof
KR20210118925A (en) 2019-01-31 2021-10-01 제이에프이 스틸 가부시키가이샤 H-beam with projections and manufacturing method thereof
KR102588284B1 (en) 2019-01-31 2023-10-11 제이에프이 스틸 가부시키가이샤 H-beam having protrusions, and manufacturing method for same
KR102602081B1 (en) 2019-01-31 2023-11-13 제이에프이 스틸 가부시키가이샤 H-beam having protrusions, and manufacturing method for same
JP2022027236A (en) * 2020-07-31 2022-02-10 Jfeスチール株式会社 H-shape steel with protrusion and its manufacturing method
JP7347361B2 (en) 2020-07-31 2023-09-20 Jfeスチール株式会社 H-shaped steel with protrusions and its manufacturing method

Similar Documents

Publication Publication Date Title
JP5598225B2 (en) High-strength hot-rolled steel sheet with excellent bending characteristics and low-temperature toughness and method for producing the same
JP5644982B1 (en) ERW welded steel pipe
JP5825189B2 (en) High-strength hot-rolled steel sheet excellent in elongation, hole expansibility and low-temperature toughness, and method for producing the same
JP5825082B2 (en) High yield ratio high strength cold-rolled steel sheet with excellent elongation and stretch flangeability and its manufacturing method
JP2012251200A (en) Method for manufacturing hot rolled steel sheet
JP6460258B2 (en) High strength hot-rolled steel sheet and manufacturing method thereof
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP6519024B2 (en) Method of manufacturing low yield ratio high strength hot rolled steel sheet excellent in low temperature toughness
JP5413276B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2007177326A (en) High tensile strength thin steel sheet having low yield ratio and its production method
JPH10306316A (en) Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
WO2012020847A1 (en) High-strength hot-rolled steel sheet having excellent workability, and a method for producing same
JP5701483B2 (en) Extremely thick steel plate for welded structure with excellent strength and toughness at the center of thickness and little material deviation, and method for manufacturing the same
JP2006336065A (en) Low yield-ratio high tensile-strength steel, and method for producing low yield-ratio high tensile-strength steel
JP3889765B2 (en) High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method
JP2021063253A (en) High-strength hot-rolled steel sheet and method for manufacturing the same
JP4840270B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP4045977B2 (en) H-shaped steel with projections excellent in hot workability and toughness and method for producing the same
JP2021143389A (en) H-section steel with ridges and manufacturing method thereof
JP2006075883A (en) Method for manufacturing h-section steel with projection
JP2017025397A (en) Hot rolled steel sheet and method of producing the same
JP3857875B2 (en) High-strength hot-rolled steel sheet excellent in hole expansibility and ductility and manufacturing method thereof
JP6213098B2 (en) High-strength hot-rolled steel sheet with excellent fatigue characteristics and method for producing the same
JP5187151B2 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
JP3945373B2 (en) Method for producing cold-rolled steel sheet with fine grain structure and excellent fatigue characteristics

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060606

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204