JP2006054107A - Cathode active substance for nonaqueous electrolyte secondary battery and secondary battery using the same, and manufacturing method and inspection method of cathode activating substance for nonaqueous electrolyte secondary batter - Google Patents
Cathode active substance for nonaqueous electrolyte secondary battery and secondary battery using the same, and manufacturing method and inspection method of cathode activating substance for nonaqueous electrolyte secondary batter Download PDFInfo
- Publication number
- JP2006054107A JP2006054107A JP2004234896A JP2004234896A JP2006054107A JP 2006054107 A JP2006054107 A JP 2006054107A JP 2004234896 A JP2004234896 A JP 2004234896A JP 2004234896 A JP2004234896 A JP 2004234896A JP 2006054107 A JP2006054107 A JP 2006054107A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- secondary battery
- active material
- electrolyte secondary
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、非水系電解質二次電池用正極活物質およびこれを用いた非水系電解質二次電池、並びに非水系電解質二次電池用正極活物質の製造方法および検査方法に関する。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery using the same, and a method for producing and inspecting a positive electrode active material for a non-aqueous electrolyte secondary battery.
近年、携帯電話やノート型パソコンなどの携帯機器の普及にともない、高いエネルギー密度を有する小型で軽量な二次電池の開発が強く望まれている。このような二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池の負極材料には、リチウム金属やリチウム合金、金属酸化物、あるいはカーボン等が用いられている。これらの材料は、リチウムを脱離・挿入することが可能な材料である。リチウムイオン二次電池については、現在、研究開発が盛んに行われている。 In recent years, with the widespread use of portable devices such as mobile phones and notebook computers, development of small and lightweight secondary batteries having high energy density is strongly desired. As such a secondary battery, there is a lithium ion secondary battery. Lithium metal, lithium alloy, metal oxide, carbon, or the like is used as a negative electrode material for a lithium ion secondary battery. These materials are materials capable of removing and inserting lithium. Research and development of lithium-ion secondary batteries are currently being actively conducted.
この中でも、リチウム金属複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として期待され、実用化が進んでいる。このリチウムコバルト複合酸化物(LiCoO2)を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。 Among these, a lithium ion secondary battery using a lithium metal composite oxide, particularly a lithium cobalt composite oxide that is relatively easy to synthesize as a positive electrode material, has a high energy density because a high voltage of 4V can be obtained. Is expected to be put to practical use. In the lithium ion secondary battery using this lithium cobalt composite oxide (LiCoO 2 ), many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. ing.
しかし、リチウムコバルト複合酸化物(LiCoO2)は、原料に希産で高価なコバルト化合物を用いているため、電池のコストアップの原因となる。このため、正極活物質としてリチウムコバルト複合酸化物(LiCoO2)以外のものを用いることが望まれている。 However, since lithium cobalt complex oxide (LiCoO 2 ) uses a rare and expensive cobalt compound as a raw material, it causes an increase in battery cost. For this reason, it is desired to use materials other than lithium cobalt composite oxide (LiCoO 2 ) as the positive electrode active material.
また、最近は、携帯機器用の小型二次電池だけではなく、電力貯蔵用や、電気自動車用などの大型二次電池へリチウムイオン二次電池を適用することへの期待も高まってきている。このため、活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることは、広範な分野への大きな波及効果がある。 Recently, there is an increasing expectation that lithium ion secondary batteries will be applied not only to small secondary batteries for portable devices, but also to large secondary batteries for power storage and electric vehicles. For this reason, reducing the cost of the active material and making it possible to manufacture a cheaper lithium ion secondary battery has a large ripple effect on a wide range of fields.
リチウムイオン二次電池用正極活物質として新たに提案されている材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn2O4)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)を挙げることができる。 Newly proposed materials as positive electrode active materials for lithium ion secondary batteries include lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide using nickel. (LiNiO 2 ).
リチウムマンガン複合酸化物(LiMn2O4)は原料が安価である上、熱安定性(発火などについての安全性)に優れるため、リチウムコバルト複合酸化物(LiCoO2)の有力な代替材料であるといえるが、理論容量がリチウムコバルト複合酸化物(LiCoO2)のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持つ。また、45℃以上では、自己放電が激しく、充放電寿命も低下するという欠点もある。 Lithium-manganese composite oxide (LiMn 2 O 4 ) is a powerful alternative to lithium-cobalt composite oxide (LiCoO 2 ) because it is inexpensive and has excellent thermal stability (safety with respect to ignition, etc.) However, since the theoretical capacity is only about half that of lithium cobalt composite oxide (LiCoO 2 ), it has a drawback that it is difficult to meet the demand for higher capacity lithium ion secondary batteries that are increasing year by year. Further, at 45 ° C. or higher, there is a drawback that self-discharge is intense and the charge / discharge life is also reduced.
一方、リチウムニッケル複合酸化物(LiNiO2)は、リチウムコバルト複合酸化物(LiCoO2)とほぼ同じ理論容量を持ち、リチウムコバルト複合酸化物よりもやや低い電池電圧を示す。このため、電解液の酸化による分解が問題になりにくく、より高容量が期待できることから、開発が盛んに行われている。 On the other hand, lithium nickel composite oxide (LiNiO 2 ) has substantially the same theoretical capacity as lithium cobalt composite oxide (LiCoO 2 ), and shows a slightly lower battery voltage than lithium cobalt composite oxide. For this reason, decomposition | disassembly by oxidation of electrolyte solution does not become a problem, and development is performed actively from expecting higher capacity | capacitance.
しかし、ニッケルを他の元素で置換せずに、純粋にニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用いてリチウムイオン二次電池を作製した場合、リチウムコバルト複合酸化物に比べサイクル特性が劣る。また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点を有している。 However, when a lithium-ion secondary battery is made using a lithium-nickel composite oxide composed solely of nickel as a positive electrode active material without replacing nickel with other elements, the cycle is higher than that of lithium-cobalt composite oxide. Inferior properties. In addition, the battery performance is relatively low when used or stored in a high temperature environment.
このような欠点を解決するために、例えば特許文献1(特開平8−213015号公報)では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LixNiaCobMcO2 (0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、Cu及びZnから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物が提案されている。 In order to solve such drawbacks, for example, in Patent Document 1 (Japanese Patent Laid-Open No. Hei 8-213015), Li x Ni a Co is used for the purpose of improving the self-discharge characteristics and cycle characteristics of a lithium ion secondary battery. b M c O 2 (0.8 ≦ x ≦ 1.2,0.01 ≦ a ≦ 0.99,0.01 ≦ b ≦ 0.99,0.01 ≦ c ≦ 0.3,0.8 ≦ There has been proposed a lithium nickel composite oxide represented by a + b + c ≦ 1.2, where M is at least one element selected from Al, V, Mn, Fe, Cu, and Zn.
また、特許文献2(特開平8−45509号公報)では、高温環境下での保存や使用に際して良好な電池性能を維持することのできる正極活物質として、LiwNixCoyBzO2 (0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1)で表されるリチウムニッケル複合酸化物等が提案されている。 In Patent Document 2 (Japanese Patent Laid-Open No. 8-45509), Li w Ni x Co y B z O 2 is used as a positive electrode active material capable of maintaining good battery performance during storage and use in a high temperature environment. A lithium nickel composite oxide represented by (0.05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, x + y + z = 1) has been proposed. .
リチウムニッケル複合酸化物は、従来の製造方法によって得られたものであっても、リチウムコバルト複合酸化物に比べて充電容量、放電容量はともに高く、サイクル特性も改善されている。しかし、特許文献1および2に記載されたリチウムニッケル複合酸化物であっても、出力特性は十分なものとはいえなかった。その原因は、主として正極活物質の導電性が低いことと、リチウムの拡散性が十分でないことにある。そのため、電池を形成する際、十分な導電性を確保するために正極活物質とともに混合する導電材の量を増やさざるを得ず、その結果、電池全体としての質量当たり、および体積当たりの容量が小さくなるという問題があった。
Even if the lithium nickel composite oxide is obtained by a conventional manufacturing method, both the charge capacity and the discharge capacity are higher than those of the lithium cobalt composite oxide, and the cycle characteristics are also improved. However, even with the lithium-nickel composite oxide described in
前述したように、最近ではリチウムイオン二次電池を大型電池に用いようという動きも盛んであり、中でもハイブリッド自動車用、電気自動車用の電源としての期待が大きい。自動車用の電源として用いられる場合、特に重要なのは出力特性であるので、出力特性が十分ではないというリチウムニッケル複合酸化物の問題点の解消は大きな課題である。 As described above, recently, a movement to use a lithium ion secondary battery for a large-sized battery is also active, and there is a great expectation as a power source for a hybrid vehicle and an electric vehicle. When used as a power source for automobiles, the output characteristic is particularly important. Therefore, it is a big problem to solve the problem of the lithium nickel composite oxide that the output characteristic is not sufficient.
次に、電池の充放電反応に関連した技術について述べる。 Next, techniques related to battery charge / discharge reactions will be described.
電池の充放電反応は、正極活物質内のリチウムイオンが可逆的に出入りすることで進行する。リチウムイオンの出入りは正極活物質表面から電解液を介して行われるから、同じ電流量であれば、正極活物質の表面積が大きいほど活物質単位面積当たりの電流密度は小さくなり、リチウムの拡散にとって有利に働く。 The charge / discharge reaction of the battery proceeds as lithium ions in the positive electrode active material reversibly enter and exit. Since lithium ions enter and exit from the surface of the positive electrode active material through the electrolyte, the current density per unit area of the active material decreases as the surface area of the positive electrode active material increases for the same current amount. Works in an advantageous manner.
したがって、正極活物質の粒径をできるだけ小さくし、比表面積をできるだけ大きくしたものの方が、リチウムの拡散性が良好となり、出力特性の向上が期待できる。 Therefore, the positive electrode active material having a particle size as small as possible and a specific surface area as large as possible has better lithium diffusibility and can be expected to improve output characteristics.
このため、従来開示されている方法の中には、前記観点から正極活物質の比表面積を制御し、比表面積や細孔容積を一定の範囲に規定したものが多く見受けられる(例えば、特許文献3〜5参照)。 For this reason, among the conventionally disclosed methods, there are many methods in which the specific surface area of the positive electrode active material is controlled from the above viewpoint and the specific surface area and pore volume are regulated within a certain range (for example, Patent Documents). 3-5).
しかし、不活性ガスなどの気体を用いて測定するBET法で測定した比表面積は、正極活物質と電解液とが実質的に接触する面積(正極活物質が電解液中にある場合)を表していることは少ない。このため、BET法で測定した比表面積は、必ずしも電池特性、特に出力特性と対応するわけではない。 However, the specific surface area measured by the BET method measured using a gas such as an inert gas represents the area where the positive electrode active material and the electrolytic solution are substantially in contact (when the positive electrode active material is in the electrolytic solution). There are few things. For this reason, the specific surface area measured by the BET method does not necessarily correspond to battery characteristics, particularly output characteristics.
例えば、BET法で測定した比表面積が0.2m2/g程度以下であるような、非常に小さい比表面積をもつ正極活物質の場合には、該正極活物質と電解液との接触面積も確かに小さく、出力特性が悪化する傾向が見られる。一方、BET法で測定した比表面積が0.4m2/g程度以上の正極活物質の場合であっても、必ずしも出力特性に優れるとは限らず、BET法で測定した比表面積にだけ着目しても、出力特性を満足する所望の正極活物質が得られるとは限らないといった問題点を有していた。 For example, in the case of a positive electrode active material having a very small specific surface area such that the specific surface area measured by the BET method is about 0.2 m 2 / g or less, the contact area between the positive electrode active material and the electrolytic solution is also Certainly, it is small and the output characteristics tend to deteriorate. On the other hand, even in the case of a positive electrode active material having a specific surface area measured by the BET method of about 0.4 m 2 / g or more, the output characteristics are not always excellent, and only the specific surface area measured by the BET method is focused. However, there is a problem that a desired positive electrode active material satisfying output characteristics is not always obtained.
本発明は、かかる問題点に鑑みてなされたものであって、非水系電解質二次電池の正極に用いた場合に出力特性が良好な正極活物質を提供することを目的とする。 This invention is made | formed in view of this problem, Comprising: It aims at providing the positive electrode active material with favorable output characteristics, when it uses for the positive electrode of a non-aqueous electrolyte secondary battery.
本願第1発明に係る非水系電解質二次電池用正極活物質は、一般式LiNi1-xMxO2(但し、式中のxの値の範囲は、0<x≦0.25であり、式中のMは、Co、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種の元素を示す。)で表されるリチウム金属複合酸化物の粉末からなり、かつ、非水系電解質二次電池に用いられる電解液に該粉末を浸漬した際に発生する熱量が0.5J/g以上であることを特徴とする。なお、前記電解液としてジエチルカーボネートを用いることが好ましいが、これに限られない。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to the first invention of the present application has a general formula LiNi 1-x M x O 2 (where the value of x in the formula is 0 <x ≦ 0.25) M in the formula represents at least one element selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga.) It is made of powder, and the amount of heat generated when the powder is immersed in an electrolytic solution used in a non-aqueous electrolyte secondary battery is 0.5 J / g or more. In addition, although it is preferable to use diethyl carbonate as said electrolyte solution, it is not restricted to this.
前記リチウム金属複合酸化物の粉末は、一次粒子が複数集合して形成された二次粒子であり、かつ、該二次粒子の形状が球状または楕円球状であることが好ましい。 The lithium metal composite oxide powder is preferably secondary particles formed by aggregating a plurality of primary particles, and the shape of the secondary particles is preferably spherical or elliptical.
前記非水系電解質二次電池用正極活物質を正極に用いることで、非水系電解質二次電池を得ることができる。 A nonaqueous electrolyte secondary battery can be obtained by using the positive electrode active material for a nonaqueous electrolyte secondary battery as a positive electrode.
本願第2発明に係る非水系電解質二次電池用正極活物質の製造方法は、リチウム化合物、ニッケル化合物、およびCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種の元素からなる化合物をそれぞれ所定量混合して混合物を得る工程と、前記混合物を酸素気流中で焼成して非水系電解質二次電池用正極活物質を得る工程と、非水系電解質二次電池に用いられる電解液、例えば、ジエチルカーボネートに前記非水系電解質二次電池用正極活物質を浸漬した際に発生する熱量を前記非水系電解質二次電池用正極活物質1gあたりで測定する工程と、前記測定した熱量に基づき前記非水系電解質二次電池用正極活物質の良否を判定する工程と、を有することを特徴とする。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the second invention of the present application is selected from the group consisting of a lithium compound, a nickel compound, and Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga. A step of mixing a predetermined amount of each compound composed of at least one element to obtain a mixture, a step of firing the mixture in an oxygen stream to obtain a positive electrode active material for a non-aqueous electrolyte secondary battery, and a non-aqueous type The amount of heat generated when the positive electrode active material for a nonaqueous electrolyte secondary battery is immersed in an electrolytic solution used for an electrolyte secondary battery, for example, diethyl carbonate, is measured per 1 g of the positive electrode active material for the nonaqueous electrolyte secondary battery. And a step of judging the quality of the positive electrode active material for a non-aqueous electrolyte secondary battery based on the measured amount of heat.
本願第3発明に係る非水系電解質二次電池用正極活物質の検査方法は、非水系電解質二次電池に用いられる電解液、例えば、ジエチルカーボネートに、例えば、一般式LiNi1-xMxO2(但し、式中のxの値の範囲は、0<x≦0.25であり、式中のMは、Co、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種の元素を示す。)で表されるリチウム金属複合酸化物の粉末からなる非水系電解質二次電池用正極活物質を浸漬した際に発生する熱量を該非水系電解質二次電池用正極活物質1gあたりで測定し、測定した熱量に基づき非水系電解質二次電池用正極活物質の良否を判定することを特徴とする。 A method for inspecting a positive electrode active material for a non-aqueous electrolyte secondary battery according to the third invention of the present application is applied to an electrolytic solution used in a non-aqueous electrolyte secondary battery, such as diethyl carbonate, for example, a general formula LiNi 1-x M x O 2 (However, the range of the value of x in the formula is 0 <x ≦ 0.25, and M in the formula is a group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga. The amount of heat generated when the positive electrode active material for a non-aqueous electrolyte secondary battery composed of a powder of a lithium metal composite oxide represented by the formula (2) is immersed in the non-aqueous electrolyte secondary. It is measured per 1 g of the positive electrode active material for a battery, and the quality of the positive electrode active material for a non-aqueous electrolyte secondary battery is determined based on the measured amount of heat.
本発明に係る非水系電解質二次電池用正極活物質は、非水系電解質二次電池に用いられる電解液に浸漬した際に発生する熱量が0.5J/g以上であるので、電解液との実質的な接触面積が大きくなっている。このため、リチウムイオン電池の正極として用いた場合、電池内でリチウムイオンが拡散する速度が速くなり、出力が大きくなるとともに、電池の内部抵抗の低減、クーロン効率の向上も実現できる。 Since the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention generates 0.5 J / g or more of heat when immersed in an electrolyte used in a non-aqueous electrolyte secondary battery, The substantial contact area is large. For this reason, when used as a positive electrode of a lithium ion battery, the speed at which lithium ions diffuse in the battery is increased, the output is increased, the internal resistance of the battery is reduced, and the coulomb efficiency is improved.
本発明者等は、さまざまな方法で合成した正極活物質に対して検討を重ねた結果、実際に非水系電解質二次電池に用いられる電解液に活物質粉末を浸漬した際に発生する熱量(湿潤熱)を測定すれば、この熱量の値が実質的に電解液と正極活物質との接触面積を表すということ、すなわち、電解液に活物質粉末を浸漬した際に発生する熱量と、リチウムイオン二次電池の出力特性との間に相関があることを見出した。さらに、リチウムイオン二次電池の正極活物質を、湿潤熱が0.5J/g以上である正極活物質とすることで、出力特性に優れるものの割合が飛躍的に向上することを見出し、本発明に至った。 As a result of repeated investigations on the positive electrode active material synthesized by various methods, the present inventors have found that the amount of heat generated when the active material powder is actually immersed in an electrolytic solution used in a non-aqueous electrolyte secondary battery ( If the heat of wetting) is measured, the value of this amount of heat substantially represents the contact area between the electrolytic solution and the positive electrode active material, that is, the amount of heat generated when the active material powder is immersed in the electrolytic solution, and lithium It was found that there is a correlation between the output characteristics of the ion secondary battery. Furthermore, it has been found that by using a positive electrode active material having a heat of wetting of 0.5 J / g or more as the positive electrode active material of the lithium ion secondary battery, the ratio of materials having excellent output characteristics is dramatically improved. It came to.
従来なされていたBET法により測定した比表面積では、比表面積が0.4m2/g程度以上になると、リチウムイオン二次電池の出力特性の良否は区別がつかない。具体的には、0.5〜0.7m2/g程度の正極材料が、粉体特性および取り扱いの面から、また、出力特性の面からも、従来は最適と考えられていたが、このような比表面積をもつ材料を合成して得た正極活物質を、リチウムイオン二次電池の正極に用いても、必ずしも出力特性に優れるリチウムイオン二次電池が得られたわけではない。 With the specific surface area measured by the BET method that has been conventionally performed, if the specific surface area is about 0.4 m 2 / g or more, the quality of the output characteristics of the lithium ion secondary battery cannot be distinguished. Specifically, a positive electrode material of about 0.5 to 0.7 m 2 / g was conventionally considered optimal from the viewpoint of powder characteristics and handling, and also from the viewpoint of output characteristics. Even when a positive electrode active material obtained by synthesizing a material having such a specific surface area is used for a positive electrode of a lithium ion secondary battery, a lithium ion secondary battery having excellent output characteristics is not necessarily obtained.
本発明による正極活物質を電解液に浸漬した際に発生する熱量は0.5J/g以上であるので、電解液と接触する正極活物質単位質量あたりの面積は確実に大きくなっている。このため、本発明に係る正極活物質を用いた非水系電解質二次電池においては、リチウムイオンの正極活物質内への可逆的な出入りが良好になっており、出力特性およびクーロン効率の向上並びに電池の内部抵抗の低減を実現することが可能となっている。 Since the amount of heat generated when the positive electrode active material according to the present invention is immersed in the electrolytic solution is 0.5 J / g or more, the area per unit mass of the positive electrode active material in contact with the electrolytic solution is surely increased. For this reason, in the non-aqueous electrolyte secondary battery using the positive electrode active material according to the present invention, the reversible entry and exit of lithium ions into the positive electrode active material is good, and the output characteristics and coulombic efficiency are improved. It is possible to reduce the internal resistance of the battery.
次に、本発明に係るリチウムイオン二次電池の実施形態について、各構成要素ごとにそれぞれ詳しく説明する。本発明に係るリチウムイオン二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成される。なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。 Next, embodiments of the lithium ion secondary battery according to the present invention will be described in detail for each component. The lithium ion secondary battery according to the present invention is composed of the same components as those of a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a non-aqueous electrolyte. The embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention is implemented in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiment. can do. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.
(1)正極活物質、正極
本発明に係る非水系電解質二次電池用正極活物質は、LiNi1-xMxO2(但し、MはCo、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素で、式中のxは、0<x≦0.25を満たす)で表されるリチウムニッケル複合酸化物の粉末からなる。非水系電解質二次電池に用いられる電解液に該粉末を浸漬した際に発生する熱量は0.5J/g以上である。
(1) Positive electrode active material, positive electrode The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is LiNi 1-x M x O 2 (where M is Co, Al, Mg, Mn, Ti, Fe, Cu And at least one metal element selected from the group consisting of Zn, Ga, wherein x is a powder of lithium nickel composite oxide represented by 0 <x ≦ 0.25. The amount of heat generated when the powder is immersed in an electrolytic solution used in a non-aqueous electrolyte secondary battery is 0.5 J / g or more.
式中のxの値の範囲が、0<x≦0.25である理由は、x>0.25の場合は、Li層にLi以外の金属元素が混入する割合が高くなり、良好なサイクル特性の電池を形成できないからである。 The reason why the range of the value x in the formula is 0 <x ≦ 0.25 is that when x> 0.25, the proportion of metal elements other than Li mixed in the Li layer increases, and the cycle is good. This is because a battery having the characteristics cannot be formed.
添加元素Mは、Co、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaからなる群より選ばれた少なくとも1種以上の金属元素である。Co、Mnは、主に、リチウムニッケル複合酸化物の結晶構造を安定化する役割を果たす。結晶構造が安定化することにより、非水電解質二次電池のサイクル特性は良好に保たれ、特に60℃以上のような高温下での充放電および貯蔵による電池容量の劣化が抑制される。特に、Coには、元素置換による容量低下を抑えるという効果とともに、得られる複合酸化物Li(Co、Ni)O2が全固溶型であるため、添加しても結晶性の低下を最小限にとどめることができるという利点がある。 The additive element M is at least one metal element selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga. Co and Mn mainly serve to stabilize the crystal structure of the lithium nickel composite oxide. By stabilizing the crystal structure, the cycle characteristics of the non-aqueous electrolyte secondary battery are kept good, and in particular, deterioration of the battery capacity due to charge / discharge and storage at a high temperature such as 60 ° C. or higher is suppressed. In particular, Co has the effect of suppressing capacity reduction due to element substitution, and the resulting composite oxide Li (Co, Ni) O 2 is in a completely solid solution type, so that even if it is added, the decrease in crystallinity is minimized. There is an advantage that it can be limited to.
また、Al、Mg、Mn、Ti、Fe、Cu、Zn、Gaは、主に、酸素放出に伴う活物質の分解反応を抑え、熱安定性を向上させるという役割を果たす。この元素の中では、Alを用いることがより望ましい。Alには、熱安定性を向上させつつ、容量低下を最小限に抑えるという利点があるからである。 In addition, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga mainly play a role of suppressing the decomposition reaction of the active material accompanying oxygen release and improving the thermal stability. Among these elements, it is more desirable to use Al. This is because Al has the advantage of minimizing capacity reduction while improving thermal stability.
次に、本発明に係る非水系電解質二次電池用正極活物質の製造方法について説明する。本発明に係る非水系電解質二次電池用正極活物質は、リチウム化合物、ニッケル化合物、および添加元素に係る化合物をそれぞれ所定量混合し、酸素気流中で650〜850℃程度の温度で、20時間程度焼成することによって製造することができる。 Next, the manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries which concerns on this invention is demonstrated. The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is a mixture of a lithium compound, a nickel compound, and a compound related to an additive element, each in a predetermined amount, and in an oxygen stream at a temperature of about 650 to 850 ° C. for 20 hours. It can be manufactured by firing to a certain extent.
リチウム化合物としては、水酸化リチウム、炭酸リチウム等が好ましい。ニッケル化合物としては、酸化ニッケル、炭酸ニッケル、硝酸ニッケル、水酸化ニッケル、オキシ水酸化ニッケル等が使用できる。添加元素に係る化合物としては、酸化物、炭酸化物等が使用できる。 As the lithium compound, lithium hydroxide, lithium carbonate and the like are preferable. As the nickel compound, nickel oxide, nickel carbonate, nickel nitrate, nickel hydroxide, nickel oxyhydroxide and the like can be used. An oxide, a carbonate, etc. can be used as a compound concerning an additional element.
次に、正極活物質の好ましい粒子構成について説明する。 Next, a preferable particle configuration of the positive electrode active material will be described.
一次粒子がよく分散し凝集がない粒子構成である場合には、BET法で測定した比表面積と湿潤熱とは比較的良い相関がある。このため、一次粒子径が小さいほど比表面積は大きくなり、電解液との接触面積が大きくなって、出力が向上するとも考えられる。しかし、粒子が細かくなればなるほど粉塵の発生等製造上の不都合が発生するとともに、電極にしたときの充填密度の低下を引き起こし、結局電池全体としての容量の低下を招く。 In the case where the primary particles are well dispersed and do not aggregate, the specific surface area measured by the BET method and the heat of wetting have a relatively good correlation. For this reason, it is considered that the smaller the primary particle size, the larger the specific surface area, the larger the contact area with the electrolytic solution, and the higher the output. However, the finer the particles, the more inconveniences in production, such as the generation of dust, and the lowering of the packing density when used as an electrode results in a decrease in the capacity of the battery as a whole.
これに対して、一次粒子はある程度小さく、かつ、それら一次粒子が複数凝集して二次粒子を形成している場合には、取り扱い上の不便さがなく、充填密度も低下しない。一方、このような構造の粒子は、気体は進入できても液体が進入できない微細孔が存在し、BET法で測定した比表面積と湿潤熱とは必ずしも比例しない。しかし、それぞれの一次粒子同士の焼結がそれほど進んでいない場合には、一次粒子同士の間にある程度のすき間が多く残り、そのすき間に電解液がしみ込んで二次粒子内部まで電解液を通じてリチウムイオンを供給することが可能となる。その結果、二次粒子全体にリチウムイオンが拡散する速度が速くなり、出力特性が向上する。また、二次粒子の形状が球状または楕円球状であると充填密度が向上するので好ましい。 On the other hand, when the primary particles are small to some extent and the primary particles are aggregated to form secondary particles, there is no inconvenience in handling and the packing density does not decrease. On the other hand, particles having such a structure have micropores that allow gas to enter but not liquid, and the specific surface area measured by the BET method and the heat of wetting are not necessarily proportional. However, when the sintering of each primary particle is not progressing so much, a certain amount of gaps remain between the primary particles, and the electrolyte soaks into the gaps, and lithium ions pass through the electrolyte to the inside of the secondary particles. Can be supplied. As a result, the speed at which lithium ions diffuse throughout the secondary particles is increased, and the output characteristics are improved. Further, it is preferable that the shape of the secondary particles is spherical or elliptical because the packing density is improved.
したがって、本発明のリチウム金属複合酸化物の粒子構成としては、該複合酸化物の一次粒子が複数集合して二次粒子を形成し、かつ、該二次粒子は一次粒子同士の間にある程度のすき間が多く残った二次粒子で、さらにその形状が球状または楕円球状となっていることが好ましい。 Therefore, the lithium metal composite oxide according to the present invention has a particle configuration in which a plurality of primary particles of the composite oxide are aggregated to form secondary particles, and the secondary particles are some amount between the primary particles. It is preferable that the secondary particles have a lot of gaps and the shape thereof is spherical or elliptical.
この粒子形状を容易に得るためには、前記したニッケル化合物の中で、水酸化ニッケルを用いることが好ましい。水酸化ニッケルを沈殿法で製造する場合、同時に添加元素も加え、添加元素の水酸化物も沈殿として製造する方法(共沈法)がある。共沈法を用いた場合、添加元素は均一に混合されるので好ましい。また、得られる水酸化物は一次粒子が複数集合して球状または楕円球状の二次粒子を形成している。このニッケル金属複合水酸化物とリチウム化合物とを前記二次粒子の形骸が維持される程度の強度で混合して、リチウムニッケル複合酸化物を製造すれば、リチウムニッケル複合酸化物の粉末粒子は、該複合酸化物の一次粒子が複数集合した球状または楕円球状の二次粒子となる。 In order to easily obtain this particle shape, it is preferable to use nickel hydroxide among the nickel compounds described above. When nickel hydroxide is produced by a precipitation method, there is a method (coprecipitation method) in which an additive element is simultaneously added and a hydroxide of the additive element is also produced as a precipitate. When the coprecipitation method is used, the additive elements are preferably mixed uniformly. Further, in the obtained hydroxide, a plurality of primary particles are aggregated to form spherical or elliptical secondary particles. If the nickel metal composite hydroxide and the lithium compound are mixed with such a strength that the shape of the secondary particles is maintained to produce a lithium nickel composite oxide, the powder particles of the lithium nickel composite oxide are: Spherical or elliptical secondary particles in which a plurality of primary particles of the composite oxide are aggregated are formed.
また、正極活物質の二次粒子の構造は、原料に用いるニッケルやコバルト、アルミニウムなどの原料化合物の粉体特性や仮焼の条件、焼成温度や焼成時間、焼成中の雰囲気、その温度までの昇温速度や冷却速度等の影響を強く受けるので、それらの条件を制御することにより、二次粒子の構造を制御することが可能である。 The structure of the secondary particles of the positive electrode active material is such that the powder characteristics of the raw material compounds such as nickel, cobalt, and aluminum used in the raw material, the conditions of calcination, the firing temperature and firing time, the atmosphere during firing, up to that temperature Since it is strongly influenced by the heating rate and cooling rate, the structure of secondary particles can be controlled by controlling these conditions.
しかしながら、このような焼成条件は、焼成装置の設定条件ですべてが一意的に決定されるものではない。たとえば、焼成容器の大きさに対する焼成物の重量が異なるだけで、実際の焼成物の受ける熱量が異なり、同じ焼成条件であっても昇温速度が異なったり、所望の焼成温度で保持される時間が異なったりする。焼成用電気炉の大きさによっても同様なことが起こる。また焼成雰囲気も同様で、同じ流量の気流中で焼成しても電気炉の大きさや焼成物の重量によって、局所的な焼成物周囲の雰囲気が異なったり、焼成中に焼成物から発生するガスの揮発速度が異なったりする。したがって、焼成に用いる焼成装置によって、所望の特性をもつ正極活物質を得るための焼成条件を変更することは通常行なわれることである。 However, not all such firing conditions are uniquely determined by the setting conditions of the firing apparatus. For example, only the weight of the fired product differs from the size of the firing container, the amount of heat received by the actual fired product is different, the rate of temperature rise is different even under the same firing conditions, or the time that is maintained at the desired firing temperature Are different. The same thing happens depending on the size of the firing electric furnace. The firing atmosphere is the same. Even if firing is performed in an air flow of the same flow rate, the local atmosphere around the fired product varies depending on the size of the electric furnace and the weight of the fired product, and the gas generated from the fired product during firing is different. The volatilization rate is different. Therefore, it is a common practice to change the firing conditions for obtaining a positive electrode active material having desired characteristics depending on the firing apparatus used for firing.
次に、正極を形成する正極合材およびそれを構成する各材料について説明する。 Next, the positive electrode mixture forming the positive electrode and each material constituting the positive electrode mixture will be described.
正極は、正極活物質、導電材および結着剤を含んだ正極合材から形成される。 The positive electrode is formed from a positive electrode mixture containing a positive electrode active material, a conductive material, and a binder.
正極活物質については、前述したとおりであるので、説明を省略する。 Since the positive electrode active material is as described above, the description thereof is omitted.
導電材は、正極の電気伝導性を確保するためのものであり、例えば、カーボンブラック、アセチレンブラック、黒鉛等の炭素物質粉状体の1種または2種以上を混合したものを用いることができる。 The conductive material is for ensuring the electrical conductivity of the positive electrode, and for example, a material obtained by mixing one or two or more carbon material powders such as carbon black, acetylene black, and graphite can be used. .
結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的にはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。 The binder plays a role of holding the active material particles, and for example, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene can be used. If necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture. Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.
また、正極合材には電気二重層容量を増加させるために活性炭を添加することができる。 Moreover, activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
正極は次のようにして作製する。粉末状の正極活物質、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分の全質量を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質の含有量を60〜95質量%、導電材の含有量を1〜20質量%、結着剤の含有量を1〜20質量%とすることが望ましい。得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して溶剤を飛散させる。必要に応じ、電極密度を高めるべくロールプレス等により加圧することもある。このようにしてシート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等し、電池の作製に供することができる。 The positive electrode is produced as follows. A powdered positive electrode active material, a conductive material, and a binder are mixed, and activated carbon and a target solvent such as viscosity adjustment are added as necessary, and these are kneaded to prepare a positive electrode mixture paste. The respective mixing ratios in the positive electrode mixture are also important factors that determine the performance of the lithium secondary battery. When the total mass of the solid content of the positive electrode mixture excluding the solvent is 100% by mass, the content of the positive electrode active material is 60 to 95% by mass, respectively, as in the case of the positive electrode of a general lithium secondary battery. It is desirable that the content is 1 to 20% by mass and the content of the binder is 1 to 20% by mass. The obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, aluminum foil, and dried to scatter the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size according to the intended battery and used for battery production.
また、本発明の構成要件として、粉体を電解液に浸漬した際の湿潤熱が0.5J/g以上であるという要件がある。湿潤熱は、電解液が粉体と接触した面積に比例するため、電解液と接触する粒子の面積を表現していることにもなる。一方、Liイオンは電解液と接触する粒子の面を介して出入りする。したがって、湿潤熱が0.5J/g以上であるという要件を満たす正極活物質は、電解液との間でのLiイオンの出入りが良好であり、このような正極活物質をリチウムイオン二次電池の正極に用いた場合、電池の出力特性が良好となる。なお、湿潤熱はマイクロカロリーメーターを用いることで比較的容易に測定することができる。 In addition, as a constituent requirement of the present invention, there is a requirement that heat of wetting when the powder is immersed in an electrolytic solution is 0.5 J / g or more. Since the heat of wetting is proportional to the area where the electrolytic solution is in contact with the powder, it also represents the area of the particles that are in contact with the electrolytic solution. On the other hand, Li ions enter and exit through the surface of the particles in contact with the electrolyte. Therefore, the positive electrode active material that satisfies the requirement that the heat of wetting is 0.5 J / g or more has good Li ion entry / exit between the electrolyte solution, and such a positive electrode active material is used as a lithium ion secondary battery. When used for the positive electrode, the output characteristics of the battery are good. The heat of wetting can be measured relatively easily using a microcalorimeter.
一方、従来からよく用いられるBET法により測定した比表面積や細孔分布は、不活性ガスや水銀の圧入などを利用しており、それらを媒体に用いて測定した粒子の比表面積や細孔分布は、必ずしも実際に電池を構成したときに電解液と接触する粒子の面積を表していない。 On the other hand, the specific surface area and pore distribution measured by the BET method, which is often used in the past, use intrusion of inert gas or mercury, etc., and the specific surface area and pore distribution of particles measured using them as a medium Does not necessarily represent the area of particles in contact with the electrolyte when the battery is actually constructed.
(2)負極
負極には、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
(2) Negative electrode For the negative electrode, metallic lithium, lithium alloy, or the like, and a negative electrode mixture made by mixing a binder with a negative electrode active material capable of occluding and desorbing lithium ions and adding an appropriate solvent to form a paste. In addition, it is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等を用いることができ、これら活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。 As the negative electrode active material, for example, natural graphite, artificial graphite, a fired organic compound such as phenol resin, or a powdery carbon material such as coke can be used. In this case, as the negative electrode binder, a fluorine-containing resin such as polyvinylidene fluoride can be used as in the case of the positive electrode, and the active material and the solvent for dispersing the binder include N-methyl-2-pyrrolidone. Organic solvents can be used.
(3)セパレータ
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な穴を多数有する膜を用いることができる。
(3) Separator A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many fine holes can be used.
(4)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
(4) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。 Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. are used alone or in admixture of two or more. be able to.
支持塩としては、LiPF6、LiBF4 、LiClO4、LiAsF6、LiN(CF3SO2)2等、およびそれらの複合塩を用いることができる。 As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , or a composite salt thereof can be used.
さらに、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。 Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
(5)電池の形状、構成
以上説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明に係るリチウム二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
(5) Shape and configuration of battery The shape of the lithium secondary battery according to the present invention composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte described above is various, such as a cylindrical type and a laminated type. be able to.
いずれの形状を採る場合であっても、正極および負極をセパレータを介して積層させて電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間を集電用リード等を用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。 In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the electrode body is impregnated with the non-aqueous electrolyte. The positive electrode current collector and the positive electrode terminal communicating with the outside, and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like. The battery having the above structure can be sealed in a battery case to complete the battery.
(実施例1)
LiNiO2においてNi全原子数の15at%をCoに置換し、3at%をAlに置換したLiNi0.82Co0.15Al0.03O2を合成するために、ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶している金属複合水酸化物を用意した。この金属複合水酸化物は、硫酸ニッケル、硫酸コバルトおよびアルミン酸ナトリウムの混合水溶液に水酸化ナトリウムを添加中和し、得られた沈殿物を乾燥して得た。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子(平均粒子径11.6μm、比表面積9.7m2/g)からなる。
(Example 1)
In order to synthesize LiNi 0.82 Co 0.15 Al 0.03 O 2 in which 15 at% of the total number of Ni atoms were replaced with Co and 3 at% was replaced with Al in LiNiO 2 , the molar ratio of nickel, cobalt, and aluminum was 82:15: A metal composite hydroxide dissolved in 3 was prepared. This metal composite hydroxide was obtained by neutralizing a mixed aqueous solution of nickel sulfate, cobalt sulfate and sodium aluminate by adding sodium hydroxide and drying the resulting precipitate. This metal composite hydroxide is composed of spherical secondary particles (average particle diameter 11.6 μm, specific surface area 9.7 m 2 / g) in which a plurality of primary particles 1 μm or less are aggregated.
この金属複合水酸化物と、ジェットミルで粉砕した市販の水酸化リチウム一水和物(ケメタル社製)とを、リチウムと金属(Ni、Co、Alの合計)とのモル比が1:1となるように秤量した後、球状の二次粒子の形骸が維持される程度の強さで十分に混合した。 A molar ratio of lithium to metal (total of Ni, Co and Al) of the metal composite hydroxide and commercially available lithium hydroxide monohydrate (manufactured by Kemetal Corp.) pulverized by a jet mill is 1: 1. Then, the mixture was thoroughly mixed at such a strength that the shape of spherical secondary particles was maintained.
この混合物2.4kgを30cm角のSUS製の焼成容器に挿入し、昇降式の密閉式大型電気炉を用いて、流量35L/minの酸素気流中で温度:450℃、時間:5時間で仮焼した後、昇温速度5℃/minで730℃まで昇温し、32時間焼成した後、室温まで炉冷した。 2.4 kg of this mixture was inserted into a 30 cm square SUS-made baking vessel, and the temperature was set at 450 ° C. for 5 hours in an oxygen stream with a flow rate of 35 L / min. After calcination, the temperature was raised to 730 ° C. at a rate of temperature rise of 5 ° C./min, baked for 32 hours, and then cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有した正極活物質(LiNi0.82Co0.15Al0.03O2)であった。マイクロトラック粒度分布測定装置(日機装製)(以下、マイクロトラックと記す)で測定した平均粒子径は10.8μm、BET法で測定した比表面積は0.66m2/gであった。また、1μm以下の微粉は質量比で4.6%存在していることを、マイクロトラックにより測定して確認した。 When the obtained fired product was analyzed by X-ray diffraction, it was a positive electrode active material (LiNi 0.82 Co 0.15 Al 0.03 O 2 ) having a hexagonal layered structure. The average particle diameter measured by a microtrack particle size distribution measuring device (manufactured by Nikkiso) (hereinafter referred to as “Microtrack”) was 10.8 μm, and the specific surface area measured by the BET method was 0.66 m 2 / g. Further, it was confirmed by measurement with a microtrack that fine powders of 1 μm or less were present in a mass ratio of 4.6%.
得られた正極活物質を150℃にて3時間、真空加熱乾燥して脱気処理を行った後、断熱容器中において、24ccのジエチルカーボネート(キシダ化学製)に4gの正極活物質を浸漬し、生じた熱量をマルチマイクロカロリーメーター(東京理工製MMC-5111)を用いて測定した。得られた湿潤熱の測定チャートを図2に示す。横軸は測定時間、縦軸にはアンプの出力電圧を示す。アンプの出力電圧は発熱量に比例する。このチャートにおける発熱ピークの積分値から計算して求めた発熱量(試料のグラム当たりの湿潤熱)を表1に示す。 The obtained positive electrode active material was vacuum-dried at 150 ° C. for 3 hours for deaeration treatment, and then 4 g of the positive electrode active material was immersed in 24 cc of diethyl carbonate (manufactured by Kishida Chemical) in a heat insulating container. The amount of heat generated was measured using a multi-micro calorimeter (Tokyo Riko MMC-5111). A measurement chart of the obtained heat of wetting is shown in FIG. The horizontal axis indicates the measurement time, and the vertical axis indicates the output voltage of the amplifier. The output voltage of the amplifier is proportional to the amount of heat generated. Table 1 shows the calorific value (heat of wetting per gram of the sample) calculated from the integrated value of the exothermic peak in this chart.
活物質の出力評価は以下のようにして行った。活物質粉末90質量%にアセチレンブラック5質量%およびPVDF(ポリ沸化ビニリデン)5質量%を混合し、NMP(n−メチルピロリドン)を加えペースト化した。これを20μm厚のアルミニウム箔に乾燥後の活物質重量が0.05g/cm2になるように塗布し、120℃で真空乾燥を行い、1cm2の円板状に打ち抜いて正極とした。 The output evaluation of the active material was performed as follows. 90% by mass of the active material powder was mixed with 5% by mass of acetylene black and 5% by mass of PVDF (polyvinylidene fluoride), and NMP (n-methylpyrrolidone) was added to form a paste. This was applied to a 20 μm-thick aluminum foil so that the weight of the active material after drying was 0.05 g / cm 2 , vacuum-dried at 120 ° C., and punched into a 1 cm 2 disk shape to obtain a positive electrode.
負極としてリチウム金属を、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)(富山薬品工業製)とジエチルカーボネート(DEC)(富山薬品工業製)の等量混合溶液を用いた。露点が−80℃に管理されたAr雰囲気のグローブボックス中で、図1に示すような2032型のコイン電池を作製した。 Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) (manufactured by Toyama Pharmaceutical Co., Ltd.) and diethyl carbonate (DEC) (manufactured by Toyama Pharmaceutical Co., Ltd.) with 1M LiClO 4 as the supporting salt was used as the electrolyte. . A 2032 type coin battery as shown in FIG. 1 was produced in an Ar atmosphere glove box whose dew point was controlled at −80 ° C.
作製した電池は24時間程度放置し、OCVが安定した後、正極に対する電流密度を0.5mA/cm2として充電深度60%まで充電を行った。充電深度60%のところで、電流密度Jを1.0mA/cm2、2.0mA/cm2、4.0mA/cm2と変えて10秒間充放電を行い、放電により降下した電位dVから電流密度Jに対する傾きdV/Jを求めた。求めた傾きdV/Jを用いて3Vまで電位が降下した時の電流密度J1を下記数式1により算出した。ここで、充電深度60%のところの開回路電圧をV1とする。下記数式1で求めた電流密度J1を用いて放電電圧3Vでの正極1cm2あたりの出力値を下記数式2により求めた。得られた出力の評価結果を表1に示す。
The produced battery was left for about 24 hours, and after the OCV was stabilized, the battery was charged to a charge depth of 60% with a current density of 0.5 mA / cm 2 with respect to the positive electrode. At the state of charge of 60%, the current density J 1.0mA / cm 2, 2.0mA / cm 2, subjected to varied 10 seconds charging and discharging and 4.0 mA / cm 2, current density from the potential dV dropped across the discharge The slope dV / J with respect to J was determined. The current density J1 when the potential dropped to 3V using the obtained slope dV / J was calculated by the following formula 1. Here, the open circuit voltage at a charging depth of 60% is V1. The output value per 1 cm 2 of the positive electrode at a discharge voltage of 3 V was obtained by the
(実施例2)
LiNiO2においてNi全原子数の15at%をCoに置換し、3at%をAlに置換したLiNi0.82Co0.15Al0.03O2を合成するために、ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶している金属複合水酸化物を実施例1と同様な方法で作製した。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子(平均粒子径10.6μm、比表面積8.5m2/g)からなる。
(Example 2)
In order to synthesize LiNi 0.82 Co 0.15 Al 0.03 O 2 in which 15 at% of the total number of Ni atoms were replaced with Co and 3 at% was replaced with Al in LiNiO 2 , the molar ratio of nickel, cobalt, and aluminum was 82:15: The metal composite hydroxide dissolved in 3 was prepared in the same manner as in Example 1. This metal composite hydroxide is composed of spherical secondary particles (average particle diameter 10.6 μm, specific surface area 8.5 m 2 / g) in which a plurality of primary particles of 1 μm or less are aggregated.
この金属複合水酸化物を実施例1と同様に水酸化リチウム一水和物(ケメタル社製)と混合した。この混合物100gを12cm×4cmのマグネシア製の焼成容器に挿入し、小型雰囲気炉を用いて、流量1L/minの酸素気流中で温度:350℃、時間:2時間で仮焼した後、昇温速度5℃/minで730℃まで昇温し、20時間焼成し、室温まで炉冷した。 This metal composite hydroxide was mixed with lithium hydroxide monohydrate (manufactured by Kemetal) in the same manner as in Example 1. 100 g of this mixture was inserted into a 12 cm × 4 cm magnesia firing container, calcined in a small atmosphere furnace at a flow rate of 1 L / min in an oxygen stream at a temperature of 350 ° C. and a time of 2 hours, and then heated. The temperature was raised to 730 ° C. at a rate of 5 ° C./min, baked for 20 hours, and furnace-cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有した所望の正極活物質(LiNi0.82Co0.15Al0.03O2)であった。マイクロトラックで測定した平均粒子径は9.4μm、BET法で測定した比表面積は0.69m2/gであった。また、1μm以下の微粉は質量比で2.7%存在していることを、マイクロトラックにより測定して確認した。 When the obtained fired product was analyzed by X-ray diffraction, it was a desired positive electrode active material (LiNi 0.82 Co 0.15 Al 0.03 O 2 ) having a hexagonal layered structure. The average particle diameter measured by Microtrac was 9.4 μm, and the specific surface area measured by BET method was 0.69 m 2 / g. Further, it was confirmed by measuring with Microtrac that the fine powder of 1 μm or less was present in a mass ratio of 2.7%.
実施例1と同様な方法で測定した湿潤熱の測定チャートを図2に、発熱量と出力を表1に示す。 A measurement chart of wet heat measured by the same method as in Example 1 is shown in FIG.
(実施例3)
LiNiO2においてNi全原子数の15at%をCoに置換し、3at%をAlに置換したLiNi0.82Co0.15Al0.03O2を合成するために、ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶している金属複合水酸化物を実施例1と同様な方法で作製した。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子(平均粒子径10.9μm、比表面積9.5m2/g)からなる。
(Example 3)
In order to synthesize LiNi 0.82 Co 0.15 Al 0.03 O 2 in which 15 at% of the total number of Ni atoms were replaced with Co and 3 at% was replaced with Al in LiNiO 2 , the molar ratio of nickel, cobalt, and aluminum was 82:15: The metal composite hydroxide dissolved in 3 was prepared in the same manner as in Example 1. This metal composite hydroxide is composed of spherical secondary particles (average particle diameter 10.9 μm, specific surface area 9.5 m 2 / g) in which a plurality of primary particles of 1 μm or less are aggregated.
この金属複合水酸化物を実施例1と同様に水酸化リチウム一水和物(ケメタル社製)と混合した。この混合物を2.0kg計り取って25cm角のSUS製の焼成容器に挿入し、その焼成容器を4個並べてローラー送りタイプの大型連続炉を用いて、5箇所のガス導入口から流量10L/minずつ吹き込んだ酸素気流中で温度:450℃、時間:5時間で仮焼した後、昇温速度10℃/minで730℃まで昇温し、32時間焼成し、室温まで炉冷した。 This metal composite hydroxide was mixed with lithium hydroxide monohydrate (manufactured by Kemetal) in the same manner as in Example 1. 2.0 kg of this mixture is weighed and inserted into a 25 cm square SUS baking container, and four such baking containers are arranged side by side using a roller feed type large continuous furnace, and the flow rate is 10 L / min from five gas inlets. After calcining at a temperature of 450 ° C. and for a time of 5 hours in an oxygen stream blown in each step, the temperature was raised to 730 ° C. at a heating rate of 10 ° C./min, baked for 32 hours, and cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有した所望の正極活物質(LiNi0.82Co0.15Al0.03O2)であった。マイクロトラックで測定した平均粒子径は9.4μm、BET法で測定した比表面積は0.63m2/gであった。また、1μm以下の微粉は質量比で4.1%存在していることを、マイクロトラックにより測定して確認した。 When the obtained fired product was analyzed by X-ray diffraction, it was a desired positive electrode active material (LiNi 0.82 Co 0.15 Al 0.03 O 2 ) having a hexagonal layered structure. The average particle size measured by Microtrac was 9.4 μm, and the specific surface area measured by BET method was 0.63 m 2 / g. Further, it was confirmed by measurement with a microtrack that fine powders of 1 μm or less were present in a mass ratio of 4.1%.
実施例1と同様な方法で測定した湿潤熱の測定チャートを図2に、発熱量と出力を表1に示す。 A measurement chart of wet heat measured by the same method as in Example 1 is shown in FIG.
(比較例1)
LiNiO2においてNi全原子数の15at%をCoに置換し、3at%をAlに置換したLiNi0.82Co0.15Al0.03O2を合成するために、ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶している金属複合水酸化物を実施例1と同様な方法で作製した。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子(平均粒子径10.8μm、比表面積9.4m2/g)からなる。
(Comparative Example 1)
In order to synthesize LiNi 0.82 Co 0.15 Al 0.03 O 2 in which 15 at% of the total number of Ni atoms were replaced with Co and 3 at% was replaced with Al in LiNiO 2 , the molar ratio of nickel, cobalt, and aluminum was 82:15: The metal composite hydroxide dissolved in 3 was prepared in the same manner as in Example 1. This metal composite hydroxide is composed of spherical secondary particles (average particle diameter 10.8 μm, specific surface area 9.4 m 2 / g) in which a plurality of primary particles of 1 μm or less are aggregated.
この金属複合水酸化物を実施例1と同様に水酸化リチウム一水和物(ケメタル社製)と混合した。この混合物2.4kgを30cm角のアルミナ製の焼成容器に挿入し、昇降式の密閉式大型電気炉を用いて、流量45L/minの酸素気流中で温度:450℃、時間:5時間で仮焼した後、昇温速度10℃/minで700℃まで昇温し、32時間焼成し、室温まで炉冷した。 This metal composite hydroxide was mixed with lithium hydroxide monohydrate (manufactured by Kemetal) in the same manner as in Example 1. 2.4 kg of this mixture was inserted into a 30 cm square alumina firing vessel, and temporarily moved at a temperature of 450 ° C. and a time of 5 hours in a 45 L / min oxygen stream using an elevating closed large electric furnace. After baking, the temperature was raised to 700 ° C. at a temperature rising rate of 10 ° C./min, baked for 32 hours, and cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有した所望の正極活物質(LiNi0.82Co0.15Al0.03O2)であった。マイクロトラックで測定した平均粒子径は10.1μm、BET法で測定した比表面積は0.63m2/gであった。また、1μm以下の微粉は質量比で3.5%存在していることを、マイクロトラックにより測定して確認した。 When the obtained fired product was analyzed by X-ray diffraction, it was a desired positive electrode active material (LiNi 0.82 Co 0.15 Al 0.03 O 2 ) having a hexagonal layered structure. The average particle size measured by Microtrac was 10.1 μm, and the specific surface area measured by the BET method was 0.63 m 2 / g. Further, it was confirmed by measuring with a microtrack that 3.5% of fine powder of 1 μm or less was present by mass ratio.
実施例1と同様な方法で測定した湿潤熱の測定チャートを図2に、発熱量と出力を表1に示す。 A measurement chart of wet heat measured by the same method as in Example 1 is shown in FIG.
(比較例2)
LiNiO2においてNi全原子数の15at%をCoに置換し、3at%をAlに置換したLiNi0.82Co0.15Al0.03O2を合成するために、ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶している金属複合水酸化物を実施例1と同様な方法で作製した。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子(平均粒子径11.2μm、比表面積8.4m2/g)からなる。
(Comparative Example 2)
In order to synthesize LiNi 0.82 Co 0.15 Al 0.03 O 2 in which 15 at% of the total number of Ni atoms were replaced with Co and 3 at% was replaced with Al in LiNiO 2 , the molar ratio of nickel, cobalt, and aluminum was 82:15: The metal composite hydroxide dissolved in 3 was prepared in the same manner as in Example 1. This metal composite hydroxide is composed of spherical secondary particles (average particle size 11.2 μm, specific surface area 8.4 m 2 / g) in which a plurality of primary particles of 1 μm or less are aggregated.
この金属複合水酸化物を実施例1と同様に水酸化リチウム一水和物(ケメタル社製)と混合した。この混合物300gを10cm角のマグネシア製の焼成容器に挿入し、小型雰囲気炉を用いて、流量3L/minの酸素気流中で温度:350℃、時間:2時間で仮焼した後、昇温速度10℃/minで800℃まで昇温し、20時間焼成し、室温まで炉冷した。 This metal composite hydroxide was mixed with lithium hydroxide monohydrate (manufactured by Kemetal) in the same manner as in Example 1. 300 g of this mixture was inserted into a 10 cm square magnesia baking vessel, and calcined in a stream of oxygen at a flow rate of 3 L / min using a small atmosphere furnace at a temperature of 350 ° C. and a time of 2 hours, and then the rate of temperature increase The temperature was raised to 800 ° C. at 10 ° C./min, baked for 20 hours, and furnace-cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有した所望の正極活物質(LiNi0.82Co0.15Al0.03O2)であった。マイクロトラックで測定した平均粒子径は10.2μm、BET法で測定した比表面積は0.65m2/gであった。また、1μm以下の微粉は質量比で3.7%存在していることを、マイクロトラックにより測定して確認した。 When the obtained fired product was analyzed by X-ray diffraction, it was a desired positive electrode active material (LiNi 0.82 Co 0.15 Al 0.03 O 2 ) having a hexagonal layered structure. The average particle size measured by Microtrac was 10.2 μm, and the specific surface area measured by the BET method was 0.65 m 2 / g. Further, it was confirmed by measuring with Microtrac that the fine powder of 1 μm or less was present in a mass ratio of 3.7%.
実施例1と同様な方法で測定した湿潤熱の測定チャートを図2に、発熱量と出力を表1に示す。 A measurement chart of wet heat measured by the same method as in Example 1 is shown in FIG.
(比較例3)
LiNiO2においてNi全原子数の15at%をCoに置換し、3at%をAlに置換したLiNi0.82Co0.15Al0.03O2を合成するために、ニッケルとコバルトとアルミニウムのモル比が82:15:3で固溶している金属複合水酸化物を実施例1と同様な方法で作製した。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子(平均粒子径10.5μm、比表面積9.2m2/g)からなる。
(Comparative Example 3)
In order to synthesize LiNi 0.82 Co 0.15 Al 0.03 O 2 in which 15 at% of the total number of Ni atoms were replaced with Co and 3 at% was replaced with Al in LiNiO 2 , the molar ratio of nickel, cobalt, and aluminum was 82:15: The metal composite hydroxide dissolved in 3 was prepared in the same manner as in Example 1. This metal composite hydroxide is composed of spherical secondary particles (average particle diameter of 10.5 μm, specific surface area of 9.2 m 2 / g) in which a plurality of primary particles of 1 μm or less are aggregated.
この金属複合水酸化物を実施例1と同様に水酸化リチウム一水和物(ケメタル社製)と混合した。この混合物を2.4kg計り取って30cm角のアルミナ製の焼成容器に挿入し、その焼成容器を4個並べてローラー送りタイプの大型連続炉を用いて、8箇所のガス導入口から流量10L/minずつ吹き込んだ酸素気流中で温度:450℃、時間:5時間で仮焼した後、昇温速度5℃/minで730℃まで昇温し、32時間焼成し、室温まで炉冷した。 This metal composite hydroxide was mixed with lithium hydroxide monohydrate (manufactured by Kemetal) in the same manner as in Example 1. 2.4 kg of this mixture is weighed and inserted into a 30 cm square alumina baking vessel, and four of the baking vessels are arranged side by side using a roller feed type large continuous furnace, and the flow rate is 10 L / min from eight gas inlets. After calcining at a temperature of 450 ° C. and for a time of 5 hours in an oxygen stream blown in each step, the temperature was raised to 730 ° C. at a heating rate of 5 ° C./min, baked for 32 hours, and cooled to room temperature.
得られた焼成物をX線回折で分析したところ、六方晶系の層状構造を有した所望の正極活物質(LiNi0.82Co0.15Al0.03O2)であった。マイクロトラックで測定した平均粒子径は9.8μm、BET法で測定した比表面積は0.59m2/gであった。また、1μm以下の微粉は質量比で2.7%存在していることを、マイクロトラックにより測定して確認した。 When the obtained fired product was analyzed by X-ray diffraction, it was a desired positive electrode active material (LiNi 0.82 Co 0.15 Al 0.03 O 2 ) having a hexagonal layered structure. The average particle diameter measured by Microtrac was 9.8 μm, and the specific surface area measured by the BET method was 0.59 m 2 / g. Further, it was confirmed by measuring with Microtrac that the fine powder of 1 μm or less was present in a mass ratio of 2.7%.
実施例1と同様な方法で測定した湿潤熱の測定チャートを図2に、湿潤熱と電池の出力を表1に示す。 FIG. 2 shows a measurement chart of wet heat measured by the same method as in Example 1, and Table 1 shows wet heat and battery output.
上記の表1からわかるように、比較例1〜3の方法で合成した正極活物質は、平均粒子径や比表面積については実施例1〜3とほぼ同様であるものの、電解液の染み込みを反映する湿潤熱は小さくなっている。このため、結果的に比較例1〜3の活物質を用いて構成したコイン電池は、実施例の正極活物質と比較して出力が低くなっている。 As can be seen from Table 1 above, the positive electrode active materials synthesized by the methods of Comparative Examples 1 to 3 are similar to Examples 1 to 3 in terms of average particle diameter and specific surface area, but reflect the penetration of the electrolyte. The heat of wetting is small. For this reason, the coin battery comprised using the active material of Comparative Examples 1-3 as a result has a low output compared with the positive electrode active material of an Example.
コイン電池での出力評価結果で80mW以上の出力があれば実用上問題ないことを本発明者は確認しているが、表1からわかるように、湿潤熱で0.5J/g以上であればコイン電池での出力評価で80mW以上の出力を得ることができる。実施例1〜3は、いずれも湿潤熱は0.5J/g以上であり、コイン電池での出力は80mW以上である。一方、比較例1〜3は、いずれも湿潤熱は0.5J/g未満であり、コイン電池での出力は80mW未満である。 The present inventors have confirmed that there is no practical problem if the output of the coin battery is 80 mW or more. As can be seen from Table 1, if the heat of wetting is 0.5 J / g or more. An output of 80 mW or more can be obtained by output evaluation with a coin battery. In each of Examples 1 to 3, the heat of wetting is 0.5 J / g or more, and the output of the coin battery is 80 mW or more. On the other hand, all of Comparative Examples 1 to 3 have a wetting heat of less than 0.5 J / g, and the output of the coin battery is less than 80 mW.
実施例1〜3および比較例1〜3は、いずれも比表面積が0.6(m2/g)程度であり、0.4(m2/g)よりも50%程度大きく、比表面積だけからみると実施例1〜3および比較例1〜3のいずれも良好な正極活物質と判断されるが、実際の出力特性は、実施例1〜3では80(mW)以上であり、比較例1〜3では80(mW)未満であり、明確に差がある。従来の正極活物質の良否判断の指標である比表面積では、比表面積が大きい領域、具体的には比表面積が0.4(m2/g)よりも大きい領域においては、正極活物質の出力特性の良否判断ができないことがわかる。しかし、本発明において用いている指標である湿潤熱を指標として用いれば、比表面積が0.4(m2/g)よりも大きい領域においても、明確に正極活物質の出力特性の良否判断ができるのである。 In Examples 1 to 3 and Comparative Examples 1 to 3, the specific surface area is about 0.6 (m 2 / g), about 50% larger than 0.4 (m 2 / g), and only the specific surface area From the above, it is determined that all of Examples 1 to 3 and Comparative Examples 1 to 3 are good positive electrode active materials, but the actual output characteristics are 80 (mW) or more in Examples 1 to 3, and Comparative Example 1 to 3 is less than 80 (mW), and there is a clear difference. In the specific surface area which is an index for determining the quality of the conventional positive electrode active material, in the region where the specific surface area is large, specifically, in the region where the specific surface area is larger than 0.4 (m 2 / g), the output of the positive electrode active material It can be seen that it is impossible to judge the quality of the characteristics. However, if wetting heat, which is an index used in the present invention, is used as an index, the quality of the output characteristics of the positive electrode active material can be clearly judged even in a region where the specific surface area is larger than 0.4 (m 2 / g). It can be done.
なお、実施例1〜3および比較例1〜3の正極活物質について、それぞれ1μm以下の微粉の比率を質量比で求めたが、この理由は、前述したように、粒子が細かくなればなるほど粉塵の発生等製造上の不都合が発生するとともに、電極にしたときの充填密度の低下を引き起こし、結局電池全体としての容量の低下を招くからである。 In addition, about the positive electrode active material of Examples 1-3 and Comparative Examples 1-3, the ratio of the fine powder of 1 micrometer or less was calculated | required by mass ratio, respectively, but the reason is that as the particle becomes finer, the dust becomes smaller as described above. This is because inconveniences in production such as the occurrence of oxidization occur, and the packing density when used as an electrode is reduced, resulting in a decrease in the capacity of the battery as a whole.
実施例1〜3の正極活物質についての1μm以下の微粉の比率は2.7%〜4.6%であり、比較例1〜3の正極活物質についての1μm以下の微粉の比率は2.7%〜3.7%であり、実施例と比較例では有意な差は無いと考えられる。 The ratio of fine powder of 1 μm or less for the positive electrode active materials of Examples 1 to 3 is 2.7% to 4.6%, and the ratio of fine powder of 1 μm or less for the positive electrode active materials of Comparative Examples 1 to 3 is 2. It is 7% to 3.7%, and it is considered that there is no significant difference between Examples and Comparative Examples.
最後に、比較例1〜3の方法で合成した活物質の湿潤熱が小さくなる原因について述べるが、原料化合物の粉体特性や、焼成雰囲気、仮焼温度、仮焼時間、昇温速度、焼成温度、焼成時間などが複雑に絡み合った結果と考えられる。 Finally, the reason why the heat of wetting of the active materials synthesized by the methods of Comparative Examples 1 to 3 is reduced will be described. This is thought to be a result of intricately intertwining the temperature and firing time.
例えば、実施例1と比較例1においては、同じ焼成炉(昇降式の密閉式大型電気炉)を用いているが、実施例1においてSUSの焼成容器を用いているのに対し、比較例1はアルミナ製の焼成容器を用いている。また、酸素流量が、実施例1は比較例1と比べて少ない。このため、実施例1においては、焼成物への熱の伝導率に優れ、酸素流量が比較例1と比べて少ないため気流に奪われる熱量が少なく、焼成物付近での温度が炉の制御に追従しやすくなっていると考えられる。このため、仮焼や焼成の時間が両者では異なっていると推定され、この違いが粒子の内部構造に影響を与えたと推察される。 For example, in Example 1 and Comparative Example 1, the same firing furnace (lifting and closing type large electric furnace) is used. In Example 1, a SUS firing container is used, whereas Comparative Example 1 is used. Uses a firing container made of alumina. Also, the oxygen flow rate is lower in Example 1 than in Comparative Example 1. For this reason, in Example 1, the heat conductivity to the fired product is excellent, and since the oxygen flow rate is small compared to Comparative Example 1, the amount of heat lost to the airflow is small, and the temperature near the fired product is used for controlling the furnace. It seems that it is easier to follow. For this reason, it is presumed that the calcination and firing times are different from each other, and this difference is presumed to have influenced the internal structure of the particles.
また、実施例2と比較例2においては、焼成炉(小型雰囲気炉)および焼成容器の材質(マグネシア製)は同じであるが、実施例1の方が焼成温度が低く、酸素流量も少ないため、実質的に焼成物の単位質量当たりにかかる熱量が異なっていたと推定され、この違いが粒子の内部構造に影響を与えたと推察される。 In Example 2 and Comparative Example 2, the firing furnace (small atmosphere furnace) and the material of the firing container (made of magnesia) are the same, but Example 1 has a lower firing temperature and a lower oxygen flow rate. It is presumed that the amount of heat applied per unit mass of the fired product was substantially different, and it was assumed that this difference affected the internal structure of the particles.
さらに、実施例3と比較例3においては、焼成炉および焼成温度は同じであるが、実施例3の焼成容器の材質がSUSであるのに対し、比較例3の焼成容器の材質はアルミナである。このため、実施例3は比較例3と比較して、焼成物への熱の伝達に優れるため、焼成条件に差が生じ、粒子の内部構造に影響を与えたと推察される。 Furthermore, in Example 3 and Comparative Example 3, the firing furnace and the firing temperature are the same, but the material of the firing container of Example 3 is SUS, whereas the material of the firing container of Comparative Example 3 is alumina. is there. For this reason, since Example 3 is superior in heat transfer to the fired product as compared with Comparative Example 3, it is presumed that the firing conditions differed and the internal structure of the particles was affected.
以上述べてきたことからわかるように、目的の湿潤熱を有する正極活物質を得るためには、これらの焼成条件を適切に組み合わせることが必要である。本発明者は、焼成に用いる炉ごとに適切な条件を確認しているが、用いる炉に依存しない条件を規定することはまだできていない。 As can be seen from the above description, in order to obtain a positive electrode active material having a target heat of wetting, it is necessary to appropriately combine these firing conditions. Although this inventor has confirmed appropriate conditions for every furnace used for baking, it has not yet been able to prescribe | regulate the conditions which do not depend on the furnace to be used.
出力特性が優れているという本発明の非水系電解質二次電池のメリットを活かすためには、瞬時に大きなエネルギーが入力され、また、瞬時に大きなエネルギーを出力するようなデバイスの電源としての用途が好適である。言い換えれば、充電開始から直ちに大電流で充電され、また、放電開始から直ちに大電流で放電するような用途の電源として用いることが好ましい。 In order to take advantage of the non-aqueous electrolyte secondary battery of the present invention, which has excellent output characteristics, it can be used as a power source for devices that instantly input large energy and output large energy instantaneously. Is preferred. In other words, it is preferably used as a power source for applications that are charged with a large current immediately after the start of charging, and discharged with a large current immediately after the start of discharging.
電気自動車用の電源においては、減速時等に瞬時に回生制動により大きなエネルギーを回生できる必要がある。また、始動時、急発進時、急加速時等には大きなパワーを出力する必要がある。したがって、本発明のリチウムイオン二次電池は、電気自動車用電源として好適である。 In a power source for an electric vehicle, it is necessary to be able to regenerate large energy by regenerative braking instantaneously at the time of deceleration or the like. Also, it is necessary to output a large amount of power at the time of start-up, sudden start, sudden acceleration, and the like. Therefore, the lithium ion secondary battery of the present invention is suitable as a power source for electric vehicles.
なお、電気自動車用電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用するいわゆるハイブリッド車用の電源として用いることをも含むことを意味する。 The electric vehicle power source means not only an electric vehicle driven purely by electric energy but also a so-called hybrid vehicle power source used in combination with a combustion engine such as a gasoline engine or a diesel engine. .
1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体
1 Lithium metal
3 Positive electrode (Evaluation electrode)
4
Claims (6)
The positive electrode active material for a non-aqueous electrolyte secondary battery has a general formula LiNi 1-x M x O 2 (where the value of x in the formula is 0 <x ≦ 0.25, and M in the formula Represents at least one element selected from the group consisting of Co, Al, Mg, Mn, Ti, Fe, Cu, Zn, and Ga.). The inspection method for a positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 5, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004234896A JP2006054107A (en) | 2004-08-11 | 2004-08-11 | Cathode active substance for nonaqueous electrolyte secondary battery and secondary battery using the same, and manufacturing method and inspection method of cathode activating substance for nonaqueous electrolyte secondary batter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004234896A JP2006054107A (en) | 2004-08-11 | 2004-08-11 | Cathode active substance for nonaqueous electrolyte secondary battery and secondary battery using the same, and manufacturing method and inspection method of cathode activating substance for nonaqueous electrolyte secondary batter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006054107A true JP2006054107A (en) | 2006-02-23 |
Family
ID=36031445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004234896A Pending JP2006054107A (en) | 2004-08-11 | 2004-08-11 | Cathode active substance for nonaqueous electrolyte secondary battery and secondary battery using the same, and manufacturing method and inspection method of cathode activating substance for nonaqueous electrolyte secondary batter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006054107A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009021251A (en) * | 2007-07-16 | 2009-01-29 | Samsung Sdi Co Ltd | Positive electrode active material for lithium secondary battery, method for forming the same, and lithium secondary battery |
JP2010019813A (en) * | 2008-07-14 | 2010-01-28 | Nissan Motor Co Ltd | Inspection system for inspecting active material for secondary battery |
JP2011116608A (en) * | 2009-12-07 | 2011-06-16 | Sumitomo Metal Mining Co Ltd | Method for producing nickel cobalt aluminum multiple oxide |
-
2004
- 2004-08-11 JP JP2004234896A patent/JP2006054107A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009021251A (en) * | 2007-07-16 | 2009-01-29 | Samsung Sdi Co Ltd | Positive electrode active material for lithium secondary battery, method for forming the same, and lithium secondary battery |
US8999578B2 (en) | 2007-07-16 | 2015-04-07 | Samsung Sdi Co., Ltd. | Positive electrode active materials for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same |
JP2010019813A (en) * | 2008-07-14 | 2010-01-28 | Nissan Motor Co Ltd | Inspection system for inspecting active material for secondary battery |
JP2011116608A (en) * | 2009-12-07 | 2011-06-16 | Sumitomo Metal Mining Co Ltd | Method for producing nickel cobalt aluminum multiple oxide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7191342B2 (en) | Positive electrode active material for secondary battery, manufacturing method thereof, and lithium secondary battery including the same | |
CN113169338B (en) | Positive electrode additive for lithium secondary battery, method for producing same, positive electrode for lithium secondary battery comprising same, and lithium secondary battery comprising same | |
JP5251401B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP4595475B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same | |
JP4766840B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP5618116B2 (en) | Non-aqueous electrolyte secondary battery using lithium nickel composite oxide and lithium nickel composite oxide as positive electrode active material | |
JP4997693B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same | |
CN107078294B (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using same | |
JP6201277B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP5114998B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP4655599B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP2006172753A (en) | Lithium-nickel-manganese-based composite oxide powder for lithium secondary battery positive electrode material, its manufacturing method, positive electrode for lithium secondary battery using it, and lithium secondary battery | |
WO2015076323A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery | |
JP2008257992A (en) | Positive-electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery | |
EP2922121B1 (en) | Lithium-manganate-particle powder for use in non-aqueous electrolyte secondary battery, method for producing same, and non-aqueous electrolyte secondary battery | |
JP4268442B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery | |
JP2020070211A (en) | Lithium nickel-containing complex oxide and method for producing the same, and positive electrode active material for lithium ion secondary battery using lithium nickel-containing complex oxide as base material and method for producing the same | |
JP4163410B2 (en) | Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery using the same | |
JP2006344567A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material | |
WO2017034000A1 (en) | Positive electrode active material for non-aqueous electrolyte secondary cell and method for manufacturing said material, and non-aqueous electrolyte secondary cell | |
JP2006147500A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this | |
JP2022095988A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
JP2020035605A (en) | Production method of positive electrode active material for lithium ion secondary battery, and manufacturing method of lithium ion secondary battery | |
JP2016115621A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
JP2019212365A (en) | Positive electrode active material for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery using the same |