JP2006147500A - Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this - Google Patents
Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this Download PDFInfo
- Publication number
- JP2006147500A JP2006147500A JP2004339690A JP2004339690A JP2006147500A JP 2006147500 A JP2006147500 A JP 2006147500A JP 2004339690 A JP2004339690 A JP 2004339690A JP 2004339690 A JP2004339690 A JP 2004339690A JP 2006147500 A JP2006147500 A JP 2006147500A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- niobium
- secondary battery
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、非水系電解質二次電池用正極活物質とその製造方法及びこれを用いた非水系電解質二次電池に関するものである。 The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery using the same.
近年、携帯電話やノート型パソコンなどの携帯電子機器の普及にともない、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が強く望まれている。このような二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池の負極材料には、リチウム金属やリチウム合金、金属酸化物、あるいはカーボン等が用いられている。これらの材料は、リチウムを脱離・挿入することが可能な材料である。 In recent years, with the widespread use of portable electronic devices such as mobile phones and notebook computers, development of small and lightweight non-aqueous electrolyte secondary batteries having high energy density is strongly desired. As such a secondary battery, there is a lithium ion secondary battery. Lithium metal, lithium alloy, metal oxide, carbon, or the like is used as a negative electrode material for a lithium ion secondary battery. These materials are materials capable of removing and inserting lithium.
このようなリチウムイオン二次電池については、現在、研究開発が盛んに行われているところである。この中でも、リチウム金属複合酸化物、特に合成が比較的容易なリチウムコバルト複合酸化物(LiCoO2)を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として期待され、実用化が進んでいる。このリチウムコバルト複合酸化物(LiCoO2)を用いたリチウムイオン二次電池では、優れた初期容量特性やサイクル特性を得るための開発がこれまで数多く行われてきており、すでにさまざまな成果が得られている。
しかし、リチウムコバルト複合酸化物(LiCoO2)は、原料に希産で高価なコバルト化合物を用いているため、電池のコストアップの原因となる。このため、正極活物質としてリチウムコバルト複合酸化物(LiCoO2)以外のものを用いることが望まれている。
Research and development of such lithium ion secondary batteries is being actively conducted. Among these, a lithium ion secondary battery using a lithium metal composite oxide, in particular, a lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, as a positive electrode material can obtain a high voltage of 4 V, and thus has high energy. It is expected as a battery having a high density and is being put to practical use. In the lithium ion secondary battery using this lithium cobalt composite oxide (LiCoO 2 ), many developments have been made so far to obtain excellent initial capacity characteristics and cycle characteristics, and various results have already been obtained. ing.
However, since lithium cobalt complex oxide (LiCoO 2 ) uses a rare and expensive cobalt compound as a raw material, it causes an increase in battery cost. For this reason, it is desired to use materials other than lithium cobalt composite oxide (LiCoO 2 ) as the positive electrode active material.
また、最近は、携帯電子機器用の小型二次電池だけではなく、電力貯蔵用や、電気自動車用などの大型二次電池としてリチウムイオン二次電池を適用することへの期待も高まってきている。このため、活物質のコストを下げ、より安価なリチウムイオン二次電池の製造を可能とすることは、広範な分野への大きな波及効果が期待しており、リチウムイオン二次電池用正極活物質として新たに提案されている材料としては、コバルトよりも安価なマンガンを用いたリチウムマンガン複合酸化物(LiMn2O4)や、ニッケルを用いたリチウムニッケル複合酸化物(LiNiO2)を挙げることができる。 In addition, recently, not only small secondary batteries for portable electronic devices but also expectations for applying lithium ion secondary batteries as large-sized secondary batteries for power storage and electric vehicles are increasing. . For this reason, reducing the cost of the active material and making it possible to manufacture a cheaper lithium ion secondary battery is expected to have a large ripple effect in a wide range of fields. The positive electrode active material for lithium ion secondary batteries As newly proposed materials, lithium manganese composite oxide (LiMn 2 O 4 ) using manganese, which is cheaper than cobalt, and lithium nickel composite oxide (LiNiO 2 ) using nickel can be cited. it can.
リチウムマンガン複合酸化物(LiMn2O4)は原料が安価である上、熱安定性、特に、発火などについての安全性に優れるため、リチウムコバルト複合酸化物(LiCoO2)の有力な代替材料であるといえるが、理論容量がリチウムコバルト複合酸化物(LiCoO2)のおよそ半分程度しかないため、年々高まるリチウムイオン二次電池の高容量化の要求に応えるのが難しいという欠点を持っている。また、45℃以上では、自己放電が激しく、充放電寿命も低下するという欠点もあった。 Lithium-manganese composite oxide (LiMn 2 O 4 ) is a powerful alternative to lithium-cobalt composite oxide (LiCoO 2 ) because it is inexpensive and has excellent thermal stability, in particular, safety with respect to ignition. Although it can be said that the theoretical capacity is only about half that of lithium cobalt composite oxide (LiCoO 2 ), it has a drawback that it is difficult to meet the demand for higher capacity of lithium ion secondary batteries, which is increasing year by year. Further, at 45 ° C. or higher, there is a drawback that self-discharge is intense and the charge / discharge life is also reduced.
一方、リチウムニッケル複合酸化物(LiNiO2)は、リチウムコバルト複合酸化物(LiCoO2)とほぼ同じ理論容量を持ち、リチウムコバルト複合酸化物よりもやや低い電池電圧を示す。このため、電解液の酸化による分解が問題になりにくく、より高容量が期待できることから、開発が盛んに行われている。しかし、ニッケルを他の元素で置換せずに、純粋にニッケルのみで構成したリチウムニッケル複合酸化物を正極活物質として用いてリチウムイオン二次電池を作製した場合、リチウムコバルト複合酸化物に比べサイクル特性が劣っている。また、高温環境下で使用されたり保存されたりした場合に比較的電池性能を損ないやすいという欠点も有している。 On the other hand, lithium nickel composite oxide (LiNiO 2 ) has almost the same theoretical capacity as lithium cobalt composite oxide (LiCoO 2 ), and shows a slightly lower battery voltage than lithium cobalt composite oxide. For this reason, decomposition | disassembly by oxidation of electrolyte solution does not become a problem, and development is performed actively from expecting higher capacity | capacitance. However, when a lithium-ion secondary battery is made using a lithium-nickel composite oxide composed solely of nickel as a positive electrode active material without replacing nickel with other elements, the cycle is higher than that of lithium-cobalt composite oxide. The characteristics are inferior. In addition, there is a disadvantage that battery performance is relatively easily lost when used or stored in a high temperature environment.
このような欠点を解決するために、例えば特許文献1では、高温環境下での保存や使用に際して良好な電池性能を維持することのできる正極活物質として、LiwNixCoyBzO2(0.05≦w≦1.10、0.5≦x≦0.995、0.005≦z≦0.20、x+y+z=1)で表されるリチウムニッケル複合酸化物、つまりホウ素が添加されたリチウム含有複合酸化物が提案されている。 In order to solve such drawbacks, for example, in Patent Document 1, Li w Ni x Co y B z O 2 is used as a positive electrode active material capable of maintaining good battery performance during storage and use in a high temperature environment. Lithium nickel composite oxide represented by (0.05 ≦ w ≦ 1.10, 0.5 ≦ x ≦ 0.995, 0.005 ≦ z ≦ 0.20, x + y + z = 1), that is, boron is added. Lithium-containing composite oxides have been proposed.
また、特許文献2では、リチウムイオン二次電池の自己放電特性やサイクル特性を向上させることを目的として、LixNiaCobMcO2(0.8≦x≦1.2、0.01≦a≦0.99、0.01≦b≦0.99、0.01≦c≦0.3、0.8≦a+b+c≦1.2、MはAl、V、Mn、Fe、Cu及びZnから選ばれる少なくとも1種の元素)で表されるリチウムニッケル系複合酸化物が提案されている。 In Patent Document 2, in order to improve the self-discharge characteristics and cycle characteristics of the lithium ion secondary battery, Li x Ni a Co b M c O 2 (0.8 ≦ x ≦ 1.2,0. 01 ≦ a ≦ 0.99, 0.01 ≦ b ≦ 0.99, 0.01 ≦ c ≦ 0.3, 0.8 ≦ a + b + c ≦ 1.2, M is Al, V, Mn, Fe, Cu and A lithium nickel composite oxide represented by at least one element selected from Zn has been proposed.
しかしながら、上記した従来の製造方法によって得られたリチウムニッケル複合酸化物では、リチウムコバルト系複合酸化物に比べて充電容量、放電容量ともに高く、サイクル特性も改善されているが、満充電状態で高温環境下に放置しておくと、コバルト系複合酸化物に比べて低い温度から酸素放出を伴うといった問題がある。 However, in the lithium nickel composite oxide obtained by the above-described conventional manufacturing method, both the charge capacity and discharge capacity are higher and the cycle characteristics are improved as compared with the lithium cobalt composite oxide. If left in the environment, there is a problem that oxygen is released from a temperature lower than that of the cobalt-based composite oxide.
このような問題を解決するために、例えば特許文献3では、リチウムイオン二次電池正極材料の熱的安定性を向上させることを目的として、LiaMbNicCodOe(MはAl、Mn、Sn、In、Fe、V、Cu、Mg、Ti、Zn、Moから成る群から選択される少なくとも一種の金属であり、かつ0<a<1.3、0.02≦d/c+d≦0.9、1.8<e<2.2の範囲であって、さらにb+c+d=1である)で表されるリチウム含有複合酸化物等が提案されている。この場合に添加元素Mとして、例えばアルミニウムを選択した場合、ニッケルからアルミニウムへの置換量を多くすれば、正極活物質の分解反応は抑えられ、熱安定性が向上することが確かめられている。しかし、十分な安定性を確保するのに有効なアルミニウムでニッケルを置換すると、充放電反応にともなう酸化還元反応に寄与するニッケルの量が減少するため、電池性能として最も重要である初期容量が大きく低下するという問題点を有していた。これはAlは3価で安定していることからNiも電荷を合わせるため3価で安定化させるとRedox反応に寄与しない部分が生ずるために容量低下が起こるものと考えられる。 In order to solve such a problem, for example, in Patent Document 3, Li a Mb Ni c Co d O e (M is Al) for the purpose of improving the thermal stability of the positive electrode material of the lithium ion secondary battery. , Mn, Sn, In, Fe, V, Cu, Mg, Ti, Zn, Mo, and at least one metal selected from the group consisting of 0 <a <1.3, 0.02 ≦ d / c + d ≦ 0.9, 1.8 <e <2.2, and b + c + d = 1) has been proposed. In this case, for example, when aluminum is selected as the additive element M, it is confirmed that if the amount of substitution from nickel to aluminum is increased, the decomposition reaction of the positive electrode active material is suppressed and the thermal stability is improved. However, replacing nickel with aluminum, which is effective to ensure sufficient stability, reduces the amount of nickel that contributes to the oxidation-reduction reaction associated with the charge / discharge reaction, so the initial capacity, which is the most important for battery performance, is large. It had the problem of decreasing. Since Al is trivalent and stable, Ni is also matched to charge, and if it is stabilized with trivalent, a portion that does not contribute to the Redox reaction is generated, and it is considered that the capacity decreases.
また、特許文献4では、一般式LiaNi1−b−cM1 bM2 cO2 (ただし、0.95≦a≦1.05、0.01≦b≦0.10、0.10≦c≦0.20であり、M1はAl、B、Y、Ce、Ti、Sn、V、Nb、W、Moのうち少なくとも一種以上から成る元素、M2はCo、Mn、Feから選ばれる1種以上の元素)で表されるリチウム含有複合酸化物を、まず反応槽を用い、これに塩濃度が調整されたニッケル−コバルト−M2塩水溶液、その水溶液と錯塩を形成する錯化剤、及びアルカリ金属水酸化物をそれぞれ連続的に供給しニッケル−コバルト−M2錯塩を生成させ、次いでこの錯塩をアルカリ金属水酸化物により分解してニッケル−コバルト−M2水酸化物を析出させ、上記錯塩の生成及び分解を槽内で循環させながら繰り返し、ニッケル−コバルト−M2水酸化物をオ−バーフローさせて取り出す。これにより得られる該水酸化物とNb2O5などの酸化物を混合し湿式粉砕した後に噴霧乾燥を行うことで粒子形状が略球状であるニッケル−コバルト−M1−M2の混合物を原料として用い、これにリチウム塩を混合し、焼成して得ることが記載されている。
In
上記方法によれば、活物質の導電性を低下させることにより、電池短絡時の短絡電流が活物質粒子内を貫通することを防止でき、短絡電流のジュール発熱によって活物質自体が熱分解することを回避して、熱安定性が向上することが記載されている。 According to the above method, by reducing the conductivity of the active material, it is possible to prevent the short-circuit current when the battery is short-circuited from passing through the active material particles, and the active material itself is thermally decomposed by the Joule heating of the short-circuit current. It is described that the thermal stability is improved.
最近では携帯電子機器等の小型二次電池に対する高容量化の要求は年々高まる一方であり、安全性を確保するために容量を犠牲にすることは、リチウムニッケル複合酸化物の高容量のメリットを失うことになる。また、リチウムイオン二次電池を大型二次電池に用いようという動きも盛んであり、中でもハイブリッド自動車用、電気自動車用の電源としての期待が大きい。自動車用の電源として用いられる場合、安全性に劣るというリチウムニッケル複合酸化物の問題点の解消は大きな課題である。
本発明は、かかる問題点に鑑みてなされたものであって、添加元素Mとしてニオブが充電状態での熱安定性を向上させるのに好ましく、ニッケル塩とコバルト塩の混合水溶液とニオブ塩溶液に、アルカリ溶液を加えて、均一なニッケルとコバルトとニオブの水酸化物を共沈させ、これを用いることによって得られる非水系電解質二次電池用正極活物質を非水系電解質二次電池の正極に用いた場合に、熱安定性が良好でかつ高い充放電容量をもつ正極活物質を提供することを目的とする。 The present invention has been made in view of such a problem, and niobium as the additive element M is preferable for improving the thermal stability in a charged state, and a mixed aqueous solution of nickel salt and cobalt salt and a niobium salt solution are preferable. Then, an alkaline solution is added to coprecipitate a uniform nickel, cobalt and niobium hydroxide, and the resulting positive electrode active material for a nonaqueous electrolyte secondary battery is used as the positive electrode of the nonaqueous electrolyte secondary battery. An object of the present invention is to provide a positive electrode active material having good thermal stability and high charge / discharge capacity when used.
発明者等は、一般式Li1+ZNi1-x-yCoxMyO2(但し、0.10≦x≦0.21、0.01≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム−金属複合酸化物の粉末について鋭意検討したところ、添加元素Mとしてニオブが充電状態での熱安定性を向上させるのに好ましく、特に、均一なニッケル−コバルト−ニオブ水酸化物を作製する点からはニオブ塩溶液を用いることが必要であることを見出した。所望の組成割合で用意したニッケル塩とコバルト塩の混合水溶液とニオブ塩溶液に、アルカリ溶液を加えて、均一なニッケルとコバルトとニオブの水酸化物を共沈させることによって得た複合水酸化物Ni1−x−yCoxNby(OH)2と、リチウム化合物とを混合し、該混合物を650℃以上850℃以下の温度で熱処理することで得られる非水系電解質二次電池用正極活物質が、熱安定性が良好でかつ高い充放電容量をもつ正極活物質となることを見出し、本発明を完成するに至った。 Inventors have general formula Li 1 + Z Ni 1-x -y Co x M y O 2 ( where, 0.10 ≦ x ≦ 0.21,0.01 ≦ y ≦ 0.08, -0.05 ≦ z As a result of intensive studies on the powder of lithium-metal composite oxide represented by ≦ 0.10), niobium as the additive element M is preferable for improving the thermal stability in the charged state, and in particular, uniform nickel-cobalt. -It discovered that it was necessary to use a niobium salt solution from the point of producing niobium hydroxide. Composite hydroxide obtained by co-precipitation of uniform nickel, cobalt and niobium hydroxide by adding alkaline solution to nickel salt and cobalt salt mixed aqueous solution and niobium salt solution prepared in desired composition ratio Positive electrode active for non-aqueous electrolyte secondary battery obtained by mixing Ni 1-xy Co x Nb y (OH) 2 and a lithium compound and heat-treating the mixture at a temperature of 650 ° C. or higher and 850 ° C. or lower. It has been found that the substance becomes a positive electrode active material having good thermal stability and high charge / discharge capacity, and the present invention has been completed.
本発明に係る非水系電解質二次電池用正極活物質の製造方法とは、リチウム金属複合酸化物Li1+ZNi1−x−yCoxNbyO2(但し、0.10≦x≦0.21、0.01≦y≦0.08、−0.05≦z≦0.10)の粉末からなる非水系電解質二次電池用正極活物質の製造方法であって、ニッケル塩とコバルト塩の混合水溶液とニオブ塩溶液にアルカリ溶液を加え、50℃以上80℃以下で、かつpH10以上12.5以下の条件で、ニッケルとコバルトとニオブの水酸化物を共沈させることによって得られた複合水酸化物Ni1−x−yCoxNby(OH)2とリチウム化合物とを混合し、該混合物を650℃以上850℃以下の温度で熱処理することを特徴とするものである。 The method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, a lithium metal composite oxide Li 1 + Z Ni 1-x -y Co x Nb y O 2 ( where, 0.10 ≦ x ≦ 0. 21, 0.01 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10), a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, comprising a nickel salt and a cobalt salt A composite obtained by adding an alkaline solution to a mixed aqueous solution and a niobium salt solution, and co-precipitating nickel, cobalt and niobium hydroxide under the conditions of 50 to 80 ° C. and pH of 10 to 12.5 Hydroxide Ni 1-xy Co x Nb y (OH) 2 and a lithium compound are mixed, and the mixture is heat-treated at a temperature of 650 ° C. or higher and 850 ° C. or lower.
本発明に係る他の非水系電解質二次電池用正極活物質の製造方法とは、前記ニオブ塩溶液は、ニオブ苛性カリ水溶液、又は、ニオブ塩酸溶液であることを特徴とするものであり、また、前記リチウム化合物は、炭酸リチウム、若しくは水酸化リチウム、又はこれらの水和物であることを特徴とするものである。 According to another method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, the niobium salt solution is a niobium caustic potash aqueous solution or a niobium hydrochloric acid solution, The lithium compound is lithium carbonate, lithium hydroxide, or a hydrate thereof.
また、本発明に係る非水系電解質二次電池用正極活物質とは、前記記載の非水系電解質二次電池用正極活物質の製造方法によって得られたリチウム金属複合酸化物Li1+ZNi1−x−yCoxNbyO2(但し、0.10≦x≦0.21、0.01≦y≦0.08、−0.05≦z≦0.10)の粉末からなることを特徴とするものであり、更に、本発明に係る他の非水系電解質二次電池用正極活物質とは、前記非水系電解質二次電池用正極活物質が、エネルギー分散法により測定した結果、該活物質のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの標準偏差が強度比INb/INiの平均値の1/2以内であり、常に、組成式Li1+ZNi1−x−yCoxNbyO2(但し、0.10≦x≦0.21、0.01≦y≦0.08、−0.05≦z≦0.10)を満たすことを特徴とするものである。 Moreover, the positive electrode active material for nonaqueous electrolyte secondary batteries according to the present invention is a lithium metal composite oxide Li 1 + Z Ni 1-x obtained by the method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries described above. -Y Co x Nb y O 2 (where 0.10 ≤ x ≤ 0.21, 0.01 ≤ y ≤ 0.08, -0.05 ≤ z ≤ 0.10) In addition, the other positive electrode active material for non-aqueous electrolyte secondary battery according to the present invention is the result of measuring the positive electrode active material for non-aqueous electrolyte secondary battery by an energy dispersion method. In any case, the standard deviation of the intensity ratio I Nb / I Ni is the intensity ratio when the peak intensity of the Nb L-line is I Nb and the peak intensity of the Ni L-line is I Ni. It is within 1/2 of the average value of I Nb / I Ni, always, the composition formula i 1 + Z Ni 1-x -y Co x Nb y O 2 ( where, 0.10 ≦ x ≦ 0.21,0.01 ≦ y ≦ 0.08, -0.05 ≦ z ≦ 0.10) satisfy It is characterized by this.
また、本発明に係る非水系電解質二次電池とは、上記記載の非水系電解質二次電池用正極活物質を正極に用いたことを特徴とするものである。 The non-aqueous electrolyte secondary battery according to the present invention is characterized in that the positive electrode active material for a non-aqueous electrolyte secondary battery described above is used for a positive electrode.
本発明に係る非水系電解質二次電池用正極活物質は、一般式Li1+ZNi1−x−yCoxNbyO2(但し、0.10≦x≦0.21、0.01≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物の粉末からなり、該粉末はニッケル塩とコバルト塩の混合水溶液と、ニオブ塩溶液としてニオブの苛性カリ水溶液、あるいは、ニオブ塩酸溶液を用いて、これらの混合溶液にアルカリ溶液を加えてニッケルとコバルトとニオブの水酸化物を共沈させることによって得た複合水酸化物Ni1−x−yCoxNby(OH)2とリチウム化合物とを混合し、該混合物を650℃以上850℃以下の温度で熱処理して得ることができる非水系電解質二次電池用正極活物質であり、5価で安定するニオブでNiを置換することにより、Niの一部が3価から2価で安定化させることで、ニッケルを別元素に置換したことによる電池の初期容量の低下を防止することができる。また、酸化力の強いニオブで置換させることで、リチウムイオン電池の正極として用いた場合、電池容量を劣化させることなく電池の熱安定性の向上を図ることができる。 The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a general formula Li 1 + Z Ni 1-xy Co x Nb y O 2 (where 0.10 ≦ x ≦ 0.21, 0.01 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10), the powder comprising a mixed aqueous solution of nickel salt and cobalt salt, and niobium caustic potash as a niobium salt solution. A composite hydroxide Ni 1-xy Co x obtained by coprecipitation of nickel, cobalt and niobium hydroxide by adding an alkaline solution to these mixed solutions using an aqueous solution or niobium hydrochloric acid solution A positive electrode active material for a non-aqueous electrolyte secondary battery obtained by mixing Nb y (OH) 2 and a lithium compound and heat-treating the mixture at a temperature of 650 ° C. or higher and 850 ° C. or lower. Niobium to Ni By substituting, a part of Ni is stabilized from trivalent to divalent, so that it is possible to prevent a decrease in the initial capacity of the battery due to the replacement of nickel with another element. Further, by replacing with niobium having strong oxidizing power, when used as a positive electrode of a lithium ion battery, the thermal stability of the battery can be improved without deteriorating the battery capacity.
上記本発明の非水系電解質二次電池用正極活物質を用いることによって、最近の携帯電子機器等の小型二次電池に対する高容量化の要求を満足するとともに、ハイブリッド自動車用、電気自動車用大型二次電池に用いられる電源として求められる安全性をも確保することが可能な非水系電解質二次電池を得ることができ、工業上有用である。 By using the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, a large capacity for a hybrid vehicle and an electric vehicle can be satisfied. A non-aqueous electrolyte secondary battery capable of ensuring the safety required as a power source used for the secondary battery can be obtained and is industrially useful.
本発明による二次電池の充放電反応は、正極活物質内のリチウムイオンが可逆的に出入りすることで進行する。充電によってリチウムが引き抜かれた正極活物質は高温で不安定であり、加熱すると活物質が分解して酸素を放出し、この酸素が電解液の燃焼を引き起こし、発熱反応が起こる。正極材料の熱安定性を改善するということは、リチウムが引き抜かれた正極活物質の分解反応を抑えるということである。従来開示されている正極活物質の分解反応を抑える方法としては、アルミニウムのような酸素との共有結合性の強い元素でニッケルの一部を置換することが一般的に行なわれてきた。確かにニッケルからアルミニウムへの置換量を多くすれば、正極活物質の分解反応は抑えられ、熱安定性が向上するが、充放電反応にともなう酸化還元反応に寄与するニッケルの量が減少することで充放電容量の低下を招くため、アルミニウムへの置換量はある程度に留めなければならなかった。その結果、十分な熱安定性を確保した場合には十分な可逆容量を得ることができず、ある程度の容量を得るためには熱安定性を犠牲にしなければならなかった。 The charge / discharge reaction of the secondary battery according to the present invention proceeds by reversibly entering and exiting lithium ions in the positive electrode active material. The positive electrode active material from which lithium has been extracted by charging is unstable at high temperatures, and when heated, the active material decomposes and releases oxygen, which causes combustion of the electrolyte and an exothermic reaction. To improve the thermal stability of the positive electrode material means to suppress the decomposition reaction of the positive electrode active material from which lithium has been extracted. As a method for suppressing the decomposition reaction of the positive electrode active material disclosed heretofore, it has been generally performed that a part of nickel is substituted with an element having strong covalent bond with oxygen such as aluminum. Certainly, if the amount of substitution from nickel to aluminum is increased, the decomposition reaction of the positive electrode active material is suppressed and the thermal stability is improved, but the amount of nickel contributing to the redox reaction accompanying the charge / discharge reaction is reduced. In order to reduce the charge / discharge capacity, the amount of substitution with aluminum had to be limited to a certain extent. As a result, a sufficient reversible capacity could not be obtained when sufficient thermal stability was ensured, and thermal stability had to be sacrificed in order to obtain a certain level of capacity.
そこで、上記課題を解決するために、一般式Li1+ZNi1−x−yCoxMyO2(但し、0.10≦x≦0.21、0.01≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物の粉末であって、添加元素Mを、5価で安定するニオブで置換することで、Niの一部が3価から2価で安定して、ニッケルを別元素に置換したことによる電池の初期容量の低下を防止することができ、また、特に、充電状態での熱安定性をも向上させることができる。 Therefore, in order to solve the above problems, the general formula Li 1 + Z Ni 1-x -y Co x M y O 2 ( where, 0.10 ≦ x ≦ 0.21,0.01 ≦ y ≦ 0.08, - 0.05 ≦ z ≦ 0.10), and by replacing the additive element M with pentavalent and stable niobium, a part of Ni can be changed from trivalent. It is possible to stably reduce the initial capacity of the battery due to divalent and stable replacement of nickel with another element, and in particular to improve thermal stability in a charged state.
本発明では、一般式Li1+ZNi1−x−yCoxNbyO2(但し、0.10≦x≦0.21、0.01≦y≦0.08、−0.05≦z≦0.10)で表される層状構造を有するリチウムニッケルコバルトニオブ複合酸化物は、まず、コバルトとニッケルとニオブとの原子比が上記一般式の原子比となるように、ニッケル塩とコバルト塩の混合水溶液とニオブ塩溶液に、アルカリ溶液を加えて、それらを一定速度にて攪拌して、反応槽内にコバルトとニッケルとニオブとの原子比が上記一般式の原子比となるように共沈殿させる。そして定常状態になった後に該沈殿物を採取し、濾過、水洗してニッケルコバルトニオブ複合水酸化物を得る。その後、これをリチウム化合物と混合して熱処理することで、望まれる比率のリチウムイオン二次電池用正極活物質として有用なリチウムニッケルコバルトニオブ複合酸化物が得られる。 In the present invention, the general formula Li 1 + Z Ni 1-xy Co x Nb y O 2 (where 0.10 ≦ x ≦ 0.21, 0.01 ≦ y ≦ 0.08, −0.05 ≦ z ≦ The lithium nickel cobalt niobium composite oxide having a layered structure represented by 0.10) is first composed of nickel salt and cobalt salt so that the atomic ratio of cobalt, nickel and niobium is the atomic ratio of the above general formula. Add alkaline solution to mixed aqueous solution and niobium salt solution, stir them at a constant speed, and co-precipitate in reaction tank so that atomic ratio of cobalt, nickel and niobium is the atomic ratio of the above general formula Let After the steady state is reached, the precipitate is collected, filtered and washed with water to obtain nickel cobalt niobium composite hydroxide. Thereafter, this is mixed with a lithium compound and subjected to a heat treatment to obtain a lithium nickel cobalt niobium composite oxide useful as a positive electrode active material for a lithium ion secondary battery in a desired ratio.
次に、本発明に係るリチウムイオン二次電池の実施形態について、各構成要素ごとにそれぞれ詳しく説明する。本発明に係るリチウムイオン二次電池は、正極、負極、非水電解液等、一般のリチウムイオン二次電池と同様の構成要素から構成される。なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、下記実施形態をはじめとして、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。 Next, embodiments of the lithium ion secondary battery according to the present invention will be described in detail for each component. The lithium ion secondary battery according to the present invention is composed of the same components as those of a general lithium ion secondary battery, such as a positive electrode, a negative electrode, and a non-aqueous electrolyte. The embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention is implemented in various modifications and improvements based on the knowledge of those skilled in the art, including the following embodiment. can do. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.
(1)正極活物質、正極
本発明に係る非水系電解質二次電池用正極活物質は、一般式 Li1+ZNi1−x−yCoxNbyO2(但し、0.10≦x≦0.21、0.01≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物の粉末からなる。
本発明では、ニッケル塩とコバルト塩の複合水溶液と、ニオブ塩溶液としてニオブ苛性カリ水溶液、あるいは、ニオブ溶解塩酸を準備し、アルカリ水溶液とともに同時添加を行うことで3元素が均一に分散した複合水酸化物を得ることを特徴としている。これはニッケル塩、コバルト塩およびニオブ塩の混合水溶液を作製するために、ニオブ塩を代表するオルトニオブ酸塩(M3NbO4:Mは一価)、メタニオブ酸塩(MNbO3:Mは二価)を用いる場合、ニオブ塩溶液を得ようとして溶解しようとすると加水分解或いは溶解中に酸化が進み水酸化ニオブ或いは不溶の酸化ニオブが発生したり、ほとんど溶解しない場合があるからである。
また、フッ化水素酸と硫酸混合溶液にニオブ金属を投入して混合溶液を得た場合でも、ニッケル塩とコバルト塩と先に混合してしまうと、ニオブ酸化物あるいはニオブ水酸化物が析出してしまい、その後アルカリ水溶液を投入しても均一な水酸化物の共沈殿物は得られず、これを用いてリチウムニッケルコバルト二オブ化合物を合成しても、ニオブの偏析が起きてしまう。
したがって、使用するニオブ塩としては、水への溶解度の高いニオブ塩溶液を用いることが工業的に必要である。本発明では、苛性カリ水溶液あるいは塩酸に溶解させた上記ニオブ塩は液中で安定しており好ましいが、ニッケル塩とコバルト塩の複合水溶液とは別に用意し、アルカリ水溶液とともに同時添加を行うことが必要であり、この操作を行うことにより3元素が均一に分散した複合水酸化物が得られることとなる。
(1) Positive electrode active material, positive electrode The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention has a general formula Li 1 + Z Ni 1-xy Co x Nb y O 2 (where 0.10 ≦ x ≦ 0 .21, 0.01 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10).
In the present invention, a composite aqueous solution of nickel salt and cobalt salt and a niobium caustic potash aqueous solution or niobium-dissolved hydrochloric acid as a niobium salt solution are prepared, and simultaneously added together with an alkaline aqueous solution so that the three elements are uniformly dispersed. It is characterized by getting things. In order to prepare a mixed aqueous solution of nickel salt, cobalt salt and niobium salt, ortho niobate (M 3 NbO 4 : M is monovalent), meta niobate (MNbO 3 : M is divalent) ) Is used in order to obtain a niobium salt solution, the oxidation proceeds during hydrolysis or dissolution, and niobium hydroxide or insoluble niobium oxide may be generated or hardly dissolved.
Even when niobium metal is added to a hydrofluoric acid / sulfuric acid mixed solution to obtain a mixed solution, niobium oxide or niobium hydroxide will precipitate if the nickel salt and cobalt salt are mixed first. Then, even if an alkaline aqueous solution is added thereafter, a uniform hydroxide coprecipitate cannot be obtained, and even if a lithium nickel cobalt niobium compound is synthesized using this, niobium segregation occurs.
Therefore, it is industrially necessary to use a niobium salt solution having high solubility in water as the niobium salt to be used. In the present invention, the above-mentioned niobium salt dissolved in caustic potash aqueous solution or hydrochloric acid is preferable because it is stable in the solution, but it is necessary to prepare it separately from the composite aqueous solution of nickel salt and cobalt salt and add it together with the alkaline aqueous solution. By performing this operation, a composite hydroxide in which the three elements are uniformly dispersed is obtained.
次に、本発明に係る非水系電解質二次電池用正極活物質の製造方法について説明する。
本発明に係る非水系電解質二次電池用正極活物質は、ニッケル塩とコバルト塩の混合水溶液およびニオブ塩水溶液に、アルカリ溶液を加えて、それらを一定速度にて攪拌して、反応槽内にコバルトとニッケルとニオブとの原子比が上記一般式の原子比となるように共沈殿させる。そして定常状態になった後に沈殿物を採取し、濾過、水洗してニッケルコバルトニオブ複合水酸化物を得る。その後、ニッケルとコバルトおよびニオブの水酸化物を共沈させることによって得られたニッケルコバルトニオブ複合水酸化物とリチウム化合物とを混合し、この混合物を650℃以上850℃以下の温度で熱処理することが必要である。
Next, the manufacturing method of the positive electrode active material for nonaqueous electrolyte secondary batteries which concerns on this invention is demonstrated.
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is prepared by adding an alkaline solution to a mixed aqueous solution of nickel salt and cobalt salt and an aqueous niobium salt solution and stirring them at a constant speed. Coprecipitation is performed so that the atomic ratio of cobalt, nickel, and niobium is the atomic ratio of the above general formula. After reaching a steady state, the precipitate is collected, filtered and washed with water to obtain nickel cobalt niobium composite hydroxide. Thereafter, nickel cobalt niobium composite hydroxide obtained by coprecipitation of nickel, cobalt and niobium hydroxide and a lithium compound are mixed, and the mixture is heat-treated at a temperature of 650 ° C. or higher and 850 ° C. or lower. is required.
ニオブ塩溶液には、水酸化ニオブ、ニオブメタル、5塩化ニオブを原料に苛性カリ水溶液で溶解した水溶液または水酸化ニオブ、5塩化ニオブを塩酸に溶解した溶液を使用することが好ましい。従来法と異なり、ニオブ塩溶液の添加を別で行うのは、ニオブの苛性カリ水溶液とその他硫酸混合水溶液を最初に混合すると一部中和反応が起こるためニオブの偏析が起こる可能性があるためである。
反応条件は、錯化剤の使用の有無により異なるが、50℃を越えて80℃以下の温度範囲で、上記ニッケル塩とコバルト塩の混合水溶液およびニオブ塩水溶液の混合水溶液がpH10〜12.5の範囲となるように、アルカリ溶液を添加して共沈殿させることが好ましい。
As the niobium salt solution, it is preferable to use an aqueous solution in which niobium hydroxide, niobium metal and niobium pentachloride are dissolved in a caustic potash aqueous solution or a solution in which niobium hydroxide and niobium pentachloride are dissolved in hydrochloric acid. Unlike the conventional method, the niobium salt solution is added separately because niobium segregation may occur because a neutralization reaction occurs partly when niobium caustic potash aqueous solution and other sulfuric acid mixed aqueous solution are mixed first. is there.
The reaction conditions vary depending on the presence or absence of the use of a complexing agent, but the mixed aqueous solution of nickel salt and cobalt salt and the mixed aqueous solution of niobium salt have a pH of 10 to 12.5 in the temperature range of more than 50 ° C. and 80 ° C. or less. It is preferable to add an alkali solution to cause coprecipitation so that the above range is satisfied.
pH領域は、錯化剤無しの場合、pH=10〜11を選択し、かつ混合水溶液の温度を、60℃を越えて80℃以下の範囲とする。錯化剤無しの場合、pH11〜13で晶析すると細かい粒子となり、濾過性も悪くなり、球状粒子が得られない。また、pHが10よりも小さいと水酸化物の生成速度が著しく遅くなり、濾液中にNiが残留し、Niの沈殿量が目的組成からずれて目的の比率の混合水酸化物が得られなくなってしまう。また、そのため、pH=10〜11とし、かつ混合水溶液の温度を、60℃を越えて保つことによって、Niの沈殿量が目的組成からずれ、共沈にならない現象を、反応温度を上げ、Niの溶解度を上げることで回避している。この時、混合水溶液の温度が80℃を越えると、水の蒸発量が多いためにスラリー濃度が高くなり、Niの溶解度が低下する上、濾液中に硫酸ナトリウム等の結晶が発生し、不純物濃度が上昇する等正極材の充放電容量が低下する問題が出てきて好ましくない。一方、アンモニアなど錯化剤使用の場合、Niの溶解度が上昇するためpH領域はpH10〜12.5まで、温度領域も50℃〜80℃まで広げることができる。
As for the pH region, when there is no complexing agent, pH = 10 to 11 is selected, and the temperature of the mixed aqueous solution is over 60 ° C. and 80 ° C. or less. In the case of no complexing agent, when crystallization is performed at pH 11 to 13, fine particles are formed, filterability is deteriorated, and spherical particles cannot be obtained. On the other hand, if the pH is less than 10, the rate of hydroxide formation is remarkably slow, Ni remains in the filtrate, and the amount of precipitation of Ni deviates from the target composition, making it impossible to obtain a mixed hydroxide of the target ratio. End up. Therefore, by adjusting the pH to 10 to 11 and keeping the temperature of the mixed aqueous solution above 60 ° C., the reaction temperature is increased by increasing the reaction temperature to prevent the Ni precipitation amount from deviating from the target composition and causing coprecipitation. This is avoided by increasing the solubility of. At this time, if the temperature of the mixed aqueous solution exceeds 80 ° C., the slurry concentration becomes high due to a large amount of water evaporation, the solubility of Ni decreases, and crystals such as sodium sulfate are generated in the filtrate, and the impurity concentration A problem that the charge / discharge capacity of the positive electrode material decreases, such as an increase in the positive electrode material, is not preferable. On the other hand, in the case of using a complexing agent such as ammonia, the solubility of Ni increases, so that the pH range can be expanded to
リチウム化合物としては、炭酸リチウムや水酸化リチウム、その水和物等が好ましい。ニッケル化合物としては、酸化ニッケル、炭酸ニッケル、硝酸ニッケル、水酸化ニッケル、オキシ水酸化ニッケル等を、添加元素に係る化合物としては、酸化物、炭酸化物等を使用できるが、前述したように複合水酸化物や複合酸化物を使用した方がより好ましい。 As the lithium compound, lithium carbonate, lithium hydroxide, and hydrates thereof are preferable. Nickel oxide, nickel carbonate, nickel nitrate, nickel hydroxide, nickel oxyhydroxide, etc. can be used as the nickel compound, and oxides, carbonates, etc. can be used as the compound related to the additive element. It is more preferable to use an oxide or a complex oxide.
所定の条件下で一定速度にて攪拌し、反応槽内が定常状態になった後に、オーバーフローした沈殿物を採取し、濾過、水洗してニッケルコバルトニオブ複合水酸化物粒子を得ることを特徴としている。
本方法により、ニッケルとコバルトとニオブの原子比が望む比率に均一に混合されたニッケルコバルトニオブ複合水酸化物粒子を得ることができる。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子からなることが好ましく、濾過性も良好で実にハンドリング性の良い良好な粒子が得られる。
Stirring at a constant speed under predetermined conditions, and after the inside of the reaction vessel has reached a steady state, the overflowed precipitate is collected, filtered and washed to obtain nickel cobalt niobium composite hydroxide particles. Yes.
By this method, nickel cobalt niobium composite hydroxide particles can be obtained in which the atomic ratio of nickel, cobalt, and niobium is uniformly mixed to a desired ratio. The metal composite hydroxide is preferably composed of spherical secondary particles in which a plurality of primary particles of 1 μm or less are aggregated, and good particles with good filterability and good handleability can be obtained.
本発明の正極活物質は、リチウム化合物と、上記ニッケルコバルトニオブ複合水酸化物を、それぞれ所定量混合し、酸素気流中で650°C〜850°C程度の温度で、10〜20時間程度焼成することによって合成することができる。焼成温度が650°Cより低温であると、リチウム化合物との反応が十分に進まず、所望の層状構造をもったリチウムニッケル複合酸化物を合成することが難しくなる。また、850°Cを越えるとLi層にNiが、Ni層にLiが混入して層状構造が乱れ、3aサイトにおけるリチウム以外の金属イオンのサイト占有率が2%より大きくなってしまい、リチウムのサイトである3aサイトに金属イオンの混入率が高くなり、リチウムイオンの拡散パスが阻害され、その正極を用いた電池は初期容量や出力が低下してしまうことから好ましくない。 The positive electrode active material of the present invention is prepared by mixing a predetermined amount of a lithium compound and the above nickel cobalt niobium composite hydroxide, and firing in an oxygen stream at a temperature of about 650 ° C. to 850 ° C. for about 10 to 20 hours. Can be synthesized. When the firing temperature is lower than 650 ° C., the reaction with the lithium compound does not proceed sufficiently, and it becomes difficult to synthesize a lithium nickel composite oxide having a desired layered structure. Further, when the temperature exceeds 850 ° C., Ni is mixed into the Li layer, Li is mixed into the Ni layer, and the layered structure is disturbed, and the site occupancy of metal ions other than lithium at the 3a site becomes larger than 2%. Since the mixing rate of metal ions at the 3a site, which is the site, is increased, the lithium ion diffusion path is hindered, and a battery using the positive electrode is not preferable because the initial capacity and output are reduced.
また、得られた正極活物質の粒度分布のd50は4.5〜8.1μmであり、タップ密度は1.2〜1.76g/mlであることが好ましい。上記範囲を外れると、正極を作製するときに十分正極活物質を充填できなくなるなど正極材として相応しくなくなってしまうからである。 Moreover, d50 of the particle size distribution of the obtained positive electrode active material is preferably 4.5 to 8.1 μm, and the tap density is preferably 1.2 to 1.76 g / ml. If it is out of the above range, it becomes unsuitable as a positive electrode material, for example, the positive electrode active material cannot be sufficiently filled when producing the positive electrode.
次に、正極を形成する正極合材およびそれを構成する各材料について説明する。
前記一般式 Li1+ZNi1−x−yCoxNbyO2(但し、0.10≦x≦0.21、0.01≦y≦0.08、−0.05≦z≦0.10)で表されるリチウム金属複合酸化物を正極活物質として用いた正極は、例えば、次のようにして作製する。
Next, the positive electrode mixture forming the positive electrode and each material constituting the positive electrode mixture will be described.
General formula Li 1 + Z Ni 1-xy Co x Nb y O 2 (however, 0.10 ≦ x ≦ 0.21, 0.01 ≦ y ≦ 0.08, −0.05 ≦ z ≦ 0.10) For example, the positive electrode using the lithium metal composite oxide represented by (2) is produced as follows.
粉末状の正極活物質、導電材、結着剤とを混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。正極合材中のそれぞれの混合比も、リチウム二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分の全質量を100質量%とした場合、一般のリチウム二次電池の正極と同様、それぞれ、正極活物質の含有量を60〜95質量%、導電材の含有量を1〜20質量%、結着剤の含有量を1〜20質量%とすることが望ましい。得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して溶剤を飛散させる。必要に応じ、電極密度を高めるべくロールプレス等により加圧することもある。このようにしてシート状の正極を作製することができる。シート状の正極は、目的とする電池に応じて適当な大きさに裁断等し、電池の作製に供することができる。ただし、正極の作製方法は、前記例示のものに限られることなく、他の方法に依ってもよい。 A powdered positive electrode active material, a conductive material, and a binder are mixed, and activated carbon and a target solvent such as viscosity adjustment are added as necessary, and these are kneaded to prepare a positive electrode mixture paste. The respective mixing ratios in the positive electrode mixture are also important factors that determine the performance of the lithium secondary battery. When the total mass of the solid content of the positive electrode mixture excluding the solvent is 100% by mass, the content of the positive electrode active material is 60 to 95% by mass, respectively, as in the case of the positive electrode of a general lithium secondary battery. It is desirable that the content is 1 to 20% by mass and the content of the binder is 1 to 20% by mass. The obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, aluminum foil, and dried to scatter the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced. The sheet-like positive electrode can be cut into an appropriate size according to the target battery and used for battery production. However, the manufacturing method of the positive electrode is not limited to the above-described examples, and may depend on other methods.
前記正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)やアセチレンブラック、ケッチェンブラックなどのカーボンブラック系材料などを用いることができる。また、バインダーとしては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、エチレンプロピレンジエンゴム、フッ素ゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂等を用いることができる。必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。溶剤としては、具体的にはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。また、正極合材には電気二重層容量を増加させるために活性炭を添加することができる。
In producing the positive electrode, as the conductive agent, for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black, and the like can be used. As the binder, for example, polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluororubber, styrene butadiene, cellulose resin, polyacrylic acid, and the like can be used.
The binder plays a role of holding the active material particles, and for example, fluorine-containing resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluororubber, and thermoplastic resins such as polypropylene and polyethylene can be used. If necessary, a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture. Specifically, an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent. Moreover, activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
(2)負極
負極には、金属リチウム、リチウム合金等、また、リチウムイオンを吸蔵・脱離できる負極活物質に結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、ポリフッ化ビニリデン等の含フッ素樹脂等を用いることができ、これら活物質および結着剤を分散させる溶剤としてはN−メチル−2−ピロリドン等の有機溶剤を用いることができる。
(2) Negative electrode For the negative electrode, metallic lithium, lithium alloy, or the like, and a negative electrode mixture made by mixing a binder with a negative electrode active material capable of occluding and desorbing lithium ions and adding an appropriate solvent to form a paste. In addition, it is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
As the negative electrode active material, for example, natural graphite, artificial graphite, a fired organic compound such as phenol resin, or a powdery carbon material such as coke can be used. In this case, as the negative electrode binder, a fluorine-containing resin such as polyvinylidene fluoride can be used as in the case of the positive electrode, and the active material and the solvent for dispersing the binder include N-methyl-2-pyrrolidone. Organic solvents can be used.
(3)セパレータ
正極と負極との間にはセパレータを挟み込んで配置する。セパレータは、正極と負極とを分離し電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な穴を多数有する膜を用いることができる。
(3) Separator A separator is interposed between the positive electrode and the negative electrode. The separator separates the positive electrode and the negative electrode and holds the electrolyte, and a thin film such as polyethylene or polypropylene and having a large number of minute holes can be used.
(4)非水系電解液
非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
支持塩としては、LiPF6、LiBF4、LiClO4、LiAsF6、LiN(CF3SO2)2等、およびそれらの複合塩を用いることができる。
さらに、非水系電解液は、ラジカル補足剤、界面活性剤および難燃剤等を含んでいてもよい。
(4) Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
Examples of the organic solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate; chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate; and tetrahydrofuran, 2- One kind selected from ether compounds such as methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethylmethylsulfone and butanesultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, etc. are used alone or in admixture of two or more. be able to.
As the supporting salt, LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , or a composite salt thereof can be used.
Furthermore, the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
(5)電池の形状、構成
以上説明してきた正極、負極、セパレータおよび非水系電解液で構成される本発明に係るリチウム二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
いずれの形状を採る場合であっても、正極および負極をセパレータを介して積層させて電極体とし、この電極体に上記非水電解液を含浸させる。正極集電体と外部に通ずる正極端子との間、並びに負極集電体と外部に通ずる負極端子との間を集電用リード等を用いて接続する。以上の構成のものを電池ケースに密閉して電池を完成させることができる。
[実施例]
(5) Shape and configuration of battery The shape of the lithium secondary battery according to the present invention composed of the positive electrode, the negative electrode, the separator, and the non-aqueous electrolyte described above is various, such as a cylindrical type and a laminated type. be able to.
In any case, the positive electrode and the negative electrode are laminated via a separator to form an electrode body, and the electrode body is impregnated with the non-aqueous electrolyte. The positive electrode current collector and the positive electrode terminal communicating with the outside, and the negative electrode current collector and the negative electrode terminal communicating with the outside are connected using a current collecting lead or the like. The battery having the above structure can be sealed in a battery case to complete the battery.
[Example]
以下、本発明になる一実施の形態を好適な図面に基づいて詳述する。各実施例および比較例で合成したLi1+ZNi1−x−yCoxNbyO2の組成および、その評価結果を表1にまとめた。 Hereinafter, an embodiment according to the present invention will be described in detail with reference to the preferred drawings. Table 1 summarizes the composition of Li 1 + Z Ni 1-xy Co x Nb y O 2 synthesized in each Example and Comparative Example and the evaluation results.
ニッケル:コバルト:ニオブのモル比が80:15:5となるように、硫酸ニッケルと硫酸コバルトの混合溶液およびニオブ苛性カリ水溶液とを準備し、12.5%水酸化ナトリウム溶液を反応槽に同時に添加し、pHを10〜11の範囲、反応温度を50℃〜80℃の範囲に一定に保ち、共沈法によってニッケルコバルトニオブ複合水酸化物粒子を形成させた。その後反応槽内の水酸化物スラリーを全量回収し、濾過、水洗後乾燥し、ニッケルコバルトニオブ複合水酸化物の乾燥粉末を得た。この金属複合水酸化物は、1μm以下の一次粒子が複数集合した球状の二次粒子からなる。 Prepare a mixed solution of nickel sulfate and cobalt sulfate and a niobium caustic potash aqueous solution so that the molar ratio of nickel: cobalt: niobium is 80: 15: 5, and simultaneously add 12.5% sodium hydroxide solution to the reaction vessel Then, the pH was kept in the range of 10 to 11 and the reaction temperature was kept in the range of 50 to 80 ° C., and nickel cobalt niobium composite hydroxide particles were formed by the coprecipitation method. Thereafter, the entire amount of hydroxide slurry in the reaction vessel was recovered, filtered, washed with water and dried to obtain a dry powder of nickel cobalt niobium composite hydroxide. This metal composite hydroxide is composed of spherical secondary particles in which a plurality of primary particles of 1 μm or less are aggregated.
このニッケルコバルトニオブ複合水酸化物と市販の炭酸リチウム(FMC社製)とをニッケルコバルトニオブとリチウムの原子比が1:1.05になるように秤量した後、球状の二次粒子の形骸が維持される程度の強さでシェ−カーミキサー装置(WAB社製TURBULA TypeT2C)を用いて十分に混合した。この混合物20gを5cm×12cm×3cmのマグネシア製の焼成容器に挿入し、密閉式電気炉を用いて、流量3L/minの酸素気流中で昇温速度5℃/minで730℃まで昇温して10時間焼成した後、室温まで炉冷した。 After weighing the nickel cobalt niobium composite hydroxide and commercially available lithium carbonate (manufactured by FMC) so that the atomic ratio of nickel cobalt niobium and lithium is 1: 1.05, the shape of spherical secondary particles is The mixture was sufficiently mixed using a shaker mixer apparatus (TURBULA Type T2C manufactured by WAB Co., Ltd.) at such a strength as to be maintained. 20 g of this mixture was inserted into a 5 cm × 12 cm × 3 cm magnesia firing vessel, and heated to 730 ° C. at a heating rate of 5 ° C./min in an oxygen stream with a flow rate of 3 L / min using a closed electric furnace. The mixture was baked for 10 hours and then cooled to room temperature.
得られた焼成物は、X線回折で分析したところ、図1に示すとおり異相を含まない六方晶系の層状構造を有し、化学分析法(Ni、Co、Nbについては、ICP発光分析装置(PERKINELMER製 OPTIMA 3300DV)、Liについては原子吸光分析(VARIAN製 Spectr AA-40原子吸光法)により分析した)で測定すると組成式(Li1.05Ni0.80Co0.15Nb0.05O2)となる正極活物質であることがわかった。マイクロトラックで測定した粒度分布のd50は6.6μm、タップ密度は0.93g/mlであった。
また、この金属複合酸化物からなる正極活物質について、エネルギー分散測定装置(EDAX社製EDX装置FALCON)を用いて、エネルギー分散法によって組成のばらつきを判断した。測定方法は、上記複合酸化物を試料台上の導電性両面テープ上に数粒子の厚さで載せ、真空状態にして、SEMで像を確認し、測定目標を定め、測定を行った。
測定条件は、電圧15kV、電流10−9〜10−10Aとし、電子ビーム径は3〜5nm、取り出し角度は20°とした。この測定においては、上記複合酸化物の粒子の一部で厚み数μmの情報を拾うことになる。上記測定では、NbのK線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiのn=10回の測定の平均値と、標準偏差により判断した。
n=10で測定した結果、この金属複合酸化物からなる正極活物質のまた、この金属複合酸化物からなる正極活物質は、エネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.173であり、標準偏差が0.044であり、常に、組成式Li1.05Ni0.80Co0.15Nb0.05O2を満たすものであった。
上記測定方法は、他の実施例、比較例でも同様に用いた。
The obtained fired product was analyzed by X-ray diffraction. As shown in FIG. 1, the fired product had a hexagonal layered structure that did not contain a heterogeneous phase, and a chemical analysis method (for Ni, Co, and Nb, an ICP emission analyzer) (OPTIMA 3300DV manufactured by PERKINELMER) and Li were analyzed by atomic absorption analysis (analyzed by VARIAN, Spectr AA-40 atomic absorption method). The composition formula (Li 1.05 Ni 0.80 Co 0.15 Nb 0.05 It was found to be a positive electrode active material that becomes O 2 ). The particle size distribution d50 measured by Microtrac was 6.6 μm, and the tap density was 0.93 g / ml.
Moreover, about the positive electrode active material which consists of this metal complex oxide, the dispersion | variation in a composition was judged by the energy dispersion method using the energy dispersion measuring apparatus (EDX apparatus FALCON by EDAX). The measurement was carried out by placing the composite oxide on a conductive double-sided tape on a sample stage with a thickness of several particles, applying a vacuum, checking the image with an SEM, setting a measurement target, and measuring.
The measurement conditions were a voltage of 15 kV, a current of 10 −9 to 10 −10 A, an electron beam diameter of 3 to 5 nm, and an extraction angle of 20 °. In this measurement, information on a thickness of several μm is picked up by a part of the composite oxide particles. In the above measurement, the average value and standard deviation of n = 10 measurements of the intensity ratio I Nb / I Ni when the peak intensity of Nb K-line is I Nb and the peak intensity of Ni L-line is I Ni. Judged by.
As a result of measuring at n = 10, the positive electrode active material made of this metal composite oxide and the positive electrode active material made of this metal composite oxide were measured by the energy dispersion method. Even when measured, the average value of the intensity ratio I Nb / I Ni when the peak intensity of the Nb L line is I Nb and the peak intensity of the Ni L line is I Ni is 0.173, The standard deviation was 0.044, which always satisfied the composition formula Li 1.05 Ni 0.80 Co 0.15 Nb 0.05 O 2 .
The above measurement method was also used in other examples and comparative examples.
得られた正極活物質の初期容量評価は以下のようにして行った。活物質粉末70質量%にアセチレンブラック20質量%及びPTFE10質量%を混合し、ここから150mgを取り出してペレットを作製し正極とした。負極としてリチウム金属を用い、電解液には1MのLiClO4を支持塩とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合溶液(富山薬品工業製)を用いた。露点が−80℃に管理されたAr雰囲気のグローブボックス中で、図1に示すような2032型のコイン電池を作製した。 The initial capacity evaluation of the obtained positive electrode active material was performed as follows. 70% by mass of the active material powder was mixed with 20% by mass of acetylene black and 10% by mass of PTFE, and 150 mg was taken out from this to produce a pellet to obtain a positive electrode. Lithium metal was used as the negative electrode, and an equivalent mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) (made by Toyama Pharmaceutical Co., Ltd.) using 1M LiClO 4 as a supporting salt was used as the electrolyte. A 2032 type coin battery as shown in FIG. 1 was produced in an Ar atmosphere glove box whose dew point was controlled at −80 ° C.
作製した電池は24時間程度放置し、開路電圧OCV(open circuit voltage)が安定した後、正極に対する電流密度を0.5mA/cm2としてカットオフ電圧4.3Vまで充電して初期充電容量とし、1時間の休止後カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。 The prepared battery is left for about 24 hours, and after the open circuit voltage OCV (open circuit voltage) is stabilized, the current density with respect to the positive electrode is set to 0.5 mA / cm 2 and charged to a cutoff voltage of 4.3 V to obtain an initial charge capacity. The capacity when the battery was discharged to a cutoff voltage of 3.0 V after a one hour rest was defined as the initial discharge capacity.
正極の安全性の評価は、上記と同様な方法で作製した2032型のコイン電池をカットオフ電圧4.5VまでCCCV充電(定電流−定電圧充電。まず、充電が、定電流で動作し、それから定電圧で充電を終了するという2つのフェーズの充電過程を用いる充電方法。)した後、短絡しないように注意しながら解体して正極を取り出した。この電極を3.0mg計り取り、電解液を1.3mg加えて、アルミニウム製測定容器に封入し、示差走査熱量計(DSC)PTC−10A(Rigaku社製)を用いて昇温速度10℃/minで室温から400℃まで発熱挙動を測定した。
得られたリチウムニッケルコバルトニオブ複合酸化物の元素分析値及び電池評価によって得られた初期放電容量及び、DSC測定によって得られた発熱速度を表1に示す。
The safety evaluation of the positive electrode is performed by CCCV charging (constant current-constant voltage charging. First, charging is operated at a constant current) to a cutoff voltage of 4.5V using a 2032 type coin battery manufactured by the same method as described above. Then, the charging method using a charging process of two phases of ending charging at a constant voltage.), And then disassembling with care not to short-circuit, and taking out the positive electrode. 3.0 mg of this electrode was measured, 1.3 mg of the electrolyte was added, sealed in an aluminum measurement container, and a temperature increase rate of 10 ° C./degree using a differential scanning calorimeter (DSC) PTC-10A (manufactured by Rigaku). The heat generation behavior was measured from room temperature to 400 ° C. in min.
Table 1 shows the elemental analysis values of the obtained lithium nickel cobalt niobium composite oxide, the initial discharge capacity obtained by battery evaluation, and the heat generation rate obtained by DSC measurement.
ニッケル:コバルト:ニオブのモル比が78:15:7で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.78Co0.15Nb0.07O2)であった。マイクロトラックで測定した粒度分布のd50は6.1μm、タップ密度は0.85g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.242であり、標準偏差が0.088であり、常に、組成式Li1.05Ni0.78Co0.15Nb0.07O2を満たすものであった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 78: 15: 7 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature.
The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, a positive electrode active material having a hexagonal layered structure containing no heterophase (Li 1.05 Ni 0.78 Co 0.15 Nb 0.07 O 2 ). The particle size distribution d50 measured by Microtrac was 6.1 μm, and the tap density was 0.85 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, the average value of the intensity ratio I Nb / I Ni when the peak intensity of the L line of Ni was I Ni is 0.242, a standard deviation is 0.088, always compositional formula Li 1 .05 Ni 0.78 Co 0.15 Nb 0.07 O 2 was satisfied.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
ニッケル:コバルト:ニオブのモル比が80:15:5で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで800℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.80Co0.15Nb0.05O2)であった。マイクロトラックで測定した粒度分布のd50は4.3μm、タップ密度は1.07g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.162であり、標準偏差が0.041であり、常に、組成式Li1.05Ni0.80Co0.15Nb0.05O2を満たすものであった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 80: 15: 5 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 800 ° C. and baking for 10 hours, the furnace was cooled to room temperature.
The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, a positive electrode active material (Li 1.05 Ni 0.80 Co 0.15 Nb 0.05 having a hexagonal layer structure not containing a heterogeneous phase) O 2 ). D50 of the particle size distribution measured by Microtrac was 4.3 μm, and the tap density was 1.07 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, the average value of the intensity ratio I Nb / I Ni when the peak intensity of the L line of Ni was I Ni is 0.162, a standard deviation is 0.041, always compositional formula Li 1 .05 Ni 0.80 Co 0.15 Nb 0.05 O 2 was satisfied.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
ニッケル:コバルト:ニオブのモル比が80:15:5で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで650℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.80Co0.15Nb0.05O2)であった。マイクロトラックで測定した粒度分布のd50は3.2μm、タップ密度は1.56g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.178であり、標準偏差が0.051であり、常に、組成式Li1.05Ni0.80Co0.15Nb0.05O2を満たすものであった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 80: 15: 5 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. The temperature was raised to 650 ° C., baked for 10 hours, and then cooled to room temperature.
The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, a positive electrode active material (Li 1.05 Ni 0.80 Co 0.15 Nb 0.05 having a hexagonal layer structure not containing a heterogeneous phase) O 2 ). D50 of the particle size distribution measured by Microtrac was 3.2 μm, and the tap density was 1.56 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, the average value of the intensity ratio I Nb / I Ni when the peak intensity of the L line of Ni was I Ni is 0.178, a standard deviation is 0.051, always compositional formula Li 1 .05 Ni 0.80 Co 0.15 Nb 0.05 O 2 was satisfied.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
ニッケル:コバルト:ニオブのモル比が84:15:1で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.84Co0.15Nb0.01O2)であった。マイクロトラックで測定した粒度分布のd50は6.1μm、タップ密度は1.56g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.035であり、標準偏差が0.010であり、常に、組成式Li1.05Ni0.84Co0.15Nb0.01O2を満たすものであった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 84: 15: 1 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature.
When the obtained fired product was analyzed by X-ray diffraction and chemical analysis, a positive electrode active material (Li 1.05 Ni 0.84 Co 0.15 Nb 0.01 having a hexagonal layer structure not containing a heterogeneous phase) was obtained. O 2 ). D50 of the particle size distribution measured by Microtrac was 6.1 μm, and the tap density was 1.56 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, the peak intensity of the L line of the Ni is the average value of the intensity ratio I Nb / I Ni is 0.035 when the I Ni, the standard deviation is 0.010, always compositional formula Li 1 .05 Ni 0.84 Co 0.15 Nb 0.01 O 2 was satisfied.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
ニッケル:コバルト:ニオブのモル比が75:21:4で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.75Co0.21Nb0.04O2)であった。マイクロトラックで測定した粒度分布のd50は5.3μm、タップ密度は0.89g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.185であり、標準偏差が0.047であり、常に、組成式Li1.05Ni0.75Co0.21Nb0.04O2を満たすものであった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium is 75: 21: 4 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature.
When the obtained fired product was analyzed by X-ray diffraction and chemical analysis, a positive electrode active material (Li 1.05 Ni 0.75 Co 0.21 Nb 0.04 having a hexagonal layer structure not containing a heterogeneous phase) was obtained. O 2 ). D50 of the particle size distribution measured by Microtrac was 5.3 μm, and the tap density was 0.89 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, the average value of the intensity ratio I Nb / I Ni when the peak intensity of the L line of Ni was I Ni is 0.185, a standard deviation is 0.047, always compositional formula Li 1 .05 Ni 0.75 Co 0.21 Nb 0.04 O 2 was satisfied.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
ニッケル:コバルト:ニオブのモル比が85:10:5で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.85Co0.10Nb0.05O2)であった。マイクロトラックで測定した粒度分布のd50は7.2μm、タップ密度は1.00g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiのその平均値が0.162であり、標準偏差が0.040であり、常に、組成式Li1.05Ni0.85Co0.10Nb0.05O2を満たすものであった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 85: 10: 5 was prepared by the same method as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 730 ° C. and baking for 10 hours, the furnace was cooled to room temperature.
When the obtained fired product was analyzed by X-ray diffraction and chemical analysis, a positive electrode active material (Li 1.05 Ni 0.85 Co 0.10 Nb 0.05 having a hexagonal layer structure not containing a heterogeneous phase) O 2 ). D50 of the particle size distribution measured by Microtrac was 7.2 μm, and the tap density was 1.00 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, an average value of the intensity ratio I Nb / I Ni when the peak intensity of the L line of Ni was I Ni is 0.162, the standard deviation is 0.040, always composition formula Li 1.05 Ni 0.85 Co 0.10 Nb 0.05 O 2 was satisfied.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
ニッケル:コバルト:ニオブのモル比が80:15:5となるように、硫酸ニッケルと硫酸コバルトの混合溶液およびニオブ塩酸溶液とを準備し、金属複合水酸化物を実施例1と同様な方法で用意した。これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、異相を含まない六方晶系の層状構造を有する正極活物質(Li1.05Ni0.80Co0.15Nb0.05O2)であった。マイクロトラックで測定した粒度分布のd50は3.3μm、タップ密度は0.90g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiのその平均値が0.182であり、標準偏差が0.062であり、常に、組成式Li1.05Ni0.80Co0.15Nb0.05O2を満たすものであった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
[比較例1]
A mixed solution of nickel sulfate and cobalt sulfate and a niobium hydrochloric acid solution were prepared so that the molar ratio of nickel: cobalt: niobium was 80: 15: 5, and the metal composite hydroxide was prepared in the same manner as in Example 1. Prepared. This was mixed in the same manner as in Example 1 so that the molar ratio of lithium to metal was 1.05: 1, and using an enclosed electric furnace, in an oxygen stream at a flow rate of 3 L / min at 500 ° C. for 2 hours. After calcination, the temperature was raised to 730 ° C. at a temperature rising rate of 5 ° C./min, baked for 10 hours, and then cooled to room temperature.
The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, a positive electrode active material (Li 1.05 Ni 0.80 Co 0.15 Nb 0.05 having a hexagonal layer structure not containing a heterogeneous phase) O 2 ). D50 of the particle size distribution measured by Microtrac was 3.3 μm, and the tap density was 0.90 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, an average value of the intensity ratio I Nb / I Ni when the peak intensity of the L line of Ni was I Ni is 0.182, the standard deviation is 0.062, always composition formula Li 1.05 Ni 0.80 Co 0.15 Nb 0.05 O 2 was satisfied.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
[Comparative Example 1]
ニッケル:コバルト:ニオブのモル比が80:15:5となるように、硫酸ニッケルと硫酸コバルトとフッ化水素酸と硫酸混合溶液にニオブ金属を投入した混合溶液を同時に混合し、その後、12.5%水酸化ナトリウム溶液を反応槽に添加し、pHを10〜11の範囲、反応温度を60℃〜80℃の範囲に一定に保ち、共沈法によってニッケルコバルトニオブ複合水酸化物粒子を形成させた。得られた金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.03Ni0.84Co0.16O2)とニオブ酸リチウム(Li8Nb2O9)の混合物であった。マイクロトラックで測定した粒度分布のd50は9.6μm、タップ密度は1.32g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.171であり、標準偏差が0.110であり、正極活物質(Li1.03Ni0.84Co0.16O2)とニオブ酸リチウム(Li8Nb2O9)の混合物であることもあり、組成ばらつきの大きなことがわかる。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
[比較例2]
12. A mixed solution in which niobium metal is added to a mixed solution of nickel sulfate, cobalt sulfate, hydrofluoric acid, and sulfuric acid is simultaneously mixed so that the molar ratio of nickel: cobalt: niobium is 80: 15: 5. 5% sodium hydroxide solution is added to the reaction vessel, the pH is kept in the range of 10-11, the reaction temperature is kept constant in the range of 60-80 ° C, and nickel cobalt niobium composite hydroxide particles are formed by coprecipitation method I let you. The obtained metal composite hydroxide was prepared in the same manner as in Example 1, and this was mixed in the same manner as in Example 1 so that the molar ratio of lithium to metal was 1.05: 1. After calcining at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min using an electric furnace, the temperature was raised to 730 ° C. at a heating rate of 5 ° C./min, calcined for 10 hours, and then cooled to room temperature. did.
When the obtained fired product was analyzed by X-ray diffraction and chemical analysis, a positive electrode active material having a hexagonal layered structure (Li 1.03 Ni 0.84 Co 0.16 O 2 ) and lithium niobate ( Li 8 Nb 2 O 9 ). D50 of the particle size distribution measured by Microtrac was 9.6 μm, and the tap density was 1.32 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, the average value of the intensity ratio I Nb / I Ni when the peak intensity of the L line of Ni was I Ni is 0.171, the standard deviation is 0.110, the positive electrode active material (Li 1 0.03 Ni 0.84 Co 0.16 O 2 ) and lithium niobate (Li 8 Nb 2 O 9 ), which shows a large composition variation.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
[Comparative Example 2]
ニッケル:コバルト:ニオブのモル比が75:15:10で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてにリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.75Co0.16Nb0.10O2)であった。マイクロトラックで測定した粒度分布のd50は2.2μm、タップ密度は0.80g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.764であり、標準偏差が0.480であり、組成ばらつきの大きなことがわかる。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
[比較例3]
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 75:15:10 was prepared by the same method as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. And a calcining rate of 5 ° C./min after calcining at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min. Was heated to 730 ° C., baked for 10 hours, and then cooled to room temperature.
The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, the positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.75 Co 0.16 Nb 0.10 O 2 ) was used. there were. The particle size distribution d50 measured by Microtrac was 2.2 μm, and the tap density was 0.80 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, the average value of the intensity ratio I Nb / I Ni when the peak intensity of the L line of Ni was I Ni is 0.764, the standard deviation is 0.480, the big composition variation Recognize.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
[Comparative Example 3]
ニッケル:コバルトのモル比が81:19となるように、硫酸ニッケルと硫酸コバルトの混合溶液と12.5%水酸化ナトリウム溶液を反応槽に同時に添加し、pHを10〜11の範囲、反応温度を60℃〜80℃の範囲に一定に保ち、共沈法によってニッケルコバルトニオブ複合水酸化物粒子を形成させ金属複合水酸化物を実施例1と、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.81Co0.19O2)であった。マイクロトラックで測定した粒度分布のd50は9.0μm、タップ密度は1.54g/mlであった。
この金属複合酸化物からなる正極活物質についてはニオブが含まれていなかったため、エネルギー分散法による測定は行わなかった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
[比較例4]
A mixed solution of nickel sulfate and cobalt sulfate and a 12.5% sodium hydroxide solution were simultaneously added to the reaction vessel so that the molar ratio of nickel: cobalt was 81:19, and the pH was in the range of 10-11, reaction temperature. Is kept constant in the range of 60 ° C. to 80 ° C., nickel cobalt niobium composite hydroxide particles are formed by a coprecipitation method, and the metal composite hydroxide is obtained in the same manner as in Example 1 and lithium. The mixture was mixed so that the molar ratio with the metal was 1.05: 1, and calcined at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min using a sealed electric furnace. The temperature was raised to 730 ° C. for min and baked for 10 hours, followed by furnace cooling to room temperature.
When the obtained fired product was analyzed by X-ray diffraction and chemical analysis, it was a positive electrode active material (Li 1.05 Ni 0.81 Co 0.19 O 2 ) having a hexagonal layered structure. D50 of the particle size distribution measured by Microtrac was 9.0 μm, and the tap density was 1.54 g / ml.
Since the positive electrode active material made of this metal composite oxide did not contain niobium, measurement by the energy dispersion method was not performed.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
[Comparative Example 4]
ニッケル:コバルト:ニオブのモル比が80:15:5で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてにリチウムと金属とのモル比が1.05:1となるように、混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで900℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.80Co0.15Nb0.05O2)であった。マイクロトラックで測定した粒度分布のd50は7.3μm、タップ密度は1.62g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.210であり、標準偏差が0.089であった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
[比較例5]
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 80: 15: 5 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. The mixture was mixed so that the molar ratio thereof was 1.05: 1, and calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours using a sealed electric furnace. The temperature was raised to 900 ° C. for min, baked for 10 hours, and then cooled to room temperature.
The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, a positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.80 Co 0.15 Nb 0.05 O 2 ) was obtained. there were. D50 of the particle size distribution measured by Microtrac was 7.3 μm, and the tap density was 1.62 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Nb / I Ni when the I Nb, the peak intensity of the L line of Ni and I Ni is 0.210, a standard deviation was 0.089.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
[Comparative Example 5]
ニッケル:コバルト:ニオブのモル比が80:15:5で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで600℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.83Co0.12Nb0.05O2)と酸化ニッケルNiOの混合物であった。マイクロトラックで測定した粒度分布のd50は3.2μm、タップ密度は1.31g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.183であり、標準偏差が0.072であり、正極活物質(Li1.05Ni0.83Co0.12Nb0.05O2)と酸化ニッケルNiOの混合物であることもあり、組成ばらつきが比較的大きい。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
[比較例6]
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 80: 15: 5 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. Were mixed at a molar ratio of 1.05: 1, calcined in an oxygen stream at a flow rate of 3 L / min for 2 hours at 500 ° C. for 2 hours, and then heated at a rate of 5 ° C./min. After heating up to 600 ° C. and baking for 10 hours, the furnace was cooled to room temperature.
When the obtained fired product was analyzed by X-ray diffraction and chemical analysis, a positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.83 Co 0.12 Nb 0.05 O 2 ) and It was a mixture of nickel oxide NiO. D50 of the particle size distribution measured by Microtrac was 3.2 μm, and the tap density was 1.31 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the I Nb, the average value of the intensity ratio I Nb / I Ni when the peak intensity of the L line of Ni was I Ni is 0.183, the standard deviation is 0.072, the positive electrode active material (Li 1 .05 Ni 0.83 Co 0.12 Nb 0.05 O 2 ) and nickel oxide NiO, the composition variation is relatively large.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
[Comparative Example 6]
ニッケル:コバルト:ニオブのモル比が73:22:5で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてにリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.73Co0.22Nb0.05O2)であった。マイクロトラックで測定した粒度分布のd50は4.3μm、タップ密度は0.83g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.211であり、標準偏差が0.056であった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
[比較例7]
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 73: 22: 5 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. And a calcining rate of 5 ° C./min after calcining at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min. Was heated to 730 ° C., baked for 10 hours, and then cooled to room temperature.
The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, the positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.73 Co 0.22 Nb 0.05 O 2 ) was used. there were. The d50 of the particle size distribution measured with Microtrac was 4.3 μm, and the tap density was 0.83 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Nb / I Ni when the I Nb, the peak intensity of the L line of Ni and I Ni is 0.211, a standard deviation was 0.056.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
[Comparative Example 7]
ニッケル:コバルト:ニオブのモル比が86:9:5で固溶している金属複合水酸化物を実施例1と同様な方法で作製し、これを実施例1と同様にしてにリチウムと金属とのモル比が1.05:1となるように混合し、密閉式電気炉を用いて、流量3L/minの酸素気流中500℃で2時間仮焼した後、昇温速度5℃/minで730℃まで昇温し、10時間焼成した後、室温まで炉冷した。
得られた焼成物をX線回折、化学分析法で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.86Co0.09Nb0.05O2)であった。マイクロトラックで測定した粒度分布のd50は6.1μm、タップ密度は1.05g/mlであった。
この金属複合酸化物からなる正極活物質は、実施例1と同様にエネルギー分散法によって測定した結果、該金属複合酸化物のどの範囲を測定した場合であっても、NbのL線のピーク強度をINb、NiのL線のピーク強度をINi としたときの強度比INb/INiの平均値が0.143であり、標準偏差が0.062であった。
得られた正極活物質の初期容量評価は実施例1と同様に行い、得られた初期放電容量とDSC測定から得られた正極の発熱速度を表1に示す。
A metal composite hydroxide in which the molar ratio of nickel: cobalt: niobium was 86: 9: 5 was prepared in the same manner as in Example 1, and this was performed in the same manner as in Example 1 with lithium and metal. And a calcining rate of 5 ° C./min after calcining at 500 ° C. for 2 hours in an oxygen stream with a flow rate of 3 L / min. Was heated to 730 ° C., baked for 10 hours, and then cooled to room temperature.
The obtained fired product was analyzed by X-ray diffraction and chemical analysis. As a result, the positive electrode active material having a hexagonal layered structure (Li 1.05 Ni 0.86 Co 0.09 Nb 0.05 O 2 ) was used. there were. D50 of the particle size distribution measured by Microtrac was 6.1 μm, and the tap density was 1.05 g / ml.
The positive electrode active material comprising this metal composite oxide was measured by the energy dispersion method in the same manner as in Example 1. As a result, the peak intensity of the Nb L-line was measured regardless of the range of the metal composite oxide. the average value of the intensity ratio I Nb / I Ni when the I Nb, the peak intensity of the L line of Ni and I Ni is 0.143, a standard deviation was 0.062.
The initial capacity evaluation of the obtained positive electrode active material was performed in the same manner as in Example 1. Table 1 shows the obtained initial discharge capacity and the heat generation rate of the positive electrode obtained from the DSC measurement.
表1に示すように、実施例1〜8で得られたリチウムニッケルコバルトニオブ複合酸化物はニオブが均一に固溶しているため、初期放電容量が180(mAh/g)を超え、リチウムコバルト複合酸化物(LiCoO2)に代わる新たな電池材料として使用可能な材料であることがわかる。
DSCを用いた安全性の評価で11.00mJ/sec/g以下の発熱量に抑えられていれば、実電池としての安全性で実用上問題ないことを本発明者らは確認しており、実施例1〜7に示した正極活物質は、11.00mJ/sec/g以下の小さい発熱量となっており、安全性の高い材料であることがわかる。
As shown in Table 1, since the lithium nickel cobalt niobium composite oxides obtained in Examples 1 to 8 were uniformly dissolved in niobium, the initial discharge capacity exceeded 180 (mAh / g), and lithium cobalt It can be seen that this is a material that can be used as a new battery material to replace the composite oxide (LiCoO 2 ).
The present inventors have confirmed that there is no practical problem with safety as an actual battery if the calorific value is 11.00 mJ / sec / g or less in the safety evaluation using DSC, The positive electrode active materials shown in Examples 1 to 7 have a small calorific value of 11.00 mJ / sec / g or less, indicating that the material is highly safe.
一方、比較例1で得られたリチウムニッケルコバルトニオブ複合酸化物は、ニオブ塩溶液としてフッ化水素酸と硫酸混合溶液にニオブ金属を投入した混合溶液を用い、硫酸ニッケルと硫酸コバルトとフッ化水素酸と硫酸混合溶液にニオブ金属を投入した混合溶液を同時に混合しているため、均一な共沈殿物が得られず、これを用いて合成を行った正極活物質は、X線回折で分析したところ、六方晶系の層状構造を有する正極活物質(Li1.05Ni0.85Co0.15O2)とニオブ酸リチウム(Li8Nb2O9)の混合物であり、ニオブが偏析していることがわかる。エネルギー分散法による強度比INb/INiでも標準偏差が大きくなっており、組成ばらつきが大きいことがわかる。このため、初期放電容量が180(mAh/g)以下となり電池材料として望ましくない材料であることがわかる。また、初期放電容量が低い上に、11.00mJ/sec/gを越える発熱量となっており、安全性についても望ましくない材料であることがわかる。 On the other hand, the lithium nickel cobalt niobium composite oxide obtained in Comparative Example 1 uses a mixed solution in which niobium metal is added to a hydrofluoric acid and sulfuric acid mixed solution as a niobium salt solution, and uses nickel sulfate, cobalt sulfate, and hydrogen fluoride. Since a mixed solution in which niobium metal was added to an acid and sulfuric acid mixed solution was mixed at the same time, a uniform coprecipitate was not obtained, and the positive electrode active material synthesized using this was analyzed by X-ray diffraction. However, it is a mixture of a positive electrode active material (Li 1.05 Ni 0.85 Co 0.15 O 2 ) having a hexagonal layered structure and lithium niobate (Li 8 Nb 2 O 9 ), and niobium segregates. You can see that It can be seen that the standard deviation is large even in the intensity ratio I Nb / I Ni by the energy dispersion method, and the composition variation is large. Therefore, it can be seen that the initial discharge capacity is 180 (mAh / g) or less, which is an undesirable material as a battery material. In addition, the initial discharge capacity is low and the calorific value exceeds 11.00 mJ / sec / g, indicating that the material is not desirable in terms of safety.
比較例2はニッケル:コバルト:ニオブのモル比が75:15:10にした例である。ニオブ量が多く安全性は問題ないが初期放電容量が低く、リチウムコバルト複合酸化物(LiCoO2)と比較して電圧が低いためエネルギー密度が低く実用上問題がある。エネルギー分散法による強度比INb/INiでも標準偏差が大きくなっており、組成ばらつきが大きいことがわかる。
また、比較例3はニオブによる置換を行わなかった例であるが、発熱量が11.00mJ/sec/gを越える量となっており、安全上問題がある。
比較例6、7はコバルト量が本発明の範囲を外れた場合であり、初期放電容量が低くなっている。
Comparative Example 2 is an example in which the molar ratio of nickel: cobalt: niobium was 75:15:10. Although the amount of niobium is large and safety is not a problem, the initial discharge capacity is low, and the voltage is lower than that of lithium cobalt composite oxide (LiCoO 2 ). It can be seen that the standard deviation is large even in the intensity ratio I Nb / I Ni by the energy dispersion method, and the composition variation is large.
Moreover, although the comparative example 3 is an example which did not substitute with niobium, since the emitted-heat amount exceeds 11.00 mJ / sec / g, there exists a safety problem.
Comparative Examples 6 and 7 are cases where the amount of cobalt is outside the range of the present invention, and the initial discharge capacity is low.
比較例4は、焼成温度が900°Cと高すぎた場合であり、初期放電量が低くなっており、正極活物質の層状構造が乱れ、リチウムイオンの拡散パスが阻害されたものと類推される。一方、比較例5は、焼成温度が600°Cと低かったため、リチウム化合物との反応が十分に進まず、所望の層状構造をもったリチウムニッケル複合酸化物の他に、酸化ニッケルが存在していることが分析からわかった。このため、初期放電量が低くなっている。 Comparative Example 4 is a case where the firing temperature was too high at 900 ° C., the initial discharge amount was low, the layered structure of the positive electrode active material was disturbed, and it was estimated that the diffusion path of lithium ions was inhibited. The On the other hand, in Comparative Example 5, since the firing temperature was as low as 600 ° C., the reaction with the lithium compound did not proceed sufficiently and nickel oxide was present in addition to the lithium nickel composite oxide having the desired layered structure. It was found from the analysis. For this reason, the initial discharge amount is low.
安全性に優れていながら高い初期容量を有しているという本発明の非水系電解質二次電池のメリットを活かすためには、常に高容量を要求される小型携帯電子機器の電源としての用途に好適である。また電気自動車用の電源においては、電池の大型化による安全性の確保の難しさと、より高度な安全性を確保するための高価な保護回路の装着は必要不可欠であるが、本発明のリチウムイオン二次電池は、優れた安全性を有しているために安全性の確保が容易になるばかりでなく、高価な保護回路を簡略化し、より低コストにできるという点において、電気自動車用電源として好適である。なお、電気自動車用電源とは、純粋に電気エネルギーで駆動する電気自動車のみならず、ガソリンエンジン、ディーゼルエンジン等の燃焼機関と併用するいわゆるハイブリッド車用の電源として用い得る。 In order to take advantage of the non-aqueous electrolyte secondary battery of the present invention that has high initial capacity while being excellent in safety, it is suitable for use as a power source for small portable electronic devices that always require high capacity It is. In addition, in the power source for electric vehicles, it is indispensable to ensure safety by increasing the size of the battery and to install an expensive protection circuit for ensuring higher safety. The secondary battery has excellent safety, so that not only is it easy to ensure safety, but it can also be used as a power source for electric vehicles in that it can simplify expensive protection circuits and reduce costs. Is preferred. The electric vehicle power source can be used not only for an electric vehicle driven purely by electric energy but also for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.
1 リチウム金属負極
2 セパレータ(電解液含浸)
3 正極(評価用電極)
4 ガスケット
5 負極缶
6 正極缶
7 集電体
1 Lithium metal negative electrode 2 Separator (electrolyte impregnation)
3 Positive electrode (Evaluation electrode)
4 Gasket 5 Negative electrode can 6 Positive electrode can 7 Current collector
Claims (6)
A non-aqueous electrolyte secondary battery using the positive electrode active material for a non-aqueous electrolyte secondary battery according to claim 4 for a positive electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004339690A JP2006147500A (en) | 2004-11-24 | 2004-11-24 | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004339690A JP2006147500A (en) | 2004-11-24 | 2004-11-24 | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006147500A true JP2006147500A (en) | 2006-06-08 |
Family
ID=36626927
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004339690A Pending JP2006147500A (en) | 2004-11-24 | 2004-11-24 | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006147500A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280723A (en) * | 2006-04-05 | 2007-10-25 | Hitachi Metals Ltd | Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it |
WO2012043321A1 (en) * | 2010-09-28 | 2012-04-05 | Dowaホールディングス株式会社 | Lithium-transition metal oxide powder, method for producing same, positive electrode active material for lithium ion battery, and lithium ion secondary battery |
CN102651473A (en) * | 2011-02-24 | 2012-08-29 | 株式会社日立制作所 | Cathode material, cathode, and lithium ion secondary battery |
JP2012178295A (en) * | 2011-02-28 | 2012-09-13 | Hitachi Ltd | Lithium secondary battery |
WO2014034430A1 (en) * | 2012-08-28 | 2014-03-06 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same |
JP2014053321A (en) * | 2013-11-11 | 2014-03-20 | Hitachi Ltd | Positive electrode active material, positive electrode, and lithium ion secondary battery |
CN104466136A (en) * | 2014-12-20 | 2015-03-25 | 高淑萍 | Preparation method of composite positive material of high-power lithium ion battery |
JP2015122269A (en) * | 2013-12-25 | 2015-07-02 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof |
JP2018067549A (en) * | 2017-11-17 | 2018-04-26 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
JP2019220353A (en) * | 2018-06-20 | 2019-12-26 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery |
US10522830B2 (en) | 2013-11-22 | 2019-12-31 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery |
JP2020053275A (en) * | 2018-09-27 | 2020-04-02 | 日立金属株式会社 | Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery and positive electrode active material for lithium ion secondary battery |
CN114008823A (en) * | 2019-06-28 | 2022-02-01 | 松下知识产权经营株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery |
-
2004
- 2004-11-24 JP JP2004339690A patent/JP2006147500A/en active Pending
Cited By (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007280723A (en) * | 2006-04-05 | 2007-10-25 | Hitachi Metals Ltd | Manufacturing method of positive electrode active material for lithium secondary battery, positive electrode active material for lithium secondary battery, and nonaqueous lithium secondary battery using it |
WO2012043321A1 (en) * | 2010-09-28 | 2012-04-05 | Dowaホールディングス株式会社 | Lithium-transition metal oxide powder, method for producing same, positive electrode active material for lithium ion battery, and lithium ion secondary battery |
JP2012074240A (en) * | 2010-09-28 | 2012-04-12 | Dowa Holdings Co Ltd | Lithium-transition metal oxide powder and manufacturing method thereof, cathode active material for lithium ion battery, and lithium ion secondary battery |
KR101788904B1 (en) | 2010-09-28 | 2017-10-20 | 도와 홀딩스 가부시끼가이샤 | Lithium-transition metal oxide powder, method for producing same, positive electrode active material for lithium ion battery, and lithium ion secondary battery |
US9761868B2 (en) | 2010-09-28 | 2017-09-12 | Dowa Holdings Co., Ltd. | Lithium—transition metal oxide powder and method of producing the same, positive electrode active material for lithium ion battery, and lithium ion secondary battery |
CN102651473A (en) * | 2011-02-24 | 2012-08-29 | 株式会社日立制作所 | Cathode material, cathode, and lithium ion secondary battery |
JP2012174614A (en) * | 2011-02-24 | 2012-09-10 | Hitachi Ltd | Positive electrode active material, positive electrode, and lithium ion secondary battery |
US8828607B2 (en) | 2011-02-24 | 2014-09-09 | Hitachi, Ltd. | Cathode material, cathode, and lithium ion secondary battery |
JP2012178295A (en) * | 2011-02-28 | 2012-09-13 | Hitachi Ltd | Lithium secondary battery |
KR20150048122A (en) | 2012-08-28 | 2015-05-06 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same |
US9774036B2 (en) | 2012-08-28 | 2017-09-26 | Sumitomo Metal Mining Co., Ltd. | Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same |
CN104584281A (en) * | 2012-08-28 | 2015-04-29 | 住友金属矿山株式会社 | Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, the positive electrode active material for the nonaqueous electrolyte secondary batteries, and the nonaqueous electrolyte secondary battery using same |
JP5614513B2 (en) * | 2012-08-28 | 2014-10-29 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same |
WO2014034430A1 (en) * | 2012-08-28 | 2014-03-06 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same |
US20150194673A1 (en) * | 2012-08-28 | 2015-07-09 | Sumitomo Metal Mining Co., Ltd. | Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same |
JPWO2014034430A1 (en) * | 2012-08-28 | 2016-08-08 | 住友金属鉱山株式会社 | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same |
JP2014053321A (en) * | 2013-11-11 | 2014-03-20 | Hitachi Ltd | Positive electrode active material, positive electrode, and lithium ion secondary battery |
US10522830B2 (en) | 2013-11-22 | 2019-12-31 | Sumitomo Metal Mining Co., Ltd. | Positive electrode active material for nonaqueous electrolyte secondary batteries and production method thereof, and nonaqueous electrolyte secondary battery |
JP2015122269A (en) * | 2013-12-25 | 2015-07-02 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for manufacturing the same, and nonaqueous electrolyte secondary battery arranged by use thereof |
CN104466136B (en) * | 2014-12-20 | 2017-02-22 | 江门市力源电子有限公司 | Preparation method of composite positive material of high-power lithium ion battery |
CN104466136A (en) * | 2014-12-20 | 2015-03-25 | 高淑萍 | Preparation method of composite positive material of high-power lithium ion battery |
JP2018067549A (en) * | 2017-11-17 | 2018-04-26 | 住友金属鉱山株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same |
JP2019220353A (en) * | 2018-06-20 | 2019-12-26 | Jx金属株式会社 | Positive electrode active material for all-solid-state lithium ion battery, positive electrode for all-solid-state lithium ion battery, all-solid-state lithium ion battery, and method of producing positive electrode active material for all-solid-state lithium ion battery |
JP2020053275A (en) * | 2018-09-27 | 2020-04-02 | 日立金属株式会社 | Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for manufacturing positive electrode active material for lithium ion secondary battery and positive electrode active material for lithium ion secondary battery |
JP7110876B2 (en) | 2018-09-27 | 2022-08-02 | 日立金属株式会社 | Method for selecting substitution element for positive electrode active material for lithium ion secondary battery, method for producing positive electrode active material for lithium ion secondary battery |
CN114008823A (en) * | 2019-06-28 | 2022-02-01 | 松下知识产权经营株式会社 | Positive electrode active material for nonaqueous electrolyte secondary battery, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4595475B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same | |
JP6578635B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same | |
JP6167822B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
WO2018043669A1 (en) | Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery | |
JP5076448B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP4997693B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery using the same, and method for producing the same | |
WO2014034430A1 (en) | Method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using same | |
JP6201277B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP6340791B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery | |
JPWO2018123951A1 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery | |
JP2019186220A (en) | Method for manufacturing positive electrode active material for nonaqueous electrolyte secondary battery, positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same | |
JP4984593B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP4655599B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP5776996B2 (en) | Non-aqueous secondary battery positive electrode active material and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP6201146B2 (en) | Method for producing positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery | |
JP5103923B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP5145994B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same | |
JP5109447B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JPWO2012032709A1 (en) | Method for producing composite oxide, positive electrode active material for secondary battery, and secondary battery | |
JP2006147500A (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery using this | |
JP2006344567A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery using the positive electrode active material | |
JP2018067549A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same | |
JP5181455B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the same | |
JP4915227B2 (en) | Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material | |
JP2006228604A (en) | Anode active substance for lithium ion secondary batterry, and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060906 |